
HAL Id: hal-02946430
https://hal.science/hal-02946430

Submitted on 23 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault detection of Discrete-Event Systems based on an
identified timed model

Ryan P C de Souza, Marcos V Moreira, Jean-Jacques Lesage

To cite this version:
Ryan P C de Souza, Marcos V Moreira, Jean-Jacques Lesage. Fault detection of Discrete-Event
Systems based on an identified timed model. Control Engineering Practice, 2020, 105, Paper N°104638.
�hal-02946430�

https://hal.science/hal-02946430
https://hal.archives-ouvertes.fr

Fault detection of Discrete-Event Systems based on an identified timed model

Ryan P. C. de Souzaa, Marcos V. Moreiraa, Jean-Jacques Lesageb

aUniversidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Elétrica, 21949-900, Rio de Janeiro, R.J., Brazil (e-mail:
{ryanpitanga,moreira.mv}@poli.ufrj.br)

bLURPA, ENS Paris-Saclay, Univ. Paris-Sud, Université Paris-Saclay, 94235 Cachan, France (e-mail:
jean-jacques.lesage@ens-paris-saclay.fr)

Abstract

In this paper, a method for fault detection of Discrete-Event Systems (DES) based on a timed model called Timed
Automaton with Outputs and Conditional Transitions (TAOCT), obtained by identification, is presented. The TAOCT
is an extension of a recent untimed model proposed in the literature, called Deterministic Automaton with Outputs
and Conditional Transitions (DAOCT). Differently from the DAOCT, where only the logical behavior of the DES is
considered, the TAOCT takes into account information about the time that the events are observed, and, for this reason,
it can be used for the detection of faults that cannot be detected by using untimed models, such as faults that lead the
fault detector to deadlocks. The TAOCT represents the fault-free system behavior, and a fault is detected when the
observed behavior is different from the one predicted by the model, considering both logical and timing information. A
practical example is used to illustrate the results of the paper.

Keywords: Fault diagnosis, System identification, Discrete-event systems, Finite automata.

1. Introduction

In the past years, interest in the domain of fault di-
agnosis of Discrete-Event Systems (DES) has increased.
Since the introduction of the concept of fault diagnosis
and diagnosability analysis of DES in [27], several meth-
ods have been proposed in the literature for fault diagnosis
of untimed DES [8, 19, 36, 28, 5, 24, 14], and of timed DES
[7, 22, 34, 35]. These methods provide a theoretical frame-
work for the study of fault diagnosis of DES.

In general, obtaining an analytical white-box model of
a real-world system is very laborious and time consum-
ing, since, depending on its size and complexity, it is very
difficult to take into account all possible behaviors of the
system in the model. This problem is amplified when the
post-fault behavior is considered, since there may exist
unpredictable consequences to a fault occurrence. In ad-
dition, the modeling process requires engineers that are fa-
miliar with discrete-event modeling techniques. All these
problems restrict the application of methods based on the
complete system model to small systems, where white-box
models of the fault-free and faulty behaviors can be ob-
tained.

In order to overcome the modeling difficulties that arise
due to the aforementioned problems, some solutions based
on system identification were presented using Petri net
models [18, 4, 9, 12, 10, 3, 11, 1, 2]. In the Petri net
identification methods proposed in the literature with the
objective of fault detection, it is supposed that the system
structure or dynamics are completely or partially known,
which makes this formalism suitable for modeling these

systems. However, when no previous knowledge of the
system is given, then automata become a suitable formal-
ism for identification due to its more basic structure. In
addition, generating an automatic fault detection method
for systems modeled by automata is simpler than for sys-
tems modeled by Petri nets. Since, in this work, we assume
that no previous knowledge about the system is available,
then we have focused on the identification of automaton
models.

Fault detection techniques based on an identified au-
tomaton model of the system have been proposed in the
literature [16, 25, 20, 21]. In these works, the two main
ideas are: (i) to automate the process of obtaining the
fault-free automaton model of the system by identifica-
tion; and (ii) when a fault has been detected through a
discrepancy between the system behavior and the model,
to use a technique based on residuals for fault localization
[26, 21].

A model for the identification of closed-loop indus-
trial DES, called Non-Deterministic Autonomous Automa-
ton with Outputs (NDAAO), is presented in [16]. The
NDAAO is identified from observed fault-free paths of the
system, composed of sequences of vectors whose entries
are the values of the binary input and output signals of the
controller, as shown in Figure 1. These sequences form the
input data of the identification procedure. With a view to
obtaining a compact model, loops are introduced in the
identified NDAAO, leading to the generation of sequences
that have not been observed during the identification pro-
cess. These sequences form the exceeding language gener-

Preprint submitted to Elsevier September 22, 2020

Figure 1: Identification scheme showing the signals exchanged be-
tween plant and controller, as well as the input data for the identi-
fication procedure.

ated by the identified model, and can be associated with
non-detectable faults.

In [20], a different automaton model, called Determin-
istic Automaton with Outputs and Conditional Transi-
tions (DAOCT), is proposed. Conditions for the transpo-
sition of the transitions associated with the observed fault-
free paths used in the identification procedure are added
to the model by using a path estimation function. The
use of the path estimation function reduces the exceeding
language generated by the model in comparison with the
NDAAO, and, consequently, it reduces the number of non-
detectable faults. In [21], an algorithm for fault diagnosis
using the DAOCT model proposed in [20] is presented.

It is important to remark that some faults cannot be
detected by using untimed models. For instance, faults
that prevent the system from generating events, leading
the fault detector to a deadlock, cannot be detected from
the logical behavior of the system. In addition, in some
cases, timing information of event occurrences can be used
to distinguish behaviors of the system, improving the capa-
bility of detecting faults. In this paper, a timed model for
DES identification, called Timed Automaton with Outputs
and Conditional Transitions (TAOCT), is proposed. The
proposed model is an extension of the DAOCT in which
timing information is added to the transitions in the form
of guards for the transposition of the transitions, improv-
ing the capabality of the model to detect faults. Since
the TAOCT is based on the DAOCT, it inherits the same
advantages of the underlying DAOCT model in terms of
exceeding language reduction considering only the logical
behavior of the DES. A fault detection scheme based on
the TAOCT model is also presented in this paper.

This paper is an extension of [32], where preliminary
results were presented. In the present paper, the proce-
dure for obtaining the TAOCT model is further developed
by the proposition of an improved method for the identi-
fication of timing intervals associated with the transitions
of the model. All results that have not been proved in
[32] due to lack of space are proved in this paper, and new
examples are presented to illustrate the results. In ad-
dition, differently from [32], an algorithm for performing
fault detection using the TAOCT model is proposed, and
conditions for the detection of a fault are formally intro-
duced. The practical example is discussed in this paper in
more detail than in [32].

1.1. Related works

Recent works on the identification of DES using the
formalism of untimed Petri nets have been proposed in
the literature. An identification method suitable for fault
diagnosis is presented in [3], but only the faulty behavior
is obtained by identification, and a model of the fault-free
system behavior is required. In [9], even though the white-
box model of the fault-free behavior of the system is not
required, partial knowledge about the model is assumed,
e.g., it is necessary to provide an upper bound on the num-
ber of places in the net. In [10], the problem of identifying
the unobservable behavior of a DES is addressed, while
the fault-free system structure and dynamics are assumed
to be previously known.

In the context of timed Petri net identified models,
some interesting results have been reported in the liter-
ature. In [1], it is assumed that a time Petri net model
for the nominal behavior of the system is available, and
models for the faulty behaviors are identified using the
discrepancies between the observed and nominal behav-
iors of the system. In [2], a time Petri net that models the
complete system, and that can be used for fault detection,
is identified. Both in [1] and [2], the adopted strategy for
computing the identified model is based on the solution of
a mixed integer linear programming problem.

Petri nets are normally used when some knowledge of
the structure or dynamics of the system is available. How-
ever, for black-box identification of DES, automaton mod-
els can be more directly obtained due to its more basic
structure. A timed automaton obtained by identification
is used in [33] in a fault diagnosis scheme, where the mea-
sured data on which the identification model is built are
based on the quantization of continuous signals, and not
on discrete binary signals.

A timed automaton model identified from the obser-
vation of discrete binary signals, called the Timed Au-
tonomous Automaton with Outputs (TAAO), is presented
in [29]. It is an extension of the NDAAO to consider tim-
ing information in the model by adding timing constraints
in the form of guards, defined as single time intervals, to
its transitions.

1.2. Contributions of this paper

The main contributions of this paper are the proposal
of the TAOCT model and its use in a fault detection
scheme. The advantages of using the TAOCT are listed as
follows:

(i) the TAOCT is an extension of the DAOCT model,
which has been shown in [21] to be more efficient for
fault detection than the NDAAO model, which is the
basis for the TAAO model presented in [29];

(ii) the timing information added to the TAOCT model
improves the capability of detecting faults of the
fault detector system in comparison with the one ob-
tained using the underlying DAOCT [21].

