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Main

The rapid nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread quickly placed unprecedented strain on a number of healthcare facilities around the world. As the epidemic continues to resurge in many places, we need to ensure healthcare systems are well equipped to deal with increasing demand. Such healthcare planning needs a robust understanding of the pathways patients take, including the probability of entering an intensive care unit (ICU), how long they spend in hospital, and their likely outcomes both for individuals that enter ICU and those that do not. The mass of patient data gathered in countries that have experienced a large pandemic wave can provide invaluable insight on these parameters. This is the case of France where up to 3,093 infected individuals presented at hospitals daily within 4 months of the first detected case. However, it remains difficult to build a coherent picture of hospital patient pathways from the French experience given the huge diversity seen in these pathways in a situation when both COVID-19 epidemiology and clinical care evolved very quickly. First, outcomes of hospitalization for SARS-CoV-2 infection range from limited symptoms allowing immediate discharge, death within a few hours to weeks spent in ICU and can vary substantially with the age and sex of the patient [START_REF] Singhal | A Review of Coronavirus Disease-2019 (COVID-19)[END_REF]. Second, the age, sex and severity profile of hospitalized patients changed during the course of the pandemic along with the intensity of control measures and the multiple parameters influencing healthcare seeking patterns and decisions to admit them to hospital. Finally, improvements in clinical care may also have modified outcomes as clinicians progressively learned to manage COVID-19 patients, including through new treatment strategies [START_REF] Recovery Collaborative Group | Dexamethasone in Hospitalized Patients with Covid-19 -Preliminary Report[END_REF].

Here, using data from a dedicated COVID-19 surveillance system that was rapidly integrated into French hospitals, we characterize the complex hospital pathways of COVID-19 patients during the French first pandemic wave. We reconstruct full patient trajectories from first admission to eventual discharge or death with details on the attended wards (conventional or ICU) and develop a modelling framework that explicitly accounts for the heterogeneous nature of the changing profile of patients being admitted into hospitals and censoring (4.6% of outcomes were not known due to ongoing hospitalizations or missing data). Through our approach, we can disentangle the relative contributions of patient characteristics (e.g. age and sex) in assessing whether improvements have occurred in outcome over the course of the epidemic. The study also provides a detailed account of the way the French healthcare system coped with an unprecedented wave of hospitalizations during this unique crisis in French history. This work builds on existing efforts to answer these key questions that have so far only considered short periods of the pandemic, considered outcomes as constant over time, Using our model, we estimate that on average 14.6% (95%CI: 14.3-14.8) of patients who do not enter ICU die, ranging from 0.4% (95%CI: 0.2-0.6) in females under 40 years old to 35.4% (95%CI: 34.6-36.2) in males older than 80 (Figure 2B, Table S1). Among patients admitted to ICU, we find that on average 31.0% (95%CI: 30.0-31.9) die. This proportion ranges from 8.4% (95%CI: 6.8-10.0) in patients under 40 years old to 46.4% (95%CI: 44.0-48.8) in patients over 80 years old, with limited difference by sex (relative risk: 1.0, 95%CI: 0.8-1.4) (Figure 2C, Table S1). Overall, we estimate that 19.4% (95%CI: 19.2-19.7) of patients do not survive (Figure 2D, Table S2), similar to what has been previously reported [START_REF] Salje | Estimating the burden of SARS-CoV-2 in France[END_REF]. We note that for patients who do not enter ICU the delay between hospitalization and death does not vary by age or sex (mean: 8.9 days, 95%CI: 8.7-9.1, Figure 3B-S4), whereas the delay from hospitalization to discharge does (Figure 3C). The delay between ICU admission and death is longer for males and shorter for older patients, ranging from 20.7 days (95%CI: 18.7-22.8) in males <60 years old to 8.5 days (95%CI: 7.4-9.8) in females >80 years old (Figure 3D, Table S3). Further, the delay from ICU admission to outcome strongly depends on whether the patient dies (mean: 17.6 days, 95%CI: 16.8-18.4) or is discharged from hospital (mean: 27.0 days, 95%CI: 26.5-27.5) (Figure 3D-E, Table S3-4). We also find that on average 18.4% (95%CI: 18.2-18.6) of patients enter ICU (Figure 2A, Table S2), after a mean delay of 1.5 days (95%CI: 1.5-1.6) (Figure 3A, Table S5) [START_REF] Salje | Estimating the burden of SARS-CoV-2 in France[END_REF]. This proportion increases with age, but drops after 70 years of age, reflecting the fact that older patients may not be transferred to ICU when they are too fragile to undergo such treatments [START_REF] Joebges | Ethics guidelines on COVID-19 triage-an emerging 11 international consensus[END_REF].

