
HAL Id: hal-02946519
https://hal.science/hal-02946519

Submitted on 8 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Four-dimensional data assimilation of atmospheric CO 2
using AIRS observations

Richard Engelen, Soumia Serrar, Frederic Chevallier

To cite this version:
Richard Engelen, Soumia Serrar, Frederic Chevallier. Four-dimensional data assimilation of at-
mospheric CO 2 using AIRS observations. Journal of Geophysical Research, 2009, 114 (D3),
�10.1029/2008JD010739�. �hal-02946519�

https://hal.science/hal-02946519
https://hal.archives-ouvertes.fr


Four-dimensional data assimilation of atmospheric

CO2 using AIRS observations

Richard J. Engelen,1 Soumia Serrar,1 and Frédéric Chevallier2

Received 7 July 2008; revised 15 October 2008; accepted 2 December 2008; published 7 February 2009.

[1] The European Global and regional Earth-system (Atmosphere) Monitoring using
Satellite and in situ data (GEMS) project has built a system that is capable of assimilating
various sources of satellite and in situ observations to monitor the atmospheric
concentrations of CO2 and its surface fluxes. This consists of an atmospheric
four-dimensional variational data assimilation system that provides atmospheric fields to a
separate variational flux inversion scheme. In this paper, we describe the atmospheric
data assimilation system that currently uses radiance observations from the Atmospheric
Infrared Sounder (AIRS) to constrain the CO2 mixing ratios of the data assimilation
model. We present the CO2 transport model, the bias correction of the observation-model
mismatch, and the estimation of the background error covariance matrix. Data
assimilation results are compared to independent CO2 observations from NOAA/ESRL
aircraft showing a reduction of the mean difference of up to 50% depending on the
altitude of the aircraft observations relative to an unconstrained transport model
simulation. In the coming years, observations from dedicated CO2 satellite missions will
be added to the system. Together with improved error characterization and bias
correction, we hope to show that satellite observations can indeed complement the in situ
observation system to get a better estimate of global carbon fluxes.

Citation: Engelen, R. J., S. Serrar, and F. Chevallier (2009), Four-dimensional data assimilation of atmospheric CO2 using AIRS

observations, J. Geophys. Res., 114, D03303, doi:10.1029/2008JD010739.

1. Introduction

[2] Over the last several years considerable effort has been
put in extracting information about atmospheric CO2 from
infrared satellite sounders. The main driving force has been
the potential improvement of atmospheric flux inversions,
which are still limited by the amount of available accurate
observations. Significant progress has been made in expand-
ing the surface based observation networks as well as the
airborne CO2 observations, but most of these observations
are still confined to developed countries, which leaves large
gaps in for instance the tropics. Satellite data are well suited
to fill these gaps, but the first dedicated CO2 observing
instruments will not be launched before the end of 2008. In
the meantime, however, there is already a potential wealth of
information through the various infrared sounding instru-
ments. These instruments were mainly designed to observe
atmospheric temperature, by assuming fixed concentrations
of CO2 in the CO2 absorption bands, and water vapor.
However, the same CO2 absorption band can also be used
to extract information about CO2 itself. Various efforts have
been made to extract this information, so far with mixed
results. Chédin et al. [2008] showed CO2 fire emission

patterns in the Tropics by looking at the day-night differences
of CO2 estimates from the Television Infrared Observation
Satellite (TIROS-N) Operational Vertical Sounder (TOVS),
but Chevallier et al. [2005b] and Peylin et al. [2007] also
showed that these TOVS retrievals are not good enough
yet for surface flux inversions because of their significant
regional biases. Engelen and McNally [2005], Chahine et al.
[2005, 2008], and Strow and Hannon [2008] presented CO2

estimates from the Advanced Infrared Sounder (AIRS) using
a one-dimensional variational (1D-Var) data assimilation
system, a classic retrieval scheme, and a least squares fit of
brightness temperature departures, respectively, with prom-
ising results. However, Chevallier et al. [2005a] warned that
great care should be taken with these CO2 estimates when
used in flux inversions. Both the quality of the satellite
estimates and the quality of the transport models used in
flux inversions should be watched very carefully to assure
accurate flux estimates.
[3] As part of the GEMS (Global and regional Earth-

system (Atmosphere) Monitoring using Satellite and in situ
data) project [Hollingsworth et al., 2008], a data assimilation
system to monitor atmospheric concentrations of CO2 and
CH4 and their fluxes has been built. The system consists of a
four-dimensional variational (4D-Var) atmospheric data as-
similation system run at the European Centre for Medium-
Range Weather Forecasts (ECMWF), a variational CO2 flux
inversion system run at Laboratoire des Sciences du Climat
et de l’Environnement (LSCE), a variational CH4 flux
inversion system run at the Joint Research Centre (JRC),

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, D03303, doi:10.1029/2008JD010739, 2009

1European Centre for Medium-Range Weather Forecasts, Reading, UK.
2Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-

Yvette, France.