2

(iii) each guard associated with a transition of the TAOCT
can be a disjoint union of several timing intervals,
increasing the accuracy of the timing information
added to the TAOCT in comparison with the models
presented in [33], [29], [1], and [2];

This paper is structured as follows. Firstly, in Section
2, preliminary concepts are presented. In Section 3, the
TAOCT is defined. The identification procedure for ob-
taining the TAOCT model is explained in Section 4. In
Section 5, the fault detection scheme based on the TAOCT
model is proposed. A practical example is presented and
discussed in Section 6. Finally, conclusions are drawn in
Section 7.

2. Preliminaries

Let G be a Timed Automaton with Timing Intervals
(TATI) defined as follows [6].

Definition 1. A timed automaton with timing intervals
is a six-tuple:

G = (X,Σ, f, cg, guard, x0),

where X is the set of states, Σ is the finite set of events,
f : X × Σ→ X is the transition function, cg is the global
clock with value cg(t) ∈ R+, t ∈ R+, guard : X×Σ→ A is
the guard function, where A is the set of admissible timing
intervals for the global clock cg, and x0 ∈ X is the initial
state of the system. �

The domain of the transition function f can be ex-
tended to X ×Σ?, where Σ? denotes the Kleene-closure of
Σ, as follows: f(x, ε) = x, and f(x, sσ) = f(f(x, s), σ), for
s ∈ Σ?, and σ ∈ Σ, where ε denotes the empty sequence
[6]. The feasible event function Γ : X → 2Σ is defined
as Γ(x) = {σ ∈ Σ : f(x, σ)!}, where symbol ‘!’ denotes
‘is defined’. It is important to remark that guard(x, σ) is
defined if, and only if, f(x, σ) is defined.

A timed automaton with timing intervals is an automa-
ton to which a global clock cg and a guard function are
added. Thus, timed sequences are generated by the TATI.
Function guard : X × Σ → A specifies the timing con-
ditions that need to be satisfied on the global clock for
the transition to occur, and A are the admissible clock
constraints defined as timing intervals. In the TATI, the
global clock is reset to zero each time an event occurs.
Let t′ denote the time that a state x ∈ X is reached in
the timed automaton, and let τ denote the time that has
elapsed after reaching state x. Then, transition (x, σ, x′),
where x′ = f(x, σ), is executed in the TATI if event σ
occurs at time t′ + τ , and τ ∈ guard(x, σ).

In this paper, a formalism that is similar to the TATI
is used to add timing information to the proposed identi-
fication model.

A timed path of a TATIG is a sequence of states, events
and time values that can be executed by G. A timed path

can be written as π = (x1, σ1, τ1, x2, σ2, τ2, ..., xl−1, σl−1,
τl−1, xl), where xj ∈ X, j = 1, ..., l, are the states visited
in the path, σj ∈ Σ are the events that trigger the tran-
sition from state xj to xj+1, j = 1, ..., l − 1, and τj ∈ R+

are the time durations where the system remains in state
xj up to the occurrence of event σj , j = 1, ..., l − 1. The
length of a path π, denoted by |π|, is equal to the number
of vertices in the path, i.e., |π| = l.

Let Σt := Σ×R+. Then, the set of all sequences formed
of elements σt ∈ Σt, including the empty sequence ε, is de-
noted by Σ?t . The timed sequence associated with timed
path π = (x1, σ1, τ1, x2, σ2, τ2, . . . , xl−1, σl−1, τl−1, xl) is
the sequence st = (σ1, τ1)(σ2, τ2) . . . (σl−1, τl−1) ∈ Σ?t . It
is important to remark that, in general, in the literature,
timed sequences consider an absolute time that specifies
when the event has occurred with respect to the beginning
of the sequence execution, and not with respect to the so-
journ time of each state of the path. However, the same
information is contained in both types of timed sequences,
since it is always possible to obtain a timed sequence with
respect to the beginning of the process, from the timed
sequence considering time durations st, and vice-versa.

Given a timed language Lt ⊆ Σ?t , the prefix-closure of
Lt is given by Lt = {wt ∈ Σ?t : (∃zt ∈ Σ?t)[wtzt ∈ Lt]}.

The set of non-negative integers is denoted by N, and
the set formed only with 0 and 1 is denoted by N1 = {0, 1}.

The length of a sequence s, timed or not, is denoted
by ‖s‖.

3. Timed Automaton with Outputs and
Conditional Transitions

Consider a closed-loop DES whose scheme is shown in
Figure 1, and suppose that the controller has mi input sig-
nals, which correspond to sensor readings, and mo output
signals, which correspond to actuator commands. Let u(t)
be the I/O vector, whose elements are the current status
of each one of the controller signals, defined as:

u(t) := [i1(t) i2(t) ... imi
(t) o1(t) o2(t) ... omo

(t)]
T
,

where ia(t) ∈ N1, a ∈ {1, ...,mi}, are the values of the in-
put signals at time t ∈ R+, and oa(t) ∈ N1, a ∈ {1, ...,mo},
are the values of the output signals at time t ∈ R+. Then,
an event of the identified model can be defined as follows
[20].

Definition 2. An event of the identified model is any ob-
served instantaneous change in one or more signals of the
I/O vector u. �

Note that in Definition 2, it is possible for an event
to be defined as the change of more than one I/O signal,
since multiple signals may change their values during the
same scan cycle of the controller.

Suppose that at a given time instant tj , j ∈ N, the
I/O vector becomes uj := u(tj). Then, this vector re-
mains unchanged until at least one of the controller signals

3

changes its value at time tj+1, leading to I/O vector uj+1 =
u(tj+1). Let event σj denote the signal changes from uj to
uj+1, and let the sojourn time τj be the time duration dur-
ing which the I/O vector remains equal to uj , i.e., τj =
tj+1 − tj . Then, when the observed I/O vector changes
from uj to uj+1, a timed transition (uj , σj , τj , uj+1) is ob-
served. A finite sequence of observed timed transitions
constitutes an observed timed path p = (u1, σ1, τ1, u2, σ2,
τ2, ..., ul−1, σl−1, τl−1, ul). If the timing information is re-
moved from a timed transition (uj , σj , τj , uj+1), then an
untimed transition (uj , σj , uj+1) is obtained. Thus, if all
timing information is removed in the same way from timed
path p, we obtain the untimed path pu = (u1, σ1, u2,
σ2, ..., ul−1, σl−1, ul). As in [20], in this work, the observed
paths used in the identification procedure are associated
with the execution of complete system tasks. The follow-
ing assumption is considered in this work.

A1. The system has a unique initial state, whose cor-
responding I/O vector is denoted by u0, and all observed
timed paths start with vector u0.

The initial state may correspond, for example, to the
beginning of a production cycle in the case of an industrial
process. In this case, a path corresponds to the observation
of the execution of a production cycle.

It is important to remark that, in order to obtain a
model by identification of a DES, capable of reproducing
all possible behaviors of the system in fault-free operation,
it is necessary to observe the paths executed by the system
for an arbitrarily long time. However, in a finite time,
only part of the paths generated by the system can be
observed. This fact has a direct impact on the accuracy
of the identified model and, therefore, on fault detection,
since an observed behavior that the model is not capable
of executing is interpreted as being faulty. If it is a fault-
free behavior, then the fault detection system generates a
false alarm. Thus, in order to reduce the number of false
alarms, as in [20], it is assumed in this paper that the
system has been observed for a sufficiently long time such
that all different untimed paths of length up to a given
number n0 ∈ N have been observed.

The set formed of all events that were observed during
the identification procedure is denoted by Σ. The set of
all I/O vectors that have been observed is denoted by Ω.
Thus, Ω ⊆ Nmi+mo

1 .
Assume that ν timed paths (not necessarily distinct)

have been observed, where each path is denoted by

pq =
(
uq,1, σq,1, τq,1, uq,2, σq,2, τq,2, ..., uq,lq−1, σq,lq−1,
τq,lq−1, uq,lq

)
,

(1)
where q ∈ {1, ..., ν}, uq,j ∈ Ω for j = 1, ..., lq, and σq,j ∈ Σ
and τj,q ∈ R+ for j = 1, ..., lq − 1. Then, the observed
timed sequence sqt associated with each path pq is given
by sqt = (σq,1, τq,1)(σq,2, τq,2)...(σq,lq−1, τq,lq−1). Thus, the

observed timed language Lt,Obs is defined as follows:

Lt,Obs :=

ν⋃
q=1

{sqt}. (2)

Let P denote the set formed of all observed timed paths
pq, for q = 1, . . . , ν, and let P be partitioned as P =
P1∪̇P2∪̇...∪̇ Pr, r ≤ ν, such that all paths that form Pi are
logically equivalent to each other, i.e., there is a unique
untimed path pui = (ui,1, σi,1, ui,2, σi,2, ..., ui,l′i−1, σi,l′i−1,
ui,l′i), associated with each set Pi, for i = 1, . . . , r. As in
[20], the following assumption is considered.

