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Abstract. Diffusion Magnetic Resonance Imaging (dMRI) is an imag-
ing technique which enables analysis of the brain tissue at a microscopic
scale, particularly the analysis of white matter. Given a high enough an-
gular resolution, a common way to explain the measured signal is via
fiber orientation distribution function (fODF). This function describes
the orientation and volume fraction of axon bundles within each voxel
and is an essential ingredient of tractography. In this work, we have in-
vestigated a deep learning approach for the fODF estimation. U-nets
enable fast and high resolution inference by combining multi-scale fea-
tures from contracting and expanding parts of the network. As dMRI
signals are most commonly acquired on spheres, we propose a spherical
U-net which is adjusted to the properties of the dMRI data, namely its
real nature, antipodal symmetry, uniform sampling and axial symmetry
of the signals corresponding to individual fibers. We compared our model
with another deep learning approach based on a 3D convolutional neural
network and a state-of-the-art approach - multi-shell multi-tissue con-
strained spherical deconvolution, on real data from Human Connectome
Project and synthetic data generated using ball and stick model. The
methods are compared in terms of mean square error and mean angular
error for dMRI signals of different angular resolutions. Provided quan-
titative analyses show improved performance with our approach even
with significantly reduced number of parameters and results obtained on
synthetic data indicate its robustness with respect to noise. Qualitative
results illustrating the performance of the methods are also presented.

Keywords: diffusion MRI · fiber orientation distribution function · spher-
ical U-net

1 Introduction

Diffusion MRI is an imaging modality tailored to capture interactions of diffus-
ing water molecules with surrounding micro-structures within examined tissue.
As such, it has shown importance in neuroimaging, particularly in the analysis
of white matter micro-structures . It opened the possibility to examine proper-
ties of axon bundles such as orientation, volume fraction, dispersion, etc. Models
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proposed to explain the dMRI signals have evolved with the improvement of the
acquisition process. Initially, in Diffusion Tensor Imaging [1], axon bundles were
described via diffusion tensors [2]. With the increase of dMRI angular resolution,
more informative models have been proposed, specifically in voxels containing
crossing or kissing fibers, fiber fanning or bending. A number of these mod-
els include estimation of probability density functions (PDF) such as Ensemble
Average Propagator (EAP) [3,4] describing average relative spin displacements,
diffusion Orientation Distribution Function (dODF) [5,6] and fiber Orientation
Distribution Function (fODF) [7,8,9]. These voxel-wise quantities opened the
possibility of tracking white matter pathways - tractography [10], a process of a
great potential in the analysis of brain structural connectivity [11].
The fODF is a spherical PDF that reveals orientations and volumes of the un-
derlying axon bundles. Traditional methods include estimation of a single fiber
response function that is deconvolved from the dMRI signal in order to obtain
the fODF [7,8,9].
Recently, a 3D convolutional neural network (3DCNN) directly applied on spher-
ical harmonic (SH) coefficients has been proposed for the fast estimation of
fODFs [12]. In [13], for the same problem, residual CNN (ResCNN) and dense
neural network (ResDNN) have been investigated. In both works, potential of
the models has been demonstrated for significantly downsampled acquisition
sampling schemes, what is often a requirement in clinical applications.
U-nets have shown potential in high resolution inference from planar data by
combining multi-scale features from contracting and expanding parts of the net-
work [14]. As sampling of dMRI signals is most commonly performed on spheres,
all building blocks of U-net need to be adjusted to the properties of spherical
signals. Recently, in [15], a spherical U-net has been proposed for the cortical
surface parcellation and prediction of attribute maps, with convolutions, pooling
and transposed convolutions adjusted to the spherical space. A neural network
model, similar to the planar CNN, for the analysis of spherical data - spherical
CNN (S2CNN) has been introduced in [16], where, contrary to [15], in order
to avoid computationally expensive interpolations, convolutions of signals and
kernels are performed in spectral domain. Similar approach has been developed
in [17], where a significant speed up of convolutions has been achieved with zonal
kernels.
In this work, we have addressed the problem of the fODF estimation from dMRI
data acquired with significantly downsampled acquisition schemes. Exploiting
the properties of the U-net and S2CNN , we propose a voxel-wise spherical U-
net, that is tailored to the properties of dMRI signals acquired on spheres, namely
real nature, uniform distribution of samples, antipodal and axial symmetry of
the signals generated by individual fibers.