Copyright 2009 by the American Geophysical Union.
0148-0227/09/2008JD010739

D03303 1 of 12



an independent CO2 and CH4 neural network retrieval system
run at Laboratoire deMétéorologie Dynamique (LMD), and a
validation effort with independent models and in situ obser-
vations run at the Max Planck Institüt–Jena (MPI). This
paper describes the atmospheric CO2 4D-Var system at
ECMWF, which is based on the earlier work described by
Engelen and McNally [2005], but comprises now a full 4D-
Var setup for both the meteorology and the tracers. The aim is
to assimilate observations from various satellite instruments,
such as AIRS (http://airs.jpl.nasa.gov), the Infrared Atmo-
spheric Sounding Interferometer (IASI, http://smsc.cnes.fr/
IASI/), the Orbiting Carbon Observatory (OCO, http://
oco.jpl.nasa.gov), and the Greenhouse gases Observing Sat-
ellite (GOSAT, http://www.gosat.nies.go.jp), to obtain a
consistent estimate of the atmospheric CO2 concentrations.
These atmospheric concentration fields are then subsequently
used in an off-line surface flux inversion. This two-step
approach was chosen over a direct flux inversion approach,
such as currently being used for CO2 flask inversions [e.g.,
Gurney et al., 2002] or CH4 inversions using retrievals from
the Scanning Imaging Absorption Spectrometer for Atmo-
spheric Chartography (SCIAMACHY) instrument [e.g.,
Meirink et al., 2008], for the following reasons. Firstly, an
atmospheric data assimilation system based on systems
developed for numerical weather prediction (NWP) has the
capability of assimilating satellite observed radiances instead
of retrieval products, which makes it easier to have consistent
prior information among all instruments. The radiance as-
similation is possible because the observations are processed
in small chunks (typically 12 h intervals in our system),
which makes the extra computations feasible, and because all
the needed meteorological information (such as temperature
and humidity) is assimilated at the same time. Secondly, the
atmospheric data assimilation system can run at higher
resolution than a direct flux inversion system that needs to
process data over amuch longer time frame (typically 1 year).
This higher resolution allows for a better interpretation of the
observations by reducing the representation error (difference
in scale between a small observational field of view and a
large grid box). For instance, synoptic weather systems or
orography can create sharp gradients in CO2 concentrations
and therefore the observations. These gradients are better
captured by a higher-resolution model. The resulting atmo-
spheric fields can then be gridded to a feasible size for the
subsequent flux inversion.
[4] The outline of the paper is as follows: we will first

introduce the CO2 transport model, the used AIRS obser-
vations, and the data assimilation system. Then the bias
correction method and the background covariance matrix
will be described. Finally, we will show results from the
data assimilation with extensive comparisons to indepen-
dent observations and, as noted above, briefly describe
initial results from a flux inversion using the output from
the CO2 data assimilation.

2. CO2 Transport Model

[5] A 4D-Var data assimilation system requires a prognos-
tic transport model that will forecast the atmospheric state
from specified initial conditions. At ECMWF, tracer transport
has been introduced in the Integrated Forecasting System
(IFS) using the existing modeling framework for advection,

convection and vertical diffusion (ECMWF, IFS documenta-
tion CY31r1, 2007, http://www.ecmwf.int/research/ifsdocs/
CY31r1/). For tracers, the conservation of monotonicity and
positive definiteness in the semi-Lagrangian advection
scheme is assured by using the so-called ‘‘quasi-monotone’’
interpolations [Hortal, 1994]. Although this advection
scheme is not fully mass conserving, the gain of mass is
lessened when the surface pressure is constrained by the
analyses at the beginning of each forecast. A tracer mass fixer
has also been coded in the IFS (to be used in long forecast
integrations) but has not been used here as the gain of mass is
not significant within the framework of a data assimilation
system in which the surface pressure is constrained by
observations.
[6] Various climatologies were used to prescribe the CO2

fluxes at the surface. These are based on what was available
at the start of the described experimentation, but are subject
to updating in case better surface fluxes become available.
The exchange with the terrestrial biosphere is described by a
monthly mean climatology on which the short-term vari-
ability (diurnal cycle) has been superimposed. The monthly
means derive from a climatological run of the CASA
biosphere model [Randerson et al., 1997] while short-term
variability is generated by using time-specific information
on Incoming Solar Radiation and 2 m Temperature provided
by ECMWF 12 h forecasts, in a similar way as in the work
by Olsen and Randerson [2004]. CASA fluxes are used at a
3-hourly resolution and have a zero annual mean every-
where. A linear interpolation was used to provide the fluxes
at the transport model time step. More recently, we have also
implemented natural biosphere fluxes from the ORCHIDEE
model [Krinner et al., 2005] driven by year specific mete-
orology. These ORCHIDEE fluxes are not annually bal-
anced. Data assimilation results for both models will be
presented in section 7 for 2003 to illustrate the dependence
of the results on the choice of natural biosphere fluxes.
However, the results in the current section are based on the
use of CASA fluxes. The air-sea CO2 exchange is described
by a monthly mean climatology and is based on the revised
version of Takahashi et al. [2002]. Anthropogenic emissions
are based on the EDGAR 3.0 1� � 1� global map for 1990
[Olivier and Berdowski, 2001] rescaled to the Carbon
Dioxide Information Analysis Centre (CDIAC) country
level estimates for 1998. These emissions are kept constant
throughout the years. Finally, wildfire emissions are from the
Global Fire Emission Database version 2 (GFED2) [van der
Werf et al., 2006] and are provided at a 8-day resolution
using MODIS fire hot spots [Giglio et al., 2003]. These
emissions are currently injected at the surface. Since the start
of our analysis experiments some studies have been pub-
lished to estimate more realistic injection heights [e.g.,
Dentener et al., 2006; Freitas et al., 2007], although there
is still some debate about the utility of these injection heights
[e.g., Labonne et al., 2007]. The proposed methods will be
compared and taken into account in the next version of our
data assimilation and modeling system. All data sets were
interpolated to the various horizontal resolutions used in the
assimilation system. The IFS transport model has the capa-
bility to run at horizontal resolutions ranging from about
210 km by 210 km to about 25 km by 25 km. For our CO2

