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Abstract Progressive Hedging is a popular decomposition algorithm for solving multi-

stage stochastic optimization problems. A computational bottleneck of this algorithm

is that all scenario subproblems have to be solved at each iteration. In this paper, we

introduce randomized versions of the Progressive Hedging algorithm able to produce

new iterates as soon as a single scenario subproblem is solved. Building on the relation

between Progressive Hedging and monotone operators, we leverage recent results on

randomized fixed point methods to derive and analyze the proposed methods. Finally,

we release the corresponding code as an easy-to-use Julia toolbox and report computa-

tional experiments showing the practical interest of randomized algorithms, notably in

a parallel context. Throughout the paper, we pay a special attention to presentation,

stressing main ideas, avoiding extra-technicalities, in order to make the randomized

methods accessible to a broad audience in the Operations Research community.

1 Introduction

1.1 Context: decomposition of stochastic problems and computational limitations

Stochastic optimization is a rich and active research domain with various applications

in science and engineering ranging from telecommunication and medicine to finance;

we refer to the two textbooks [18] and [21] for theoretical foundations of this field and

pointers to applications. Expressive stochastic models lead to large-dimensional opti-

mization problems, that may be computationally challenging. In many applications,

the randomness is highly structured (e.g. in multistage stochastic programming) and

can be exploited by decomposition methods [19, Chap. 3.9]. The two main advantages
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of decomposition methods are that i) they replace a large and difficult stochastic pro-

gramming problem by a collection of smaller problems; and ii) these smaller subprob-

lems can usually be solved efficiently with standard off-the-shelf optimization software.

As a result, decomposition methods provide an efficient and specialized methodology

for solving large and difficult stochastic programming problems by employing readily

available tools.

Progressive Hedging is a popular dual decomposition method for multistage stochas-

tic programming. This algorithm was introduced in [17] and can be interpreted as a

fixed-point method over a splitting operator [18]. Through this connection, Progres-

sive Hedging is proved to be convergent for solving convex stochastic programs. There

are also many applications to mixed-integer stochastic problems where Progressive

Hedging acts as an efficient heuristic to get useful bounds; see e.g. [24]. For historical

perspectives, theoretical analysis, and references to applications, we refer to [18].

Progressive Hedging tackles multi-stage stochastic problems by decomposing them

over the scenarios and solving independently the smaller subproblems relative to one

scenario. However the number of these subproblems grows exponentially with the num-

ber of stages, so that the computational bottleneck of this algorithm is that all scenario

subproblems have to be solved at each iteration. As a decomposition method solving

scenario subproblems independently, Progressive Hedging is an intrinsically parallel

algorithm and admits direct parallel implementations for distributed computing sys-

tems (e.g. multiple threads in a machine, or multiple machines in a cluster). In the

homogeneous case (where all subproblems are solved with similar duration) such par-

allel implementations are efficient in practice and require no additional theoretical

study; for early works discussing parallelization, see e.g. the doctoral dissertation [22]

and the conference papers [6,20]. However, when the subproblems have different dif-

ficulties or the computing system is heterogeneous (e.g. with different machines or

non-reliable communications between machines), the parallelization speed-up can be

drastically degraded. Thus designing efficient, theoretically-grounded, variants of Pro-

gressive Hedging for heterogeneous distributed settings is still an on-going research

topic (see e.g. the preprint [10]).

1.2 Contribution: accessible, efficient, parallel Progressive Hedging variants

In this paper, we present optimization methods based on Progressive Hedging having

efficient parallel implementation and able to tackle large-scale multistage stochastic

problems. Our variants are randomized algorithms solving subproblems incrementally,

thus alleviating the synchronization barrier of the standard Progressive Hedging. When

deployed on computing systems having multiple workers, our algorithms are able to

make the most of the computational abilities, synchronously or asynchronously.

This work is based on the interaction of two complementary fields of research:

– applications of Progressive Hedging in the OR community with expressive uncer-

tainty models leading to large-scale multistage stochastic problems;

– recent developments on randomization techniques in the optimization and mono-

tone operators community, motivated by the distributive abilities of modern com-

puting systems.

The connection between these two domains is natural, through the well-known inter-

pretation of Progressive Hedging as a fixed point algorithm (see e.g. [18]). We also build
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on this connection to propose our efficient randomized Progressive Hedging algorithms.

We pay a special attention to making our developments easily accessible for a broad

audience in the OR and stochastic programming community: we explicitly derive the

proposed methods from the textbook formulation of Progressive Hedging; we rely on

well-established results to highlight fundamental ideas and to hide unnecessary techni-

calities. Furthermore, we take advantage of the recent distributive abilities of the Julia

language [2] (using the Distributed module) and provide an easy-to-use toolbox solving

multistage stochastic programs with the proposed methods.

2 Multistage stochastic programs: recalls and notation

In this section, we lay down the multistage stochastic model considered in this paper

as well as our notation. We follow closely the notation of the textbook [19, Chap. 3].

Stochastic programming deals with optimization problems involving uncertainty,

modelled by random variable ξ, with the goal to find a feasible solution x(ξ) that is

optimal in some sense relatively to ξ. Considering an objective function f and a risk

measure R, the generic formulation of a stochastic problem is

min
x

R
(

f(x(ξ), ξ)
)

. (2.1)

For an extensive review of stochastic programming, see e.g. [21].

In the multistage setting, the uncertainty of the problem is revealed sequentially

in T stages. The random variable ξ is split into T − 1 chunks, ξ = (ξ1, .., ξT−1),
and the problem at hand is to decide at each stage t = 1, . . . , T what is the optimal

action, xt(ξ[1,t−1]), given the previous observations ξ[1,t−1] := (ξ1, . . . , ξt−1). The

global variable of this problem thus writes

x(ξ) = (x1,x2(ξ1), . . . ,xT (ξ[1,T−1])) ∈ R
n1× · · · × R

nT = R
n

where (n1, . . . , nT ) are the size of the decision variable at each stage and n =
∑T

t=1 nt

is the total size of the problem.

We focus on the case where the random variable ξ can take a finite number S of

values called scenarios and denoted by ξ1, . . . , ξS . Each scenario occurs with probability

ps = P[ξ = ξs] and is revealed in T stages through one common start and a realization

of the random variable ξs = (ξs1, . . . , ξ
s
T−1). It is thus natural to represent the scenarios

as the outcome of a probability tree, as illustrated in Figure 1. For each scenario s ∈
{1, . . . , S}, the target of multistage stochastic programming is to provide a decision

xs = (x1,x2(ξ
s
1), . . . ,xT (ξ

s
[1,T−1])), and thus the full problem variable writes

x =

















x1 x2
(

ξ11
)

. . . xT−1

(

ξ1[1,...,T−2]

)

xT

(

ξ1[1,...,T−1]

)

x1 x2
(

ξ21
)

. . . xT−1

(

ξ2[1,...,T−2]

)

xT

(

ξ2[1,...,T−1]

)

...
...

x1 x2

(

ξS1

)

. . . xT−1

(

ξS[1,...,T−2]

)

xT

(

ξS[1,...,T−1]

)

















∈ R
S×n. (2.2)

From (2.2), we see that by construction of the randomness, the decision at stage 1
must be the same for all the scenarios. Indeed, as no random variables have been

observed, the user does not have any information about the scenarios. In the same
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Stages1 2 3 4

ξ1 ξ2 ξ3
Scenario 8

Scenario 7

Scenario 6

Scenario 5

Scenario 4

Scenario 3

Scenario 2

Scenario 1

Fig. 1: Scenarios as the outcomes of a probability tree.

vein, given the specificity of these random variables, an important feature of finite

multistage problems is that if two scenarios s1 and s2 coincide up to stage t − 1 (i.e.