2 Background and method

The main operations in U-nets are convolutions, pooling, and transposed con-
volutions. While the convolution of equidistantly discretized planar signals with
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kernels is well defined, convolution between S2 signals and kernels faces two
challenges. First of all, the operation analogue to the translation in Euclidean
space during convolution is not a rotation in S2 space, but in the SO(3) man-
ifold. Secondly, the discretization of signals in Euclidean space is usually done
in an equidistant manner, what cannot be achieved in S2 domain. An interpola-
tion must therefore be performed for each step of convolution. These problems
are addressed in the work presented in [16] where the spherical CNN - S2CNN
has been introduced. In this framework, to avoid the computationally expensive
interpolations, convolutions of S2 and SO(3) signals and kernels are performed
in spectral domain, and as in standard CNNs, activation function is applied in
signal domain. Furthermore, to achieve the same effect as pooling, in each new
layer, the bandwidth of the input signal is reduced and the support of the kernel
is spread. In [17], additional speed up has been achieved by constraining kernels
to be zonal. As a consequence, the convolution can be more efficiently performed
in S2. In this work, we propose a spherical U-net with convolutional building
blocks from [16,17] adjusted to the properties of dMRI data.
Given the antipodal symmetry of the dMRI signals, we use only the SH basis of
even degree for their representation. A signal s : (θ, φ)→ R can be written as

s(θ, φ) =

Lmax∑
l=0

m=l∑
m=−l

ŝml Y
m
l (θ, φ), for l ∈ {0, 2, ..., Lmax} (1)

where θ and φ are inclination and azimuth angles, Y m
l (θ, φ) are SH basis of

order m and degree l, and ŝml are the corresponding SH coefficients. Lmax is the
signal’s bandwidth determined as

N ≥ (Lmax + 1)(Lmax + 2)/2 (2)

where N is the number of sampling points. In addition, as dMRI signals are real,
we reduce computational complexity by using the real SH basis

Ylm =


√

2(−1)mIm[Y
|m|
l ] if m < 0

Y 0
l if m = 0√
2(−1)mRe[Y m

l ] if m > 0

. (3)

Consequently, spherical kernels are also real and antipodally symmetric. Another
important property of dMRI signals is the axial symmetry of the signals coming
from individual axon bundles. This motivated us to use kernels that are axially
symmetric around z axis - zonal kernels and in this way promote an axon bundle-
wise feature extraction. Zonal kernels have been introduced in [17] in order to
decrease the computational complexity imposed by performing convolutions of
SO(3) signals and kernels as in [16]. Given this, kernel h : (θ) → R can be
represented as a linear combination of zonal harmonics (ZH) as

h(θ) =

Lmax∑
l=0

ĥlY
0
l (θ, 0), for l ∈ {0, 2, ..., Lmax}. (4)
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This significantly simplifies convolution between signals and kernels, as the re-
sulting signal is no longer in SO(3) manifold, but in S2 space. In addition,
since the number of ZHs necessary to represent such kernels is rather small -
Lmax/2 + 1, we used directly ZH coefficients as trainable parameters as it was
initially introduced in [17]. Convolution between a signal s : (θ, φ) → R and an

axially symmetric kernel h : (θ)→ R, represented with ZH coefficients ĥl can be
written as

c(θ, φ) =

Lmax∑
l=0

ĥl

m=l∑
m=−l

ŝml Y
m
l (θ, φ), for l ∈ {0, 2, ..., Lmax}. (5)

