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Abstract: Dual-comb spectroscopy using a silicon Mach-Zehnder modulator is reported for
the first time. First, the properties of frequency combs generated by silicon modulators are
assessed in terms of tunability, coherence, and number of lines. Then, taking advantage of
the frequency agility of electro-optical frequency combs, a new technique for fine resolution
absorption spectroscopy is proposed, named frequency-tuning dual-comb spectroscopy, which
combines dual-comb spectroscopy and frequency spacing tunability to measure optical spectra
with detection at a unique RF frequency. As a proof of concept, a 24 GHz optical bandwidth is
scanned with a 1 GHz resolution.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

After revolutionizing optical frequency metrology and synthesis [1,2], optical frequency combs
(OFCs) have found many novel applications in various fields including coherent and advanced
format telecommunications [3–14], astronomy [15] or spectroscopy [16–31]. Commonly
generated from lasers through mode-locking or non-linear optical processes [3,16–23,32],
OFCs can also be produced through dissipative Kerr soliton generation in high quality factor
microresonators (microcombs) [3,6–7,15–17,24–27,32–37], by parametric mixing [13], or by
electro-optic modulation [3–4,8–12,16,28–31,38–53]. Frequency combs generated by electro-
optic modulation, also called electro-optical frequency combs (EOFCs), offer the major advantage
of being easily tunable, both in terms of central frequency, fixed by the input laser, and in
line spacing (repetition rate), which is given by the frequency of the applied radio-frequency
(RF) signal. As a comparison, the repetition rate of microcombs and laser-based combs are
fixed by device design. Values of tens to hundreds of GHz are achieved for the microcombs
[4,6–7,16–17,24–27,33–35], while the repetition rate of fiber laser-based combs are on the
orders of tens or hundreds of MHz [3–4,16–17,19–22]. On the contrary, using EOFCs the
repetition rate is fully tunable within the modulator electro-optic bandwidth, up to tens of GHz
[3–4,8–12,16,28–31,38–52].

While OFCs could be exploited by spatially demultiplexing the generated comb teeth, the most
attractive use of these devices is the multi-heterodyne or dual-comb configuration, which enables
high frequency resolution and accuracy, within a fast detection technique, with many applications
in spectroscopy and metrology [16–23,25–31,36–37,45–47,54–55]. By combining two combs
with slightly different repetition rates on a photodetector, an image of the optical spectrum can be
obtained by measuring the RF spectrum. The analysis of the optical spectrum thus relies on the
measurement of the RF spectrum at the photodetector output. In this context, EOFCs present
two key features: they provide frequency spacing tunability, and using the same laser source to
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generate both combs enables a high mutual coherence time, avoiding the need for mutual comb
locking.
In terms of photonics integration, Si photonics is a mature technology which benefits from

high-volume fabrication. Low cost, small size, low weight systems are thus expected. High
speed depletion-based silicon electro-optical modulators have shown robust performance in
telecommunications for many years [56]. However the use of silicon modulator to generate
EOFC is still sparse [10–12,41–45].

In this paper, the benefits of EOFC in terms of tunability are used to propose a new method for
fine resolution absorption spectroscopy. Indeed dual-comb spectroscopy is combined with the
agility to tune the frequency spacing of EOFCs to scan the optical spectrum while generating beat
notes at fixed RF frequencies. The detection is then performed at fixed RF frequencies, allowing
simple instrumentation. This is possible by tuning simultaneously the frequency spacing of both
EOFCs, while keeping constant the difference between the two EOFCs frequency spacings. In
the experimental demonstration, both EOFCs are generated on chip using a fixed wavelength laser
source and two silicon-based Mach-Zehnder modulators (Si MZM). In the reported experiment,
the mutual coherence between both combs is first investigated, showing a mutual coherence
time better than 50 µs. The tunability of the EOFCs repetition rates is then studied between 1
and 12 GHz. Finally the proposed method is demonstrated by recovering the transfer function
of an optical band-pass filter. Interestingly, using a fixed wavelength source and detecting two
beat-notes, a 24 GHz optical bandwidth is scanned with a 1 GHz resolution.

