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Introduction

Diffusion MRI is an imaging modality tailored to capture interactions of diffusing water molecules with surrounding micro-structures within examined tissue. As such, it has shown importance in neuroimaging, particularly in the analysis of white matter micro-structures . It opened the possibility to examine properties of axon bundles such as orientation, volume fraction, dispersion, etc. Models proposed to explain the dMRI signals have evolved with the improvement of the acquisition process. Initially, in Diffusion Tensor Imaging [START_REF] Bihan | Diffusion tensor imaging: concepts and applications[END_REF], axon bundles were described via diffusion tensors [START_REF] Basser | MR diffusion tensor spectroscopy and imaging[END_REF]. With the increase of dMRI angular resolution, more informative models have been proposed, specifically in voxels containing crossing or kissing fibers, fiber fanning or bending. A number of these models include estimation of probability density functions (PDF) such as Ensemble Average Propagator (EAP) [START_REF] Wedeen | Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging[END_REF][START_REF] Merlet | Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI[END_REF] describing average relative spin displacements, diffusion Orientation Distribution Function (dODF) [START_REF] Tuch | Q-ball imaging[END_REF][START_REF] Descoteaux | Regularized, fast, and robust analytical Q-ball imaging[END_REF] and fiber Orientation Distribution Function (fODF) [START_REF] Tournier | Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution[END_REF][START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF][START_REF] Jeurissen | Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data[END_REF]. These voxel-wise quantities opened the possibility of tracking white matter pathways -tractography [START_REF] Basser | In vivo fiber tractography using DT-MRI data[END_REF], a process of a great potential in the analysis of brain structural connectivity [START_REF] Jbabdi | Measuring macroscopic brain connections in vivo[END_REF]. The fODF is a spherical PDF that reveals orientations and volumes of the underlying axon bundles. Traditional methods include estimation of a single fiber response function that is deconvolved from the dMRI signal in order to obtain the fODF [START_REF] Tournier | Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution[END_REF][START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF][START_REF] Jeurissen | Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data[END_REF]. Recently, a 3D convolutional neural network (3DCNN) directly applied on spherical harmonic (SH) coefficients has been proposed for the fast estimation of fODFs [START_REF] Lin | Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network[END_REF]. In [START_REF] Nath | Deep Learning Estimation of Multi-Tissue Constrained Spherical Deconvolution with Limited Single Shell DW-MRI[END_REF], for the same problem, residual CNN (ResCNN) and dense neural network (ResDNN) have been investigated. In both works, potential of the models has been demonstrated for significantly downsampled acquisition sampling schemes, what is often a requirement in clinical applications. U-nets have shown potential in high resolution inference from planar data by combining multi-scale features from contracting and expanding parts of the network [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. As sampling of dMRI signals is most commonly performed on spheres, all building blocks of U-net need to be adjusted to the properties of spherical signals. Recently, in [START_REF] Zhao | Spherical U-Net on cortical surfaces: methods and applications[END_REF], a spherical U-net has been proposed for the cortical surface parcellation and prediction of attribute maps, with convolutions, pooling and transposed convolutions adjusted to the spherical space. A neural network model, similar to the planar CNN, for the analysis of spherical data -spherical CNN (S 2 CN N ) has been introduced in [START_REF] Cohen | Spherical cnns[END_REF], where, contrary to [START_REF] Zhao | Spherical U-Net on cortical surfaces: methods and applications[END_REF], in order to avoid computationally expensive interpolations, convolutions of signals and kernels are performed in spectral domain. Similar approach has been developed in [START_REF] Esteves | Learning so (3) equivariant representations with spherical cnns[END_REF], where a significant speed up of convolutions has been achieved with zonal kernels. In this work, we have addressed the problem of the fODF estimation from dMRI data acquired with significantly downsampled acquisition schemes. Exploiting the properties of the U-net and S 2 CN N , we propose a voxel-wise spherical Unet, that is tailored to the properties of dMRI signals acquired on spheres, namely real nature, uniform distribution of samples, antipodal and axial symmetry of the signals generated by individual fibers.