As we are dealing with discrete signals, Eq. 1 can be simply written as matrix-
vector product as s = Y ŝ, where Y contains SH basis Y m

l (θk, φk) in columns,
sampled at the angles (θk, φk), ŝ are corresponding SH coefficients and s is a
discrete spherical signal. Although the discretization of the band-limited planar
signals without information loss is well defined with Nyquist-Shannon sampling
theorem and their transformation to spectral domain is trivial, discretization of
the spherical signals and calculation/estimation of SH coefficients is a challenging
task. Sampling theorem for band-limited spherical signals has been introduced
in the work of Driscoll and Healy [18], where they have defined an equiangular
sampling grid that guarantees information preservation and calculation of SH
coefficients. The total number of required samples is N = 4(Lmax + 1)2. Given a
signal sampled on Driscoll-Heally grid, s : (θk, φk)→ R and SH basis discretized
in the same way in a matrix Y , calculation of SH coefficients can be simply writ-
ten as ŝ = WY Hs, where H refers to conjugate transpose and W are quadrature
weights necessary to account for the basis orthogonality loss due to discretiza-
tion. This sampling is quite excessive and given a real world situation where a
signal is not completely band-limited and is affected by noise, signal segments
around poles that are oversampled would be more accurately represented. Due
to this, sampling on a sphere is, in general, application dependent and dMRI
signals are usually sampled uniformly over multiple shells in a way that an opti-
mal angular coverage is achieved [28]. As a consequence, some information can
be lost and several methods for the estimation of SH coefficients have been pro-
posed [19,20,21]. In this work, we have used Gram-Schmidt orthonormalization
process to estimate the basis Y ′ for the transformation of S2 signals into spectral
domain, similarly as introduced by Yeo [19]. This is performed in an iterative
manner, if yi and y′i correspond to i− th columns of Y and Y ′, respectively, y′i
are determined as follows:

y′i = yi −
i−1∑
j=0

〈yi, y′j〉
〈y′j , y′j〉

y′j , y′i =
y′i
||y′i||2

. (6)

where y′0 = y0. In this iterative process, as we start from basis that correspond
to lower frequencies, more importance is given to them. This is convenient as
we know that aliasing affects higher frequencies. In order to avoid bias due to
ordering of the basis, Gram-Schmidt process is repeated multiple times, each



dMRI spherical U-net 5

time randomly shuffling the order of the basis of the same degree, which are at
the end averaged. SH coefficients are simply estimated as ŝ = Y ′Ts.

Voxel-wise spherical U-net Figure 1 depicts an illustration of the proposed
spherical U-net. Input to the U-net is composed of n3·nshells discrete S2 channels,
where n is the size of neighbourhood and nshells is the number of dMRI shells.
Output corresponds to the SH coefficients of the estimated fODF. We refer
to the results of (transposed) convolution of input S2 signals and zonal kernels,
followed by activation function, as feature maps, which are sampled at uniformly
distributed points on sphere, generated using Q-sampling tool [28]. The network
is composed of contracting and expanding parts. Each layer of the contracting
part extracts feature maps that are of the same bandwidth as its input (that
is used as a part of the input to the parallel layer in the expanding part, black
horizontal arrows in Figure 1) and corresponding feature maps with decreased
bandwidth that serve as the input to the following layer of the contracting part
(pink arrows oriented down in Figure 1). The decrease in bandwidth imitates
pooling of the planar CNNs. Feature maps of the same bandwidth are computed
as convolution of signals/feature maps transformed into spectral domain and
kernels, represented with ZH coefficients, as in Eq. 5, followed by Rectified Linear
Unit (ReLU) activation function. These feature maps are further transformed
into spectral domain with decreased bandwidth and serves as the input to the
following layer of the contracting part. Each layer of the expanding part learns
up-sampling of the feature maps which serve as the input to the following layer
in the expanding chain or as the final inference. In general, as input, it receives
the feature maps from the parallel layer of the contracting part, if such layer
exists (black horizontal arrows in Figure 1) and the feature maps estimated by
the previous layer of the expanding part (turquoise arrows oriented up in Figure
1). Transposed convolution in planar CNN simply corresponds to the insertion
of zeros between points and convolution with kernels. We have implemented the
transposed convolution as follows

– Let Ni be the number of sampling points of the input feature maps of layer
i with bandwidth Li

max determined according to inequality 2.

– To up-sample the feature maps from layer i to layer i−1 to have bandwidth

L
(i−1)
max , we first generate Ni−1 sampling points using Q-space sampling tool

[28] and compute the corresponding basis Y ′ as in Eq. 6.

– Since Q-space sampling points are generated incrementally, positions of the
points of the layer i correspond to the first Ni points of the sampling scheme
of the layer i− 1, so inserted zeros correspond to the last Ni−1 −Ni points.

