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Abstract— In dynamic localization problems, the observations
used from exteroceptive sensors are usually obtained from a
single measurement. However, there are cases where the current
measurement is not sufficient to detect the referenced landmark
or to get a sufficient level of accuracy. In this study, a point
cloud accumulation strategy is used to improve the resolution
of a LiDAR sensor along its sparse axis. In particular, we
are interested in the detection of markings transverse to the
road axis in order to improve the accuracy of localization
of an autonomous vehicle when approaching intersections or
roundabouts. We present a method that allows the construction
of an accurate observation with an associated observation model
based on a High-Definition (HD) map through an accumulation
of scans as the vehicle moves, by compensating the vehicle
motion. The parameters of the accumulator are studied in terms
of detection and accuracy. The quality of the observations and
their impact on the localization quality are analyzed using real
experiments carried out with an experimental vehicle equipped
with a low-cost GNSS receiver, dead-reckoning sensors and a
ground truth system.

I. INTRODUCTION

Accurate localization is a prerequisite in many navigation
tasks of autonomous vehicles ranging from vehicle control
to path following. A Global Navigation Satellite System
(GNSS) receiver coupled with Dead-Reckoning (DR) is often
used as a basis for the localization scheme. Unfortunately,
GNSS signals can be degraded by non line-of-sight and
multi-path in particular in urban environments, and a DR
pose estimate drifts over time. A solution is to embed
perception sensors such as cameras, RADARs or LiDARs
to detect visual features in the surrounding environment and
to use them to localize the vehicle. These features are usually
either mapped in a previously acquired map or localized and
mapped simultaneously, i.e., SLAM-based approaches.

Our approach falls in the former category, in particular,
we make use of a High-Definition (HD) map containing
accurate geo-referenced locations of road markings. Because
the reflectivity of road markings is higher than the rest of the
road, as illustrated in Figure 1b, a LiDAR sensor can extract
such features using the intensity of reflected laser beams.
Simple shapes such as lane markings are usually detected
by single point cloud methods and used as observations to
improve the lateral localization but, more complex markings,
in particular in the longitudinal direction, accumulation of
scans is required since a single scan does not contain
enough information. Our proposal aims at improving the
longitudinal resolution of LiDAR data by scan accumulation
while compensating the motion of the vehicle during the
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Fig. 1: Comparison between a single LiDAR scan and an accumu-
lation around crosswalks. Colors from red to green represent low
to high reflectivity. In the background are the road borders and
crosswalk areas of an HD map.

scanning thanks to its odometry. To study the accuracy of this
approach, we focus on pedestrian crossings, as their shape
does not allow for single frame detection while multi-frame
provides longitudinal information, as illustrated in Figure 1a.
Note that throughout this paper, only zebra crossings, which
are designed with several strips parallel to the lane, are
considered, even though detection of other types of marking
such as stop or yield lines, or even road arrows could also
be helped by this approach. The detector applies ground
and markings filtering and incorporates a coarse pre-filtering
around crosswalk areas that makes use of the HD map.
Strips are then detected and used to compute the crosswalk
pose. Detections are integrated in a localization scheme by
an observation model in which measurements constrain the
position along the crosswalks axis, i.e., in the longitudinal
direction of the road.
The main contributions of this paper are:

• An accumulation method to get an accurate observation
in the sparse direction of the LiDAR sensor;

• A detector and a model associated to this observation;
• A discussion on strategies to integrate such temporally

correlated observations in a localization scheme.

The paper is organized as follows. In Section II, a state
of the art of localization using visual cues from LiDARs
is exposed. Then in Section III, the crosswalk detection
process is explained. The localization scheme and crosswalk
observation model are presented in Section IV and then
experimental results and parameter tuning are given in
Section V.



II. STATE OF THE ART

The field of localization using visual features is widely
studied but remains an open issue. Two sensors are usually
used as sources of information for visual cues: cameras and
LiDARs. Localization using LiDARs can be separated into
two families: dense and sparse. In dense methods, there is no
feature detection and measurement are registered against a
dense representation. Levinson and Thrun [10] used a grid to
store intensities as Gaussian distributions and formulated the
registration problem as finding a transformation between the
measured point cloud and the grid in the estimated body
frame. An extension of this idea was introduced in [19]
by storing both intensity and height as Gaussian mixtures
then using a branch-and-bound registration algorithm. More
generally, dense methods store a 3D map previously built
by a LiDAR and formulate the localization problem as a
registration one in that map using algorithms such as Iterative
Closest Point (ICP) [14], Normal Distributions Transform
(NDT) [12] or derivatives.