We estimate that 11.2% (95%CI: 10.8-11.3) of all hospitalized deaths died within a day of admittance. Similarly, 6.0% (95%CI: 5.9-6.2) of all discharges, and 65.7% (95%CI: 65.9-66.7) of all ICU admittances occurred within the first day of hospitalization (Figure S5). We find that the proportion of hospitalized deaths that die quickly has remained relatively stable (Figure S6, Table S6), pointing to a constant risk factor in a section of the population that places infected people at increased risk of dying quickly or only presenting at hospital late into their disease. We note that the proportion of quick discharges has varied over the pandemic, potentially indicating changes in patient severity, changes in severity or reporting [START_REF] Lazzerini | Delayed access or provision of care in Italy resulting from fear of COVID-19[END_REF][START_REF] Lantelme | Worrying decrease in hospital admissions for myocardial infarction during the COVID-19 pandemic[END_REF].

To ascertain changes over time, we partition the French epidemic in 5 time periods and estimate outcomes and delays within each period (Figure 4A). We find that the probability of entering ICU fell at the beginning of April across all age groups, but especially in those >60y in age (Figure 4B, Table S7). By the last time window (post May 2020), the probability of entering ICU was 0.50 (95%CI: 0.46-0.55) times that at the start of the epidemic (25.3% at the start compared to 12.8% within the final time window). There was also a significant decrease in the probability of death. Among those that were not admitted into ICU, the overall probability of death fell from 16.2% (95%CI: 15.4-17.0) in the earliest time window to 9.0% (95%CI: 8.0-9.9) by the end of the first wave, although no difference was observed in those <60y and a greater effect observed in those over 70y (Figure 4C, Table S8). Among those that were admitted into ICU, the overall probability of death also fell, down from 34.1% (95%CI: 32.0-36.2) in the earliest time window to 22.4% (95%CI: 18.6-26.5) (Figure 4D, Table S9). Among all deaths, the proportion occurring in ICU decreased from 34.5% (95%CI: 32.5,36.4) to 22.1% (95%CI: 18.7,25.9) over the study period (Table S10). Overall, the probability of death among hospitalized patients fell steadily throughout the epidemic and across all age groups (Figure 4E, Table S11). In the last time period overall probability of death was 0.48 (95%CI: 0.43-0.52) times that of the first time period (24.8% [95%CI: 23.9-25.8] vs 11.8% [95%CI: 10.7-12.9]). These improvements in patient outcomes were of the same magnitude in males and females (Figure S7). Had the age and sex profile of the patient population remained unchanged from the first period, we estimate that the overall probability of death among hospitalized individuals would have been reduced by 0.44 times (95%CI: 0.40-0.49) over the study period, while the probability of ICU admission would have been reduced by 0.59 times (95%CI: 0.54-0.64).

There are multiple underlying reasons for the substantial reduction in the probability of death among hospitalized cases as the epidemic has progressed. First, improved care is likely to have played an important part as the pathophysiology of COVID-19 started to become better understood. For example, improved understanding of the key role of inflammation [START_REF] Moore | Cytokine release syndrome in severe COVID-19[END_REF] resulted in increasing use of immunomodulatory drugs, and in particular corticosteroids. In June 2020, results from the Recovery trial confirmed that treatment with dexamethasone reduced mortality by one-third in patients receiving mechanical ventilation and by one-fifth in patients receiving supplemental oxygen compared with usual care alone [START_REF] Recovery Collaborative Group | Dexamethasone in Hospitalized Patients with Covid-19 -Preliminary Report[END_REF]. Second, reduced strains on the healthcare system as compared to the peak are likely to have been important in improving outcomes. There may also have been changes in the severity of cases entering hospital, including through greater testing in hospital admissions irrespective of COVID-19 symptoms [START_REF] Lewnard | Incidence, clinical outcomes, and transmission dynamics of severe coronavirus disease 2019 in California and Washington: prospective cohort study[END_REF]. Admission of milder cases into hospital or ICU may have become more likely as more beds became available during the declining phase of the epidemic.

