LU model

Spectral representation

LU model

Transport of extensive tracers [START_REF] Resseguier | Geophysical flows under location uncertainty, part I: Random transport and general models[END_REF] Stochastic transport operator

D t θ = d t θ + (u -u s ) •∇ θdt + σdB t •∇ θ forcing - 1 2 ∇• (a∇θ)dt diffusion = 0 (6)
Incompressible noise: ∇•σ = 0 Itô-Stokes drift (Bauer et al., 2020a):

u s = 1 2 ∇• a

LU model

Transport of extensive tracers [START_REF] Resseguier | Geophysical flows under location uncertainty, part I: Random transport and general models[END_REF] Stochastic transport operator

D t θ = d t θ + (u -u s ) •∇ θdt + σdB t •∇ θ forcing - 1 2 ∇• (a∇θ)dt diffusion = 0 (6) Conservation of energy ∇•(u -u s ) = 0 =⇒ d t Ω 1 2 θ 2 dx = 0 (7) 
Incompressible noise: ∇•σ = 0 Itô-Stokes drift (Bauer et al., 2020a):

u s = 1 2 ∇• a

LU model

Connection to physical parameterizations

Isopycnal projector

P = I - ∇ρ (∇ρ) T |∇ρ| 2 =⇒ P∇ρ = 0 (8) 
Projector: P T = P, P Isopycnal projector Transport of passive tracer

P = I - ∇ρ (∇ρ) T |∇ρ| 2 =⇒ P∇ρ = 0 (8) Isopycnal noise σ = Pσ 0 =⇒ σdB t ⊥ ∇ρ and a∇ρ = 0 (9) =⇒ ∂ t ρ + ∇• ρ(u -u s ) = 0 ( 
d t θ + (u -u s ) •∇ θdt + σdB t •∇ θ - 1 2 ∇• (a∇θ)dt = 0 (11)
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Transport of passive tracer

d t θ + (u -u s ) •∇ θdt + σdB t •∇ θ - 1 2 ∇• (a∇θ)dt = 0 (11)
Isopycnal diffusion [START_REF] Gent | Isopycnal mixing in ocean circulation models[END_REF][START_REF] Redi | Oceanic isopycnal mixing by coordinate rotation[END_REF])

a 0 = κI =⇒ a = Pa 0 P T = κP (12) 
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Transport of passive tracer

d t θ + (u -u s ) •∇ θdt + σdB t •∇ θ - 1 2 ∇• (a∇θ)dt = 0 (11)
Isopycnal diffusion [START_REF] Gent | Isopycnal mixing in ocean circulation models[END_REF][START_REF] Redi | Oceanic isopycnal mixing by coordinate rotation[END_REF]) 

a 0 = κI =⇒ a = Pa 0 P T = κP (12) |s| 1 =⇒ a = κ   1 0 s x 0 1 s y s x s y |s| 2   ( 13 
)
with s = [s x , s y ] T , s x = -∂ x ρ/∂ z ρ, s y = -∂ y ρ/∂ z ρ Long Li (
q = ∇ 2 ψ + f + f 2 0 ∂ z ∂ z ψ/N 2 (14) ψ is stream function (u = ∇ ⊥ ψ), f
q = ∇ 2 ψ + f + f 2 0 ∂ z ∂ z ψ/N 2 (14)
Evolution of PV under LU

D t q = ∇•F (15) F = -u • ∇ ⊥ (σdB t -u s dt) -a∇f dt flux of PV source + 1 2 (∂ x a∇v -∂ y a∇u)dt flux of PV sink (16) 
F ensures conservation of total energy (Bauer et al., 2020a) 

ψ is stream function (u = ∇ ⊥ ψ), f

LU-POD noise

Learning of noise from velocity data (Bauer et al., 2020b): For k = 1, . . . , N (with N total number of ocean layers):

1 ∆t σ(x)dBt ≈ M 1 n=M 0 φ n (x)ξn, ξn ∼ N (0, 1) (17 
KE k = ρH k 2 u k 2 + v k 2 Standing EKE + u 2 k + v 2 k Transient EKE , ( 19 
)
where • is approximated by a 2-years-low-pass Fourier filter and • is the residual. Pattern correlation (PC)

∂ t KE = -∂ t PE source + ρ Ω u 1 τ x dx input wind - 1 2 ρδ ek f 0 Ω (u 2 N + v 2 N )dx linear drag - N k=1 A 4 ρH k Ω (u k ∇ 4 u k + v k ∇ 4 v k )dx dissipation + • • • (20) 
PC = Ω σ 2 f σ 2 f ref dx ( Ω σ 4 f dx)( Ω σ 4 f ref dx) (21) 
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Pattern correlation (PC)

PC = Ω σ 2 f σ 2 f ref dx ( Ω σ 4 f dx)( Ω σ 4 f ref dx) (21) 
Gaussian approximation of relative entropy 

Dispersion = 1 |Ω| Ω σ 2 f ref σ 2 f -1 -log σ 2 f ref σ 2 f dx (22) Entropy = 1 2 1 |Ω| Ω (f t -f t ref ) 2 σ 2 f dx + Dispersion (23)

  10)Projector: P T = P, P 2 = P

Figure :

 : Figure: Zonal (left) and meridional (right) noise velocity at resolution 80km learned from eddy-resolving data of Exp.2. Long Li (Fluminance) Stochastic ocean modeling September 22, 2020 13 / 29

Figure : Figure :

 :: Figure: Standing EKE and Transient EKE (sum over all layers) at resolution 80km.

  is Coriolis and N is buoyancy frequency
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Table :

 : Measures of skill for surface layer pressure (80km).

	Model	RMSE of mean RMSE of std PC of std Dispersion Entropy
	LR	1.89	1.51	0.11	1e4	5e3
	LU-POD	1.16	1.41	0.29	156	82
	LU-POD-P	1.17	1.25	0.54	19	12
	Model	RMSE of mean RMSE of std PC of std Dispersion Entropy
	LR	0.47	1.16	0.26	5e4	2e4
	LU-POD	0.41	1.07	0.78	143	72
	LU-POD-P	0.41	0.90	0.90	15	8

Table :

 : Measures of skill for middle layer pressure (80km).

	Model	RMSE of mean RMSE of std PC of std Dispersion Entropy
	LR	0.17	1.15	0.23	2e5	1e5
	LU-POD	0.16	1.06	0.93	169	85
	LU-POD-P	0.16	0.89	0.92	17	9

Table :

 : Measures of skill for bottom layer pressure (80km).
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Location Uncertainty (LU) model

Numerical results: LU coarse-grid simulations Long Li (Fluminance) Stochastic ocean modeling September 22, 2020
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Run LU ensemble simulations and verify ensemble spread by Rank histogram, CRPS, etc.

Run LU ensemble simulations and verify ensemble spread by Rank histogram, CRPS, etc.

Add noise into steady wind and study the response of ocean variability.Long Li (Fluminance)Stochastic ocean modeling September 22, 2020

Run LU ensemble simulations and verify ensemble spread by Rank histogram, CRPS, etc.

Add noise into steady wind and study the response of ocean variability.

Implement the Atmosphere-ocean coupled model[START_REF] Mcc | A quasi-geostrophic coupled model (Q-GCM)[END_REF].Long Li (Fluminance)Stochastic ocean modeling September 22, 2020