ξs1
[1,t−1]

= ξs2
[1,t−1]

), then the obtained decision variables must be equal up to stage t

(i.e. (x1,x2(ξ
s1
1 ), . . . ,xt(ξ

s1
[1,t−1]

)) = (x1,x2(ξ
s2
1 ) . . . , xt(ξ

s2
[1,t−1]

))). These constraints

are called non-anticipativity. Geometrically these constraints define a subspace of RS×n

that we denote by

W=







x ∈ R
S×n : ∀s1, s2

∣

∣

∣

∣

∣

∣

xs11 = xs21 (t = 1)
and

xs1t = xs2t if ξs1
[1,t−1]

= ξs2
[1,t−1]

(t ≥ 2)







, (2.3)

where we denote xst ∈ R
nt the decision variable for scenario s at stage t. We see that

the non-anticipativity constraints lead to a variable x with a block structure as depicted

in Figure 2.

Stages1 2 3 4

ξ1 ξ2 ξ3
Scenario 8

Scenario 7

Scenario 6

Scenario 5

Scenario 4

Scenario 3

Scenario 2

Scenario 1

x81

x71

x61

x51

x41

x31

x21

x11

x82

x72

x62

x52

x42

x32

x22

x12

x83

x73

x63

x53

x43

x33

x23

x13

x84

x74

x64

x54

x44

x34

x24

x14

Fig. 2: Structure of the non-anticipativity constraints corresponding to the 4- sstage stochastic
problem depicted in Fig. 1. All variables in a dark gray rectangle have to be equal.

For each scenario s ∈ {1, . . . , S}, let us denote by fs(xs) = f(xs, ξs) the cost of the

decision xs. To simplify notation, we consider that possible constraints are incorporated
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in the cost: minimizing a function f̃s over a constraint set Cs is the same as minimizing

fs = f̃s+ ιCs over the full space (with the indicator function ιCs defined by ιCs(x) = 0
if x ∈ C

s and +∞ elsewhere). We consider such a constrained problem in our numerical

experiments in Section 6.

We consider the “risk-neutral case” where R is the expectation of the random

cost fs(xs) (a “risk-averse” case is discussed later in Remark 2.1). In this setting,

Problem (2.1) rewrites as

min
x∈W

S
∑

s=1

psf
s(xs), (2.4)

which will be our target problem in this paper. The difficulty of this problem comes

from the fact that there is an exponentially growing number of scenarios (e.g. in a

binary tree, S = 2T−1), all linked by the non-anticipativity constraints.

We finish presenting the set-up by formalizing our blanket assumptions on (2.4).

Assumption 1. The scenario probabilities are positive (ps > 0); the functions fs are

convex, proper, and lower-semicontinuous; and there exists a solution to (2.4).

Assumption 2. The subspace W defined in (2.3) intersects the relative interior of the

domain of the objective function.

The convexity in Assumption 1 is used for the convergence analysis (see e.g. [19,

Chap. 3]). The technical assumption 2 is the standard non-degeneracy assumption in

the multi-stage stochastic programming (see e.g. (9.17) in [19, Chap. 3]) which enables

the splitting between scenarios and constraints.

Remark 2.1 (Risk-averse variant) Though we consider in (2.4) a risk-neutral model,

this formulation naturally extends to risk-averse models, for which “worst” scenarios

are particularly important to take into account. A popular risk-averse measure is the

so-called Conditional Value at risk or CVar (see e.g. [16]). Following the idea of [15],

the risk-averse problem

min
x∈W

CVarp(f(x(ξ), ξ))

can be cast in the same form as (2.4).

3 Progressive Hedging: algorithm and sequential randomization

This section presents an efficient randomization of Progressive Hedging for solving

the multi-stage stochastic problem (2.4). We start with recalling the usual Progressive

Hedging algorithm and discussing its practical implementation. Then, we propose a

sequential randomized variant, which is a single-thread method, as the standard Pro-

gressive Hedging, but with cheap iterations.

This variant, as well as the other upcoming methods of the next section, is based on

the operator view of Progressive Hedging (see e.g. the textbook [19, Chap. 3.9]). More

precisely, Progressive Hedging corresponds to the Douglas-Rachford splitting on the

subgradient of the dual problem, much like the Alternating Direction Method of Mul-

tipliers (ADMM); see [12]. We refer to [9] for a formal link between Douglas-Rachford

and ADMM, and to [19, Chap. 3.9] for a formal link between Douglas-Rachford and

Progressive Hedging. However, no knowledge on fixed-point theory is required to read

this section; we postpone the derivation of the algorithms and the proofs of the theo-

rems in Appendix A.
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3.1 Progressive Hedging

Progressive Hedging is a popular decomposition method for solving (2.4) by decoupling

the objective (separable among the scenarios) and the constraints (linking scenarios).

The method alternates between two steps: i) solving S subproblems (one for each sce-

nario, corresponding to the minimizing fs plus a quadratic function) independently;

ii) projecting onto the non-anticipativity constraint. In order to properly define this

second step, it is convenient to define the bundle B
s
t of the scenarios that are indistin-

guishable from scenario s at time t, i.e.

B
s
t =

{

σ ∈ {1, . . . , S} : ξs[1,t−1] = ξσ[1,t−1]

}

=
{

σ ∈ {1, . . . , S} : x ∈ W ⇒ xst = xσt
}

(see (2.3)) .

Projecting onto the non-anticipativity constraints decomposes by stage and scenario,

as an average over the corresponding bundle weighted by the scenarios probabilities.

Algorithm 1 Progressive Hedging

Initialize: x0 ∈ W ,u0 ∈ W⊥, µ > 0

For k = 0, 1, . . . do:














yk+1,s = argminy∈Rn

{

fs(y) + 1
2µ

∥

∥y − xk,s +µuk,s
∥

∥

2
}

for all s = 1, . . . , S

xk+1,s
t = 1∑

σ∈Bs
t
pσ

∑

σ∈Bs
t
pσ yk+1,σ

t for all s = 1, . . . , S and t = 1, . . . , T

uk+1 = uk + 1
µ
(yk+1−xk+1)

Return: xk

Algorithm 1 presents the Progressive Hedging algorithm; its derivation from the

reformulation of (2.4) as fixed-point problem is recalled in Appendix A. This appendix

also explains how the convergence of the algorithm can be obtained as an application

of existing results for fixed-point algorithms. Here we only formalize the convergence

result, and discuss further some implementation details.

Theorem 3.1 Consider the multistage problem (2.4) verifying Assumption 1 and 2.

Then, the sequence (xk) generated by Algorithm 1 is feasible (xk ∈ W for all k) and

converges to an optimal solution of (2.4).

The costly operation in Algorithm 1 is the update of the variable y which consists in

a “proximal” operation for all scenarios. In general, there is no closed form expression for

this operation, and thus it has to be obtained by a nonlinear optimization solver1. For

instance, when the scenario costs (fs) are (constrained) linear or quadratic functions,

this operation amounts to solving S (constrained) quadratic programs.

The update of the variable x consists in a projection onto the non-anticipativity

constraints W. Though it is rather cheap to compute, it involves the variables (ys) of all

the scenarios. Thus, the update of y has to be completely executed before updating x,

1 In our toolbox, we solve these problems with IPOPT [23], an open source software package
for nonlinear optimization.



Randomized Progressive Hedging methods 7

resulting in a potential computational bottleneck. Our upcoming randomized variant

is aimed at alleviating this practical drawback.