The pathways individuals take to recovery can be long and complex. While we only consider the time to death or hospital discharge once entering ICU, the proportion of time actually spent in ICU can vary substantially and depends on their outcome. Of individuals that enter ICU that ultimately die, only 7.5% exit ICU back to general hospital wards before dying. In contrast, among ICU patients that are ultimately discharged, 72.6% go back to general hospital wards. On average, discharged ICU patients spent 17.7 days (95%CI: 17.4-18.0) in ICU, representing 65.5% of their total time after being admitted into ICU and 9.3 days (95%CI: 9.2-9.5) in post-ICU general wards. Patients that ultimately die spend on average 16.5 days (93.6%, 95%CI: 15.8-17.2) in ICU and 1.1 days (95%CI: 1.1-1.2) in post-ICU general wards (Table S12). Finally, while in this study we consider that exiting general wards constitutes a hospital discharge, 23.3% of ICU patients (but only 3.8% of all patients) needed long-term care and rehabilitation care. This is worth further investigation as this is a critical link in the continuum of care, helping move patients on from ICU to eventual discharge to the community [START_REF] Simpson | Rehabilitation After Critical Illness in People With COVID-19 Infection[END_REF].

Our framework provides a robust approach to incorporate evolving profiles of patients over the course of the epidemic to capture changes in the time spent in hospitals by patients and their outcome. We validated this framework by using simulated data, demonstrating that we were able to correctly identify known delays and outcome probabilities (Figure S8-9).

The findings from this study will help underpin healthcare planning efforts, especially as hospitalizations grow disproportionately among younger age groups. It also identifies how, even after accounting for these changing patient profiles, there is still evidence of a strong improvement in outcomes across all age groups. 

Supplementary Materials:

Materials and Methods

Data

We use a linelist of hospitalized patients from the SI-VIC database, maintained by the ANS (Agence du Numérique en Santé, formerly named ASIP) and sent daily to Santé publique France, the French national public health agency. This database provides daily data on the COVID-19 patients hospitalized in French public and private hospitals, including their age, date of hospitalization, outcome and region (Figure 1). All cases are either biologically confirmed or present with a computed tomographic image suggestive of SARS-CoV-2 infection. To limit the heterogeneity of medical practices and health care capacities in our dataset, we focus our analysis on metropolitan France and remove all patients in overseas territories (i.e. French Guiana, Guadeloupe, Martinique, Mayotte, and Reunion island). We include only patients that were admitted to either a general ward hospital and/or to ICU. We exclude patients that went only to psychiatric care, long-term care and rehabilitation care and/or emergency service. We consider that a patient was discharged when the individual left the hospital or was transferred to psychiatric care or long-term care and rehabilitation. Individuals whose only known status was deceased or discharged (3.5% of patients) were attributed a hospitalization date equal to the date of discharge or death. Individuals who were directly admitted to ICU (with no date of hospitalization) were attributed a delay from hospitalization to ICU of 0 day. We use the data from 10 September, and constituted a cohort of patients who started their hospitalization from 13 March (system implementation) until 30 June. As of this date, 4.6% of outcomes were not known. We considered a censored dataset as a case of study for a real-time application.

Modelling delays and probabilities of ICU admission, death and discharge

We consider that all patients were admitted to hospital first. Then, following the diagram in Figure S10, patients can be admitted into ICU, with a probability 𝑝 𝐼𝐶𝑈 and a delay 𝑑 𝐼𝐶𝑈 , and either die, with a probability 𝑝 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 and a delay 𝑑 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 or be discharged, with a probability 1 -𝑝 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 and a delay 𝑑 𝑑𝑖𝑠𝑐ℎ 𝐼𝐶𝑈 . Patients who are not admitted to ICU can either die, with a probability 𝑝 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 and a delay 𝑑 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 , or be discharged, with a probability 1 -𝑝 𝐼𝐶𝑈 -𝑝 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 and a delay 𝑑 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 . The overall probability of death given hospital admission is therefore: 𝑝 𝑑𝑒𝑎𝑡ℎ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑝 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 + 𝑝 𝐼𝐶𝑈 × 𝑝 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 .