Sparse approaches, on the contrary, extract features from
measurements and match them to a prior map to refine a
global pose given by a GNSS receiver, for example. Feature
detection on LiDAR can once again be grouped into two
categories: 2D grid-based or 3D. In grid-based approaches,
the point cloud is projected onto a 2D grid placed on the
ground. These grids are assimilated to bird-eye-view images
and interpolation such as Inverse Distance Weighting is used
to fill in gaps between impacts. Castorena and Agarwal [2]
used the intensity gradient to extract markings and register
them against a prior map. In [20], markings are extracted by
computing an integral image ([1]) and clustered. They are
then detected either by testing their size for linear markings,
or by matching patterns for more complex markings. Yu et
al. [21] extracted markings using an extension of the Otsu
dynamic thresholding [13] incorporating the distance to the
sensor and the point density. Markings are then clustered
and refined before being classified using a combination of
deep learning for small markings and Principal Component
Analysis (PCA) for rectangular markings. Finally, in [6],
Hough transforms are applied to the grid to detect along-
track and cross-track features that are then tracked using a
Kalman filter. The use of grids was introduced to reduce the
number of points and simplifying the problem from a 3D
to 2D one, but this has the disadvantage of losing accuracy
depending on the desired cell size.

Finally, in 3D-based detection approaches, the scanning
pattern can be used to detect changes such as curbs. In [8],
Hata and Wolf detected curbs using ring compression robust
to obstacles and extracted markings using a modified robust
version of Otsu. An occupancy grid is then used to integrate
these detections to a Monte Carlo localization. In [16], a
collision-based curb detection is introduced and detections
are accumulated using an Inertial Measurement Unit (IMU)
before being refined by a two-pass beam model. Non-SLAM
point cloud accumulation methods have been explored in
studies such as [15], where the combination of successive
frames as well as the change between them has been used

Fig. 2: Sweeping of the crosswalk as the vehicle moves.

to detect pedestrians.
Most of these methods use the intensity measure, but its

sensitivity is a common LiDAR issues. Out of the factory,
LiDARs are generally not sufficiently well calibrated and
intensities depend on the beam which did the measurement.
The intensity can also vary with distance, as the incident
angle diminishes. Those issues can be tackled by offline
calibrations such as the ones proposed by Levinson and
Thrun in [10], [11]. However, the major issue appears in
bad weather. While rain and snow can produce light noise
in the geometrical measurements, it can greatly degrade the
intensity readings, in particular on pavement, as studied in
[9].

III. CROSSWALK DETECTOR

A. Problem Statement

Detection of complex markings on the ground requires
good along-road measurement accuracy and resolution in
order to accurately measure where the markings begins and
stops. This can be an issue with low density LiDARs or
certain sensor placements. For example, despite their good
measurement accuracy and along-ring resolution, LiDARs,
when placed on the roof parallel to the ground, can have
a ring resolution up to several meters when hitting the
ground because of their construction using stacks of lasers,
as can be observed in Figure 1a. In this section, a crosswalk
detector capable of computing observables on crosswalks
from LiDAR scans thanks to DR information and buffers is
detailed. We chose not to use grids nor machine learning
in order to build an accurate observation model for the
localization filter.

B. Pre-Processing

Typical scans being composed of tens of thousands of
points, a buffer can have to hold millions of points, making it
hard to guarantee real-time processing with any subsequent
algorithm. We apply ground filtering, based on the ground
plane fitting algorithm from [22], and coarse road filtering
that uses a prior HD map and a localization estimate to
remove points outside the road closed polygon. For this,
an area-based test is realized for each point, where sums
of triangle areas are compared to that of the polygon. This
significantly reduces the number of points without too much
information loss, contrary to ray-casting approaches, polygon
enlargement [5] or others detailed in [7]. As our approach



uses ground points in the close vicinity, we only focus
on lower rings. We have noticed that the factory intensity
calibration was sufficient for this use case. Therefore, we
have not used a calibration method such as described in [11].