2. Silicon MZM-based EOFC

2.1. Si modulator design, fabrication and performances

The Si modulator is a single-driveMach-Zehnder modulator. The phase modulation is obtained by
carrier depletion in PN diodes embedded in each arm of the Mach-Zehnder interferometer (MZI).
Both PN junctions share the same electrical potential for the N side. The applied RF signal is thus
distributed in opposite phases on the two arms, intrinsically setting the modulator in push-pull
operation as illustrated in Fig. 1(b). The modulator was fabricated by STMicroelectronics, in
their 300-mm SOI technological platform [57]. The waveguide width is 400 nm and its height is
300 nm, a slab thickness as low as 50 nm ensures a strong confinement of the guided mode, as
shown in Fig. 1(a). Ion implantation is used to form the PN diode. Each phase shifter length is 4
mm. The modulator is working at a wavelength of 1.55 µm, with a 3 dB optical bandwidth of 35
nm, essentially limited by the grating couplers. Metallic resistive strip lines are placed above
each arm as heaters to tune the static phase difference between the two arms by thermo-optic
effect, under the application of a small DC voltage.
The measured Vπ is 8 V and an 18 GHz small-signal electro-optic bandwidth was measured

using a Lightwave component analyzer. Optical losses due to free carrier absorption have been
estimated by numerical simulation. A value of 1.24 dB×mm−1 is obtained at 0 V, decreasing to
0.63 dB×mm−1 at -14 V.

2.2. Heterodyne detection of frequency combs from Si EOFC generator

The principle of electro-optic comb generation lies in the nonlinearity of the electro-optical
modulation [Fig. 2(a)]. By undergoing a sinusoidal phase modulation (frequency fREP), the
optical carrier alternatively experiences positive and negative chirps. The instantaneous frequency
of the electric field is thus periodically oscillating at the repetition rate fREP. The corresponding
spectrum therefore contains a set of discrete frequency lines, separated by the modulation
frequency [43]. Indeed, if we consider an electric field EIN at the input of a phase modulator,
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Fig. 1. (a) Cut view of the waveguide phase shifter. (b) The Si modulator equivalent
electrical scheme and driving configuration.

oscillating at the angular frequency ω0, it can be expressed as:

EIN = E0 × exp(jω0t) (1)

After undergoing phase modulation, the field at the output becomes:

EOUT = EIN × exp(j[A × sin(ωREPt)]) (2)

where A is the phase modulation amplitude, and ωREP = 2π×fREP is the angular frequency of the
modulation. According to the Jacobi-Anger expansion, Eq. (2) can be written as:

EOUT = EIN ×

∞∑
n=−∞

Jn(A) exp(j[n × ωREPt]) (3)

where Jn() is the nth order Bessel function of the first kind. As it can be seen from this expression,
new lines are generated at angular frequencies (ω0 + n×ωREP), and the nth order line is weighed
by a coefficient Jn(A). When the electric field EOUT,1 at the output of the first MZM arm is
combined with the electric field EOUT,2 at the output the second MZM arm, with a heater phase
offset ϕH, the total electric field exiting the modulator is:

ETOT =
EOUT ,1 + EOUT ,2 × exp(jϕH)

√
2

(4)

In plasma dispersion effect-based silicon phase modulators, an amplitude modulation of the
electric field occurs along with phase modulation, which makes the Jacobi-Anger expansion
formalism unsuitable in this situation. A numerical model of the MZM is therefore implemented
to simulate the Si EOFC generator. Both the effective index and the optical loss due to free carrier
concentration variation with applied voltage are considered in the modeling of phase shifters.
After using Eq. (4) to combine the modulated output of each MZM arm, a fast Fourier transform
algorithm converts the temporal evolution of the field into the optical spectrum. Figure 2(b) shows
the simulated spectrum, for a 22 dBm-RF signal at 2 GHz frequency. A set of frequency lines
separated by fREP is obtained. The amplitude of the different lines, i.e. the achieved spectrum
shape depends on the static optical phase difference between both arms of the MZM. Each comb
line is labeled by its frequency fn, n being a line number, the carrier is f0.
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Fig. 2. (a) Generic schematic for EOFC generation, Si MZM: silicon Mach-Zehnder
modulator. (b) Example of a simulated Si EOFC spectrum. The repetition rate (fREP)
is 2GHz and the laser wavelength is 1550 nm. The MZM is biased with a 1.1×π phase
difference between both arms. Each line is labeled by its frequency fn, with n being the line
number; the carrier frequency is f0. (c) Generic schematic for heterodyne detection of an
EOFC. AOM: acousto-optic modulator. (d) Simulated heterodyne detection of a Si EOFC.
The applied RF power is 24 dBm, the acousto-optic frequency (fAOM) is 40MHz. A zoom
near the successive beatings at n × fREP provides an image of the optical comb in the RF
domain. The beating between each optical line fn and the shifted laser line is labeled with
its frequency fn∆=|fn-(f0+fAOM)|.