We let the probabilities 𝑝 𝐼𝐶𝑈 , 𝑝 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 and 𝑝 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 vary by age (0-39, 40-49, 50-59, 60-69, 70-79, 80+) and sex (Figure 2). Given the small number of patients in younger age groups, we let the delays 𝑑 𝐼𝐶𝑈 ,𝑑 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 , 𝑑 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 , 𝑑 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 and 𝑑 𝑑𝑖𝑠𝑐ℎ 𝐼𝐶𝑈 vary by age, on a restricted number of age groups (0-59, 60-69, 70-79, 80+) and by sex. However, we found that the delays from hospitalization to ICU admission or death did not differ substantially by age and sex (mean delay: Figures 3 andS4; standard deviation: Figures S11 andS12). Thus, we fit one delay across all ages and sexes from hospitalization to ICU, and one delay from hospitalization to death (Figure 3).

Delay distributions

We note that a subset of patients encounter their outcomes within a short period of time after entering the hospital. Specifically, after hospitalization we observe that 66% of ICU admissions happen within the first day, as well as 6% of discharges and 11% of deaths. We therefore use mixture distributions to model those delays, similarly to what has previously been used [START_REF] Salje | Estimating the burden of SARS-CoV-2 in France[END_REF].

For the delay from hospitalization to ICU, we use a zero-inflated exponential distribution (Figure S13A).

𝑑 𝐼𝐶𝑈 (𝑡) = 𝑝 0 + (1 -𝑝 0 ) × 𝐸𝑥𝑝(𝑡 | 𝜆 𝐼𝐶𝑈 ) 𝑖𝑓 𝑡 = 0 (1 -𝑝 0 ) × 𝐸𝑥𝑝(𝑡 | 𝜆 𝐼𝐶𝑈 ) 𝑖𝑓 𝑡 > 0
where 𝑝 0 is the zero-inflation and 𝜆 𝐼𝐶𝑈 the exponential rate.

For the delay from hospitalization to death (discharge, resp.) we use a mixture distribution composed of an exponential distribution for those that die (are discharged, resp.) within a short delay and a lognormal distribution for those that die (are discharged, resp.) after longer delays (Figure S13B). Where 𝜌 𝑑𝑒𝑎𝑡ℎ and𝜌 𝑑𝑖𝑠𝑐ℎ are the proportions of long deaths and discharges, 𝜇 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 , 𝜇 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 , 𝜎² 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 , 𝜎² 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 are the parameters of the lognormal distributions, and 𝜆 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 and 𝜆 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 the exponential rates. We consider that the parameters 𝜌 𝑑𝑒𝑎𝑡ℎ and 𝜌 𝑑𝑖𝑠𝑐ℎ are constant across age groups. We fix the exponential rates 𝜆 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 and 𝜆 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 to 2, which corresponds to a mean delay of 0.5 days [START_REF] Salje | Estimating the burden of SARS-CoV-2 in France[END_REF].

For the delays from ICU to death and discharge, we use a lognormal distribution, similar to what has previously been used [START_REF] Faes | Time between Symptom Onset, Hospitalisation and Recovery or Death: a Statistical Analysis of Different Time-Delay Distributions in Belgian COVID-19 Patients[END_REF][START_REF] Linton | Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data[END_REF]. We also consider a gamma distribution as a sensitivity analysis (Table S13).

We truncate all the distributions to 120 days.

Handling lost records

We note that 3.3% of patients do not present any updates on their hospitalization status more than two months after their hospitalization. We believe that it is unlikely that updates were missed for ICU admissions or death and that patients with lost records were most likely discharged, with no recorded date of discharge. We incorporate this into our framework with a probability of missing a discharge record either at hospital, 𝑝 𝑙𝑜𝑠𝑡 ℎ𝑜𝑠𝑝 , or in ICU, 𝑝 𝑙𝑜𝑠𝑡 𝐼𝐶𝑈 . We also consider a sensitivity analysis where we do not take into account this probability, and another where we assume that all the records (ICU, deaths and discharges) are equally likely to have been lost (Table S13).

We estimate that 1.3% (95%CI: 1.2-1.4) of hospital discharges and 1.6% (95%CI: 1.2-2.0) of discharges after ICU were lost.

Parameter estimation

We use a probabilistic framework inspired from competing risk models with cause-specific relative hazard [START_REF] Cox | Regression models and life-tables[END_REF][START_REF] Lunn | Applying Cox regression to competing risks[END_REF][START_REF] Lau | Competing risk regression models for epidemiologic data[END_REF]. We specifically account for censoring by incorporating into the likelihood not only patients with outcomes (i.e. ICU admission, death, discharge) but also patients without any known outcome at the time of observation (30th June). We make use of individual data to jointly estimate the different probabilities and delays, which let us account for the varying age and sex profiles of patients.