Finally, concerning the initialization of the method, u0 ∈ W
⊥ is primordial for

convergence, and u0 = 0 is a safe choice. The hyperparameter µ > 0 (also present in

ADMM) controls the relative decrease of the primal and dual error; for the specific

structure of Problem (2.4), µ = 1 seem to be an acceptable choice in most situations.

Remark 3.1 (About leaf nodes) The leaf nodes correspond to the variables xsT i.e. the

decisions at the last stage T for all the scenarios (see Fig. 2). These variables are par-

ticular in the optimization problem since they are not linked by the non-anticipativity

constraints. This implies that the scenario bundle for scenario s at the last stage T is

reduced to the singleton B
s
T = {s}. Hence, the weighted average in the update of x in

Algorithm 1 reduces to xk+1,s
T

= yk+1,s
T

, and as a consequence the dual variable stays

unchanged ukT = u0
T . This modification was present in the original Progressive Hedging

algorithm by Rockafellar and Wets [17] since it allows to reduce the storage cost by

getting rid of the dual variable corresponding to leaf nodes. This does not hold anymore

for randomized versions that we present in this paper. So we choose not to display this

modification for simplicity and better compliance with the textbook [19].

3.2 Randomized Progressive Hedging

Using the interpretation of Progressive Hedging as a fixed-point algorithm (detailed in

appendix A) and results on randomized “coordinate descent” fixed-point methods (see

e.g. [11]), we obtain a randomized version of Progressive Hedging. This randomized

method consists in updating only a subset of the coordinates at each iteration, cor-

responding to only one scenario, and leaving the other unchanged. By doing so, each

iterations is much less demanding computationally than one of Progressive Hedging

(roughly S time quicker) since it involves the resolution of one sub-problem compared

to S. However, as commonly observed with randomized optimization methods, Al-

gorithm 2 will take more iterations to converge but usually less than S times more

due to the progressive improvement brought by each scenario information. Thus, the

Randomized Progressive Hedging should in general outperform the Progressive Hedg-

ing computationally, with the other advantage that many more iterations are produced

per time which can be very useful in practice. Deriving such a method requires a special

care as the operator links the variables with each other; these derivations are provided

in Appendix B.

At iteration k, our Randomized Progressive Hedging (Algorithm 2) samples one

scenario sk (randomly among all with probabilities (qs)) and then alternates between

the projection over the non-anticipativity constraints W associated with sk (the full

projection on W is not necessary2) and the “proximal” operation over the selected

scenario sk, together with an update of the main variable z. Since a single scenario is

involved in the iteration, this algorithm is naturally adapted to single-thread imple-

mentations and its incremental nature makes it computationally more efficient than

the Progressive Hedging, to almost no additional implementation complications.

Finally, notice that since only the partial projection on the non-anticipativity con-

straints related to this scenario is needed to perform an iteration, the sequence (xk),

2 The full projection can be performed anyway but the variables that are not associated
with sk will not be taken into account by the algorithm anyhow.
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Algorithm 2 Randomized Progressive Hedging

Initialize: z0 = x0 ∈ W , µ > 0

For k = 0, 1, . . . do:


























































Draw a scenario sk ∈ {1, . . . , S} with probability P[sk = s] = qs

xk+1,sk

t =
1

∑

σ∈Bsk
t

pσ

∑

σ∈Bsk
t

pσ zk,σt for all t = 1, . . . , T projection only on
constraints involving sk

yk+1,sk = argminy∈Rn

{

fsk (y) + 1
2µ

∥

∥

∥
y − 2 xk+1,sk +zk,s

k
∥

∥

∥

2
}

optimization sub-problem
only concerning scenario sk

∣

∣

∣

∣

∣

zk+1,sk = zk,s
k
+yk+1,sk −xk+1,sk

zk+1,s = zk,s for all s 6= sk

Return: x̃k+1 =
1

∑

σ∈Bs
t
pσ

∑

σ∈Bs
t

pσ zk+1,σ
t for all s = 1, . . . , S and t = 1, . . . , T

although converging to the sought solution, does not verify the non-anticipativity con-

straints. That is why the output of the algorithm has to be eventually projected onto

the (full) non-anticipativity constraints (which introduces variable x̃k).

The convergence of this randomized version is formalized by Theorem 3.2 and

proved in Appendix B.

Theorem 3.2 Consider a multistage problem (2.4) verifying Assumptions 1 and 2.

Then, the sequence (x̃k) generated by Algorithm 2 is feasible ( x̃k ∈ W a.s. for all k)

and converges almost surely to a solution of (2.4).

In practice, the initialization and parameters are similar to those of Progressive

Hedging to the exception of the probabilities (qs). Two natural choices come to mind:

– uniform sampling : taking the same probability qs = 1/S for all scenarios;

– p sampling : taking qs = ps and thus sampling more the scenarios with a greater

weight in the objective.

Finally, in terms of implementation, this algorithm is by nature sequential in the sense

that one scenario is sampled, treated, and then incorporated in the master variable.

Thus, it suits well single thread setups but is not directly able to benefit from multiple

workers. Such an extension is the goal of the next section.

4 Parallel variants of Progressive Hedging

In this section, we discuss the deployment of (variants of) Progressive Hedging algo-

rithms on parallel computing systems. No particular knowledge about distributed com-

puting is required. We consider a generic master-worker framework where M workers

collaboratively solve (2.4) under the orchestration of a master. This setting encompasses

diverse practical situations such as multiple threads in a machine or multiple machines

in a computing cluster (workers can then be threads, machines, agents, oracles, etc.).

Our aim is to provide parallel methods that speed-up the resolution of medium-to-large
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multi-stage stochastic programs by using a distributed computing system. Fully scal-

able implementations are problem/system dependent; instead, we take a higher level

of abstraction and consider that a worker is a computing procedure that is able to

solve any given subproblem. In practice, the algorithms implemented in our toolbox do

not need to know the computing system, as they automatically adapt the underlying

computing system, thanks to parallelization abilities of the Julia language.

4.1 Parallel Progressive Hedging

The randomized method presented in Section 3.2 is based on the sampling of one

scenario per iteration. Using the same reasoning, it is possible to produce an algorithm

sampling M ≤ S scenarios per iteration. These M scenarios can then be treated in

parallel by M workers and then sent to the master for incorporation in the master

variable. This algorithm, completely equivalent to the Randomized Progressive Hedging

(Algorithm 2) can be formulated in a master-worker setup as follows.

Algorithm 3 Parallel Randomized Progressive Hedging

Master

Initialize: x0 = z0 ∈ W , µ > 0

For k = 0, 1, . . . do:


































Draw M scenarios (s[1], .., s[M ]) ∈ {1, . . . , S}M with probability P[s[i] = s] = qs
xk+1,s
t = 1∑

σ∈Bs pσ

∑

σ∈Bs
t
pσ zk,σt for all t = 1, . . . , T and s ∈ (s[1], .., s[M ])

Send a scenario/point pair (s[i], 2 xk+1,s[i]− zk,s[i]) to each worker i = 1, ..,M

Receive ys[i] from all workers i = 1, ..,M
∣

∣

∣

∣

zk+1,s = zk,s +ys−xk+1,s for all s ∈ (s[1], .., s[M ])
zk+1,s = zk,s for all s /∈ (s[1], .., s[M ])

Return: x̃k+1 =
1

∑

σ∈Bs
t
pσ

∑

σ∈Bs
t

pσz
k+1,σ
t for all s = 1, . . . , S and t = 1, . . . , T

Worker i

As soon as a scenario/point pair is received:










Receive scenario/point pair (s[i], v[i])

ys[i] = argminy∈Rn

{

fs[i](y) + 1
2µ
‖y − v[i]‖2

}

Send ys[i] to the Master

This algorithm presents a simple, yet rather efficient, parallel method to solve

multistage stochastic problems based on Progressive Hedging. When the difficulty of

the subproblems is highly variable (due to different sizes, data, or initialization), the

Progressive Hedging has to wait for the slowest subproblem to be solved, in order

to complete an iteration. This is not the case anymore for the parallel randomized

variant. However, if the computing system is heterogeneous, the parallel version still

has to wait for the slowest worker, and thus workers may eventually have idle times.