Background and method

The main operations in U-nets are convolutions, pooling, and transposed convolutions. While the convolution of equidistantly discretized planar signals with kernels is well defined, convolution between S 2 signals and kernels faces two challenges. First of all, the operation analogue to the translation in Euclidean space during convolution is not a rotation in S 2 space, but in the SO(3) manifold. Secondly, the discretization of signals in Euclidean space is usually done in an equidistant manner, what cannot be achieved in S 2 domain. An interpolation must therefore be performed for each step of convolution. These problems are addressed in the work presented in [START_REF] Cohen | Spherical cnns[END_REF] where the spherical CNN -S 2 CN N has been introduced. In this framework, to avoid the computationally expensive interpolations, convolutions of S 2 and SO(3) signals and kernels are performed in spectral domain, and as in standard CNNs, activation function is applied in signal domain. Furthermore, to achieve the same effect as pooling, in each new layer, the bandwidth of the input signal is reduced and the support of the kernel is spread. In [START_REF] Esteves | Learning so (3) equivariant representations with spherical cnns[END_REF], additional speed up has been achieved by constraining kernels to be zonal. As a consequence, the convolution can be more efficiently performed in S 2 . In this work, we propose a spherical U-net with convolutional building blocks from [START_REF] Cohen | Spherical cnns[END_REF][START_REF] Esteves | Learning so (3) equivariant representations with spherical cnns[END_REF] adjusted to the properties of dMRI data. Given the antipodal symmetry of the dMRI signals, we use only the SH basis of even degree for their representation. A signal s : (θ, φ) → R can be written as

s(θ, φ) = Lmax l=0 m=l m=-l ŝm l Y m l (θ, φ), for l ∈ {0, 2, ..., L max } (1) 
where θ and φ are inclination and azimuth angles, Y m l (θ, φ) are SH basis of order m and degree l, and ŝm l are the corresponding SH coefficients. L max is the signal's bandwidth determined as

N ≥ (L max + 1)(L max + 2)/2 ( 2 
)
where N is the number of sampling points. In addition, as dMRI signals are real, we reduce computational complexity by using the real SH basis

Y lm =      √ 2(-1) m Im[Y |m| l ] if m < 0 Y 0 l if m = 0 √ 2(-1) m Re[Y m l ] if m > 0 . (3) 
Consequently, spherical kernels are also real and antipodally symmetric. Another important property of dMRI signals is the axial symmetry of the signals coming from individual axon bundles. This motivated us to use kernels that are axially symmetric around z axis -zonal kernels and in this way promote an axon bundlewise feature extraction. Zonal kernels have been introduced in [START_REF] Esteves | Learning so (3) equivariant representations with spherical cnns[END_REF] in order to decrease the computational complexity imposed by performing convolutions of SO(3) signals and kernels as in [START_REF] Cohen | Spherical cnns[END_REF]. Given this, kernel h : (θ) → R can be represented as a linear combination of zonal harmonics (ZH) as

h(θ) = Lmax l=0 ĥl Y 0 l (θ, 0), for l ∈ {0, 2, ..., L max }. (4) 
This significantly simplifies convolution between signals and kernels, as the resulting signal is no longer in SO(3) manifold, but in S 2 space. In addition, since the number of ZHs necessary to represent such kernels is rather small -L max /2 + 1, we used directly ZH coefficients as trainable parameters as it was initially introduced in [START_REF] Esteves | Learning so (3) equivariant representations with spherical cnns[END_REF]. Convolution between a signal s : (θ, φ) → R and an axially symmetric kernel h : (θ) → R, represented with ZH coefficients ĥl can be written as