As standard grating-based optical spectrum analyzers do not provide enough resolution to
resolve the individual lines of an EOFC with a line spacing of a few GHz, a heterodyne technique
can be used to map the optical comb in the RF domain. This method is schematically illustrated
in Fig. 2(c). The laser output is separated in two beams, one that is sent to the Si MZM to generate
the optical comb, while the frequency of the second beam is shifted using an acousto-optic
modulator. The shifted line acts as a local oscillator when mixed with the comb in a photodiode.
The resulting electrical spectrum thus contains an image of the optical comb, folded on itself by
its beating with the shifted laser-line. Such heterodyne detection technique has been modeled,
and the electrical spectrum obtained from the simulation can be seen in Fig. 2(d). It can be
observed that the resulting spectrum is a set of groups of 3 lines, repeated around the multiples
of the comb repetition frequency (2 GHz for the considered frequency). In each set of 3 lines,
the right and left lines (fn∆) are images of the EOFC lines fn [Fig. 2(b)], beating with the local
oscillator whose optical frequency is f0+fAOM. Finally, the middle line in each set corresponds to
multiple beatings between EOFC lines themselves.
The set-up in Fig. 2(c) was used to measure EOFCs generated by a Si modulator. For all

the experiments, the PN junctions are reverse biased by a -6 V DC voltage. A 22 dBm (peak
to peak voltage of 8 Volts) sinusoidal RF signal at 2 GHz is applied to the modulator, and a
40 MHz sinusoidal signal is applied to the acousto-optic modulator to shift the laser line. The
laser wavelength is set to 1.55 µm and the total optical power received on the photodiode is 0
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dBm. The photodiode is connected to an electrical spectrum analyzer (ESA), with a resolution
bandwidth of 100kHz. The measured spectrum is shown in Fig. 3. A total of 11 EOFC lines
were recovered (the beating between the carrier and the local oscillator at 40 MHz is not shown
in Fig. 3), in good agreement with those obtained by simulation [Fig. 2(d)]. Similar experiments
were performed, with Si modulator driving frequencies of 1, 3, and 5 GHz, showing equivalent
performance.

Fig. 3. Experimentally measured heterodyne beating of the Si EOFC with a laser line
shifted by 40MHz from the comb center.

3. Dual-comb spectroscopy using Si EOFC generators

Dual-comb spectroscopy is a well-known technique that enables high frequency resolution
measurements. It relies on the beating of two OFCs with slightly different frequency spacings
(fREP,1 and fREP,2 = fREP,1 +∆fREP). Each pair of comb lines creates a beat note at a frequency
given by the separation between the comb lines. Thus it is possible to map the optical spectrum to
an RF spectrum, with a resolution of about fREP,1 while the spectral width is stretched by a factor
∆fREP /fREP. If one or both OFC pass through a substance to be detected it is possible to recover
its transmission spectra, by the measurement of the beat notes in the RF domain. Interestingly,
by ensuring a high mutual coherence between the two OFCs, the dual-comb interferogram can be
recorded over a long period of time, and the resulting high amount of collected optical power
provides an improved signal-to-noise ratio [16–20,22,26–27,53]. On the other side, real-time
measurement can also be performed, enabling direct observations of transient responses of
complex optical spectra [16–18,26–27,37,47]. In both cases, EOFC is a well suited solution for
dual-comb spectroscopy: since a single laser can be used to generate the two EOFCs, a high
mutual coherence is naturally ensured between them, avoiding the need to lock one comb to
the other, and the flexibility of EOFCs allows to tune straightforwardly the combs frequency
spacings [3–4,16,28–31,47].

