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[1] This paper quantifies the value added by the
Greenhouse gases Observing SATellite (GOSAT) to
numerical models of the global carbon cycle for the
estimation of CO, surface fluxes. The metric used here is
the theoretical uncertainty reduction, defined as one minus
the ratio of the posterior flux uncertainty to the prior ones.
Our results indicate that GOSAT should significantly
improve our knowledge of the CO, surface fluxes over
terrestrial vegetated areas, even at the scale of a week and of
a few hundred kilometres. Over ocean and in spite of the
GOSAT sun-glint-pointing capability, large improvements
are seen only when the fluxes are aggregated both over
ocean basins and over a year. Citation: Chevallier, F.,
S. Maksyutov, P. Bousquet, F.-M. Bréon, R. Saito, Y. Yoshida, and
T. Yokota (2009), On the accuracy of the CO, surface fluxes to be
estimated from the GOSAT observations, Geophys. Res. Lett., 36,
L19807, doi:10.1029/2009GL040108.

1. Introduction

[2] The long—lived CO, molecule has been accumulating
in the atmosphere since the start of the industrial revolution,
and has reached levels that are unprecedented in at least
800,000 years [Liithi et al., 2008]. The accumulation of this
greenhouse gas is the main driver for climate change and
motivates ambitious monitoring programmes, like the Co-
operative Air Sampling Network, managed by the NOAA
Earth Systems Research Laboratory, or, recently, the Inte-
grated Carbon Observation System (ICOS) in Europe.
Besides, CO, is a long-lived gas in the atmosphere so that
the background concentration is large compared to the
gradients generated by local fluxes. As a direct conse-
quence, the monitoring of such gradients requires very
demanding relative accuracies. This may explain why the
monitoring of CO, from space is much more challenging
than for shorter-lived species, such as carbon monoxide or
aerosols. A prominent application of CO, measurements
from space would be the estimation of its surface sources
and sinks [Rayner and O’Brien, 2001], in the context of the
studies performed with the sparse network of surface
stations (e.g., Gurney et al., 2002). A first CO,-dedicated
platform has been placed into orbit on 23 January 2009.
This satellite, the Japanese Greenhouse gases Observing
SATellite (GOSAT, also known as IBUKI [Yokota et al.,
2004]), carries a Fourier-transform spectrometer that col-
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lects information about CO, and CH4. The GOSAT obser-
vations are being processed to generate a suite of products
that will successively include column averaged dry air mole
fraction of CO, (hereafter Xcqo,) and CO, surface fluxes.
The instrument is expected to be operated during five years.

[3] This paper evaluates the information that GOSAT will
provide about surface fluxes, and is an extension of the
simplified assessment of the GOSAT observation made
by Maksyutov et al. [2008]. It follows the strategy of
Chevallier [2007] and Chevallier et al. [2007] who studied
the products of the parallel US project, the Orbiting Carbon
Observatory (OCO) [Crisp et al., 2004] which was unfortu-
nately lost during launch in February 2009. This strategy
relies on an ensemble of observation system simulation
experiments (OSSEs) with a variational flux inversion
scheme.

[4] The GOSAT data are described in the next section.
The evaluation method is described in Section 3. The results
are presented in Section 4. Section 5 concludes the paper.

2. GOSAT Measurements

[s] GOSAT orbits around the globe with a polar sun-
synchronous trajectory. The descending orbits cross the
Equator at about 13:00 local time. Relative to the Earth,
the orbit pattern repeats every 3 days. The main GOSAT
flight instruments is the Thermal And Near infrared Sensor
for carbon Observation-Fourier Transform Spectrometer
(TANSO-FTS). From the infrared spectrum, this Fourier-
transform spectrometer will provide information about the
concentrations of CO, in the upper-troposphere, similarly to
what the Atmospheric Infrared Sounder (AIRS) has been
doing since 2002 and with limited interest for flux estima-
tion [Chevallier et al., 2005a]. In the near infrared, TANSO-
FTS will look at sunlight reflected from the surface and will
inform about the whole CO, column, with some contribu-
tion from the boundary layer concentration, which is critical
for flux monitoring.