c(θ, φ) = Lmax l=0 ĥl m=l m=-l ŝm l Y m l (θ, φ), for l ∈ {0, 2, ..., L max }. (5) 
As we are dealing with discrete signals, Eq. 1 can be simply written as matrixvector product as s = Y ŝ, where Y contains SH basis Y m l (θ k , φ k ) in columns, sampled at the angles (θ k , φ k ), ŝ are corresponding SH coefficients and s is a discrete spherical signal. Although the discretization of the band-limited planar signals without information loss is well defined with Nyquist-Shannon sampling theorem and their transformation to spectral domain is trivial, discretization of the spherical signals and calculation/estimation of SH coefficients is a challenging task. Sampling theorem for band-limited spherical signals has been introduced in the work of Driscoll and Healy [START_REF] Driscoll | Computing Fourier transforms and convolutions on the 2-sphere[END_REF], where they have defined an equiangular sampling grid that guarantees information preservation and calculation of SH coefficients. The total number of required samples is N = 4(L max + 1) 2 . Given a signal sampled on Driscoll-Heally grid, s : (θ k , φ k ) → R and SH basis discretized in the same way in a matrix Y , calculation of SH coefficients can be simply written as ŝ = W Y H s, where H refers to conjugate transpose and W are quadrature weights necessary to account for the basis orthogonality loss due to discretization. This sampling is quite excessive and given a real world situation where a signal is not completely band-limited and is affected by noise, signal segments around poles that are oversampled would be more accurately represented. Due to this, sampling on a sphere is, in general, application dependent and dMRI signals are usually sampled uniformly over multiple shells in a way that an optimal angular coverage is achieved [START_REF] Caruyer | Design of multishell sampling schemes with uniform coverage in diffusion MRI[END_REF]. As a consequence, some information can be lost and several methods for the estimation of SH coefficients have been proposed [START_REF] Yeo | Computing spherical transform and convolution on the 2-sphere[END_REF][START_REF] Descoteaux | Regularized, fast, and robust analytical Q-ball imaging[END_REF][START_REF] Rauhut | Sparse recovery for spherical harmonic expansions[END_REF]. In this work, we have used Gram-Schmidt orthonormalization process to estimate the basis Y for the transformation of S 2 signals into spectral domain, similarly as introduced by Yeo [19]. This is performed in an iterative manner, if y i and y i correspond to i -th columns of Y and Y , respectively, y i are determined as follows:

y i = y i - i-1 j=0 y i , y j y j , y j y j , y i = y i ||y i || 2 . ( 6 
)
where y 0 = y 0 . In this iterative process, as we start from basis that correspond to lower frequencies, more importance is given to them. This is convenient as we know that aliasing affects higher frequencies. In order to avoid bias due to ordering of the basis, Gram-Schmidt process is repeated multiple times, each time randomly shuffling the order of the basis of the same degree, which are at the end averaged. SH coefficients are simply estimated as ŝ = Y T s.

Voxel-wise spherical U-net Figure 1 depicts an illustration of the proposed spherical U-net. Input to the U-net is composed of n 3 •n shells discrete S 2 channels, where n is the size of neighbourhood and n shells is the number of dMRI shells.

Output corresponds to the SH coefficients of the estimated fODF. We refer to the results of (transposed) convolution of input S 2 signals and zonal kernels, followed by activation function, as feature maps, which are sampled at uniformly distributed points on sphere, generated using Q-sampling tool [START_REF] Caruyer | Design of multishell sampling schemes with uniform coverage in diffusion MRI[END_REF]. The network is composed of contracting and expanding parts. Each layer of the contracting part extracts feature maps that are of the same bandwidth as its input (that is used as a part of the input to the parallel layer in the expanding part, black horizontal arrows in Figure 1) and corresponding feature maps with decreased bandwidth that serve as the input to the following layer of the contracting part (pink arrows oriented down in Figure 1). The decrease in bandwidth imitates pooling of the planar CNNs. Feature maps of the same bandwidth are computed as convolution of signals/feature maps transformed into spectral domain and kernels, represented with ZH coefficients, as in Eq. 5, followed by Rectified Linear Unit (ReLU) activation function. These feature maps are further transformed into spectral domain with decreased bandwidth and serves as the input to the following layer of the contracting part. Each layer of the expanding part learns up-sampling of the feature maps which serve as the input to the following layer in the expanding chain or as the final inference. In general, as input, it receives the feature maps from the parallel layer of the contracting part, if such layer exists (black horizontal arrows in Figure 1) and the feature maps estimated by the previous layer of the expanding part (turquoise arrows oriented up in Figure 1). Transposed convolution in planar CNN simply corresponds to the insertion of zeros between points and convolution with kernels. We have implemented the transposed convolution as follows -Let N i be the number of sampling points of the input feature maps of layer i with bandwidth L i max determined according to inequality 2. -To up-sample the feature maps from layer i to layer i -1 to have bandwidth