We write the likelihood of the different events that can occur to each patient 𝑖, after being admitted to hospital:

-The patient was admitted in ICU at time T:

𝐿 𝐼𝐶𝑈 (𝑇) = 𝑝 ℎ𝑜𝑠𝑝 𝐼𝐶𝑈 × 𝑑 ℎ𝑜𝑠𝑝 𝐼𝐶𝑈 (𝑇)
-The patient, conditional on not being admitted to ICU, died at time T:

𝐿 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 (𝑇) = 𝑝 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 × 𝑑 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 (𝑇)
-The patient, conditional on not being admitted to ICU, was discharged from hospital at time T:

𝐿 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 (𝑇) = (1 -𝑝 𝑙𝑜𝑠𝑡 ℎ𝑜𝑠𝑝 ) × 𝑝 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 × 𝑑 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 (𝑇)

-At the time of censoring T, the patient is still at hospital (i.e. no ICU admission, no discharge or death record):

𝐿 𝑠𝑡𝑖𝑙𝑙 𝑖𝑛 ℎ𝑜𝑠𝑝 (𝑇) = 1 -𝑝 𝐼𝐶𝑈 × 𝐷 𝐼𝐶𝑈 (𝑇)
-𝑝 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 × 𝐷 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 (𝑇) -(1 -𝑝 𝑙𝑜𝑠𝑡 ℎ𝑜𝑠𝑝 ) × 𝑝 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 × 𝐷 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 (𝑇)

-The patient, conditional on being admitted to ICU, died at time T:

𝐿 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 (𝑇) = 𝑝 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 (𝑇) × 𝑑 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 (T)
-The patient, conditional on being admitted to ICU, was discharged from hospital at time T:

𝐿 𝑑𝑖𝑠𝑐ℎ 𝐼𝐶𝑈 (𝑇) = (1 -𝑝 𝑙𝑜𝑠𝑡 𝐼𝐶𝑈 ) × 𝑝 𝑑𝑖𝑠𝑐ℎ 𝐼𝐶𝑈 × 𝑑 𝑑𝑖𝑠𝑐ℎ 𝐼𝐶𝑈 (𝑇)
-At the time of censoring T, the patient was still in ICU (i.e. no hospital discharge or death record after ICU admission):

𝐿 𝑠𝑡𝑖𝑙𝑙 𝑖𝑛 𝐼𝐶𝑈 (𝑇) = 1 -𝑝 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 × 𝐷 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 (𝑇) -(1 -𝑝 𝑙𝑜𝑠𝑡 𝐼𝐶𝑈 ) × 𝑝 𝑑𝑖𝑠𝑐ℎ 𝐼𝐶𝑈 × 𝐷 𝑑𝑖𝑠𝑐ℎ 𝐼𝐶𝑈 (𝑇)
Where 𝐷() are the cumulative density function (cdf) of the delay distribution, corresponding to 𝑑(), the probability density functions (pdf).

We write then the contribution of an event at time Where 𝐼() equals 1 when the statement is correct, 0 otherwise. Each individual can go through multiple events, the contribution of each individual to the likelihood is then:

𝐿 𝑖 = ∏ 𝐿 𝑖,𝑇 𝑇 ∈ 𝑒𝑣𝑒𝑛𝑡𝑠
The total likelihood then becomes:

𝐿 = ∏ ∏ 𝐿 𝑖,𝑇 𝑇 ∈ 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖 ∈ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
We use the Rstan package [START_REF]RStan: the R interface to Stan[END_REF] to fit the parameters. We ran this model on 3 independent chains with 5,000 iterations and 50% burn-in. We use 2.5 and 97.5 quantiles from the resulting posterior distributions for 95% credible intervals of the parameters. To compute the overall probabilities across all ages and sexes, we compute an average across the individual estimates, weighted by the number of patients in each age and sex group. Regarding the delays, we present the mean (Figure 3) and standard deviation (Figure S12) of each delay distribution. Parameters characterising delay distributions are given in Tables S3-5. Fits are shown in Figure S14-19.