C. Buffering

The classical solution to accumulate or “buffer” multiple
point clouds is to transform the point clouds in a static work-
ing frame and taking their union. The issue with this method
is that bad transformations (i.e., imprecise localization) lead
to incoherent point cloud. To dampen this issue, grids have
been developed [10], [8] and work by projecting points in a
2D grid placed on the ground.

Our proposal is to remain in the vehicle frame by storing
untransformed point clouds alongside their relative motion
provided by the vehicle DR sensors, wheel encoders and
yaw rate gyro. Point clouds are accumulated by bringing past
scans to the present using the stored motion and merging
them together, resulting in a denser point cloud referenced
in the current sensor frame. The advantage of this method
is that the vehicle does not have to know its global pose
and can rely exclusively on its on-board DR sensors. In the
absence of accurate DR sensors, other approaches could use
ICP or derivatives to register these scans prior to ground and
road filtering. However, as our DR model, described in [17],
is fairly stable over short periods of time (e.g: two seconds),
we had no need for such registrations.

This has the effect of progressively scanning the surface
of the road as illustrated in Figure 2, using movement to
produce an instantaneous measurement. The buffer duration,
or number of accumulated point clouds, can be changed
to match the resolution and placement of the LiDAR, the
accuracy of the DR model or the application of its output,
depending on whether short bursts of accurate points are
preferable to long term but less accurate points. This is
detailed in Section V-B but for our use, an accumulation
of 1 to 3 seconds is sufficient to drastically increase the
longitudinal resolution using a LiDAR scanning at 10 Hz.
The vehicle speed is also an important factor, as it directly
impacts the resulting longitudinal resolution. Too slow and
the rolling buffer will have lost the start by the time the end
is reached and too fast and the distance between consecutive
point clouds will be greater than the marking. This limits
possible speeds between 10 and 50 km/h with our sensor
placement.

D. Strips Detection

In our approach, crosswalk strips are first detected from the
accumulated point cloud filtered around crosswalks before
being fused in a single crosswalk detection. This allows
for a more robust detection as strips constitute redundant
information and can be easily rejected based on their shape.

The LiDAR points hitting the strips are extracted using
the traditional Otsu dynamic thresholding [13]. This method
works by maximizing a weighted between-class variance
inside a bimodal histogram. Assuming measured intensities

are separated into a “pavement” and “marking” distributions,
which is reasonable given the previous filtering steps, mark-
ings can be extracted by retaining points whose intensity is
above the computed threshold. If some strips are weathered,
they will thus be classified as pavement and not be used for
crosswalk estimation, which is not an issue as long as there
are other good strip detections.

These markings are then clustered together in order to
process each strip independently. The chosen algorithm
for this is called DBSCAN [4], and is similar to classic
Euclidean distance-based clustering, to the difference of a
density constraint. With DBSCAN, a class is propagated
only when there is enough neighbors, otherwise, a point
is considered noise. This choice is driven by the presence
of between-strips outliers caused by rectification errors. The
propagation of one strip to its neighbors is thus prevented
by the low point density between strips.

Oriented bounding boxes are then fitted on each cluster
using PCA. It returns the cluster center (xs, ys) and principal
orientation θs that we will assume to be that of the strip, as
strips tend to be longer than they are wide. However, in order
to reject obvious outliers, the length LS and width WS of
the bounding box are compared to their theoretical shape
L, W and θR by using confidence intervals. We consider
that, after the successive outlier rejection mechanisms, the
strip poses are used to compute the pose of the crosswalk as
the average of its constituent strips, C =

[
xC , yC , θC

]T
in

the body frame of the car. Depending on sensor placement,
markings can be seen from tens of meters ahead to tens of
meters behind. Thanks to the accumulation, observation can
be made as long as there are enough points, up to several
seconds even with temporary occlusion such as when the
vehicle passes over the crosswalk.

IV. LOCALIZATION FILTER

In order to evaluate the quality of crosswalk detection
and to test the observation model, a state filtering scheme
has been set up. The state and evolution model are taken
from [17]. An Extended Kalman Filter (EKF) has been
implemented with measurements from a low-cost Ublox
GNSS receiver that provides a global but inaccurate pose, the
four wheel-encoders and the yaw rate gyro of the vehicle.