This drawback occurring for heterogeneous setups will be alleviated in the next section

by our asynchronous variant.
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4.2 Asynchronous Randomized Progressive Hedging

In a parallel computing framework, the Parallel Randomized Progressive Hedging of

the previous section can be further extended to generate asynchronous iterations (built

on a slightly different randomized fixed-point method [13], as detailed in Appendix C).

The resulting asynchronous Progressive Hedging (Algorithm 4) consists of the same

steps per iteration as Algorithm 2, but these steps are performed asynchronously by

several workers in parallel. In this case, each of the workers asynchronously receives

a global variable, computes an update associated with one randomly drawn scenario,

then incorporates it to the master variable3.

Algorithm 4 Asynchronous Randomized Progressive Hedging

Master

Initialize: x0 = z0 ∈ W , µ > 0, k = 0,

x̂[j] = x0,j and s[j] = j for every worker i

Send the scenario/point pair (s[j],x[j]) to every worker j

As soon as a worker finishes its computation:














































Receive ys[i] from an worker, say i
∣

∣

∣

∣

∣

zk+1,s[i] = zk,s[i] + 2ηk

Sqs[i]

(

ys[i] − x̂[i]
)

zk+1,s = zk,s for all s 6= s[i]
Draw a new scenario for i : s[i] ∈ {1, . . . , S} with probability P[s[i] = s] = qs
x̂[i] = 1∑

σ∈Bs[i] pσ

∑

σ∈B
s[i]
t

pσ zk+1,σ
t for all t = 1, . . . , T

Send the scenario/point pair (s[i], 2 x̂[i]− zk+1,s[i]) to worker i
k ← k + 1

Return: x̃k+1 =
1

∑

σ∈Bs
t
pσ

∑

σ∈Bs
t

pσz
k+1,σ
t for all s = 1, . . . , S and t = 1, . . . , T

Worker i

As soon as a scenario/point pair is received:










Receive scenario/point pair (s[i], v[i])

ys[i] = argminy∈Rn

{

fs[i](y) + 1
2µ
‖y − v[i]‖2

}

Send ys[i] to the Master

Multiple updates may have occurred between the time of reading and updating.

We denote by x̂[i] (without any time index to avoid confusion) the value of xk,s lastly

used for feeding worker i. When the master performs an update from the information of

worker i, x̂[i] = xk−dk,s[i] where s[i] is the scenario treated by worker i for that update

and dk if the number of updates between k and the last time worker i performed an

update4. We assume here that this delay is uniformly bounded; this is a reasonable

assumption for multi-core machines and computing clusters. This assumption allows to

3 We assume consistent writing, i.e. reading and writing do not clash with each other, ex-
tensions to inconsistent reads is discussed in [13, Sec. 1.2]

4 In Appendix C, following [13], we denote by x̂k = xk−dk if worker i started its update at
time k − dk .
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use the convergence analysis of [13] to establish the following convergence result. The

proof of this result is given in Appendix C. The intuition behind the result is to use the

maximal delay to take cautious stepsizes ηk, guaranteeing convergence of asynchronous

updates.

Theorem 4.1 Consider a multistage problem (2.4) verifying Assumption s 1 and 2.

We assume furthermore that the delays are bounded: dk ≤ τ < ∞ for all k. If we take

the stepsize ηk as follows for some fixed 0 < c < 1

0 < ηmin ≤ ηk ≤ cSqmin

2τ
√
qmin + 1

with qmin = min
s

qs, (4.1)

then, the sequence (x̃k) generated by Algorithm 4 is feasible (x̃k∈W a.s. for all k) and

converges almost surely to a random variable supported by the solution set of (2.4).

Remark 4.1 (Extensions) For sake of clarity, we reduce Algorithm 4 to its simplest

formulation with essential ingredients for asynchronous computation with guaranteed

convergence. Several extensions and heuristics could be added; among them:

– tuned ηk (we test the simple strategy ηk = 1 in our numerical experiments),

– adaptive µ (scenario or iteration-wise),

– sending multiple scenario/point pairs (instead of only one) to the updating worker.

Remark 4.2 (Comparison with the other existing asynchronous variant)

The preprint [10] proposes another asynchronous variant of Progressive Hedging. This

algorithm obviously shares common points with Algorithm 4 but has fundamental dif-

ferences. The most striking one lies in the primal-dual update: at each iteration we

update the primal-dual variable zk only for the current scenario s[i] while the asyn-

chronous Progressive Hedging of [10] updates the full primal and dual variables. This

comes from the fact that our algorithm is based on the asynchronous coordinate-descent

method for operators of [13] while [10] is based on the asynchronous splitting method

of [8]. Another practical difference is that we only use a partial projection related to

the drawn scenario.

5 The RPH toolbox

We release an open-source toolbox for modeling and solving multi-stage stochastic

problems with the proposed Progressive Hedging variants. The toolbox is named RPH

(for Randomized Progressive Hedging) and is implemented on top of JuMP [7] the pop-

ular framework for mathematical optimization, embedded in Julia language [2]. The

source code, online documentation, and an interactive demonstration are available on

the GitHub page of the project:

https://github.com/yassine-laguel/RandomizedProgressiveHedging.jl.

The toolbox RPH seems to implement the first publicly-available and theoretically-

grounded variant of progressive hedging with randomized/asynchronous calls to the sce-

nario subproblems. Related implementations include the theoretically-grounded one of

[10] and the asynchronous heuristic of ProgressiveHedgingSolvers.jl publicly-available

via the modelling framework StochasticPrograms.jl [4].

https://github.com/yassine-laguel/RandomizedProgressiveHedging.jl
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In this section, we only describe the basic usage of RPH; for more details, we refer

to the Appendix D and the online material. Notably, we defer the problem model-

ing (for direct testing, we provide functions directly building toy problems such as

build_simpleexample). Once a problem is instantiated, its resolution can be launched

directly with the sequential Progressive Hedging or Randomized Progressive Hedging

methods (Algorithms 1 and 2):

using RPH

pb = build_simpleexample() ## Generation of a toy problem

y_PH = solve_progressiveHedging(pb) ## Solving with Progressive Hedging

println("Progressive Hedging output is: ", y_PH)

y_RPH = solve_randomized_sync(pb) ## Solving with Randomized Progressive Hedging

println("Randomized Progressive Hedging output is: ", y_RPH)

In a parallel environment, one can use the Distributed module of Julia
5 to setup

some number of workers. This can be done either at launch time (e.g. as Julia -p 8) or

within the Julia process (with commands addprocs(), rmprocs() and procs()). Once this

is set, the proposed parallel algorithms (Algorithm 3 and Algorithm 4) automatically

use all available workers:

using Distributed

addprocs(7); length(procs()) # Gives one master + 7 workers

y_par = solve_randomized_par(pb) ## Solving with Parallel Randomized Progressive Hedging

println("Parallel Randomized Progressive Hedging output is: ", y_par)

y_async = solve_randomized_async(pb) ## Solving with Asynchronous Randomized Progressive Hedging

println("Asynchronous solve output is: ", y_async)

The provided methods in RPH rely on three criteria for stopping:

– maximal computing time (default: one hour),

– maximal number of scenario subproblems solved (default: 106),
– residual norm (norm of differences of iterates) inferior to the mixed absolute/rel-

ative threshold εabs + εrel‖zk‖, where zk is the current iterate of the algorithm

(default: εabs = 10−8, εrel = 10−4).