A2. None of the untimed paths pui
has an associ-

ated sequence of events that is a prefix of the sequence
of events of another untimed path puz , where i 6= z, for
i, z ∈ {1, 2, . . . , r}. �

It is important to remark that Assumption A2 holds
true in several cases, since each observed path is associated
with a system task, and, in a large number of applications,
the execution of a sequence of events associated with a
system task is not a prefix of another sequence of events
associated with other possible task executed by the system.

The time-interval paths can be defined as follows:

p′i =
(
ui,1, σi,1, Ii,1, ..., ui,l′i−1, σi,l′i−1, Ii,l′i−1, ui,l′i

)
, (3)

for every i ∈ {1, . . . , r}. The logical behavior of p′i is given
by the untimed path pui

associated with Pi. The timing
behavior associated with path p′i is modeled by sets Ii,j ,
j = 1, . . . , l′i − 1, that represent the possible time values
for the occurrence of events of each one of the transitions
of pui , obtained from the observed timed paths of Pi. In
this paper, it is assumed that each untimed path, repre-
senting a possible logical behavior of the system, has been
observed a number of times sufficient to capture the tim-
ing information regarding event occurrences. The process
of building the sets Ii,j from the timed paths in Pi is ex-
plained in Section 4. It is important to remark that the
TAOCT model is computed from the time-interval paths
p′i, i = 1, . . . , r, identified from the timed paths pq ∈ P
generated by the system. The set of time-interval paths is
denoted in this paper as P ′ := {p′1, p′2, . . . , p′r}.

The timed model proposed in this paper for the iden-
tification of DES is presented in the sequel. The model is
based on Definition 1 of Timed Automaton with Timing
Intervals, and on the DAOCT model proposed in [20].

Definition 3. The Timed Automaton with Outputs and
Conditional Transitions is a ten-tuple:

TAOCT = (X,Σ, f, cg,Ω, λ,R, g, x0, Xf),

where

� X is the finite set of states;

� Σ is the finite set of events;

4

� f : X × Σ? → X is the transition function;

� cg is the global clock, with value cg(t) ∈ R+, t ∈ R+;

� Ω ⊆ Nmi+mo
1 is the set of outputs;

� λ : X → Ω is the state output function;

� R = {1, 2, ..., r} is the set of time-interval path in-
dexes;

� g : X × Σ×R→ C is the guard function;

� x0 ∈ X is the initial state;

� Xf ⊆ X is the set of final states. �

The set of admissible constraints C is formed of all sets
I ⊂ R+. Note that set I can be formed of the union of
disjoint time intervals instead of a single time interval. As
in the TATI, presented in Definition 1, in the TAOCT a
unique global clock cg is used, and it is reset every time
a transition occurs. Function g(x, σ, i) specifies a subset
of R+ to which the clock value cg(t) must belong so that
transition (x, σ, x′), where x′ = f(x, σ), associated with
path p′i, can occur. The output function λ is the same
presented in the DAOCT model, and associates an I/O
vector with each state x ∈ X of the model.

Differently from the DAOCT, where a path estimation
function is defined in the model, in the TAOCT the path
estimation function θ : X × Σ × R+ → 2R can be defined
using the guard function g as follows:

θ(x, σ, τ) = {i ∈ R : τ ∈ g(x, σ, i)}. (4)

Function θ(x, σ, τ) provides the path estimate when the
current state is x, and event σ occurs at clock value cg(t) =
τ . If f(x, σ) is not defined for a given path p′i, then
g(x, σ, i) is, by convention, the empty set, and i 6∈ θ(x, σ, τ)
for any value of τ . Moreover, if f(x, σ) is defined, but
the observed time τ does not belong to g(x, σ, i), then
i 6∈ θ(x, σ, τ).

Function ψ : Σ?t → Σ? removes the timing information
from a timed sequence in Σ?t , obtaining its equivalent un-
timed sequence, i.e., for any st = (σ1, τ1) . . . (σl, τl) ∈ Σ?t ,
then ψ(st) = σ1 . . . σl ∈ Σ?. By convention, ψ(ε) := ε.

The extended path estimation function θs : X ×Σ?t →
2R is defined, recursively, as follows: θs(x, ε) = R, and for
any sequence st(σ, τ) ∈ Σ?t , where st ∈ Σ?t and (σ, τ) ∈ Σt,

θs(x, st(σ, τ)) =

 θs(x, st) ∩ θ(x′, σ, τ), where
x′ = f(x, ψ(st)), if f(x, ψ(st)σ)!

∅, otherwise.

The timed language generated by the TAOCT model
is given by:

Lt,Iden := {st ∈ Σ?t : θs(x0, st) 6= ∅} . (5)

0 1 2 3
σ1

1,[5, 10]
2,[1, 7] ∪ [12, 20]

σ4

2,[20, 30]

σ2

1,[10, 20]

σ3

1,[40, 60]

σ5

1,[5, 10] ∪ [25, 40]

Figure 2: TAOCT model of Example 1.

Remark 1. Note that the TAOCT is an extension of the
DAOCT proposed in [20] by adding timing information to
the transitions. Thus, since the DAOCT has been proven
to be suitable for fault detection in [20], considering only
the logical behavior of the system, and since the addition
of timing information reduces even more the number of
sequences that can be generated by the TAOCT, improving
the capability of detecting faults, then the TAOCT model
is also suitable for fault detection. �

In the sequel, an example of a TAOCT model is pre-
sented, and it is discussed how timed event sequences can
be generated by the model.

Example 1. Consider the TAOCT shown in Figure 2.
Each circle represents a state x ∈ X, where X = {0, 1, 2,
3}, and the directed arcs represent the transitions. A tran-
sition from state x to x′ is labeled with an event σ ∈ Σ,
where Σ = {σ1, σ2, σ3, σ4, σ5}. In addition, a label of the
form i, I attached to a transition from x to x′ indicates that
there is a guard g(x, σ, i) = I defined for that transition.
In this example, the set of time-interval path indexes is
given by R = {1, 2}, which means that the TAOCT model
has been computed from two observed time-interval paths
p′i, i = 1, 2. The initial state is given by x0 = 0, and
the set of final states is Xf = {3}, represented in Figure
2 with a double circle. Note that a disjoint union of time
intervals can be defined as the guard of a transition associ-
ated with a time-interval path. For instance, the transition
(0, σ1, 1) of Figure 2 has guard g(0, σ1, 2) = [1, 7]∪ [12, 20]
associated with time-interval path p′2.

Suppose that we want to verify if the timed sequence
st = (σ1, 6)(σ2, 14)(σ3, 56) can be executed by the model.
It can be verified that θs(0, (σ1, 6)) = {1, 2}, since 6 ∈
g(0, σ1, 1) = [5, 10], and 6 ∈ g(0, σ1, 2) = [1, 7] ∪ [12, 20].
In addition, θs(0, (σ1, 6)(σ2, 14)) = θs(0, (σ1, 6)) ∩ θ(1, σ2,
14) = {1}, since 14 ∈ g(1, σ2, 1) = [10, 20], and θs(0, (σ1,
6)(σ2, 14)(σ3, 56)) = θs(0, (σ1, 6)(σ2, 14))∩ θ(2, σ3, 56) =
{1}, since 56 ∈ g(2, σ3, 1) = [40, 60]. Thus, according to
Equation (5), st ∈ Lt,Iden.

Consider now sequence s′t = (σ1, 15)(σ4, 14). Then,
θs(0, (σ1, 15)(σ4, 14)) = θs(0, (σ1, 15))∩θ(1, σ4, 14). Since,
θs(0, (σ1, 15)) = {2}, and θ(1, σ4, 14) = ∅, then θs(0, s

′
t) =

∅. Thus, according to Equation (5), s′t 6∈ Lt,Iden. �

In the following section, the procedure for identifying
the TAOCT model that represents the fault-free behavior
of a closed-loop DES is presented.

5

P

Computation of
time-interval

paths

Computation of
modified

paths

TAOCT
identification

algorithm

k

TAOCT

Section 4.1 Section 4.2 Section 4.3

P ′ P ′k

Figure 3: Scheme of the identification procedure.