data assimilation runs we use a reduced Gaussian grid with a
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resolution of approximately 125 km by 125 km on 60 sigma
hybrid levels.
[7] The CO2 transport model has been extensively com-

pared to in situ observations both in terms of large-scale and
short-scale atmospheric CO2 variability. The baseline-air
seasonal cycle at the surface is well described by the
transport model, although its amplitude is underestimated
in the Northern Hemisphere (Figure 1a). The difference to
observations is larger during the NH summertime and is due
to the annual carbon balance in CASA. This generates a
larger annual trend in the modeled CO2 than in the obser-
vations. Fire emissions were included in the IFS model to
better describe the spatiotemporal variation of the atmo-
spheric CO2 concentration. Their inclusion, however,
increases the trend unrealistically, because part of fire
emissions is normally reincorporated into the biomass,
likely in the tropics during the growth of the vegetation.
This effect is not taken into account in the estimation of the
net ecosystem flux of this version of the CASA model. Note
that the global trend in atmospheric CO2 is usually the
easiest term for a flux inversion to correct.
[8] The modeled north-south (NS) gradient is overesti-

mated by 3 to 3.5 ppm (Figure 1b). Again, deficiencies in
the prescribed fluxes are likely to explain this result,
although one cannot exclude a contribution from the trans-
port model. The interannual variability shown by the
observed NS gradient north of 50�N is not well reproduced
by the transport model either. Since most of the CO2 surface
fluxes are prescribed as climatologies, any interannual
variability in the IFS CO2 model results can only be
explained by the meteorology or fire emissions. These seem
insufficient to explain the observed variability.
[9] Deficiencies in the transport modeling hamper the

interpretation of the observed gradients in atmospheric
CO2 in terms of surface fluxes. Therefore, independent

simulations with SF6, for which the emissions are better
known than for CO2, have been carried out to investigate
model behavior. They show an overestimation of the NS
gradient by �0.15 ppt (not shown). Although this could be
an indication of too slow interhemispheric transport in our
transport model, recent studies draw attention to the signif-
icant uncertainties in the SF6 emissions database [Hurst et
al., 2006]. As most of these tracer sources are in the Northern
Hemisphere, uncertainties in the emissions may translate
into an incorrect meridional gradient. Therefore, these SF6
comparisons cannot be conclusive in detecting errors in the
transport modeling. We have also used a two-box three-
dimensional model using SF6 as a tracer to estimate the
interhemispheric time exchange in our model, similar to
what is described byDenning et al. [1999]. We found a mean
value of 1 year, which lies within the upper range of time
scales (0.55 to 1.26) found during the TRANSCOM-2
experiment [Denning et al., 1999] and agrees more closely
with recent model results [Lintner et al., 2004; Rind et al.,
2007; Patra et al., 2008a].
[10] Finally, within the framework of the TransCom

continuous data experiment, our transport model has been
compared to other transport models and to high-frequency
observations for the simulation of atmospheric CO2 short-
term variability. It has shown favorable results both for the
simulation of the CO2 diurnal cycle [Law et al., 2008] and
for describing the synoptic CO2 variability [Patra et al.,
2008b]. The use of ECMWF meteorology at a relatively
fine horizontal and vertical resolution is certainly an asset,
although the relatively shallow surface layer makes the IFS
more sensitive to potential errors in prescribed nocturnal
fluxes. Also, the difficulties in resolving the nocturnal
boundary layer itself create errors in the representation of
boundary layer concentrations. These factors probably ex-
plain our model’s tendency to overestimate the diurnal cycle

Figure 1. (a) Mean seasonal cycle of atmospheric CO2 mole fraction as calculated from the average of
eight surface locations in the Northern Hemisphere, observed in solid and modeled in dashed. The eight
locations correspond to the eight flask stations Alert (ALT), Barrow (BRW), Shemya Island (SHM),
Terceira Island (AZR), Sand Island (MID), Mauna Loa (MLO), Guam (GMI), and Christmas Island
(CHR). (b) Mean north-south gradient of atmospheric CO2 mole fraction constructed from 16 surface
locations, observed in solid and modeled in dashed. The model is sampled at the 16 flask stations, from
north to south: Alert (ALT), Barrow (BRW), Shemya Island (SHM), Terceira Island (AZR), Sand Island
(MID), Mauna Loa (MLO), Guam (GMI) and Christmas Island (CHR), Mahe Island (SEY), Ascension
Island (ASC), Tutuila (SMO), Easter Island (EIA), Cape Grim (CGO), Macquarie Island (MQA), Palmer
Station (PSA), and South Pole (SPO).
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amplitude at a number of continental stations as was shown
by Law et al. [2008].