6 Numerical illustrations

This section presents numerical results obtained with our toolbox RPH on multistage

stochastic problems. We illustrate the behavior of our methods on a small hydro-

thermal scheduling problem. A complete experimental study on real-life problems or

modern parallel computing systems is beyond the scope of this work. We release our

toolbox to allow reproducibility of our results and to spark further research on these

randomized method s.

5 A detailed explanation of Julia’s parallelism is available at Julia documentation:
https://docs.Julialang.org/en/v1/manual/parallel-computing/. By default, the created workers are
on the same machine but can easily be put on a distant machine through an SSH channel.

https://docs.Julialang.org/en/v1/manual/parallel-computing/
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6.1 A multistage stochastic problem inspired from energy optimization

We consider a simple convex problem modeling a problem of hydro thermal scheduling;

it follows [14] and the FAST toolbox6.

Assume that an energy company wishes to deliver electricity to its clients either

produced by several dams or bought externally. The dams produce cheaper energy

but can only store a limited amount of water. The randomness of the problem comes

from the amount of rain filling the dams at each stage. Mathematically, at each stage

t ∈ {1, . . . , T}, each dam b ∈ {1, . . . , B} has a quantity qbt ∈ R+ of water. For each

stage t, the company has to decide: i) for each dam b the quantity of water to convert

to electricity ybt ∈ R+; and ii) the quantity of electricity to buy externally et ∈ R+.

The decision variable at stage t thus writes xt = (qt, yt, et) ∈ R
B
+ × R

B
+ × R+.

At stage t, the random variable ξt represents the amount of water that arrived at

each of the dams since stage t−1. Out of simplicity, ξt is equal to rdry with probability

pdry or rwet with probability 1− pdry. This defines a binary scenario tree (see Fig. 1)

leading to 2T−1 scenarios.

For a scenario s, i.e. a realization of the sequence of water arrivals (ξs1, . . . , ξ
s
T−1),

the objective function writes as the sum fs = f̃s + ιCs of the energy generation cost

f̃s(x) =
T
∑

t=1

c⊤H,tyt + cEet

and the indicator function of constraints

C
s =















∑B
b=1 y

b
t + et ≥ D for all t (demand is met at each stage)

qbt = qbt−1 − ybt + ξst for all t ≥ 2, b (evolution of the amount of water)

qb1 = W b
1 − yb1 for all b (init. amount of water per dam)

qbt ≤ W b for all t, b (max. amount of water per dam)

.

For a given scenario, minimizing this objective function amounts to solving a quadratic

optimization problem. The variables and constants are summarized in Table 1.

M
.S

.P
. T N number of stages

S N number of scenarios

ξ R
T−1
+ amount of water brought by the rain since the previous stage

C
o
n
st

a
n
ts

B N number of dams
cH RBT

+ vector of electricity production costs at the dams
cE R+ cost of buying external electricity
D R+ electricity demand to satisfy at each stage
W RB

+ maximal amount of water at the dams

W1 RB
+ initial amount of water available at the dams

V
a
ri
a
b
le

s q R
BT
+ quantity of water at the dams for each stage (directly depends on y

and ξ)
y RBT

+ amount of water to transform into electricity at the dams at each stage

e R
T
+ amount of electricity to purchase at each stage

x R
n
+ x = (q, y, e) and n = (2B + 1)T

Table 1: Variables and constants for the hydroelectric problem

6 https://stanford.edu/~lcambier/cgi-bin/fast/index.php

https://stanford.edu/~lcambier/cgi-bin/fast/index.php
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For our computational illustration, we generate randomly one instance of this prob-

lem, with B = 20 dams, T = 6 stages making S = 25 = 32 scenarios. The 32 quadratic

subproblems (one associated to each scenario) are solved by the interior point solver of

Mosek, with default parameters7. We also use the solver Mosek to compute the optimal

solution with high precision in order to plot the suboptimality of the iterates generated

along the run of the algorithms. Since the problem is not big, this computation is quick,

of the order of a second.

6.2 Numerical Results

Our illustrative experiments compare the behavior of the different variants of Progres-

sive Hedging implemented in RPH. We make two experiments to illustrate the interests

of randomization and parallelization for Progressive Hedging: on a sequential/single-

thread set-up and on a parallel setup.

We run our experiments on a laptop with an 8-core processor (Intel(R) Core(TM)

i7-10510U CPU @ 1.80GHz). For the parallel computation, one core plays the role of

master, and the seven others are workers. On each core, solving the small-size quadratic

subproblems with an efficient software is rather fast (average 0.02s). This parallel

computing system is thus simple, basic, and homogeneous. In order to reveal the special

features of asynchronous algorithms in the experiments, we introduce a small artificial

heterogeneity by adding a 0.1s waiting time to 4 scenarios. For each experiment, we run

each algorithm 10 times and report the median value. In order to display the variability

of randomized methods, we also shade the area corresponding to the first and third

quartiles for each algorithm.

Sequential experiments In Figure 3, we compare the Progressive Hedging (Algorithm 1,

see also remark 3.1) with the randomized variant (Algorithm 2 where we draw 20

scenarios per iteration) with both uniform sampling and p-sampling (see Section 3.2).

We thus display the decrease of two quantities:

– the (unconstrained) suboptimality with respect to f̃ :=
∑S

s=1 p
sf̃s

(f̃(x̃k)− f̃(x⋆))/f̃(x⋆).

– the distance to feasibility, as the distance between x̃s and C
s over all scenarios

max
s∈{1,...,S}

‖yk,s −x̃k,s‖;

Note indeed that as for most splitting methods, iterates are asymptotically feasible;

more precisely (x̃k) is always in W but the individual scenario constraints C
s are

verified only asymptotically.

For illustration purposes, we also provide the number of subproblems solved along time,

and the steplength of the iterates sequence (i.e. the difference between two successive

iterates).

Our first observation is that Progressive Hedging and randomized Progressive Hedg-

ing with uniform sampling perform similarly, with respect both to time and to num-

ber of subproblems solved (Figures 3(a) and 3(c) respectively). We also notice that

7 In particular, the (primal) feasibility tolerance is 10−8, and therefore this is the target
level of tolerance for the experiments.
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(a) Suboptimality vs. time

0 50 100 150 200 250 300

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

time (s)

S
u
b
o
p
ti
m

a
li
ty

(b) Feasibility error vs. time
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(c) Number of subproblems solved vs. time
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(d) Steplength vs. time
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Fig. 3: Comparison of standard vs. randomized Progressive Hedging in a sequential set-up.

p-sampling variant gets to a lower suboptimality but with a larger feasibility gap (dis-

played on Figure 3(b)). This makes sense since scenarios that are prominent in the

objective function are also the ones most often drawn and optimized. Conversely, more

work needs to be invested on other scenarios to further reduce feasibility. An interest

of the randomized variants is that they produce much more iterates compared to the

base algorithm which requires one pass over all scenarios. This can be useful in setups

where one iteration of Progressive Hedging is time-consuming.
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Parallel experiments After adding seven workers8, we compare in Figure 4 the Paral-

lel Randomized Progressive Hedging (Algorithm 3) and the Asynchronous Progressive

Hedging (Algorithm 4).