L (i-1)
max , we first generate N i-1 sampling points using Q-space sampling tool [START_REF] Caruyer | Design of multishell sampling schemes with uniform coverage in diffusion MRI[END_REF] and compute the corresponding basis Y as in Eq. 6.

-Since Q-space sampling points are generated incrementally, positions of the points of the layer i correspond to the first N i points of the sampling scheme of the layer i -1, so inserted zeros correspond to the last N i-1 -N i points. -Up-sampled SH coefficients are computed as ŝi-1 = Y T :,1:Ni s i , where :, 1 : N i refers to the cropping of the matrix Y T to N i columns.

-Convolution of the up-sampled signals and kernels is performed as in Eq. 5

followed by an activation function. We used in our experiments two types of datasets, real data from Human Connectome Project (HCP) [START_REF] Van Essen | The WU-Minn human connectome project: an overview[END_REF] (referred to as Real dataset) and synthetic data generated from the same real HCP scans using multi-fiber ball and stick biophysical model [START_REF] Behrens | Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?[END_REF] following the procedure described in [START_REF] Wilkins | Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values[END_REF]. Real data was acquired on Siemens 3T Skyra system with 100 mT /m gradient, over three shells with b-values of 1000, 2000 and 3000 s/mm 2 , each with 90 gradient directions and 18 b = 0 images at resolution 1.25x1.25x1.25 mm 3 . To generate synthetic data, first, up to three fiber orientations and corresponding volume fractions were estimated per voxel using the bedpostx tool from the FSL library [START_REF] Smith | Advances in functional and structural MR image analysis and implementation as FSL[END_REF]. These parameters were then used to generate synthetic data using the multi-fiber ball and stick model as in [START_REF] Wilkins | Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values[END_REF] for each shell independently. In the generation process, the free diffusivity coefficients are set to {0.68, 0.96, 2.25} • 10 -3 s/mm 2 for the white matter, gray matter and cerebrospinal fluid, respectively [START_REF] Wilkins | Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values[END_REF]. Single-fiber tensor's eigenvalues are set to {λ 1 , λ 2 , λ 3 } = {1.7, 0.17, 0.17} • 10 -3 s/mm 2 [START_REF] Wilkins | Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values[END_REF].

To simulate more realistic dMRI data, Rician noise with SNR=18 was added to the synthesized data. In addition, in order to investigate the robustness of the compared methods, one synthetic dataset is generated with the constant diffusion single-fiber tensor eigenvalues (Synthetic dataset 1 ) as in [START_REF] Wilkins | Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values[END_REF] and another one with the eigenvalues taken from the uniform distribution around these values (values taken from the range of ±10%) (Synthetic dataset 2 ). Experiments are conducted on Real dataset, Synthetic dataset 1 and Synthetic dataset 2 with downsampled acquisition schemes. To select relevant white matter voxels, we used brain tissue segmentation computed from T1w images using the FAST al-gorithm [START_REF] Zhang | Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[END_REF] implemented in the mrtrix library [START_REF] Tournier | MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation[END_REF]. Gold standard fODFs, of SH degree 8, were estimated using the multi-shell multi-color constrained spherical deconvolution (MSMT-CSD) approach [START_REF] Jeurissen | Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data[END_REF], on signals acquired on full sampling scheme, using mrtrix library [START_REF] Tournier | MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation[END_REF]. In the case of synthetic data, fODFs were estimated on the noise-less data. We used 50 subjects in total, 30 for training, 10 for validation and 10 for testing.