3. AIRS Data

[11] The Atmospheric Infrared Sounder (AIRS) [Aumann
et al., 2003] was launched on board the NASA AQUA
satellite in May 2002. After an initial period of testing, data
were received operationally at ECMWF from October 2002
onward. AIRS is a grating spectrometer covering the 650–
2675 cm�1 infrared spectral domain at a resolution of l/Dl =
1200, giving 2378 channels. The instrument flies onboard the
Aqua satellite with equator crossing times of 0130 and 1330
local time. TheAIRS field of view (fov) is 13 km at nadir with
a 3 � 3 array of AIRS footprints falling into one AMSU-A
fov. Because of bandwidth limits in the transatlantic line and
other operational constraints ECMWF receives only 324 of
the total 2378 channels in near real time and only 1 out of
every 9 AIRS fovs within a AMSU-A fov.
[12] The channel selection is based on an original selection

of 281 channels by NOAA/NESDIS appended with 43 extra
channels in the two main CO2 absorption bands based on the
work by Crevoisier et al. [2003]. In our AIRS CO2 reanalysis
the number of channels was further reduced to avoid prob-
lems specific to certain spectral bands: (1) channels in the
short-wave band were excluded from the analysis during
local day time, because our radiative transfer model currently
does not model solar radiation and the effects of nonlocal
thermodynamic equilibrium; (2) channels in the main water
vapor and ozone bands as well as channels sensitive to the
surface over land and sea ice are excluded to minimize the effect
of IFS model errors in water vapor, ozone, and the surface
skin temperature on the CO2 analysis; and (3) channels
sensitive to the upper stratosphere were also excluded from
the assimilation, because the IFS model has large tempera-
ture biases in the mesosphere of the polar winters. This way
we have attempted to remove the known biases as much as
possible. However, the cutoffs are somewhat arbitrary,
because it is difficult to estimate the exact amplitude of
these biases. The largest potentially remaining bias is caused
by the mesospheric temperature bias in the IFS model and
can reach values as high as 0.5 ppm. However, this bias only
applies to the polar winter situation.

4. Four-Dimensional Variational Data
Assimilation

[13] Our atmospheric 4D-Var data assimilation system is a
practical formulation of Bayesian estimation theory for the
particular case of a (near-)linear problem with unbiased
Gaussian errors for time-evolving three-dimensional fields
like temperature or CO2 [Lorenc, 1986]. It seeks an atmo-
spheric model trajectory that is statistically consistent with
the information provided by the observations yo available for
the analysis time window [t0, tn] and the information provid-
ed by an a priori atmospheric model state xb called the
background state. This background state is usually taken
from a short-range forecast valid for time t0. The atmospheric
model trajectory within the assimilation window (the refer-
ence state xr) is then completely defined by the initial state x0
at time t0, which is the same as the background state at the
start of the minimization, and the boundary conditions (e.g.,

the prescribed CO2 surface fluxes) through the use of the
dynamical and physical forecast model.
[14] The analysis correction (dx(t0)) to the atmospheric

model initial state is sought as a combination of the
information from the observations and from the background
using an objective cost function with two terms [e.g.,
Courtier et al., 1994]:

Jðdxðt0ÞÞ ¼
1

2
dxðt0ÞTB�1dxðt0Þ þ

1

2

Xn
i¼0

HidxðtiÞ � di½ 	T


 R�1 HidxðtiÞ � di½ 	 ð1Þ

the background term and the observation term. The
observation departures (di) are the differences between the
observed radiances and the atmospheric model simulated
equivalent radiances, as in

di ¼ yoi �Hi½xrðtiÞ	 ð2Þ

where Hi is the full nonlinear observation operator in the
form of the Radiative Transfer for the TIROS Operational
Vertical Sounder (RTTOV) radiative transfer model.
RTTOV [Matricardi et al., 2004] is a fast radiative transfer
model using profile-dependent predictors to parameterize
the atmospheric optical depths. For the CO2 assimilation
experiments we applied the methods developed for RTIASI
[Matricardi, 2003] to include CO2 as a profile variable in
RTTOV. Hi, which appears in (1), is the tangent linear
observation operator that is part of the RTTOV model. The
reference state values (xr) at time ti, needed for the
calculation of the observation departures di, are evolved
according to the full nonlinear forecast model M:

xrðtiÞ ¼ M½xrðt0Þ	 ð3Þ

The increments themselves are evolved through time
according to the tangent linear model M:

dxðtiÞ ¼ Midxðt0Þ ð4Þ

Finally, B and R are the background error covariance matrix
and the observation error covariance matrix, respectively.
The estimation of the background matrix is described in
section 6, while the estimation of the observation error
matrix is described by McNally et al. [2006].
[15] The cost function is then minimized with respect to

the increments of the initial state (dx(t0)). These increments
are added to the background state to obtain the analysis
x(t0):

xðt0Þ ¼ xb þ dxðt0Þ ð5Þ

The CO2 increments are not constrained directly by mass
conservation, although the total atmospheric mass is
constrained by the assimilation of surface pressure data.
[16] The advantage of a full data assimilation system is

that it seeks to combine all available observations in an
optimal way. At ECMWF, ground based and satellite based
data are used to constrain the relevant fields in the forecast
model, i.e., atmospheric temperature, vorticity, horizontal
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wind divergence, surface pressure, normalized relative
humidity, ozone, and in the configuration described here
carbon dioxide as well. In addition to AIRS, which is the
only instrument used to constrain CO2, satellite data from
various sensors are assimilated, such as the High Resolu-
tion Infrared Radiation Sounder (HIRS), the Advanced
Microwave Sounding Unit (AMSU-A and AMSU-B), the
Special Sensor Microwave/Imager (SSM/I), the Geosta-
tionary Operational Environmental Satellites (GOES), and
the Meteosat instruments. in addition, many in situ obser-
vations are used, such as radiosondes, buoys, and surface
station observations.
[17] As mentioned in the Introduction, a NWP-like data

assimilation setup was chosen to enable the best use of the
various CO2 related observations. The short assimilation
time window enables the use of radiances instead of
retrieval products, which is not feasible in long-term flux
inversions. This is especially beneficial for the interpretation
of thermal infrared data (e.g., AIRS and IASI) that strongly
depend on atmospheric temperature, but will also play a role
in the interpretation of near-infrared data (e.g., OCO and
GOSAT) in the future. Another benefit is that the data
assimilation can run at higher resolution than a long-term
flux inversion, which reduces the representation errors in
the presence of strong horizontal gradients in the CO2