We see on Figure 4(c) that with 7 workers, Parallel Randomized Progressive Hedg-

ing is able to treat about 1.5 times as many scenarios as the sequential methods (ran-

domized or not). Furthermore, the asynchronous variant lifts the communication bot-

tleneck and is able to treat 4 times as many scenarios as the sequential.

We also see on Figure 4(a) that the Parallel Randomized method converts this

higher scenario throughput into efficient iterates: the convergence is faster to the target

precision 10−8 with a similar feasability gap (Figure 4(b)). Thus, this variant is a simple

and efficient way to solve multistage problems on parallel setups.

A final remark from Figure 4(a) is that the theoretical stepsize of Theorem 4.1

(obtained by taking the maximum observed delay) is overly pessimistic, resulting in

a slow algorithm. Taking a unit stepsize performs well for this instance. However, we

observed in other setups that a unit stepsize may lead to non-convergence; in general,

some tuning of this parameter is required for better performance.
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A Fixed-point view of Progressive Hedging

This appendix complements Section 3.1: we reformulate the multistage problem (2.4) as finding
a fixed point of some operator (see the textbook [19, Chap. 3.9]). For all definitions and results
on monotone operator theory, we refer to [1].

Denoting the objective function by f(x) :=
∑S

s=1 psf
s(x) and the indicator of constraints

by ιW with ιW(x) = 0 if x ∈ W and +∞ otherwise, we have that solving (2.4) amounts to
finding x⋆ such that

0 ∈ ∂(f + ιW)(x⋆) = ∂f(x⋆) + ∂ιW(x⋆)

where we use Assumption 2 for the equality. Then, we introduce the two following operators

A(x) := P−1∂f(x) and B(x) := P−1∂ιW (x) (A.1)

where P = diag(p1, . . . , pS). Using Assumption 1, the operators A and B defined in (A.1)
are maximal monotone since so are the subdifferentials of convex proper lower-semicontinuous
functions.

Solving (2.4) thus amounts to finding a zero of A+ B the sum of two maximal monotone
operators:

x⋆ solves (2.4) ⇐⇒ x⋆ is a zero of A+ B i.e. 0 ∈ A(x⋆) + B(x⋆). (A.2)

We follow the notation of [19, Chap. 3] and the properties of [1, Chap. 4.1 and 23.1]. For
a given maximal monotone operator M, we define for any µ > 0 two associated operators:

i) the resolvent JµM = (I + µM)−1, (which is well-defined and firmly non-expansive),
ii) the reflected resolvent OµM = 2JµM − I (which is non-expansive).

These operators allow us to formulate our multistage problem as a fixed-point problem:
with the help of (A.2) and [1, Prop. 25.1(ii)], we have

x⋆ solves (2.4) ⇐⇒ x⋆ = JµB(z
⋆) with z⋆ a fixed point of OµA ◦ OµB, i.e. z⋆ = OµA ◦ OµB(z

⋆).
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We can apply now a fixed-point algorithm to the firmly non-expansive operator9 1
2
OµA ◦

OµB + 1
2
Id to find a fixed point of OµA ◦ OµB.

This gives the following iteration (equivalent to Douglas-Rachford splitting)

zk+1 =
1

2
OµA(OµB(z

k)) +
1

2
zk (A.3)

which converges to a point z⋆ such that x⋆ := JµB(z
⋆) is a zero of A+ B; see [1, Chap. 25.2].

It is well-known (see e.g. the textbook [19, Chap. 3, Fig. 10]) that this algorithm with the
operators A and B defined in (A.1) leads to the Progressive Hedging algorithm. We give here a
short proof of this property; along the way, we introduce basic properties and arguments used
in the new developments on randomized Progressive Hedging of the next two appendices. We
provide first the expressions of the reflected resolvent operators for A and B.

Lemma 1 (Operators associated with Progressive Hedging) Let endow the space
RS×n of S× n real matrices with the weighted inner product 〈A,B〉P = Trace(ATPB). Then
the operators A and B defined in (A.1) are maximal monotone, and their reflected resolvent
operators OµA and OµB have the following expressions:

i) OµA(z) = x−µu with

xs = argmin
y∈Rn

{

fs(y) +
1

2µ
‖y − zs‖2

}

for all s = 1, . . . , S

and u = (z−x)/µ (hence OµA(z) = 2 x− z);

ii) OµB(z) = x−µu with

xst =
1

∑

σ∈Bs
t
pσ

∑

σ∈Bs
t

pσ zσt for all s = 1, . . . , S and t = 1, . . . , T

and u = (z− x)/µ (hence OµB(z) = 2 x− z). The point x is the orthogonal projection of z

to W. Thus, z writes uniquely as z = x+µu with x ∈ W and u ∈ W⊥.

Proof. Since ∂f(·) and ∂ιW (·) are the subdifferentials of convex proper lower-semicontinuous
functions, they are maximal monotone with respect to the usual inner product, and there so
are A and B, with respect to the weighted inner product.

Applying [1, Prop. 23.1] to a maximal monotone operator M, we get that z ∈ RS×n

can be uniquely represented as z = x+µu with u ∈ M(x), thus JµM(z) = x and OµM(z) =
OµM(x+µu) = x−µu. This gives the expressions for OµA and OµB from the expressions of JµA
and JµB based on the proximity operators associated with f and ιW (see [1, Prop. 16.34]).

We now apply the general Douglas-Rachford scheme (A.3) with the expressions obtained
in Lemma 1. We first get:































xk,st = 1∑
σ∈Bs

t
pσ

∑

σ∈Bs
t
pσ zk,σt for all s = 1, . . . , S and t = 1, . . . , T xk∈W

wk = OµB(z
k) = 2 xk − zk = xk −µuk with uk=(zk − xk)/µ∈W

⊥

thus uk=uk−1 + 1
µ
(yk

− xk)

yk+1,s = argminy∈Rn

{

fs(y) + 1
2µ

∥

∥y − wk,s
∥

∥

2
}

for all s = 1, . . . , S

zk+1 = 1
2
(2 yk+1−wk) + 1

2
zk = zk +yk+1− xk+1 = yk+1 +µuk

Let us reorganize the equations and eliminate intermediate variables. In particular, we use the
fact that, provided that the algorithm is initialized with x0 ∈ W and u0 ∈ W⊥, all iterates

9 As OµA and OµB are non-expansive but not firmly non-expansive, it is necessary to average
them with the current iterate (this is often called the Krasnosel’skĭı–Mann algorithm [1, Chap
5.2]) to make this iteration firmly non-expansive and ensure Fejér monotone convergence.
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(xk) and (uk) are in W and W⊥ respectively. We eventually obtain:



























yk+1,s = argminy∈Rn

{

fs(y) + 1
2µ

∥

∥y − xk,s +µuk,s
∥

∥

2
}

for all s = 1, . . . , S

xk+1,s
t = 1∑

σ∈Bs
t
pσ

∑

σ∈Bs
t
pσ yk+1,σ

t for all s = 1, . . . , S and t = 1, . . . , T

xk∈W converges to a solution of (2.4)

uk+1 = uk + 1
µ
(yk+1−xk+1)

This is exactly the Progressive Hedging algorithm, written with similar notation as in the text-
book [19, Chap. 3, Fig. 10]. The convergence of the algorithm (recalled in Theorem 3.1)) can
be obtained directly by instantiating the general convergence result of the Douglas-Rachford
method [1, Chap. 25.2].

In the next two appendices, we are going to follow the same line that has brought us
from Douglas-Rachford to Progressive Hedging, to go from randomized Douglas-Rachford to
randomized Progressive Hedging, and from asynchronous Douglas-Rachford to asynchronous
Progressive Hedging.