[6] At nadir, the field of view of TANSO-FTS is a
circular footprint with a diameter of about 10 km. A
cross-track scanner extends the measurements between the
orbit tracks. Over the ocean, TANSO-FTS will point to the
glint spot in order to compensate for the low reflectivity of
the ocean in other viewing directions. The latitudinal range
of sun-glint observations varies with the declination of the
sun for the actual operation of TANSO-FTS. Since the
retrieval of X, will be hampered by clouds and aerosols,
GOSAT carries a cloud and aerosol imager that facilitates
the interpretation of the TANSO-FTS measurements.

[7] Figure 1 shows the result of a simulation of the
sounding coverage that could be achieved for three days
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Figure 1.
retrievals for 3 days of July.

Simulated density of the GOSAT Xcoz

of a month of July. The data density varies with the above-
mentioned elements: solar radiation, pointing mode and
cloud cover. To assess the impact of cloud cover, the
distribution of the clear-sky occurrence was taken from
the global database of Eguchi and Yokota [2008].

[8] Xcoaz is retrieved by the usual optimal estimation
method [Yokota et al., 2008]. The theory allows the esti-
mation of the retrieval uncertainty and of its vertical
resolution, described by the averaging kernel. This column
averaging kernel (not shown) is similar to that of the OCO
retrievals, as estimated by Connor et al. [2008, Figure 2]: it
is fairly constant from the surface to about 4 km, and then
decreases towards the upper atmosphere. The similarity
with OCO is not surprising since the two instruments use
the same spectral bands to infer Xco,. The uncertainty of
the individual GOSAT soundings is parameterized here with
a two-step method, based on numerical simulations of the
GOSAT retrieval algorithm. First, the signal-to-noise ratio
of the measured spectra is computed from the surface
albedo @ and from the solar zenith angle 6, by the following
relationship based on the designed performance of TANSO-
FTS, e.g., SNR = 300 when albedo = 0.3 and solar zenith
angle 6, = 30 deg.:

SNR = 350% cos 0. (1)

Data are left out when a*cos(z) is larger than 0.3 because of
saturation effects, as well as for SNR lower than 100. For the
sun-glint tracking mode, over the ocean, the glint reflectance
replaces the albedo in equation (1). It is parameterized from
the model of Bréon and Henriot [2006, equation (6)].

[9] The standard deviation of the individual Xco, sound-
ing errors, SSE, in ppm, is then obtained from:

3002
SSE? = VB T 1.22 (2)

The first term in the right side of equation (2) accounts for
measurement noise, smoothing error, and interference error
component, while the second term represents the overall
random contribution of aerosols to the retrieval noise [Ota
et al., 2008]. The computed errors vary between 1.2 and
3.2 ppm. These figures are larger than those given by
Connor et al. [2008] for OCO that were mostly below 1 ppm.

[10] The transport model error and the representativeness
of the observations with respect to the transport model grid
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are represented here by a 1 ppm standard deviation. This
rough estimate is quadratically added to the individual
observation errors, raising them to values between 1.6 and
3.4 ppm. Although these errors are most likely correlated in
space and in time to some extent, such correlations are not
implemented here for lack of knowledge.

[11] The GOSAT soundings are averaged at the horizontal
resolution of our transport model (a 3.75° x 2.5° longitude-
latitude grid) at the orbit level. These averaged observations
should have a smaller uncertainty than the individual ones,
but to an extent that depends on the (unknown) error
correlations. The reduction of the error by averaging is
not taken into account.