concentrations. The actual length of the data assimilation
time window is a compromise between assimilating as
much data as possible on the one hand, and computer cost
and the effect of model errors on the other hand. At the
moment we use the same length (12 h) as is used in the
operational NWP system, which is based on the above
mentioned compromise. Work is ongoing to evaluate the
potential of weak-constraint 4D-Var, in which the analysis
time window is much longer (in the order of 10 days) and an
estimate for the model error covariance matrix is taken into
account [Fisher et al., 2005].
[18] The satellite data are thinned to reduce spatial

correlations of the measurement errors and they also under-
go a bias correction, which is described in the next section.
The 4D-Var data assimilation system currently only uses
radiance data that are not affected by clouds. The AIRS
cloud detection is described by McNally and Watts [2003].
The scheme detects which AIRS channels are affected by
clouds and removes those channels from the assimilation,
while retaining the channels that are not affected by clouds.
This allows use of AIRS data even where the field of view
is cloudy. If there is high cloud, only stratospheric infor-
mation will be assimilated, but, if there are low clouds only,
a significant amount of tropospheric information can be
used. Finally, some channels were removed from the
analysis either because of instrumental problems or because
of unaccounted errors in the observation operator. Main
example of the latter is the removal during local day time of
the short-wave 4.2 mm band, which is affected by solar
radiation not modeled in the current version of RTTOV as
well as nonlocal thermodynamic equilibrium effects.

5. Bias Correction

[19] An important part of any data assimilation system is
the bias correction. Various sources of bias exist, such as
systematic errors in the IFS transport model, systematic

errors in the spectroscopy, and systematic instrument errors.
Generally, an attempt is made to separate transport model
biases from observation related biases. The latter category
not only includes instrument biases, but also biases in the
observation operator, such as the radiative transfer model.
This separation is usually achieved by bias correcting to a
certain baseline that is defined by the most accurate obser-
vations, such as temperature radiosondes. However, this is
not always straightforward, either by the lack of sufficient
accuracy in the baseline observations or by the lack of
enough baseline observations. The former is for instance the
case for atmospheric humidity, while the latter is the case
for CO2. The essential part of the bias correction is the bias
correction model. This is a regression model that should
explain the main components of the bias. Time-averaged
first-guess departures (observation minus model forecast)
are used to calculate the coefficients of the bias model either
through an off-line least squares method or through an
online method, such as variational bias correction (VarBC)
[Auligne et al., 2007]. These coefficients are then used for
the bias correction of individual satellite observations with
the chosen bias model.
[20] For CO2 we have chosen the so-called gamma-delta

model, which is described byWatts and McNally [2004]. It is
based on the assumption that the main bias consists of
systematic instrument errors that can be represented by a
global mean offset in the observed brightness temperatures
(d) and of systematic errors in the radiative transfer modeling
that can be modeled by a multiplier (g) of the total optical
depth as illustrated below in the radiative transfer equation
for the atmospheric contribution to the observed radiance in
channel i of a passive infrared sounding instrument:

Ri
a ¼

Z 0

ps

BiðTðpÞÞdT iðpÞ ð6Þ

where the channel transmission is defined as

T iðpÞ ¼ exp½�g
Z 0

p

kiðpÞrðpÞdp	 ð7Þ

and Bi(T(p)) is the Planck function of temperature T at
pressure p. Both the absorption coefficient k and the
absorber amount r are a function of pressure as well. We
estimated the g and d values for each AIRS channel using
the VarBC method, although the same results could be
obtained with an off-line least squares method. Table 1 lists
the values of the estimated g and d values. The listed values
were estimated from the bias in observation departures for
the months of April and May. On the basis of comparisons
with in situ data, these months are considered to have the
smallest contribution of the transport model bias to the total
bias in a global mean sense. Although the used bias model
is designed to remove the bias components of the
instrument and the radiative transfer model, there is always
the possibility of correcting the CO2 values themselves.
However, the spectral pattern of the bias correction is
significantly different from the spectral pattern of a CO2
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perturbation, which lessens the effect. A simple first
estimate shows that the maximum effect is less than 3
ppm variation in CO2 errors between different air masses.
This value is substantially reduced by the constraint of the
background field, but this is difficult to estimate precisely.
Therefore, validation of the analysis results will be crucial
to ensure there are no artificial spatial gradients introduced
by the bias correction. The problem is central to the use of

any (CO2) satellite data and will require substantial research
when new satellite sensors come along.

6. Background Constraint

[21] The background constraint is used to limit the
amount of possible solutions of the 4D-Var minimization
and by doing so to stabilize the inversion. It also plays an
important role in distributing the information from the
observations. For the CO2 problem we use measurements
from the AIRS instrument, which observes in the infrared.
The weighting functions of these measurements are gener-
ally quite broad and therefore contain limited information at
high vertical resolution. The vertical error correlations
specified in the background covariance matrix distribute
the broad information of the observations in the vertical
under the assumption that an error at a specific height is
correlated with errors at other heights. If these error corre-
lations are known exactly, it is accurate to use them for the
vertical distribution of the satellite corrections. However, in
reality the error correlations are only approximations. A
similar rationale also applies to the horizontal distribution of
the CO2 information from the observations. The back-
ground covariance matrix defines how errors in the short-
term forecast are correlated between grid boxes and this is
used to make small CO2 adjustments in the grid boxes
surrounding the grid box containing the observation. In
practice, this works as a smoothing operator on the rela-
tively noisy CO2 increments from individual observations.
To illustrate the combined effect of the broad AIRS weight-
ing functions and the specified background error correla-
tions, Figure 2 shows the CO2 increments (analysis values
minus background values) for a single AIRS footprint using
24 of the available CO2 sensitive channels for two different
locations, tropical Africa on the left and midlatitude Asia on
the right. The patterns are broad, both in the horizontal and
the vertical. The increments show a much deeper vertical
structure over Africa (Figure 2, left), which is caused by the