B Derivation and Proof of the Randomized Progressive Hedging

A randomized counterpart of the Douglas-Rachford method (A.3) consists in updating only
part of the variable chosen at random; see [11] and extensions [3,5]. At each iteration, this
variant amounts to update the variables corresponding to the chosen scenario sk (randomly
chosen with probability qks ), the other staying unchanged:

Draw a scenario sk ∈ {1, . . . , S} with probability P[sk = s] = qs
∣

∣

∣

∣

∣

zk+1,sk = 1
2

[

OµA(OµB(z
k))

]sk
+ 1

2
zk,s

k

zk+1,s = zk,s for all s 6= sk
(B.1)

Our goal is to obtain the Randomized Progressive Hedging (Algorithm 2) as an instantia-
tion of (B.1) with the operators defined in Lemma 1 in Appendix A. Before proceeding with
the derivation, let us prove the convergence of (B.1) with these operators.

Proposition 1 Consider a multistage problem (2.4) verifying Assumptions 1 and 2. Then,
the sequence (zk) generated by (B.1) with OµA and OµB defined in Lemma 1 converges almost

surely to a fixed point of OµA ◦ OµB. Furthermore, x̃k := JµB(z
k) converges to a solution

of (2.4).

Proof. First, recall from Lemma 1 that under assumptions 1 and 2, the operators A,B of (A.1)
are maximal monotone. Then, the associated operators OµA and OµA are then non-expansive
by construction (see [1, Chap. 4.1]), and therefore the iteration T = (OµA ◦ OµB + I)/2 is
firmly non expansive. This is the key assumption to use the convergence result [11, Th. 2]
which gives that the sequence (zk) generated by (B.1) converges almost surely to a fixed point
of OµA ◦ OµB. Using the continuity of JµB and the fact that x⋆ := JµB(z

⋆) is a zero of A+ B

(i.e. solves the multi-stage problem (2.4) by (A.2)) gives the last part of the result.

Now that the convergence of (B.1) with the operators of Appendix A has been proven,
let us derive our Randomized Progressive Hedging (Algorithm 2) as an equivalent formulation
of (B.1). By doing so, the associated convergence result (Theorem 3.2) directly follows from
Proposition 1.

From the specific expressions of operators OµA and OµB (Lemma 1), we see that these
operators are very different in nature:

– OµA is separable by scenario but involves solving a subproblem;
– OµB links the scenarios but only amounts to computing a weighted average.
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To leverage this structure, we apply the randomized Douglas-Rachford method (B.1) and get:










































Draw a scenario sk ∈ {1, . . . , S} with probability P[sk = s] = qs
xk,st = 1∑

σ∈Bs
t
pσ

∑

σ∈Bs
t
pσ zk,σt for all s = 1, . . . , S and t = 1, . . . , T xk∈W

wk = OµB(z
k) = 2 xk − zk = xk −µuk with uk=(zk − xk)/µ∈W

⊥

yk+1,s = argminy∈Rn

{

fs(y) + 1
2µ

∥

∥y − wk,s
∥

∥

2
}

for all s = 1, . . . , S
∣

∣

∣

∣

∣

zk+1,sk = 1
2
(2 yk+1,sk −wk,sk ) + 1

2
zk,s

k
= zk,s

k
+yk+1,sk −xk+1,sk = yk+1,sk +µuk,s

k

zk+1,s = zk,s for all s 6= sk

Let us carefully prune unnecessary computations. First, only yk+1,sk needs to be computed, so

the other yk+1,s (s 6= sk) can be safely dropped. The same holds for xk,s
k
, wk,sk , and uk,s

k
.

However, even though only xk,s
k

need to be computed, it depends on all the other scenarios
through the projection operator, so the iterates have to be computed successively and with
only a partial update of uk (in contrast with Appendix A, uk does not belong to W anymore
and thus cannot be dropped out of the projection, thus we keep directly the global variable zk

updated):



















































Draw a scenario sk ∈ {1, . . . , S} with probability P[sk = s] = qs

xk,s
k

t = 1∑

σ∈Bsk
t

pσ

∑

σ∈Bsk
t

pσ zk,σt for all t = 1, . . . , T

wk,sk = 2xk,s
k − zk,s

k

yk+1,sk = argminy∈Rn

{

fsk (y) + 1
2µ

∥

∥

∥
y − wk,sk

∥

∥

∥

2
}

∣

∣

∣

∣

∣

zk+1,sk = zk,s
k
+yk+1,sk −xk+1,sk

zk+1,s = zk,s for all s 6= sk

Eliminating intermediate variable w, we obtain the randomized Progressive Hedging:










































Draw a scenario sk ∈ {1, . . . , S} with probability P[sk = s] = qs

xk+1,sk

t = 1∑

σ∈Bsk
t

pσ

∑

σ∈Bsk

t

pσ zk,σt for all t = 1, . . . , T

yk+1,sk = argminy∈Rn

{

fsk (y) + 1
2µ

∥

∥

∥
y − 2 xk+1,sk +zk,s

k
∥

∥

∥

2
}

∣

∣

∣

∣

∣

zk+1,sk = zk,s
k
+yk+1,sk −xk+1,sk

zk+1,s = zk,s for all s 6= sk

Finally, notice that from Proposition 1, that the variable converging to a solution of (2.4)

is x̃k := JµB(z
k). From Lemma 1 (and the fact that OµB = 2JµB − I), we get that x̃k,st =

1∑
σ∈Bs

t
pσ

∑

σ∈Bs
t
pσ zk,σt for all s = 1, . . . , S and t = 1, . . . , T and that x̃k ∈ W .

C Derivation and Proof of the Asynchronous Randomized Progressive

Hedging

Using again the bridge between Progressive Hedging and fixed-point algorithms, we present
here how to derive an asynchronuous progressive hedeging from the asynchronous parallel
fixed-point algorithm ARock [13]. In order to match the notation and derivations of [13], let
us define the operator S := I −OµA ◦OµB, the zeros of which coincide with the fixed points of
OµA ◦ OµB. Applying ARock to this operator leads to the following iteration:

Every worker asynchronously do






















Draw a scenario sk ∈ {1, . . . , S} with probability P[sk = s] = qs
∣

∣

∣

∣

∣

∣

zk+1,sk = zk,s
k − ηk

Sp
sk

(

ẑk,s
k −

[

OµA(OµB(ẑ
k))

]sk
)

zk+1,s = zk,s for all s 6= sk

where ẑk is the value of zk used by the updating worker at time k for its computation

(C.1)
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Notice that the main difference between this iteration and (B.1) is the introduction of the
variable ẑk which is used to handle delays between workers in asynchronous computations:

– If there is only one worker, it just computes its new point with the latest value so we simply
have: ẑk = zk . We notice that taking ηk = Spsk/2, we recover exactly the randomized
Douglas-Rachford method (B.1);

– If there are several workers, ẑk is usually an older version of the main variable, as other
workers may have updated the main variable during the computation of the updating

worker. In this case, we have ẑk = zk−dk where dk is the delay suffered by the updating
worker at time k.

We derive here our Asynchronous Randomized Progressive hedging (Algorithm 4) as an
instantiation of (C.1) with the operators OµA and OµB defined in Appendix A. Let us es-
tablish first the convergence of this scheme using a general result of [13] which makes little
assumptions on the communications between workers and master. The main requirement is
that the maximum delay between workers is bounded, which is a reasonable assumption when
the algorithm is run on a multi-core machine or on a medium-size computing cluster.