4. Identification procedure

In this section, the steps that are necessary to com-
pute the TAOCT model are presented. In Figure 3, the
complete scheme of the identification procedure with three
steps is depicted, where the subsection associated with
each one of the steps is shown. It can be seen from Fig-
ure 3 that the input data for identification is set P =
{p1, p2, . . . , pν}, containing all observed fault-free timed
paths, and the output is the TAOCT that models the fault-
free behavior of the system.

In the TAOCT, differently from other timed models
presented in the literature, the timing behavior associated
with each transition can be represented as a set of disjoint
intervals. In [33], a single time interval is always assigned
to each transition, where the lower (resp. higher) endpoint
is simply the lowest (resp. highest) timing value observed
during identification for that transition. In [31], the guards
are determined using a method called Skewness Adaption,
which always results in single intervals. In [2], a single
timing interval is assigned to each transition of a time Petri
net. To the best of the authors’ knowledge, the method
proposed in this work is the first one in the literature on
DES identification that allows the definition of time guards
that are not restricted to single intervals, which increases
the accuracy of the guards, improving the efficiency of the
fault detector system.

4.1. Computation of the time-interval paths

In order to compute the time-interval paths p′i, i =
1, . . . , r, it is necessary to obtain the sets Ii,j corresponding
to the transitions of p′i, associated with the time values
that the transitions of paths pq ∈ Pi have been observed.

Let Ti,j := {τq,j ∈ R+ : (q ∈ {1, . . . , ν}) ∧ (pq ∈ Pi)}
be the set formed of the time values τq,j that are observed
in the j-th transition of the timed paths pq ∈ Pi. It is
possible that the values in Ti,j are arranged on the real axis
in such a way that some values in a subset of Ti,j are closer
to each other in comparison with the other values in Ti,j .
Each such subset forms a cluster of time values, and each
cluster corresponds to a different observed timing behavior
for that transition. Thus, different timing behaviors can
be identified by applying a clustering method to the values
in Ti,j .

Several clustering algorithms have been proposed in
the literature [13, 17, 15, 23]. In this paper, the Nearest
Neighbors Method [17] is used for obtaining the clusters
of Ti,j . In this method, a value is assigned to a cluster if

the minimum distance between this value and the other
members of the cluster is smaller than or equal to a user-
specified threshold ζ. If the distance between two values is
greater than ζ, then they are assigned to different clusters.

Note that an uncertainty δ ∈ R+ must be considered
for defining the value of ζ to take into account possible er-
rors in measuring the time values of the event occurrences,
caused, for example, by the scan cycle of the controller.
Due to this uncertainty, the threshold ζ must be chosen so
that ζ > 2δ.

After applying the Nearest Neighbors Method to Ti,j ,
set S = {S1 . . . , SK} is obtained, where Sh ⊆ Ti,j , for
h = 1, . . . ,K, such that S1∪̇S2∪̇ . . . ∪̇SK = Ti,j . Each set
Sh ∈ S corresponds to a different cluster in Ti,j , repre-
senting a distinct timing behavior associated with the j-th
transition of time-interval path p′i. Set Ii,j is then given
by the following expression:

Ii,j =

K⋃
h=1

[max{0,minSh − δ},maxSh + δ].

Note that set Ii,j is a disjoint union of intervals, where
each interval corresponds to a cluster Sh. Each interval is
extended by δ on both ends in order to reduce the number
of false alarms that may be raised due to disturbances
in time measurements. Since only non-negative values are
allowed in Ii,j , if the minimum value of a cluster is less than
δ, then the lower endpoint of the interval corresponding to
this cluster is set to zero.

A time-interval transition is defined as the 4-tuple
(ui,j , σi,j , Ii,j , ui,j+1) and represents the transition between
ui,j and ui,j+1 in a time-interval path. Differently from a
timed transition, the third element of the time-interval
transition is a set of values instead of a single value, which
allows to distinguish both types of transition.

For the choice of the threshold ζ, the following consid-
erations must be taken into account. Let ζ be chosen to
be a large value such that two distinct timing behaviors of
time-interval transition (ui,j , σi,j , Ii,j , ui,j+1) of path p′i are
merged into a single cluster, i.e., Ii,j is formed of a single
time interval. In this case, if a fault in the system causes
the transition to occur between the two distinct timing
behaviors, then the fault is not detected, since this time
value belongs to Ii,j , which means that it is included in the
fault-free model. On the other hand, if time-interval tran-
sition (ui,j , σi,j , Ii,j , ui,j+1) of path p′i has a unique timing
behavior, but ζ is chosen to be a small value and the num-
ber of observations of the transition is small, then it is
possible that several clusters are formed instead of a sin-
gle cluster. As a consequence, Ii,j is formed of several time
intervals, and a false alarm is raised every time transition
(ui,j , σi,j , ui,j+1) is observed between the time intervals of
Ii,j . Thus, for the correct computation of the clusters as-
sociated with Ii,j , ζ must be a small value greater than
2δ, and the system must be observed for a sufficiently long
time such that there are enough observations of each tran-
sition of p′i to adequately represent its distinct timing be-

6

haviors. It is worth noting that in the ideal case where
infinite observations of the same transition are recorded,
the distance that separates two successive values in the
same cluster would drop to zero. Thus, it is reasonable to
choose a small value for ζ, provided that a large amount
of data recorded during identification is available. Never-
theless, if false alarms are raised during system operation,
the model can still be improved by increasing the value of
ζ for the computation of each Ii,j .

It is important to remark that the clustering procedure
must be performed for the determination of each set Ii,j
from set Ti,j , for every time-interval p′i, i ∈ {1, . . . , r}.

4.2. Parametric identification approach

In [20], as in [16], the parametric identification algo-
rithm allows to obtain a model satisfying an important
property called k-completeness which guarantees that,
once the value of a free parameter k has been chosen, all
and only all sequences of length 1 up to k that have been
observed are generated by the identified DAOCT. By in-
creasing the value of the free parameter k, the exceeding
language generated by the identified DAOCT model re-
duces, but the size of the model grows. Thus, there is a
trade-off to be found between complexity and accuracy of
the identified model.

Since the timed model proposed in this paper is based
on the DAOCT model presented in [20], the same strategy
proposed in [20] to obtain a parameterized model for iden-
tification can be used. In order to do so, the same steps
for the computation of the DAOCT model are considered
here, where the first step is the computation of modified
paths p′ki , according to the free parameter k, as follows:

p′ki =
(
yi,1, σi,1, Ii,1, ..., yi,l′i−1, σi,l′i−1, Ii,l′i−1, yi,l′i

)
, (6)

where

yi,j =

{
(ui,j−k+1, ..., ui,j), if k ≤ j ≤ l′i
(ui,1, ..., ui,j), if j < k

.

Note that the vertices yi,j of path p′ki are formed of se-
quences of I/O vectors of length up to k, capable of mem-
orizing the last k − 1 events occurred in the model.

Define set Ωk as the set formed of all yi,j , j = 1, . . . , l′i,
i ∈ {1, . . . , r}. Let ŷi,j denote the last element of yi,j .
Then, ŷi,j := ui,j , for j = 1, . . . , l′i, i = 1, . . . , r. The set of
modified paths is denoted as P ′k := {p′k1 , p′k2 , . . . , p′kr }.

4.3. Computation of the TAOCT model

Before introducing the procedure to construct the
TAOCT from the observed data, define function λ̃ : X →
Ωk, which provides a bijective correspondence between a
state x ∈ X of the model and a symbol y ∈ Ωk. This
function will be used in the procedure for constructing the
TAOCT model from the set of fault-free modified paths
p′ki , i ∈ {1, . . . , r}, described in Algorithm 1.

Since the TAOCT model is based on the DAOCT, Al-
gorithm 1 is based on the algorithm for computing the

DAOCT model presented in [20]. At the beginning of Al-
gorithm 1, the initial state x0 is created, and λ̃(x0) and
λ(x0) receive y1,1 and ŷ1,1, respectively, such that the out-
put of the initial state is equal to the first I/O vector of
the observed paths pq ∈ P , used for the computation of
the modified time-interval paths p′ki , for i = 1, . . . , r. In
line 3, the set of states X, the set of outputs Ω, and the
set of final states Xf are initialized. In addition, the set
of time-interval path indexes R is specified. In line 4, the
set of events Σ is defined as the set containing all observed
events, considering every transition in each observed fault-
free time-interval path p′i, for i = 1, . . . , r. In line 5, guard
function g is initialized for state x0 by assigning the empty
set for every observed event in Σ and every path index in
R. In the inner for-loop, from lines 7 to 21, every vertex
yi,j of the modified time-interval path p′ki is visited. Each
time a vertex is visited, the corresponding state x ∈ X
is found. Then, it is checked if there is a state x′ that
has already been created and that corresponds to the next
vertex yi,j+1. If such a state does not exist, then a new
state is created in the if-block that starts in line 9, and set
X is updated accordingly. In lines 12 to 14, vertex yi,j+1

is associated to the newly created state x′, and its output
symbol, given by the last element of yi,j+1, is added to Ω.
Similarly to what is done in line 5 for the initial state x0,
in line 15 the empty set is assigned to the guard function
for state x′ and every pair (σ, i) in Σ×R, ensuring that the
guard function is completely defined on its domain. In line
18, the transition from the current state x to the next state
x′ through event σi,j is defined in the transition function
f . Differently from g, function f may be partially defined
on its domain. In line 19, the guard function g(x, σi,j , i) is
updated by aggregating set Ii,j to g(x, σi,j , i). Finally, in
line 20, it is tested if the next vertex yi,j+1 is the last one
of path p′ki . If this is the case, then next state x′ is added
to the set of final states Xf .