A. Marking Representation

In our HD map, illustrated in the background of Figure 1a,
crosswalks are represented by a single closed polygon that
covers all the crosswalk strips (and not each strips inde-
pendently), as visible in gray on Figure 1a. It is attached
to a series of nodes describing the center of the lane from
which the orientation of the crosswalks can be extracted. In
the following section, the polygon center [xO, yO] alongside
the road orientation θO, expressed in the working frame, are
used. Their accuracy is studied in [18] and is in the order of
centimeters. It is worth noting that this information is also
accessible in OpenStreetMap (OSM), where crosswalks are
simply points referenced by lanes.



B. Crosswalk Observation Model

In order to incorporate the crosswalk detection into a
localization filter, we developed an observation model based
on the line-to-line constraint proposed in [3]. In this paper,
representing lines as distances and orientations came natu-
rally as a consequence of using Hough transform. However,
in our case, we chose this representation because a crosswalk
(as well as most other markings) can only give accurate
information in one of its directions, here along the strips
and this representation thus serves as a 1D constraint over
this direction.

In this observation model, illustrated in Figure 3, we
assume the LiDAR to be rigidly attached to the vehicle
body frame and properly calibrated so that the output of the
detector is expressed in the body frame M . X is the state
to estimate that defines the frame M and is composed of its
position x, y and its heading θ defined in the world frame as
well. Let

z =
M[

ρC
θC

]
=
M[

xC cos θC + yC sin θC
θC

]
(1)

be the measurement, as described in previous sections and

h(x) =
M[

ρO
θO − θ

]
=
M[

(xO − x) cos θO + (yO − y) sin θO
θO − θ

] (2)

be the estimated measurement projected in the body frame.
Then, H , the Jacobian of h(X) can be calculated as

H =

[
− cos θO − sin θO 0

0 0 −1

]
(3)

and letting σρ and σθ respectively be the longitudinal and
orientation standard deviations (determined from the detector
uncertainty analysis of Section V-B), the observation covari-
ance matrix R of the filter can be defined as:

R =

[
σ2
ρ 0
0 σ2

θ

]
(4)

Because observations are produced from overlapping
buffers, observation errors for the same crosswalk are cor-
related. This has been mitigated by enlarging the evolution
model noise.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The method has been evaluated on data recorded with
a Renault ZOE experimental vehicle from the Heudiasyc
laboratory. The vehicle was equipped with a Velodyne VLP-
32C LiDAR sensor. The vehicle internal sensors (gyro, wheel
encoders) were accessed through its CAN bus. Ground truth
positioning has been obtained by a Novatel SPAN-CPT
system providing localization by fusing high accuracy IMU
and Real Time Kinematics (RTK) corrections. The sensors
were interfaced and recorded using the Robot Operating
System (ROS) framework.
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Fig. 3: Illustration of the observation model. In blue are vehicle-
related frames and coordinates, while green is for measurement and
red for map-relative information.

Fig. 4: Satellite view and trajectory of the experiment. Crosswalks
are highlighted in red.

The trajectory used in these experiments is located in
Rambouillet, France and is illustrated in Figure 4. It consists
of a stretch of 400 m of mostly straight roads where 5
crosswalks can be observed. This section is followed by
450 m of trajectory on a succession of roundabouts where
over five crosswalks can be observed. Speeds during the
recording were about 40 km/h on straight roads and 25 km/h
in the vicinity of roundabouts.

B. Accuracy analysis of the crosswalk observations

The accuracy and number of observations of the detector
depend on several factors, such as the buffer length or
the odometry accuracy. We studied these factors through
crosswalk detection using ground truth as position so that
the observation error can be assumed to be entirely caused
by the detector. We evaluate using the observation residual
instead of using the classical precision and recall metrics by
lack of observation ground truth.

1) Influence of buffer length: The buffer length is also a
critical parameter of the detector. Intuitively, one may expect
that longer buffer would lead to better accuracy and more
observations. The experimental results in Figure 5 shows
that on the contrary, a slight bias appears above 5 s. This
behavior can be explained by several reasons. Longer buffers
means that more DR measurements are accumulated, which
in turns also accumulates more of their respective errors,
increasing the overall one. Moreover, a long buffer results in
observations being produced even though the crosswalk has



Fig. 5: Error distribution of the crosswalk detector and number of
detections for different buffer lengths.