In the experimental demonstration, the two EOFCs are generated on a chip using single drive
Si MZMs. Coherence properties and repetition rate tuning of Si-based EOFCs in dual-comb
configuration are evaluated using the experimental set-up represented in Fig. 4(a). To avoid
aliasing in the measured beat notes, an acousto-optic modulator (AOM) is used to shift one OFC
in frequency by 40 MHz. The two combs are then combined and sent to a 32 GHz-photodiode,
followed by an electrical spectrum analyzer.
The two RF synthesizers deliver a 24 dBm signal and are synchronized with a 10 MHz

reference. Figure 4(b) presents the measured beat notes, for fAOM = 40 MHz, fREP,1 = 500 MHz
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Fig. 4. (a) Experimental setup for the dual Si-EOFC generation and measurement. Si
MZM: silicon Mach-Zehnder modulator, AOM: acousto-optic modulator, PD: photodiode,
OBPF: optical band-pass filter, used to illustrate the proposed scanning method: the transfer
function of the OBPF will be recovered by the dual EOFC measurement. (b) Example of a
dual Si-EOFC beat signal measured experimentally for a repetition rate (fREP,1) of 500MHz,
a repetition rate offset (∆fREP) of 4MHz, using 24 dBm RF power on each synthetizer, and
an acousto-optic frequency (fAOM) of 40MHz. Each beat note is identified by a capital letter
B and an index number. B3 corresponds to the beating between the two EOFC central lines.

and fREP,2 = 504 MHz. 7 lines separated by 4 MHz emerge from the measurement noise floor
while the ESA resolution bandwidth is set to 100 kHz. The reduction of the number of lines in
the dual-comb experiment in comparison with the characterization of single EOFC is explained
by the lower power of the higher order frequency lines of the two EOFC that are combined.
Indeed when the power levels of two optical lines are decreased by a factor α, the corresponding
photodetected beat note electrical power decreases by a factor α2.
To assess the coherence properties of the Si-based EOFCs, a zoomed superposition of the

different beat notes is reported in Fig. 5(a), the resolution bandwidth of the ESA is set to 10 kHz
for this measurement. Interestingly their 3 dB linewidth is below 20 kHz, which corresponds to a
mutual coherence time better than 50 µs [26].

Fig. 5. (a) Superposed beat notes B3 to B6, around their relative frequencies. (b) Power of
the B1 to B5 beat-notes for applied frequencies of 1GHz to 12GHz.

To confirm the simple tuning of Si-based EOFCs, their frequency spacings have been tuned by
adjusting fREP,1 and fREP,2, while ∆fREP is kept constant and equal to 4 MHz. In Fig. 5(b), the RF
power levels of the 5 main beat notes are shown, when fREP,1 is swept from 1 to 12 GHz. The
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RF power applied on each modulator is 24 dBm. It can be seen that the power of all beat notes
remains steady over this frequency range, and the effect of the modulator bandwidth is barely
noticeable.

4. Frequency tuning dual-comb spectroscopy (FT-DCS): proof of concept

Frequency-tuning dual-comb spectroscopy (FT-DCS) is proposed for fine resolution spectroscopy
using detection at fixed RF frequencies. Thus it would be possible to use electronic band-pass
filters and amplifiers to extract the power of individual lines without affecting the system flexibility.
This method relies on the extremely easy tuning of the frequency spacing of EOFCs to measure
optical spectra with a high precision.
In the FT-DCS, both EOFCs frequency spacing (fREP,1 and fREP,2= fREP,1 +∆fREP) are tuned

simultaneously to cover the optical spectrum around the laser frequency, while ∆fREP is kept
constant. Thus, bymeasuring the power of the fundamental beat notes at frequencies fAOM +∆fREP
and/or fAOM - ∆fREP for the different values of fREP,1, it is possible to image the entire optical
spectrum.

As a proof of concept, an optical band-pass filter (YENISTA XTM-50) was placed just before
the photodiode [i.e. the output of the combiner is switched to the grey dashed path in Fig. 4(a)].
To recover the transfer function of this filter, the powers of the fundamental beat notes [i.e. B2
and B4 in Fig. 4(b)] were measured for different repetition rates (fREP,1 was swept manually
from 0.5 GHz to 12.5 GHz), while the repetition rate difference between the two EOFCs was
kept constant (∆fREP= 4 MHz). A reference dual-comb spectrum was also taken at each step by
bypassing the filter. It is then possible to reconstruct the optical spectrum by subtraction and
normalization of the two measurements.