Estimation of changes

To investigate changes in outcome probabilities during the course of the epidemic, we partition the epidemic into five time periods (Figure 4A): T1: 13 March -1 April; T2: 2 April -21 April; T3: 22 April -11 May; T4: 12 May -31 May; T5: 1 June -30 June. The first four periods are of 20 days and the last is of 30 days. This approach allows us to track changes over the course of the epidemic in a tractable manner where parameter estimates are independent across the time windows. It also allows us to explore specific changes around the peak of the wave and before/after the lockdown period (13 March -11 May). We explore different scenarios:

-changes in outcome probabilities 𝑝 𝐼𝐶𝑈 , 𝑝 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 and 𝑝 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 -changes in the proportion of quick outcomes, 𝑝 0 , 𝜌 𝑑𝑒𝑎𝑡ℎ and𝜌 𝑑𝑖𝑠𝑐ℎ Model comparison is based on the Deviation Information Criterion (DIC) (Table S13)(20). A DIC difference larger than 4 is considered substantial.

Simulation study

To evaluate the capacity of our inferential framework to correctly estimate parameters, we developed a simulation framework where both the delays and the probabilities of outcomes were known. We simulated an epidemic for a period of 150 days, which originated from a single infected individual, where the number of cases grows exponentially each day with an initial growth rate of 0.2 for 40 days, followed by a growth rate of -0.05, to reflect the epidemic seen in France (Figure S8A, S9A) [START_REF] Salje | Estimating the burden of SARS-CoV-2 in France[END_REF].

We assume that all individuals in the population have the same probability of being infected, hospitalized and to die. For each infected individual, we chose:

-Whether or not the individual was hospitalized, using a random draw from a Bernoulli distribution with parameter 𝑝 ℎ𝑜𝑠𝑝 . -If the individual was hospitalized, whether or not the individual died, using a random draw from a Bernoulli distribution with parameter 𝑝 𝑑𝑒𝑎𝑡ℎ . If the individual died we assign its length of stay at hospital until death, using a random draw from a lognormal distribution of parameter 𝜇 𝑑𝑒𝑎𝑡ℎ and 𝜎² 𝑑𝑒𝑎𝑡ℎ . -If the individual was hospitalized and did not die, we consider that it was discharged.

We assign its length of stay at hospital until discharge, using a random draw from a lognormal distribution of parameter 𝜇 𝑑𝑖𝑠𝑐ℎ and 𝜎² 𝑑𝑖𝑠𝑐ℎ .

The delays from hospitalization to death and discharge were drawn from a lognormal distribution with log mean 𝜇 𝑑𝑒𝑎𝑡ℎ and 𝜇 𝑑𝑖𝑠𝑐ℎ of 3 and log sd 𝜎² 𝑑𝑒𝑎𝑡ℎ and 𝜎² 𝑑𝑖𝑠𝑐ℎ of 0.5, reflecting a median delay of 20 days.

To assess the performance of the model on both a fixed and a varying risk over time, we ran two simulations:

-A first one with a constant probability of death over the course of the epidemic, 𝑝 𝑑𝑒𝑎𝑡ℎ = 0.2. -A second one with a decreasing probability of death over time: ranging from 0.2 at the beginning of the epidemic (T1), to 0.05 at the end of the epidemic (T4) (Figure S9B).

We use these simulated data to estimate the delays and the probabilities of outcome using our statistical framework (Figure S8B-C, S9B-C). All patients are considered to be admitted to hospital first. We denote by 𝑝() the probabilities of each outcome and 𝑑()the delays. The framework explicitly accounts for the changing profile of patients being admitted into hospitals and censoring. Mixture distributions used to model the delay from hospitalization to ICU admission (A) and from hospitalization to death or hospital discharge, with no ICU admission (B). The delay from ICU to death or hospital discharge is modelled with a regular lognormal distribution. 
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  T, experienced by an individual 𝑖:

	𝐿 𝑖,𝑇 = 𝐼(𝐼𝐶𝑈 𝑎𝑡 𝑇) × 𝐿 𝐼𝐶𝑈 (𝑇)
	+𝐼(𝑑𝑖𝑒𝑑 𝑎𝑡 𝑇, 𝑛𝑜 𝐼𝐶𝑈) × 𝐿 𝑑𝑒𝑎𝑡ℎ ℎ𝑜𝑠𝑝 (𝑇)
	+𝐼(𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑎𝑡 𝑇, 𝑛𝑜 𝐼𝐶𝑈) × 𝐿 𝑑𝑖𝑠𝑐ℎ ℎ𝑜𝑠𝑝 (𝑇)
	+ 𝐼(𝑠𝑡𝑖𝑙𝑙 𝑖𝑛 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑎𝑡 𝑇) × 𝐿 𝑠𝑡𝑖𝑙𝑙 𝑖𝑛 ℎ𝑜𝑠𝑝 (𝑇)
	+𝐼(𝑑𝑖𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝐼𝐶𝑈 𝑎𝑡 𝑇) × 𝐿 𝑑𝑒𝑎𝑡ℎ 𝐼𝐶𝑈 (𝑇)
	+𝐼(𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝐼𝐶𝑈 𝑎𝑡 𝑇) × 𝐿 𝑑𝑖𝑠𝑐ℎ 𝐼𝐶𝑈 (𝑇)
	+𝐼(𝑠𝑡𝑖𝑙𝑙 𝑖𝑛 𝐼𝐶𝑈 𝑎𝑡 𝑇) × 𝐿 𝑠𝑡𝑖𝑙𝑙 𝑖𝑛 𝐼𝐶𝑈 (𝑇)

Table S1 : Percentage of hospitalized patients that die, given ICU admission, by age and sex.

 S1 Estimated percentage of hospitalized patients that die conditional on being hospitalized and never having been admitted into ICU (left). Estimated percentage of hospitalized patients that die conditional on being hospitalized and admitted into ICU (right). 95% credible intervals are shown in brackets.

		P(death|hospitalization and	P(death|hospitalization and
			no ICU admission)		ICU admission)
	Age group Female	Male	Mean	Female	Male	Mean
	0-39	0.4	0.8	0.6	8.2	8.5	8.4
		[0.2,0.6]	[0.5,1.1]	[0.4,0.8]	[5.9,10.8]	[6.5,10.8]	[6.8,10.0]
	40-49	1.4	1.4	1.4			
		[1.0,1.9]	[1.0,1.8]				

Table S2 : Percentage of hospitalized patients that are admitted into ICU or die, by age and sex.

 S2 Estimated percentage of hospitalized patients that are admitted into ICU (left) and estimated percentage that die, conditional on being hospitalized, irrespective of ICU status (right). Percentages are computed as an average across the epidemic. 95% credible intervals are shown in brackets.

		P(ICU|hospitalization)	P(death|hospitalization)
	Age group Female	Male	Mean	Female	Male	Mean

Table S4 : Estimated delays from ICU to hospital discharge, by age and sex.

 S4 Means and standard deviations (sd) are given in days. The corresponding lognormal parameterizations are shown on the right. 95% credible intervals are shown in brackets.

	Age group						Lognormal parametrization	
		Mean			Sd					
		(days)			(days)					
							log mean	log sd
							𝜇		𝜎	
	Female	Male	Overall	Female	Male	Overall	Female	Male	Female	Male

Table S7 : Percentage of hospitalized patients that are admitted into ICU by sex, age and time.

 S7 The windows used are the following: T1: 13 March-1 April; T2: 2 April-21 April; T3: 22 April-11 May; T4: 12 May-31 May; T5: 1 June-30 June. 95% credible intervals are shown in brackets.

				Age group		
	Period					
	of time	0-59	60-69	70-79	80+	Overall
		Female 16.5				
	T1					

Table S11 : Percentage of hospitalized patients that die, irrespective of ICU admission, by sex, age and time.

 S11 The windows used are the following: T1: 13 March-1 April; T2: 2 April-21 April; T3: 22 April-11 May; T4: 12 May-31 May; T5: 1 June-30 June. 95% credible intervals are shown in brackets.

				Age group		
	Period					
	of time	0-59	60-69	70-79	80+	Overall
	T1	Female 5.2 1

Table S13 : Deviance information criterion (DIC) of the different models.

 S13 

	Model	DIC	pD
	𝑝 𝑙𝑜𝑠𝑡 only on discharges	829980.5	99.2
	𝑝 𝑙𝑜𝑠𝑡 common for ICU, deaths and	829958.3	99.0
	discharges		
	no 𝑝 𝑙𝑜𝑠𝑡	831650.3	99.0
	𝑝 𝑙𝑜𝑠𝑡 only on discharges, gamma	830044.0	96.1
	distribution for ICU to discharge		
	𝑝 𝑙𝑜𝑠𝑡 only on discharges, changes	828496.2	231.1
	in probabilities but no changes in		
	quick outcomes		
	𝒑 𝒍𝒐𝒔𝒕 only on discharges,	828045.4	240.0
	changes in both probabilities		
	and quick outcomes (chosen		
	model)		
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