Table 1. Bias Correction Coefficients Used in the d-g Model

Central Wave
Number (cm�1) d (K) g

699.4 0.13 1.000
699.7 0.12 1.008
701.1 0.12 1.002
701.3 0.05 1.006
702.7 0.12 1.005
703.0 0.07 1.008
704.2 0.10 0.993
704.7 0.17 0.995
705.0 0.13 1.000
706.4 0.09 0.989
707.3 0.04 0.988
708.1 0.06 0.994
709.0 0.23 0.996
709.9 0.43 0.983
710.7 0.31 0.985
711.3 0.20 0.991
711.6 0.13 0.985
712.2 0.29 0.982
2253.5 0.21 0.998
2258.3 0.09 1.010
2259.3 0.10 1.013
2260.2 0.11 1.017
2270.0 0.03 1.040
2282.8 0.12 1.026
2284.7 0.09 1.019
2387.2 0.91 0.956
2388.2 1.33 0.952
2389.1 1.83 0.984

Figure 2. Vertical cross sections of CO2 increments caused by a single AIRS observation (using 24 CO2

sensitive channels) (left) over tropical Africa and (right) over midlatitude Asia.
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larger temperature lapse rate. This means that information
from the observations is used closer to the surface.
[22] To estimate the CO2 background covariance matrix

we used the method developed by Parrish and Derber
[1992] (also known as the NMC method). This method
consists of taking the differences between 24 h forecasts and
12 h forecasts valid at the same time (e.g., 1200 UTC) over
a certain period (typically one month), and assumes that
these differences represent a good sample for the back-
ground error. An extensive description of the application of
this method to the new tracer variables in the ECMWF data
assimilation system is given by Benedetti and Fisher
[2007]. We used the horizontal and vertical correlations
directly from this method, but inflated the standard devia-

tions of the errors by a factor of 8 with a maximum of
15 ppm to account for the uncertainties in the prescribed
surface fluxes. The inflation factor was based on compar-
isons between the CO2 model concentrations and indepen-
dent surface and aircraft observations. The mathematical
formulation of the background error covariance matrix B is
based on the work by Fisher [2003, 2004, 2006].

7. Reanalysis Results and Validation

[23] Assessing the quality of a complex system like a 4D-
Var is critical. Its various components have to be carefully
evaluated. As described in section 2, the transport model has
been extensively compared to other CO2 transport models

Figure 3. (left) Bias and (right) standard deviation of the difference of the unconstrained model run
(blue) and the AIRS reanalysis (red) relative to independent flight observations from the NOAA/ESRL
network.
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and surface flask data [e.g., Law et al., 2008]. However, the
assimilation of AIRS radiances has the largest impact in the
free troposphere. Therefore, other means of validation had to
been found. The National Oceanic and Atmospheric Admin-
istration/Global Modeling Division (NOAA/ESRL) has
compiled a data set of flask samples collected from profiling
aircraft at various locations [Tans, 1996; C. Sweeney,
NOAA/ESRL, personal communication, 2008; see also
http://www.esrl.noaa.gov/gmd/ccgg/aircraft.html]. The pro-
files usually observe the atmosphere between the surface and
about 8 km altitude, which is more appropriate to assess the
impact of AIRS on the CO2 fields than the surface flasks.
Because the flight profile data have much higher accuracy
than the results from our CO2 transport model and assimi-
lation system, we assumed them to represent the true
atmospheric state.
[24] In the comparisons shown below, we have tried to

reduce the amount of averaging to make the validation tests
as demanding as possible. For every measured flight profile
in the period January 2003 till December 2004 we have
extracted profiles from an unconstrained CO2 model run
and the AIRS reanalysis. The unconstrained model run uses
the operational ECMWF analyses to transport CO2 around
starting from the same initial field on 1 January 2003 as the
AIRS reanalysis. However, there is no observational con-
straint on CO2 during this model run. The AIRS reanalysis
uses all available observations to both constrain the mete-
orology and the CO2 fields. For the spatial interpolation to
the profile location we used the nearest grid box and for the
temporal interpolation we used a simple linear interpolation
between the closest 6-h analysis fields. The vertical inter-
polation from the model pressure levels to the observation
altitudes was done using the hydrostatic equation. Time
series were then created at 1000 m intervals for each station.
For each time series the mean difference (bias) between the
unconstrained model simulation and the observations and
between the reanalysis and the observations was calculated

as well as the standard deviation of the differences. Figure 3
shows for three altitudes (1000 m, 4000 m, and 7000 m)
these bias and standard deviation values for all stations with
sufficient data. Figure 3 shows there is no significant change
at 1000 m (Figure 3, bottom) between the unconstrained
model and the AIRS reanalysis, both in bias and standard
deviation. This is not surprising, because the AIRS sensi-
tivity to CO2 is very low at this level. Therefore, any
information from the observations can only change CO2