3. Method

[12] CO, surface fluxes are estimated from Xcq, retrievals
by an inversion scheme that combines them with some
prior information about the fluxes within a Bayesian
framework. GOSAT will provide thousands of soundings
every day. Weeks of individual data have to be processed
simultaneously by the inversion system because of the long
life of the CO, molecule. The state vector is also quite
large. It includes a large number of individual fluxes to be
estimated (here daytime and night-time 8-day-mean fluxes
on a 3.75° x 2.5° longitude-latitude grid throughout the
temporal window of the inversion) and some constraint on
the concentrations at the start of the inversion window (here
2D scaling factors on the total columns). We make use of
the variational inversion scheme of Chevallier et al. [2005b]
that can handle large-dimension inference problems. The
method relies on the iterative minimization of a Bayesian
cost function. 30 iterations with the conjugate gradient
algorithm of Fisher and Courtier [1995] are enough to
reach convergence with the GOSAT soundings. The opera-
tor that links the state vector and the observation space in
the inversion scheme is the general circulation model of the
Laboratoire de Météorologie Dynamique (LMDZ) [Hourdin
et al., 2006], nudged to ECMWF winds and used in an off-
line mode (transport mass fluxes are read from a frozen
archive rather than computed on-line). Tracer transport is
simulated on a 3.75° x 2.5° (longitude-latitude) horizontal
grid and with 19 layers between the surface and the top of
the atmosphere.

[13] The error statistics of the prior fluxes are a key
component of the inversion system and they have been
modelled by a multivariate Gaussian distribution. They are
illustrated in Figure 2a. Over land, the parameters of the
distribution are inspired by the comparison between in situ
flux measurements and the outputs of a biosphere model
that was reported by Chevallier et al. [2006]: (i) temporal
correlations decay exponentially with a length of one month
but night-time errors are assumed to be uncorrelated with
daytime errors, (7i) spatial correlations decay exponentially
with a length of 500 km (i.e. about the East—West size of
the transport model grid at the Equator), (iii) standard
deviations are set proportional to the heterotrophic respira-
tion fluxes of a simulation of the Organizing Carbon and
Hydrology in Dynamic EcosystEms (ORCHIDEE) [Krinner
et al., 2005] (the scaling factor, deduced from the data of
Chevallier et al. [2006], is 2.5), with a cap at 6 gC m
day ™. Over a full year, the statistical uncertainty for all land
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Figure 2. (a) The standard deviation oy, of the errors of the prior fluxes, in gC.m 2 per day. These statistics correspond to
an ensemble of weekly flux errors throughout the year, knowing that the flux error varies in time. (b) The expected
uncertainty reduction provided by GOSAT for the estimation of eight-day-mean CO, surface fluxes. The reduction is
defined as (1 — o,/0}), with o, the posterior error standard deviation.

fluxes amounts to about 4.5 GtC. Ocean error statistics are
more arbitrary and the following parameters have been
chosen: (i) temporal correlations decay exponentially with
a length of one month; unlike land, daytime and night-time
flux errors are fully correlated; (ii) spatial correlations
follow an e-folding length of 1000 km, (7ii) standard
deviations are set to 0.1 gC m 2 day '. With this set-up,
the ocean uncertainty amounts to about 0.5 GtC per year.
Land and ocean flux errors are not correlated. This config-
uration expresses the current uncertainty in the numerical
models of the global carbon cycle in a simple, but realistic
manner. However, it is somewhat subjective and the abso-
lute values of Figures 2 and 3 should be interpreted with
caution.

[14] The uncertainty of the inferred fluxes can be rigor-
ously computed from the theory, based on the uncertainty of
the prior fluxes, on the uncertainty of the observations and on
the uncertainty of the transport model. For large-dimension
problems, this is difficult to achieve in practice. Chevallier et
al. [2007] have introduced a Monte Carlo approach to
address this issue. Posterior error statistics are reconstructed
from an ensemble of inversions using synthetic data as input.

When the ensemble of prior fluxes and the ensemble of
observations follow their respective assigned error statistics,
the ensemble of posterior fluxes consistently follows the
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Figure 3. Expected uncertainty reduction provided by
GOSAT for the estimation of CO, surface fluxes in the 22
TransCom-3 regions. Results for weekly, monthly and
annual fluxes are shown. As in Figure 2, the error reduction
is defined as (1 — o,/oy), with o, the posterior error
standard deviation and oy, the prior error standard deviation.

30f5



L19807

theoretical statistics of the posterior errors. This feature is
exploited here with six one-year inversions of 8-day fluxes
for each set-up. Doing that, the method gathers an ensemble
of fluxes which is large enough to provide stable statistics for
the quantities shown in the following (i.e. the results hardly
change when any year among the six is removed from the
statistics).