Figure 6(a) shows the optical transfer function of the filter, recovered by the Si-based FT-DCS
method (red points). The grey dashed line indicates the measurement noise floor, given by the
difference between the fundamental beat note power of the reference dual-comb spectrum and the
ESA noise floor, while the resolution bandwidth is 100 kHz. The resulting optical signal-to-noise
ratio (OSNR) is about 15 dB. An alternative measurement of the filter transfer function was
later performed using a YENISTA CT400 component tester. By direct sweeping the tunable
laser over the 25 GHz span, with a 125 MHz step, the optical transmission was recorded at

Fig. 6. (a) Optical transfer function of an optical filter, recovered by FT-DCS (red points),
laser sweep (blue curve), the grey dashed line is the optical noise floor of the dual-comb
scanning method. (b) The residuals from the dual-comb scanning method, compared to the
sweep laser measurement, show a 2.69% standard deviation.
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each step, resulting in the blue curve in Fig. 6(a). Due to a ±5 GHz uncertainty on the tunable
external cavity laser output absolute frequency, the two measurements initially showed a static
4.75 GHz mismatch. To reduce this static mismatch, a referenced laser with higher frequency
accuracy has to be used [29,52]. However to compare the shape of the recover filter spectra, both
measurements have thus been normalized in frequency, relatively to the filter transfer function
center. When comparing both measurements, a very good agreement is seen. A 10 dB bandwidth
of 24 GHz (0.19 nm) is obtained in both cases. The difference between both measurements is
displayed in a linear scale as residuals in Fig. 6(b), and the standard deviation is estimated to be
2.7%, confirming the very good precision of the FT-DCS method for spectral measurements.

5. Discussion

In this work the FT-DCS has been proposed as a fine resolution spectroscopy technique, and
only two beat notes (b2 and b4) were measured while scanning the spectrum. However, Si-based
EOFC generators can also be used in more classical dual-comb spectroscopy experiments where
a large number of flat lines are usually required. In this case the performances in terms of spectral
spanning are given by the modulator electro-optic bandwidth, which gives the maximum line
spacing, and by the modulation efficiency which gives the maximum number of lines above a
given power threshold. Optimizing simultaneously those parameters to map a wide spectral
range using a single modulator usually leads to a tradeoff as, when increasing the phase shifter
length to optimize the phase modulation efficiency, the electro-optic bandwidth is then limited by
RF signal propagation loss, and by the mismatch between the optical and electrical propagating
velocities. This tradeoff has been studied already in LiNbO3 modulators, and the results can be
translated to Si modulators. Among the possible solutions to optimize the EOFC performances it
is possible: (i) to cascade several modulators and/or to cascade amplitude and phase modulation,
to flatten the frequency comb as shown in [4,58]; (ii) to use electrical signals containing two
or more frequencies to drive each modulator [41]; (iii) to use a resonant cavity, so that when
the modulation frequency meets the cavity free spectral range, the light is being constructively
modulated at each round trip, which is also equivalent to an increase of the effective modulator
length [40]. All of these solutions could be implemented in Si photonics, for the generation of
flat, frequency tunable and wide bandwidth frequency combs. Furthermore it can be added that
the external AOM used in the experiment can also be replaced by an on-chip frequency shifter,
such as a dual-parallel IQ modulator also achievable within Si photonics platform.

6. Conclusion

Dual-comb spectroscopy using silicon single-drive push-pull MZMs is reported for the first
time. The general properties of Si-based EOFCs (tunability, coherence, number of lines) have
been assessed. Then, taking benefit of the frequency agility of EOFCs, we proposed a new
technique for fine resolution spectroscopy within a simple experimental set-up. This method,
named frequency-tuning dual-comb spectroscopy (FT-DCS), relies on the extremely easy tuning
of the frequency spacing of EOFCs to measure optical spectra with a high precision, using a
single-wavelength laser and a simple detection at a unique RF frequency. By sweeping the
repetition rate of the two EOFCs within the modulator bandwidth, and keeping their frequency
spacing difference constant, the measurement of the fundamental beat notes allows to scan
the optical spectrum and to measure sample absorption. As a proof of concept, the amplitude
transfer function of an optical filter has been measured. The 10 dB-bandwidth of 24 GHz (0.19
nm) was retrieved, and the transfer function was successfully compared with classical tunable
laser experiment. These results pave the way for further absorption spectroscopy applications
as the achievable frequency range are compatible with typical molecules absorption linewidth.
Furthermore, the use of silicon photonics, as a mature technology platform which benefits
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from CMOS fabrication facilities opens the path towards large scale fabrication of compact
spectroscopic systems.
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