Fig. 6: Error distribution of the crosswalk detector and number of
detections for yaw rate biases.

not been observed for some time. Therefore, it is preferred
to have a shorter buffer but sufficiently large to be able
to detect crosswalks and provide an acceptable number of
observations to the localization process. The small number
of crosswalks detected at length 0.5 s confirms the benefits of
accumulating point clouds. For the rest of the experiments,
the buffer size has been chosen at 2 seconds as it is well
balanced for crosswalks of 2 or 3 meters at nominal speeds.

2) Influence of DR measurements accuracy: The vehicle
motion between two scans used for accumulating is sensitive
to the accuracy of the DR system. This is all the more rele-
vant since automobile grade sensors can be biased, especially
gyros. We evaluate the effect of bad inertial measurements
on the detector by artificially adding a yaw rate bias to the
measurements. Figure 6 presents the loss of accuracy and
availability that has been observed for different bias values
(for a 2 s buffer).

For this size of buffer, the detector experiences little
effect of a gyro bias up until a bias of 0.025 rad/s. This
remains acceptable since typical observed biases are around
0.004 rad/s [17]. A 2 second buffer can therefore be assumed
short enough not to be significantly affected by inertial errors.
It is important to note that the longer the buffer, the more
sensitive it is to this effect.

C. Localization accuracy and consistency analysis

The contribution of marking information to global local-
ization is evaluated here. In the following results, depicted
in Figure 7, the ground truth positioning is only used to
evaluate the localization accuracy of the filter. Here, the point
clouds are accumulated using speeds and yaw rates computed
using the vehicle on-board sensors. Since the filter here
uses inaccurate GNSS positioning, the accuracy gained from
crosswalks is easy to observe. In general, a notable improve-
ment in localization error can be observed when crosswalks
are detected, such as at times t = 20, 42 and 105 s, where
the 2D error drops from 0.6 m to 0.1 m on average. At
times t = 46, 117 and 130 s, crosswalks are observed while
turning, as can be seen from the significant angle change in
the bottom figure of Figure 7. This results in the marking
being seen from different angles which does not improve
localization, as the DR model is more sensitive to rotation
error than translation error. When navigating in roundabouts
(starting at t = 95 s), observing a single crosswalk does not
have a significant impact on the localization error, but when
two are seen at the same time, the state is constrained in two
different directions, resulting in significant error reduction.
On the whole trajectory, the average 2D error is reduced from
0.68 m to 0.49 m and the longitudinal error from 0.30 m
to 0.19 m when in the presence of crosswalks. Finally, the
filter and thus the accumulation and detection approach are
consistent, as the East and North errors are always inside
their 3σ confidence interval.

VI. CONCLUSION AND PERSPECTIVES

The local accumulation of LiDAR scans along a sparse
axis of the sensor has shown to be efficient for accurately
using geo-referenced markings for localization. We have
proposed a method that uses movement to produce a punctual
observation that can be used to localize a crosswalk in real-
time. Our accumulation takes place in the body frame and
produces point clouds that can be used to detect sparse
features without loss of accuracy. It has been experimentally
shown to improve the localization error in the vicinity of
crosswalks, correcting the localization DR drift and reducing
uncertainty while maintaining consistency up to 3σ. This
indicates that LiDARs can provide accurate along-track mea-
surements of road surface markings.

We have observed that incorporating an observation ob-
tained through buffering of LiDAR scans must be done
carefully. Observations produced in such a way can have cor-
related errors. The degree of correlation is difficult to assess
as new scans are not guaranteed to change the measurement,
e.g. if the new points are inside the already buffered strips.
There are several ways to deal with this problem. The solu-
tion we have studied is to enlarge the evolution model noise
to diminish the correlation impact. Another solution would be
to use a filter capable of handling unknown correlation. The
first time a crosswalk is detected, a Kalman update would be
done. For all subsequent measurements on this crosswalk, a
Covariance Intersection update would address the problem.



Fig. 7: At the top, absolute 2D localization error without crosswalk observations (red), and using crosswalk observations (blue). Below are
the 2D error decomposition in East and North components, along with their associated 3σ confidence interval. Gray areas indicate when
a crosswalk is observed. At the bottom are the angle at which crosswalks are observed relative to the vehicle, where colors represent a
given crosswalk.
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