– Up-sampled SH coefficients are computed as ŝi−1 = Y ′T:,1:Ni
si, where :, 1 : Ni

refers to the cropping of the matrix Y ′T to Ni columns.

– Convolution of the up-sampled signals and kernels is performed as in Eq. 5
followed by an activation function.



6 S. Sedlar et al.

 

Conv (eq. 5 ) +ReLU 

 Upsampling + FT + conv (eq. 5) + ReLU   

+ FT
+ FT 

concatenation 

fODF

Lmax
fODF

Lmax
1

nfm
1(c)

+nfm
1 (e)

nfm
0

nfm
1( c)

Lmax
1

nfm
2(c )

+ nfm
2(e)

Lmax
2

nch

1

Lmax
3

nfm
3( c)

+nfm
3 (e)

nfm
4 ( e)

Lmax
4

nfm
4 ( c)

Lmax
4

Lmax
2

nfm
2(c)

Lmax
3

nfm
3(c)

⋰

dMRI signals
3 shells 

n×n×n

1

2

nch=n
3
⋅nshells

Fourier
transform

(FT)

Lowpass + Conv (eq. 5 ) +ReLU 

nch number of input channels 
nfm
i (c)

/n fm
i (e ) number of feature maps in ith layer

of contracting and expanding parts
Lmax
i signal/feature map bandwidth in ith layer

nshells number of dMRI shells 
input neighborhood size 

n×n×n

Fig. 1. Illustration of a spherical U-net architecture with corresponding convolutional
operations in contracting and expanding parts

3 Dataset

We used in our experiments two types of datasets, real data from Human Con-
nectome Project (HCP) [22] (referred to as Real dataset) and synthetic data gen-
erated from the same real HCP scans using multi-fiber ball and stick biophysical
model [23] following the procedure described in [24]. Real data was acquired
on Siemens 3T Skyra system with 100 mT /m gradient, over three shells with
b-values of 1000, 2000 and 3000 s/mm2, each with 90 gradient directions and
18 b = 0 images at resolution 1.25x1.25x1.25 mm3. To generate synthetic data,
first, up to three fiber orientations and corresponding volume fractions were
estimated per voxel using the bedpostx tool from the FSL library [25]. These
parameters were then used to generate synthetic data using the multi-fiber ball
and stick model as in [24] for each shell independently. In the generation process,
the free diffusivity coefficients are set to {0.68, 0.96, 2.25} · 10−3s/mm2 for the
white matter, gray matter and cerebrospinal fluid, respectively [24]. Single-fiber
tensor’s eigenvalues are set to {λ1, λ2, λ3} = {1.7, 0.17, 0.17} · 10−3s/mm2 [24].
To simulate more realistic dMRI data, Rician noise with SNR=18 was added to
the synthesized data. In addition, in order to investigate the robustness of the
compared methods, one synthetic dataset is generated with the constant diffu-
sion single-fiber tensor eigenvalues (Synthetic dataset 1 ) as in [24] and another
one with the eigenvalues taken from the uniform distribution around these val-
ues (values taken from the range of ±10%) (Synthetic dataset 2 ). Experiments
are conducted on Real dataset, Synthetic dataset 1 and Synthetic dataset 2 with
downsampled acquisition schemes. To select relevant white matter voxels, we
used brain tissue segmentation computed from T1w images using the FAST al-
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gorithm [26] implemented in the mrtrix library [27]. Gold standard fODFs, of SH
degree 8, were estimated using the multi-shell multi-color constrained spherical
deconvolution (MSMT-CSD) approach [9], on signals acquired on full sampling
scheme, using mrtrix library [27]. In the case of synthetic data, fODFs were es-
timated on the noise-less data. We used 50 subjects in total, 30 for training, 10
for validation and 10 for testing.