concentrations at this level through the transport or through
the information spreading of the background covariance
matrix. The latter is most likely not optimal and will
therefore spread the information incorrectly. At 4000 m
there is already a significant improvement in bias visible
using the AIRS data and at 7000 m this improvement is very
clear. The bias in the unconstrained model and the remain-
ing bias in the reanalysis are probably mainly caused by the
incorrectly specified surface fluxes. An insufficiently strong
biospheric sink is causing a trend in the CO2 concentrations
that is stronger than observed. Although the AIRS obser-
vations do partially correct this anomalous trend, they are
not able to fully correct it. This is most likely a result of a
continuous incorrect forcing at the surface (the incorrect
fluxes) that is not significantly corrected by the observations
where it matters most (in the boundary layer). To obtain a
better idea of the influence of the prescribed surface fluxes
on the result of the reanalysis we ran a reanalysis experi-
ment for 2003 using natural biosphere fluxes from the
ORCHIDEE model instead of the CASA model, as was
already mentioned in section 2. Figure 4 shows time series
for Hawaii of the mean CO2 mixing ratio of the layer
between 2000 m and 6000 m. The black line represents
the aircraft observations, the blue lines represent the uncon-
strained model run (dashed) and reanalysis run (solid) using
the CASA fluxes, and the red lines represent the uncon-
strained model run (dashed) and reanalysis run (solid) using
the ORCHIDEE fluxes. Figure 4 illustrates the anomalous
trend in CO2 mixing ratios when using the CASA fluxes,
which is not being fully corrected by the observations. This
anomalous trend is not visible in the runs with the
ORCHIDEE fluxes that are not annually balanced. How-
ever, the ORCHIDEE fluxes show a summer uptake of CO2

that is too large. The comparison shows that the prescribed
fluxes have a significant impact on the results, but each
database has its own advantages and disadvantages. Anoth-
er option would be to use optimized fluxes from surface
flask inversions. However, current comparisons of these
flux distributions within the TRANSCOM community show
that the differences between these flux distributions are still
very large (see for instance http://inversions.lsce.ipsl.fr).
Using the flask inversions as input would also make it more
difficult to test our system against independent observa-
tions. On the long term, however, the assimilation system
will certainly be used to combine the information from both
satellite and in situ observations.
[25] Although the reduction of the bias by analyzing

AIRS observations is significant, it seems to come at a
cost. While the bias is reduced, the standard deviation of the
differences with the profile observations is increased. The
exact reason for this increase is difficult to pin down, but
several potential causes can be identified. Firstly, the
observations have limited capability in adjusting details of

Figure 4. Times series of layer averaged (2–6 km) CO2

mixing ratio over Molokai Island, Hawaii, for 2003. The
black curve shows the aircraft observations from the
NOAA/ESRL flights. The blue lines represent the uncon-
strained model run (dashed) and reanalysis run (solid) using
the CASA fluxes, and the red lines represent the
unconstrained model run (dashed) and reanalysis run (solid)
using the ORCHIDEE fluxes.

D03303 ENGELEN ET AL.: THE 4D-VAR DATA ASSIMILATION OF ATMOSPHERIC CO2

8 of 12

D03303



a CO2 profile. The vertical sensitivity functions of the
radiance observations are already quite broad and the
overlap among the channels is large as well [see, e.g.,
Engelen and McNally, 2005, Figure 1]. Furthermore, this
instrument sensitivity function is convolved with the spec-
ified model background correlation structures as was de-
scribed in the previous section. This broad convoluted
increment pattern will often adjust the CO2 values correctly
at the level of the strongest satellite observation sensitivity,
but at the same time adjust the CO2 values above and below
this level incorrectly. This will then create more variability
which is transported around. Figure 5 shows two examples
of this behavior by comparing observed flight profiles
(black) with profiles extracted from the unconstrained
model run (blue) and the AIRS reanalysis (red). Figure 5a
shows profiles for 17 September 2004 over Briggsdale,
Colorado. The reanalysis is clearly able to reduce the bias
with the observations compared to the unconstrained model
run. But at the same time the profile has more variability
than either the model run or the observations. Figure 5b
shows profiles for 12 June 2004 over Worcester, Massachu-
setts. In this case the reanalysis again tries to reduce the bias
with the observations, but is only able to do so at higher
altitudes. In the lower 2000 m it stays close to the uncon-
strained model profile. The reanalysis profile therefore
increases the standard deviation of the difference with the
observation.
[26] Another cause of increased variability could be due

to heterogeneous sampling caused by cloud cover. AIRS is
able to make relatively large adjustments to the CO2 field in
clear sky areas. All available channels are used in such areas
and the model background errors are relatively large,
reflecting the errors in the prescribed surface fluxes, leaving
sufficient room for increments of up to 10 ppmv. However,
in areas with clouds in the upper troposphere, AIRS is not
able to make significant adjustments. This combination of
clear and cloudy areas could result in localized adjustments
that are then transported downwind, while in reality a much
larger scale adjustment should have been made. This will
introduce larger variability, while in the end the mean is
much less affected. This effect is probably significant
because the CO2 model is biased (mainly through the
deficiencies in the prescribed surface fluxes), which means