Language Lt,Iden, generated by the TAOCT model ob-
tained using Algorithm 1, and whose expression is given by
Equation (5), simulates the timed sequences of the paths
used in the identification procedure, as stated in the se-
quel.

Theorem 1. Lt,Obs ⊆ Lt,Iden.

Proof. Consider a timed event sequence wt ∈ Lt,Obs,
which, according to Equation (2), is the prefix of a timed
sequence associated with some observed timed path pq,
whose expression is given by Equation (1). Since pq ∈ Pi,
for some i ∈ {1, . . . , r}, then its corresponding modified
time-interval path p′ki , given by Equation (6), has the same
untimed sequence as pq, and pq is such that τq,j ∈ Ii,j , for

j = 1, ..., ‖wt‖. Since λ̃(x0) = ŷi,1 (as a consequence of
Assumption A1), Algorithm 1 ensures that: (i) there ex-
ist states xj , such that f(xj , σi,j) = xj+1, starting at the
initial state x0 (line 18); and (ii) τq,j ∈ Ii,j ⊆ g(xj , σi,j , i),
j = 1, ..., ‖wt‖, according to line 19. Hence, according to
Equation (4), i ∈ θ(xj , σi,j , τq,j), j = 1, ..., ‖wt‖, which im-
plies that i ∈ θs(x0, wt), and, consequently, θs(x0, wt) 6=

7

Algorithm 1: TAOCT identification

Input: Modified time-interval paths p′ki , i = 1, ..., r
Output: TAOCT = (X,Σ, f, cg,Ω, λ,R, g, x0, Xf)

1 Create initial state x0

2 λ(x0)← ŷ1,1 and λ̃(x0)← y1,1

3 X ← {x0}, Ω← {ŷ1,1}, R← {1, ..., r}, and Xf ← ∅
4 Σ←

⋃
i∈R{σi,j : j = 1, . . . , l′i − 1}

5 g(x0, σ, i)← ∅, ∀(σ, i) ∈ Σ×R
6 for i = 1 to r do
7 for j = 1 to l′i − 1 do

8 Find state x ∈ X such that λ̃(x) = yi,j
9 if λ̃(x′) 6= yi,j+1 ∀x′ ∈ X then

10 Create state x′

11 X ← X ∪ {x′}
12 λ̃(x′)← yi,j+1

13 λ(x′)← ŷi,j+1

14 Ω← Ω ∪ {λ(x′)}
15 g(x′, σ, i)← ∅, ∀(σ, i) ∈ Σ×R
16 else

17 Find x′ ∈ X such that λ̃(x′) = yi,j+1

18 f(x, σi,j)← x′

19 g(x, σi,j , i)← g(x, σi,j , i) ∪ Ii,j
20 if j = l′i − 1 then
21 Xf ← Xf ∪ {x′}

∅. Thus, from Equation (5), wt ∈ Lt,Iden. Therefore,
Lt,Obs ⊆ Lt,Iden. �

Let LObs and LIden denote the languages formed of
the untimed sequences of events obtained from all timed
sequences of Lt,Obs and Lt,Iden, respectively, i.e., LObs :=
{ψ(st) ∈ Σ? : st ∈ Lt,Obs} and LIden := {ψ(st) ∈ Σ? : st ∈
Lt,Iden}. Then, the following result can be stated.

Corollary 1. LObs ⊆ LIden.

Proof. The proof is straightforward from Theorem 1. �

5. Fault detection scheme

The fault detector proposed in this paper is inspired
by the one presented in [21] based on the DAOCT model.
Thus, as long as a sequence of timed events st, whose cor-
responding untimed behavior su = ψ(st) belongs to LObs,
is executed by the system, the fault detector observes the
events, and plays the model following the behavior of st.
If sequence st is compatible with one of the time-interval
paths p′i, then, after sequence st has been observed, the
model is reinitialized and a new sequence can be played by
the fault detector. The sequence of events that is played
by the fault detector without reinitializing the model is
called a model run. Thus, the fault detector must evaluate
if the current model run can be executed by the TAOCT

Discrete-Event Controller

TAOCT model

Discrepancy?

Fault-free behavior

Fault detected

Model prediction

No

Yes

Observed
timed event

Figure 4: Fault detection scheme based on the TAOCT model.

model. If the model is unable to execute the observed se-
quence of events, or if the occurrence of an expected event
does not occur within a feasible time interval, then a fault
is detected.

In Figure 4, the scheme for fault detection based on the
TAOCT model is presented. The idea behind this scheme
is that, during system operation, the current I/O vector of
controller signals is read in real-time by the fault detector.
Then, if the observed behavior of the system is different
from what is predicted by the TAOCT model, the fault
that caused the unexpected behavior is detected. After
detection, the fault can be localized by using residuals [26,
30, 21]. Fault localization is not addressed in this paper.

In [21], the minimum number of event observations,
denoted as µui

, such that each fault-free path pui
∈ Pu

can be distinguished from the other fault-free paths in Pu,
where Pu is the set formed of all fault-free paths used in
the DAOCT identification procedure, is used in the fault
detection scheme. Similarly, in this paper, the minimum
number of event observations of p′i such that p′i can be
distinguished from any other path p′z, i 6= z, i, z ∈ R, de-
noted as µi, is used in the fault detection scheme. However,
due to the fact that the timing behavior of the TAOCT is
also considered, the value of µi may be different from the
value of µui

, obtained for the underlying DAOCT model,
for each i ∈ R. Consider, for example, that R = {1, 2},
and that both paths p′1 and p′2 start with the same event,
i.e., σ1,1 = σ2,1. Since p′1 and p′2 have the same first event,
then they are logically equivalent considering only the first
event occurrence, which means that certainly both µu1

and
µu2

are greater than one by considering only the logical
behavior. However, if I1,1\I2,1 6= ∅, then it is possible to
distinguish path p′1 from p′2 upon the occurrence of the
first event. In order to do so, the first event must be ob-
served with a time value belonging to I1,1\I2,1. In this
case, µ1 = 1. Note that, if I2,1 ⊂ I1,1, then it is impossible
to distinguish p′2 from p′1 upon the first event occurrence.
Thus, µ2 > 1. The value of µi, for i = 1, . . . , r, can be
formally defined as follows:

µi = min{j ∈ {1, . . . , l′i − 1} : (@z ∈ R \ {i})
[(σi,v = σz,v)∧(Ii,v\Iz,v = ∅), v=1, . . . , j]}. (7)

It is important to remark that it is always possible to
compute µi, i = 1, . . . , r, since, according to Assumption

8

A2, none of the untimed paths pui , associated with p′i,
has an associated sequence of events that is a prefix of the
sequence of events of another untimed path puz

, associated
with p′z, where i 6= z, for i, z ∈ R.

In the definition of a viable event given in [21], four
conditions are presented in order to verify if an observed
event indicates the occurrence of a fault. In the sequel, a
viable timed event is defined by adapting the definition of
viable event to the context of the TAOCT model.

Definition 4. Let st ∈ Σ?t be a model run such that x =
f(x0, ψ(st)). Then, (σ, τ) ∈ Σt is said to be a viable timed
event in state x ∈ X of the TAOCT model if it satisfies
the following conditions:

C1. σ ∈ Γ(x);

C2. θs(x0, st(σ, τ)) 6= ∅;

C3. If |θs(x0, st)| > 1 and θs(x0, st(σ, τ)) = {i}, then
‖st(σ, τ)‖ ≥ µi;

C4. If ‖st(σ, τ)‖ = l′i − 1, for i ∈ θs(x0, st(σ, τ)),
then λ̃(x′) = yi,l′i , where x′ = f(x, σ), or there exists
j ∈ θs(x0, st(σ, τ)) such that ‖st(σ, τ)‖ < l′j − 1. �

If Conditions C1 and C2 are verified, then st(σ, τ) ∈
Lt,Iden. If Condition C3 is violated, then path p′i has been
wrongly identified before the minimum number of timed
event occurrences µi, given by Equation (7). Finally, if
Condition C4 is not true, then the length of the observed
trace st(σ, τ) is equal to the maximum length among all
sequences of the estimated paths in θs(x0, st(σ, τ)), with-
out reaching the final vertex of any of these paths, which
implies that a fault has occurred.