4. Results

[15] The global map of the fractional uncertainty reduc-
tion of Figure 2b quantifies the knowledge brought by
GOSAT on the CO, weekly surface fluxes compared to
the accuracy of the global models of the carbon cycle. This
quantity is defined as one minus the ratio of the posterior
error standard deviation to the prior error standard devia-
tions. A value of zero indicates that the observations have
not provided any information to the prior. A value of one
would be reached if the observations gave a perfect knowl-
edge about the weekly fluxes. The impact of GOSAT results
from the combination of specified prior errors, observation
density and transport characteristics. It is mostly located
over land, where most of the prior uncertainty lies. It is
about 30% for terrestrial vegetated areas, with values larger
than 60% at places. It is less than 10% over ocean points.
By comparison, our application of the inversion scheme
(with also 30 iterations) to the current CO, concentration
monitoring network suggests reductions for grid-point
weekly fluxes smaller than 10% over most areas and up
to 30% only in the vicinity of the stations (not shown).
Figure 2b shares some similarity with the corresponding
figure of Chevallier et al. [2007, Figure 2a] for OCO, with
the main differences caused by the revised version of the
prior error statistics: (i) the use of the ORCHIDEE here-
rotrophic respiration fluxes rather than those of a less
sophisticated model improves the results at high latitudes;
(ii) smaller prior errors over the oceans reduce the impact of
the satellite over water; (iif) the introduction of temporal
error correlations in this study induce a larger impact over
land.

[16] Spatial and temporal averaging may provide even
more accurate flux products. Figure 3 shows that the
reduction rises to 50—80% for terrestrial fluxes aggregated
at the scale of sub-continental regions, like those of the
Atmospheric Tracer Transport Model Intercomparison Proj-
ect (TransCom3) [Gurney et al., 2002]. As an example, for
the TransCom3 ‘Europe’ region, the flux error is theoreti-
cally reduced from 1 GtC per year (model uncertainty) to
0.3 GtC per year. For fluxes at the scale of TransCom3
ocean basins, the improvements usually reach about 20%.
Aggregating in time up to the monthly or the annual scale
brings little improvement over land, likely because of the
large temporal correlations of the errors of the posterior
fluxes (Figure 3). Over ocean, significant improvements are
seen for annual fluxes, with values up to 60%.

5. Conclusion

[17] Monitoring CO, from space is of primary impor-
tance to understand and to model the fate of the carbon
emitted by human activities. Such approach would comple-
ment the accurate surface measurements that are irregularly
distributed over the globe. GOSAT is the first instrument

CHEVALLIER ET AL.: CO, SURFACE FLUXES ESTIMATED FROM GOSAT

L19807

conceived to fulfill this objective and to reach orbit. The
analysis of this wealth of data will be a topic for active
research within the next years. Before the first products are
released, this paper evaluates the forthcoming contribution
of GOSAT to our knowledge of the CO, surface fluxes, as
contained in numerical models of the global carbon cycle.
This letter does not demonstrate the value added to the
existing surface network, nor to some specific regional
inventory studies (even though the numerical simulations
made with the flux inversion scheme used here suggest a
larger impact of GOSAT at continental scale than the surface
network). The estimate of the uncertainty reduction is
relative to the modelling of the various errors in the
optimality system: the statistical characteristics of the prior
errors and of the observation errors. Our results indicate that
GOSAT is likely to provide information about the surface
fluxes that is rather similar to what the OCO instrument
would have given had it reached orbit in February 2009.
OCO would have provided an additional wealth of data (of
possibly even higher accuracy than GOSAT) that would
have further constrained the inversion problem. The oper-
ation of the two instruments in parallel would also have
given precious insight about the errors of each other’s
products.

[18] Our observation system simulation experiments as-
sume a consistent optimality system where all error budgets
are accurately known. The application on real data will
deviate from this ideal case. Residual biases are the most
critical issue. They may hamper and even impede the
exploitation of the data in terms of surface fluxes. The
quality of the validation of the GOSAT CO, concentration
products will be critical to make the data useful for flux
inversion and will determine the reliability of the theoretical
diagnostics like those presented here.
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