the observations keep making relatively large adjustments
instead of steering the model-observation merge to a certain
equilibrium. An illustration is shown in Figure 6. Figure 6
(left) shows the CO2 increments (change to the model at
time step 0 of the 12 h assimilation window) over the
continental United States for model level 32 (�260 hPa).
The AIRS observations that triggered these increments are
shown on top in the form of departures (observation value
minus model simulated value) for a channel peaking around
260 hPa in its CO2 sensitivity. Positive departure values
mean that the observation brightness temperature is larger
than the model simulated brightness temperature, which
means that CO2 should be reduced (assuming the atmo-
spheric temperature stays constant). Negative values initiate
the opposite reaction, an increase in CO2. Because the AIRS
observations were made close to the end of the assimilation
window, the CO2 increments had to be made upwind from
the observations, which is illustrated by the wind vectors
plotted on top. Figure 6 (right) shows the change in the
model field closer to the actual AIRS observation time. The
incremental patterns have been advected downwind and
resemble very nicely the observation departure patterns as
one could expect from a well-working 4D-Var system.
However, at the same time, the assimilation system will
not make any changes to the initial model forecast in areas
that are not covered by observations because of for instance
cloud cover as can for instance been seen in the top right of
the plots. In principle, this should cause no problems if the
specified background error correlations are correct for this
geographical area and the weather pattern that is at hand.
However, this can never be completely achieved. Therefore,
more variability is being created, especially in a system that
is not in full equilibrium between the model forecast and the
observations.
[27] The ultimate test for any satellite CO2 retrieval or

data assimilation system is the subsequent flux inversion.
As already described in section 1, we have built a varia-
tional flux inversion system within the GEMS project that is
able to use the output from the atmospheric 4D-Var data
assimilation [Chevallier et al., 2005b]. A time window of
several years is used for this flux inversion and the same
prior fluxes are used as in the atmospheric 4D-Var to be as
consistent as possible. Full details of the flux inversion

Figure 5. Observed (black), modeled (blue), and reanalyzed (red) profiles of CO2 (a) for 17 September
over Briggsdale, Colorado, and (b) for 12 June 2004 over Worcester, Massachusetts. Flight data were
provided by NOAA/ESRL.
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including results will be described in a separate paper
(F. Chevallier et al., AIRS-based versus flask-based estima-
tion of carbon surface fluxes, manuscript in preparation,
2009). First results are encouraging, although using AIRS
observations only is not sufficient to estimate accurate
surface fluxes on regional scales. We think that our two-
step system will come to its full potential when more
accurate satellite observations will become available from
the forthcoming OCO and GOSAT instruments.

8. Discussion and Outlook

[28] Within the European GEMS project we have built a
system that is capable of assimilating various sources of
satellite and in situ data to monitor the atmospheric con-
centrations of CO2 and its surface fluxes and to improve our
knowledge of these fluxes. The system consists of an
atmospheric 4D-Var data assimilation system that provides
atmospheric fields to a variational flux inversion system.
The atmospheric assimilation system has been described in
this paper and results have been compared with independent
observations.
[29] Great care has been taken in setting up the transport

model, the bias correction, and in defining the background
covariance matrix. Although the current system performs
well, work will continue to improve the above components
of the system. Especially, the estimates of the error corre-
lations needs improvement to make better use of the
observations. Also, the specification of the surface fluxes
will need to be improved.
[30] We are entering an exciting decade in which the

assimilation system will come to its full potential being able
to assimilate not only observations from the AIRS instru-
ment, but also from the IASI, OCO, and GOSAT instru-
ments. The system will provide consistent CO2 fields that

match all the observations within the respective errors,
which will be a valuable source of information for flux
inversions. However, although the first results from the flux
inversions using our system are quite promising, it will take
time to address all potential sources for systematic errors as
carefully as possible. Only when we are able to remove
these systematic errors in the satellite-based estimates will
flux inversions really provide us with the needed regional
information on carbon surface fluxes. This assumes, though,
that systematic errors in tracer transport models, which
affect flux inversions from the surface-based networks as
well, will be addressed at the same time.
[31] It still remains open how the system will use in situ

data. In the current setup, in situ data are used for validation
of the atmospheric assimilation system and can therefore in
principle still be used in the subsequent flux inversion step.
This is currently under investigation. However, one could
also envisage using the in situ data directly in the atmo-
spheric assimilation. Especially, continuous surface obser-
vations should in principle have a strong enough constraint
to be able to steer the data assimilation in the right direction.
But in order to get full advantage from this type of
observations a denser network is required. Indeed, only a
few locations will not have the desired impact taking into
account the enormous amount of satellite observations.
Although the impact of the large amount of satellite data
is partially compensated by their larger errors (compared to
the very accurate in situ data), the satellite data are also
more likely to suffer from systematic errors. The in situ data
could be an important ‘‘anchor’’ to the system in case they
are able to provide sufficient weight against the satellite
observations.
[32] Apart from providing input to flux inversions, the

system can also be used as a test bed for new model
developments. Both improvements in transport modeling

Figure 6. CO2 increments at (left) 2100 UTC and (right) 0600 UTC at model level 32 (�260 hPa) for
5 August 2004 over North America. The CO2 increments (analysis values minus forecast values) are
shown as filled contours in ppm (bottom color scale). The observation departures (observation values
minus equivalent model simulated values in degrees Kelvin) are shown as colored dots for an AIRS
spectral channel peaking around 260 hPa for two consecutive AIRS overpasses (top color scale). Wind
vectors (black arrows) for the same model level are overlaid in Figure 6 (left) to illustrate the main
horizontal advection pattern.
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and in surface flux modeling can be tested directly against
the various sources of satellite information. It is already
envisaged to test prescribed natural biosphere fluxes from
the ORCHIDEE model [Krinner et al., 2005] as well as in-
line modeling of these fluxes using the C-TESSEL model.
The improvement or degradation of the fit to the observa-
tions will provide crucial information for the improvement
of these models.
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