Algorithm 2 describes the procedure for performing
fault detection using the identified TAOCT model. The
basic idea is to detect the occurrence of a fault if the
observed timed event is not viable, according to Defini-
tion 4, or a deadlock is reached. In Algorithm 2, sets
V := {(i, yi,l′i) : i ∈ R} and N := {(i, µi) : i ∈ R} are used
for fault detection. Verification of Conditions C1-C4 is
carried out for the TAOCT in a similar way as for the un-
derlying DAOCT presented in [21]. The main difference
between Algorithm 2 and the algorithm proposed in [21],
is the use of the path estimation function θs that takes into
account the information about the time that an event is
observed, τ , for determining which time-interval paths are
possibly being executed by the system. Since θs uses both
the logical and the timing behaviors of the system, then
its estimation is improved with respect to the estimation
provided by the path estimation function proposed in [21]
that uses only the logical behavior.

There are three faulty scenarios for which a fault can be
detected by using the TAOCT instead of the underlying
DAOCT model, namely: (i) faults that lead the system
to a deadlock; (ii) faults that cause the occurrence of a
feasible event σ at a time instant τ that does not belong to
any set defined by the guard conditions g(x, σ, i), for all i ∈

R; and (iii) faults that cause the occurrence of a feasible
event σ at a time instant τ that satisfies a guard condition,
but leads the path estimation function to θs(x0, st) = ∅.
In order to detect the first type of fault, the global clock
cg is reset in line 5 every time a transition is transposed
in the TAOCT. Then, cg is used to detect a deadlock in
lines 7 to 12, by verifying if an event is observed in a time
smaller than or equal to the maximum time τmax allowed
for the occurrence of an event in the current state xc. If
an event is not observed within τmax time units, then the
fault is detected. The second and third types of faults can
be detected by verifying if the observed timed sequence can
be generated by the model, since, in both cases, although
f(x0, ψ(st)) is defined, θs(x0, st) = ∅, i.e., the observed
timed sequence is not in Lt,Iden.

In line 14, it is checked if Condition C1 is violated,
in which case the fault is detected in line 15. In lines 17
to 20, Condition C2 is verified and, if it does not hold,
the fault is detected. In lines 21 to 25, Condition C3 is
tested and the fault is detected if it is violated. In lines
26 to 29 of Algorithm 2, the TAOCT is reinitialized every
time a cyclical fault-free path, with behavior compatible
with a time-interval path p′i, i ∈ {1, . . . , r}, is executed
by the system. In lines 30 to 34, it is verified if the final
vertex of a non-cyclical observed path is reached, in which
case no event should be observed anymore. In this case,
in line 32 the path estimate is made equal to the empty
set, in line 33 the value of τmax is set to infinity, and the
algorithm returns to line 5. Then, if an event is observed,
the fault is detected in lines 14 and 15, since Condition
C1 is violated. In line 35, Condition C4 is tested and, if
it is violated, the fault is detected in line 36. If the end
of the path that is being executed by the system has not
been reached yet, then the path estimation function and
the state of the model are updated in lines 38 to 42, and
the algorithm returns to line 4.

The concept of reinitializability is introduced in [21]
to present a condition for ensuring that the model can
always be reinitialized after the completion of some fault-
free path. This condition is restated for the TAOCT model
as follows.

Definition 5. Let st denote an observed sequence of timed
events compatible with path p′i, i.e., i ∈ θs(x0, st) and
‖st‖ = l′i − 1, for some i ∈ R. Then, the TAOCT is

said to be reinitializable if there does not exist s′t ∈ {st} of
length ‖s′t‖ = l′z − 1, where z ∈ θs(x0, s

′
t) and l′z < l′i, such

that x′ = f(x0, ψ(s′t)), and λ̃(x′) = yz,l′z . �

If the condition for reinitializability presented in Defini-
tion 5 is not satisfied, then Algorithm 2 cannot be used for
fault detection, since it is not guaranteed that the model
will be reinitialized after playing a fault-free path asso-
ciated with p′i. Sufficient conditions and a method for
verifying the reinitializability of a DAOCT model are pre-
sented in [21]. These conditions and verification method
remain valid for the TAOCT, since they are still valid for
the underlying DAOCT model.

9

Algorithm 2: Fault detection algorithm

Input: Identified TAOCT model, λ̃, V , N
Output: Fault detection

1 Define the current state of the model xc ← x0

2 Define the current path estimate θs,c ← R
3 Define the counter of event observations η ← 0
4 τmax ← sup

⋃
i∈R

⋃
σ′∈Γ(xc) g(xc, σ

′, i)

5 Reset the global clock cg
6 while cg ≤ τmax do
7 Check the occurrence of an event σ
8 if σ is detected then
9 τ ← cg(t)

10 Go to line 13

11 Fault detected
12 Stop the algorithm
13 η ← η + 1
14 if σ 6∈ Γ(xc) then
15 Fault detected
16 Stop the algorithm

17 θs,n ← θs,c ∩ θ(xc, σ, τ)
18 if θs,n = ∅ then
19 Fault detected
20 Stop the algorithm

21 if |θs,n| = 1 ∧ |θs,c| > 1 then
22 Find the pair (i, µi) ∈ N such that θs,n = {i}
23 if µi > η then
24 Fault detected
25 Stop the algorithm

26 Define state xn ← f(xc, σ)
27 Define set Λ← {l′i : i ∈ θs,n}
28 if there exists l′i ∈ Λ such that η = l′i − 1,

λ̃(xn) = yi,l′i , and ui,l′i = ui,1 then
29 Go to line 1

30 if there exists l′i ∈ Λ such that η = l′i − 1,

λ̃(xn) = yi,l′i , and ui,l′i 6= ui,1 then
31 xc ← xn
32 θs,c ← ∅
33 τmax ←∞
34 Go to line 5

35 if maxl′j∈Λ l
′
j = η + 1 then

36 Fault detected
37 Stop the algorithm

38 θ′s,n ← {i ∈ θs,n : l′i = η + 1}
39 θs,n ← θs,n \ θ′s,n
40 xc ← xn
41 θs,c ← θs,n
42 Go to line 4

In the following example, the three situations in which
a fault can be detected using the TAOCT, and not using
the underlying DAOCT model, are illustrated.

0 1 2 3
a,I1,1 b,I1,2

c,I1,3
c,I2,3

b,I2,1

a,I2,2

Figure 5: TAOCT model of Example 2.

Example 2. Consider the following time-interval paths
p′1 and p′2:

p′1 =

 1
0
0

, a, I1,1,
 1

1
0

, b, I1,2,
 0

1
0

, c, I1,3,
 0

0
0

 ,

where I1,1 = [28.5, 90.6], I1,2 = [0, 46.3] ∪ [153.8, 242.7] ∪
[519.4, 694.8] and I1,3 = [161.3, 452.6]∪[844.8, 1125.3], and

p′2 =

 1
0
0

, b, I2,1,
 0

0
0

, a, I2,2,
 0

1
0

, c, I2,3,
 0

0
0

with I2,1 = [200, 215], I2,2 = [90, 110] and I2,3 = [590, 620].

The TAOCT obtained by applying Algorithm 1, for k =
1, is shown in Figure 5. The set of states of the TAOCT is
X = {0, 1, 2, 3}. Label σ,I on each transition from a state
x ∈ X, means that a guard g(x, σ, i) = I is defined. The
final states Xf are represented by double circles as in [20].

Suppose that during system operation timed sequence
st = (a, 60)(b, 200)(c, 600) ∈ Σ?t is observed. Thus, since
event a is feasible in state 0, and a occurs at time in-
stant 60 ∈ I1,1, then (a, 60) ∈ Lt,Iden, and the path es-
timation function is θs(0, (a, 60)) = {1}. After the oc-
currence of event b, no fault is detected since b is fea-
sible in state 1, 200 ∈ I1,2 and θs(0, (a, 60)(b, 200)) =
θs(0, (a, 60)) ∩ θ(1, b, 200) = {1} ∩ {1} = {1}. However,
after the occurrence of event c after 600 seconds in state
2, the fault is detected, since, although c is feasible in
state 2, time instant 600 6∈ I1,3 and θ(2, c, 600) = {2}.
Thus, θs(0, (a, 60)(b, 200)(c, 600)) = θs(0, (a, 60)(b, 200))∩
θ(2, c, 600) = {1}∩{2} = ∅. It is important to remark that
the fault would not be detected in this example if the un-
derlying DAOCT model were used, since transition (2, c, 3)
belongs to the untimed paths associated with p′1 and p′2.