Proposition 2 Consider a multistage problem (2.4) verifying Assumptions 1 and 2. We as-
sume furthermore that the delays are bounded: dk ≤ τ < ∞ for all k. If we take the stepsize
ηk as follows for some fixed 0 < c < 1

0 < ηmin ≤ ηk ≤ cSqmin

2τ
√
qmin + 1

with qmin = min
s

qs. (C.2)

Then, the sequence (zk) generated by (C.1) with OµA and OµB defined in Lemma 1 converges

almost surely to a fixed point of OµA◦OµB. Furthermore, x̃k := JµB(z
k) converges to a solution

of (2.4).

Proof. The beginning of the proof follows the same lines as the one of Proposition 1 to show
that OµA and OµA are non-expansive by construction, which implies that S := I −OµA ◦ OµB

is also non-expansive with its zeros corresponding to the fixed points of OµA ◦ OµB (see [1,

Chap. 4.1]). We can then apply [13, Th. 3.7] to get that (zk) converges almost surely to a
zero of S. As in the proof of Proposition 1, we use the continuity of JµB and the fact that
x⋆ := JµB(z

⋆) is a zero of A+ B (i.e. solves the multi-stage problem (2.4) by (A.2)) to get the
last part of the result.

Using the expressions of the operators of Lemma 1, (C.1) writes

Every worker asynchronously do


























































Draw a scenario sk ∈ {1, . . . , S} with probability P[sk = s] = qs
x̂k,st = 1∑

σ∈Bs
t
pσ

∑

σ∈Bs
t
pσ ẑk,σt for all s = 1, . . . , S and t = 1, . . . , T

ŵk = OµB(ẑ
k) = 2 x̂k − ẑk

ŷk+1,s = argminy∈Rn

{

fs(y) + 1
2µ

∥

∥y − ŵk,s
∥

∥

2
}

for all s = 1, . . . , S
[

OµA(OµB(ẑ
k))

]sk
= 2 ŷk+1,sk − ŵk,sk

∣

∣

∣

∣

∣

∣

zk+1,sk = zk,s
k − ηk

Sp
sk

(

ẑk,s
k −

[

OµA(OµB(ẑ
k))

]sk
)

zk+1,s = zk,s for all s 6= sk

Pruning unnecessary computations, the asynchronous version of Progressing Hedging boils
down to:

Every worker asynchronously do










































Draw a scenario sk ∈ {1, . . . , S} with probability P[sk = s] = qs

x̂k,s
k

t = 1∑

σ∈Bsk
pσ

∑

σ∈Bsk

t

pσ ẑk,σt for all t = 1, . . . , T

ŷk+1,sk = argminy∈Rn

{

fsk (y) + 1
2µ

∥

∥

∥
y − 2 x̂k,s

k
+ ẑk,s

k
∥

∥

∥

2
}

∣

∣

∣

∣

∣

zk+1,sk = zk,s
k
+ 2ηk

Sp
sk

(

ŷk+1,sk − x̂k,s
k
)

zk+1,s = zk,s for all s 6= sk
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This asynchronous algorithm can be readily rewritten as Algorithm 4, highlighting the master-
worker implementation. Theorem 3.2 then follows directly from Proposition 2.

D RPH toolbox: Implementations Details

A basic presentation of the toolbox RPH is provided in Section 5; a complete description is
available on the online documentation. In this section, we briefly provide complementary in-
formation on the input/output formats.

The input format is a Julia structure, named problem, that gathers all the information to
solve a given multi-stage problem.

struct Problem{T} # Main input class implemented in src files

scenarios::Vector{T}

build_subpb::Function

probas::Vector{Float64}

nscenarios::Int

nstages::Int

stage_to_dim::Vector{UnitRange{Int}}

scenariotree::ScenarioTree

end

The attribute scenarios is an array representing the possible scenarios of the problem. nscenarios
is the total number of scenarios brought by the user and the probability affected to each scenario
is indicated by the attribute probas. The number of stages, assumed to be equal among all
scenarios, is stored in the attribute nstages. The dimension of the variable associated to each
stage is stored in the vector of couples stage_to_dim: if for a fixed stage i, stage_to_dim[i] =
p:q, then the variable associated to stage i is of dimension q − p + 1. Each of the scenarios
must inherit the abstract structure AbstractScenario. This abstract structure does not impose
any requirements on the scenarios themselves, so that the user is free to plug any relevant
information in these scenarios. Here is an example.

abstract type AbstractScenario end ## Abstract class implemented in src files

struct UserScenario <: AbstractScenario ## Custom class to be designed by the user

trajcenter::Vector{Float64}

constraintbound::Int

end

## Class Atributes to be designed by the user

# Instantiation of 4 scenarios

scenario1 = UserScenario([1, 1, 1], 3)

scenario2 = UserScenario([2, 2, 2], 3)

scenario3 = UserScenario([3, 3, 3], 3)

scenario4 = UserScenario([3, 3, 3], 3)

custom_scenarios = [scenario1, scenario2, scenario3, scenario4]

custom_nscenarios = length(custom_scenarios)

custom_stage_to_dim = [1:1, 2:2]

custom_nstages = length(stage_to_dim)

probabilities = [0.1, 0.25, 0.50, 0.15]

The function build_subpb, provided by the user, informs the solver about the objective
function fs to use for each scenario. This function is assumed to take as inputs a Jump.model

object, a single scenario object and an object scenarioId, which corresponds to an integer that
identifies the scenario. build_subpb must then return the variable designed for the optimization,
named y below, an expression of the objective function fs, denoted below objexpr as well as
the constraints relative to this scenario, denoted below ctrref.

# Function to be designed by the user

function custom_build_subpb(model::JuMP.Model, s::UserScenario, id_scen::ScenarioId)

n = length(s.trajcenter)
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y = @variable(model, [1:n], base_name="y_s"*string(id_scen))

objexpr = sum((y[i] - s.trajcenter[i])^2 for i in 1:n)

ctrref = @constraint(model, y .<= s.constraintbound)

return y, objexpr, ctrref

end

Finally, the attribute scenariotree is aimed at storing the graph structure of the scenarios.
scenariotree must be of type ScenarioTree, a tree structure designed by the authors. One can
build an object scenario tree, by directly stating the shape of the tree with the help of Julia

set structure.

## Instantiation of the scenario tree

stageid_to_scenpart = [

OrderedSet([BitSet(1:4)]), # Stage 1

OrderedSet([BitSet(1:2), BitSet(3:4)]), # Stage 2

]

custom_scenariotree = ScenarioTree(stageid_to_scenpart)

## Instantiation of the problem

pb = Problem(

custom_scenarios, # scenarios array

custom_build_subpb,

custom_probabilities,

custom_nscenarios,

custom_nstages,

custom_stage_to_dim,

custom_scenariotree

)

When the tree to generate is known to be complete, one can fastly generate a scenario tree
with the help of the constructor by giving the depth of the tree and the degree of the nodes
(assumed to be the same for each node in this case):

custom_scenariotree = ScenarioTree(; depth=custom_nstages, nbranching=2)

pb = Problem(

custom_scenarios, # scenarios array

custom_build_subpb,

custom_probabilities,

custom_nscenarios,

custom_nstages,

custom_stage_to_dim,

custom_scenariotree

)

The output of the algorithm is the final iterate obtained together with information on
the run of the algorithm. Logs that appear on the console are the input parameters and the
functional values obtained along with iterations. If the user wishes to track more information,
a callback function can be instantiated and given as an input. This additional information can
then either be logged on the console or stored in a dictionary hist.

pb = build_simpleexample()

hist=OrderedDict{Symbol, Any}()

y_PH = solve_progressiveHedging(pb, maxiter=150, maxtime=40, hist=hist, callback=callback)
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