Experiments and implementation details

In order to evaluate our method on data similar to those used in clinical practice, experiments are performed on data with significantly reduced number of sampling points N p (20, 30, 40, 60, 90 and 120 in total for the three shells). We compared our method with another deep learning approach -3DCNN [START_REF] Lin | Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network[END_REF] and with MSMT-CSD [START_REF] Jeurissen | Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data[END_REF]. To investigate importance of neighbourhood information, our model is trained with single voxel multi-shell (S [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF]. Models are trained over 100 epochs. In each epoch, 3 dMRI samples are randomly selected from 30 training samples. For both models loss function is defined as mean square error (MSE) between estimated and gold standard fODFs represented in spectral domain. Initial learning rate is 0.001 and after 50 epochs it is reduced to 0.0001. Model weights updates are computed using the Adam optimization algorithm [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF].

Results and conclusions

Results are compared quantitatively in terms of MSE and mean angular error (MAE) for single fiber voxels and voxels containing two crossing fibers. To compute peaks of the estimated and gold standard fODFs we used the mrtrix library [START_REF] Tournier | MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation[END_REF] and the threshold of 0.1 of the highest peak is used to eliminate spurious fibers. In Figure 2 we can see that our models S 2 U -net 3×3×3 achieve significantly lower MSE compared to the models that do not use neighbouring information and slightly, but consistently lower MSE compared to 3DCN N . In addition, almost equal performance can be achieved with a more compact model -S 2 U -net 3×3×3 s . In Figure 3 we can notice that for single fiber voxels and real dataset, MAE is almost equal to the one achieved with MSMT-CSD, however the results obtained on synthetic data indicate that our approach is more robust to noise. As depicted in Figure 3, S 2 U -net 3×3×3 and S 2 U -net 3×3×3 s achieve lower MAE in voxels with crossing fibers. Qualitative comparison of MSMT-CSD, 3DCNN and S 2 U -net 3×3×3 is provided in Figure 4 for 60 sampling points. We can notice that MSMT-CSD compared to the 3DCNN and S 2 U -net 3×3×3 is more prone to produce spurious fibers, while these deep learning approaches are more likely to omit some. In this work we have proposed a deep learning method that is adjusted to the properties of dMRI signals, namely real and spherical nature of the signals, antipodal symmetry, random distribution of the sampling points and axial symmetry of signals coming from individual fibers. We have demonstrated that the proposed method is suitable for high resolution inference such as the estimation of the fODFs and can successfully incorporate neighbouring information to boost its performance. Compared with the 3DCNN, the method is capable to produce better fODF estimates even with a significantly reduced number of parameters. Results obtained on synthetic data indicate a better robustness with respect to noise. 
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 1 Fig. 1. Illustration of a spherical U-net architecture with corresponding convolutional operations in contracting and expanding parts
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 2 Fig. 2. Comparison of MSE averaged over 10 testing subjects for real HCP dataset, Synthetic dataset 1 and Synthetic dataset 2 for different number of sampling points.
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 34 Fig. 3. Comparison of MAE averaged over 10 testing subjects for real HCP dataset, Synthetic dataset 1 and Synthetic dataset 2 for different number of sampling points for voxels containing single fibers (upper three sub-figures) and voxels containing two crossing fibers (lower three sub-figures)
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 1 2 U -net 1×1×1 ) signals and with 3 × 3 × 3 neighbourhood multi-shell input (S 2 U -net3×3×3 ), what is also the case with the 3DCNN model. In addition, to investigate potential of our approach, we trained one model with significantly lower number of trainable parameters -S 2 U -net 3×3×3 s . Sizes of the deep learning networks are given in Table1. Both deep learning approaches are implemented using the tensorflow library Sizes of 3DCN N s and S 2 U -nets (MB) for Np sampling points.

	Model / Np	20	30	40	60	90 120
	3DCN N	18.12 18.12 18.12 18.96 20.18 20.18
	S 2 U -net 1×1×1 15.65 15.65 15.65 19.30 20.52 20.52
	S 2 U -net 3×3×3 s	3.99 3.99 3.99 4.89 5.17 5.17
	S 2 U -net 3×3×3 15.80 15.80 15.80 19.42 20.60 20.60