Suppose now that sequence s′t = (a, 60)(b, 200)(c, 100) ∈
Σ?t is observed, i.e., event c is observed in state 2
after 100 seconds. In this case, although c is feasible in
state 2, since 100 6∈ I1,3, then a fault is detected using Al-
gorithm 2. Note that this fault would not be detected if the
underlying DAOCT were used.

A fault that leads the fault detector to a deadlock would
also be detected using Algorithm 2 if, for instance, after
the occurrence of sequence s′′t = (a, 60)(b, 200), no event is

10

Figure 6: Sorting unit system of the practical example.

observed at state 2 after the maximum time τmax = 1125.3
seconds has elapsed. �

It is important to remark that all faults that can be de-
tected using only the logical behavior of the system, mod-
eled by the underlying DAOCT, can also be detected using
the TAOCT model. Thus, there is an improvement in the
fault detection capability using the timed model proposed
in this paper.

6. Practical Example

6.1. Closed-loop system behavior

The identification method proposed in this paper is il-
lustrated using the sorting unit system presented in Figure
6. Three different types of pieces are sorted in the system:
white plastic pieces (WP), black plastic pieces (BP), and
metallic pieces (M). Each type of piece is pushed to one
of the three slides shown on the bottom of Figure 6, such
that pieces of type WP are pushed to the right slide, pieces
of type M are pushed to the slide in the middle, and pieces
of type BP are pushed to the left slide.

On the right of Figure 6, there is a stack magazine
where the pieces are stored in any order. In the sorting
process, the pieces at the bottom of the stack magazine
are placed onto the conveyor belt by a pneumatic pusher.
Then, the conveyor belt is turned on, and the piece is
moved in the direction of two sensors in order to determine
its type. An inductive sensor detects metallic pieces (type
M), and an optical sensor detects metallic (type M) and
white plastic pieces (type WP). If a black plastic piece
(type BP) is on the conveyor, then none of the sensors
is capable of detecting it. The optical sensor is located
close to the inductive sensor, such that metallic pieces are
detected by both sensors almost at the same time.

It is also important to remark that there is a photoelec-
tric sensor next to each sorting pusher on the conveyor.

Table 1: Table containing the description of each I/O signal.

d Description of the I/O signal
1 Sensor indicating the extension of MagP
2 Sensor indicating the retraction of MagP
3 Sensor indicating the extension of SPleft
4 Sensor indicating the retraction of SPleft
5 Sensor indicating the extension of SPcenter
6 Sensor indicating the retraction of SPcenter
7 Sensor indicating the extension of SPright
8 Sensor indicating the retraction of SPright
9 Optical sensor
10 Inductive sensor
11 Photoelectric sensor of SPleft
12 Photoelectric sensor of SPcenter
13 Photoelectric sensor of SPright
14 Command to activate SPleft
15 Command to activate SPcenter
16 Command to activate SPright
17 Command to extend MagP
18 Command to retract MagP
19 Command to activate the conveyor belt

When a piece is detected by the photoelectric sensor next
to the pusher that should remove it from the conveyor, the
conveyor is stopped and the pusher is extended. Then, the
pusher is retracted and a new piece can be placed on the
conveyor by the pusher of the stack magazine.

The sorting pushers are denoted as SPleft, SPcenter
and SPright, for the left, center and right sorting pusher
of Figure 6, respectively. The magazine pusher is denoted
as MagP. The sorting unit system has 13 sensors and 6
actuator signals. Thus, the controller has 19 input and
output signals. Table 1 gives the position number d of
each controller signal in the I/O vector, along with their
description.

The initial state of all observed paths is defined as the
I/O vector corresponding to the case where the conveyor
belt is turned off, and all pushers are retracted.

6.2. TAOCT model computation

During the identification process, 2294 timed paths
with lengths ranging from 6 to 14 I/O vectors were ob-
served, which corresponds to two hours and fifty three
minutes of observation of the controller signals. A total of
12 logically distinguishable paths were obtained. As there
are only three types of pieces, only three different logically
distinguishable sequences would be expected. However, it
has been observed that, since the inductive and optical
sensors are very close to each other, the order of sensor
readings (rising and falling edges) may change for differ-
ent sorting cycles of metallic pieces, increasing the number
of paths.

In this practical example, it has been chosen the thresh-
old ζ = 80ms and uncertainty δ = 1ms, which is equal to
the measured scan cycle, to obtain the time-interval paths.

11

After obtaining the time-interval paths p′i, the TAOCT
model is computed following the steps of Algorithm 1. The
identified TAOCT for k = 1 is depicted in Figure 7. In this
case, the identified TAOCT has 26 states and 38 transi-
tions. In Figure 7, the guards are not presented due to lack
of space. The events of the TAOCT are rising and falling
edges of the elements of the I/O controller vector, which
are represented by ↑d and ↓d, respectively, where d is the
position of the signal in the I/O vector. It is important
to remark that, according to Definition 2, an event can be
formed of more than one rising or falling edge of controller
signals.

The programming code for computing the TAOCT
model was implemented using Python 3.7, on a computer
Intel Core i7 with 2.4GHz and 8 GB RAM. The time
required for computing the time-interval paths from the
fault-free observed timed paths was 535 ms. The most
time-consuming operations are those related to the forma-
tion of clusters, which are carried out for every transition
of every observed path. The time required for the compu-
tation of the TAOCT model was only 2.4 ms. Thus, the
overall time for the computation of the TAOCT model,
including the computation of the time-interval paths p′i, is
approximately 538 ms.

6.3. Fault detection based on the TAOCT model

In the sequel, three faulty scenarios for which the fault
can be detected thanks to the timing information added
to the TAOCT model are presented.

In the first scenario, consider that, after a piece is
placed on the conveyor belt by pusher MagP, the pusher
stuck extended and cannot be retracted. The path asso-
ciated with this behavior is p = (x0, ↑17, x1, ↓2, x2, ↑1. ↓
17. ↑18, x3). In this case, the system deadlocks, since the
conveyor belt is turned on only after the retraction of the
pusher is detected (↑2), which never occurs. This fault
cannot be detected by using the DAOCT model, but can
be detected by using the TAOCT model, since the falling
edge of the sensor that indicates that MagP is extended
(↓1) must occur before the maximum time of the guard
g(x3, ↓1, 1) = [87, 161]. Thus, when the elapsed time is
greater than 161 milliseconds, the fault is detected.

To illustrate the second faulty scenario, consider a fault
in the speed controller of the conveyor that makes it work
faster than expected. Consider, for instance, that after
a BP piece is placed on the conveyor belt, and the con-
veyor is turned on (↑19), which corresponds to state x5

of the TAOCT, it reaches the photoelectric sensor next to
the first sorting pusher (↑13) in a time smaller than the
minimum time of the guard g(x5, ↑13, 4) = [4058, 4146].
Thus, the fault is detected. It is important to remark
that, since ↑13 is coherent with the logical behavior of the
system, then the detection system based on the underly-
ing DAOCT model would not be capable of detecting the
fault.

The third faulty scenario can be illustrated by the fol-
lowing example. Consider all observed paths associated

with BP or M pieces, and consider that the piece is in front
of the photoelectric sensor next to the right sorting pusher,
i.e., the rising edge of the photoelectric sensor (↑13) has
been observed, which corresponds to state x8 of Figure 7.
By analyzing the time elapsed between ↑13 and ↓13, two
distinct sets of time values can be defined according to the
type of piece, as shown in Figure 8. This occurs because
metallic pieces are detected for a longer time than plastic
pieces by the photoelectric sensor due to their brightness.
Consider now a fault that causes both the optical and in-
ductive sensors to fail at the same time. In this case, a
piece of type M would lead to the same logical behavior
as a BP piece, making such a fault non-detectable by the
diagnosis system based on the underlying DAOCT model.
However, as shown in Figure 8, it is possible to distin-
guish the types of pieces by using the guards associated
with the timed paths. While a BP piece would take some
time in the interval g(x8, ↓13, 4) = [915, 937], a metallic
piece would take some value in the interval [1035, 1052]
milliseconds, which corresponds to the union of all guards
defined in state x8, for event ↓13, and the timed paths
associated with metallic pieces. Thus, if a metallic piece
is on the conveyor belt, and the fault occurs, the time
elapsed between the rising and falling edges of the photo-
electric sensor will be compatible with the guard condition
associated with metallic pieces, and non-compatible with
the guard condition of black plastic pieces. Since the logi-
cal behavior is not coherent with the timing behavior, the
fault is detected.

7. Conclusions

In this paper, a new timed model for the identification
of DES with the aim of fault detection is proposed. In this
model, called Timed Automaton with Outputs and Condi-
tional Transitions (TAOCT), timing information regarding
the occurrence of events are added as guards to the tran-
sitions. By doing so, a refinement of the path estimation
can be carried out using the timing information, and faults
that cannot be detected by using untimed models, can be
detected by using the TAOCT. An algorithm describing
the fault detection based on the TAOCT model has also
been proposed in this paper, and a practical example has
been used to illustrate the detection algorithm.

Declaration of competing interest

None declared.

Acknowledgments

This study was financed in part by CNPq, FAPERJ,
and the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) Finance Code 001.

12

x0

x1 x2 x3 x4

x5 x6 x7

x14

x9x10x11x12x13

x21x22x23x24x25

x8

x20

x15x16x17x18x19

↑17

↓2 ↑1.↓17.↑18 ↓1

↑2.↓18

↑19

↑10

↓10

↑9
↓9

↓10 ↑10

↓9

↑9

↑12.↑15.↓19

↑11.↑14.↓19
↓6↓12↑5.↓15↓5

↑6

↓4↓11↑3.↓14↓3

↑4

↑13

↓13
↑12↓12

↑9.↑10

↓9.↓10

↑13.↑16.↓19

↓8↓13↑7.↓16↓7

↑8

Figure 7: TAOCT model obtained for the practical example.

920 940 960 980 1000 1020 1040

Time in ms

0

20

40

60

80

100

N
u

m
b

er
of

ob
se

rv
ed

p
at

h
s

BP

M

Figure 8: Histogram showing the observed times elapsed between
the rising edge and falling edge of the photoelectric sensor next to
the first sorting pusher (BP in black and M in grey) in the observed
timed paths.

References

[1] Basile, F., Chiacchio, P., Coppola, J., 2016. A novel model
repair approach of timed discrete-event systems with anomalies.
IEEE Transactions on Automation Science and Engineering 13,
1541–1556.

[2] Basile, F., Chiacchio, P., Coppola, J., 2017. Identification of
time petri net models. IEEE Transactions on Systems, Man,
and Cybernetics: Systems 47, 2586–2600.

[3] Cabasino, M.P., Giua, A., Hadjicostis, C.N., Seatzu, C., 2014.
Fault model identification and synthesis in petri nets. Discrete
Event Dynamic Systems 24, 275–307.

[4] Cabasino, M.P., Giua, A., Seatzu, C., 2007. Identification of
petri nets from knowledge of their language. Discrete Event
Dynamic Systems 17, 447–474.

[5] Cabral, F.G., Moreira, M.V., 2020. Synchronous diagnosis of
discrete-event systems. IEEE Transactions on Automation Sci-
ence and Engineering 17, 921–932.

[6] Cassandras, C.G., Lafortune, S., 2008. Introduction to Discrete
Event Systems. Springer Publishing Company.

[7] Chen, Y.L., Provan, G., 1997. Modeling and diagnosis of timed
discrete event systems - a factory automation example, in: Pro-
ceedings of the 1997 American Control Conference, IEEE. pp.
31–36.

[8] Debouk, R., Lafortune, S., Teneketzis, D., 2000. Coordinated
decentralized protocols for failure diagnosis of discrete event
systems. Discrete Event Dynamic Systems 10, 33–86.

[9] Dotoli, M., Fanti, M.P., Mangini, A.M., 2008. Real time identi-
fication of discrete event systems using petri nets. Automatica
44, 1209–1219.

[10] Dotoli, M., Fanti, M.P., Mangini, A.M., Ukovich, W., 2011.
Identification of the unobservable behaviour of industrial au-
tomation systems by petri nets. Control Engineering Practice
19, 958–966.

[11] Estrada-Vargas, A.P., López-Mellado, E., Lesage, J., 2017. A
black-box identification method for automated discrete-event
systems. IEEE Transactions on Automation Science and Engi-
neering 14, 1321–1336.

[12] Estrada-Vargas, A.P., López-Mellado, E., Lesage, J.J., 2010.
A comparative analysis of recent identification approaches for
discrete-event systems. Math. Probl. Eng. 2010, 1–21.

[13] Hartigan, J., 1975. Clustering algorithms. Wiley.
[14] Hu, Y., Ma, Z., Li, Z., 2020. Design of supervisors for active

diagnosis in discrete event systems. IEEE Transactions on Au-
tomatic Control doi:10.1109/TAC.2020.2970011.

[15] Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data clustering: A
review. ACM Comput. Surv. 31, 264–323.

[16] Klein, S., Litz, L., Lesage, J.J., 2005. Fault detection of discrete
event systems using an identification approach. IFAC Proceed-
ings Volumes 38, 92–97. 16th IFAC World Congress.

[17] Lu, S.Y., Fu, K.S., 1978. A sentence-to-sentence clustering pro-
cedure for pattern analysis. IEEE Transactions on Systems,
Man, and Cybernetics 8, 381–389.

[18] Medhi, S.O.E., Leclercq, E., Lefebvre, D., 2006. Petri nets de-
sign and identification for the diagnosis of discrete event sys-
tems, in: IAR Annu. Meeting.

[19] Moreira, M.V., Jesus, T.C., Basilio, J.C., 2011. Polynomial
time verification of decentralized diagnosability of discrete event
systems. IEEE Transactions on Automatic Control 56, 1679–
1684.

[20] Moreira, M.V., Lesage, J.J., 2019a. Discrete event system iden-
tification with the aim of fault detection. Discrete Event Dy-
namic Systems 29, 1–19.

[21] Moreira, M.V., Lesage, J.J., 2019b. Fault diagnosis based on
identified discrete-event models. Control Engineering Practice
91, 104101.

13

[22] Pandalai, D.N., Holloway, L.E., 2000. Template languages for
fault monitoring of timed discrete event processes. IEEE Trans-
actions on Automatic Control 45, 868–882.

[23] Pham, D.T., Dimov, S.S., Nguyen, C.D., 2005. Selection of k in
k-means clustering. Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science
219, 103–119.

[24] Ran, N., Giua, A., Seatzu, C., 2019. Enforcement of diagnos-
ability in labeled petri nets via optimal sensor selection. IEEE
Transactions on Automatic Control 64, 2997–3004.

[25] Roth, M., Lesage, J.J., Litz, L., 2009. An FDI method for man-
ufacturing systems based on an identified model, in: 13th IFAC
Symposium on Information Control Problems in Manufacturing
(INCOM2009), Moscow, Russia. pp. 1406–1411.

[26] Roth, M., Lesage, J.J., Litz, L., 2011. The concept of resid-
uals for fault localization in discrete event systems. Control
Engineering Practice 19, 978–988.

[27] Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K.,
Teneketzis, D., 1995. Diagnosability of discrete event systems.
IEEE Transactions on Automatic Control 40, 1555 – 1575.

[28] Santoro, L.P.M., Moreira, M.V., Basilio, J.C., 2017. Computa-
tion of minimal diagnosis bases of discrete-event systems using
verifiers. Automatica 77, 93–102.

[29] Schneider, S., 2015. Automatic Modeling and Fault Diagnosis of

Timed Concurrent Discrete Event Systems. Ph.D. thesis. École
Normale Supérieure de Cachan - ENS Cachan.

[30] Schneider, S., Litz, L., Danancher, M., 2011. Timed residuals
for fault detection and isolation in discrete event systems, in:
3rd International Workshop on Dependable Control of Discrete
Systems (DCDS2011), Saarbrücken, Germany. pp. 35–40.

[31] Schneider, S., Litz, L., Lesage, J.J., 2012. Determination of
timed transitions in identified discrete-event models for fault
detection, in: 51st IEEE Annual Conference on Decision and
Control (CDC’12), Maui, HI, USA. pp. 5816–5821.

[32] de Souza, R.P.C., Moreira, M.V., Lesage, J.J., 2020. A timed
model for discrete event system identification and fault detec-
tion, in: 21st IFAC World Congress, Berlin, Germany. pp. 826–
831.

[33] Supavatanakul, P., Lunze, J., Puig, V., Quevedo, J., 2006.
Diagnosis of timed automata: Theory and application to the
damadics actuator benchmark problem. Control Engineering
Practice 14, 609–619.

[34] Tripakis, S., 2002. Fault diagnosis for timed automata, in: In-
ternational symposium on formal techniques in real-time and
fault-tolerant systems, Springer, Oldenburg, Germany. pp. 205–
221.

[35] Zad, S.H., Kwong, R.H., Wonham, W.M., 2005. Fault diagno-
sis in discrete-event systems: Incorporating timing information.
IEEE Transactions on Automatic Control 50, 1010–1015.

[36] Zaytoon, J., Lafortune, S., 2013. Overview of fault diagnosis
methods for discrete event systems. Annual Reviews in Control
37, 308–320.

14