4 Experiments and implementation details

In order to evaluate our method on data similar to those used in clinical prac-
tice, experiments are performed on data with significantly reduced number of
sampling points Np (20, 30, 40, 60, 90 and 120 in total for the three shells). We
compared our method with another deep learning approach - 3DCNN [12] and
with MSMT-CSD [9]. To investigate importance of neighbourhood information,
our model is trained with single voxel multi-shell (S2U -net1×1×1) signals and
with 3 × 3 × 3 neighbourhood multi-shell input (S2U -net3×3×3), what is also
the case with the 3DCNN model. In addition, to investigate potential of our
approach, we trained one model with significantly lower number of trainable pa-
rameters - S2U -net3×3×3s . Sizes of the deep learning networks are given in Table
1. Both deep learning approaches are implemented using the tensorflow library

Table 1. Sizes of 3DCNNs and S2U -nets (MB) for Np sampling points.

Model / Np 20 30 40 60 90 120

3DCNN 18.12 18.12 18.12 18.96 20.18 20.18
S2U-net1×1×1 15.65 15.65 15.65 19.30 20.52 20.52
S2U-net3×3×3

s 3.99 3.99 3.99 4.89 5.17 5.17
S2U-net3×3×3 15.80 15.80 15.80 19.42 20.60 20.60

[29]. Models are trained over 100 epochs. In each epoch, 3 dMRI samples are
randomly selected from 30 training samples. For both models loss function is de-
fined as mean square error (MSE) between estimated and gold standard fODFs
represented in spectral domain. Initial learning rate is 0.001 and after 50 epochs
it is reduced to 0.0001. Model weights updates are computed using the Adam
optimization algorithm [30].

5 Results and conclusions

Results are compared quantitatively in terms of MSE and mean angular er-
ror (MAE) for single fiber voxels and voxels containing two crossing fibers. To
compute peaks of the estimated and gold standard fODFs we used the mrtrix
library [27] and the threshold of 0.1 of the highest peak is used to eliminate
spurious fibers. In Figure 2 we can see that our models S2U -net3×3×3 achieve
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significantly lower MSE compared to the models that do not use neighbouring
information and slightly, but consistently lower MSE compared to 3DCNN . In
addition, almost equal performance can be achieved with a more compact model
- S2U -net3×3×3s . In Figure 3 we can notice that for single fiber voxels and real
dataset, MAE is almost equal to the one achieved with MSMT-CSD, however
the results obtained on synthetic data indicate that our approach is more ro-
bust to noise. As depicted in Figure 3, S2U -net3×3×3 and S2U -net3×3×3s achieve
lower MAE in voxels with crossing fibers. Qualitative comparison of MSMT-
CSD, 3DCNN and S2U -net3×3×3 is provided in Figure 4 for 60 sampling points.
We can notice that MSMT-CSD compared to the 3DCNN and S2U -net3×3×3 is
more prone to produce spurious fibers, while these deep learning approaches are
more likely to omit some.

Fig. 2. Comparison of MSE averaged over 10 testing subjects for real HCP dataset,
Synthetic dataset 1 and Synthetic dataset 2 for different number of sampling points.

In this work we have proposed a deep learning method that is adjusted to
the properties of dMRI signals, namely real and spherical nature of the signals,
antipodal symmetry, random distribution of the sampling points and axial sym-
metry of signals coming from individual fibers. We have demonstrated that the
proposed method is suitable for high resolution inference such as the estimation
of the fODFs and can successfully incorporate neighbouring information to boost
its performance. Compared with the 3DCNN, the method is capable to produce
better fODF estimates even with a significantly reduced number of parameters.
Results obtained on synthetic data indicate a better robustness with respect to
noise.



dMRI spherical U-net 9

Fig. 3. Comparison of MAE averaged over 10 testing subjects for real HCP dataset,
Synthetic dataset 1 and Synthetic dataset 2 for different number of sampling points
for voxels containing single fibers (upper three sub-figures) and voxels containing two
crossing fibers (lower three sub-figures)
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Fig. 4. Illustration of fODF gold standard and estimates obtained using MSMT-CSD,
3DCNN and S2U -net3×3×3 with angular resolution decreased to 60 points in total for
the three shells. Sub-figures a), e) and i) correspond to the gold standard fODFs for real
HCP dataset, Synthetic dataset 1 and Synthetic dataset 2, respectively. Sub-figures b),
f) and j) correspond to the fODF estimates obtained using MSMT-CSD; sub-figures
c), g) and k) using 3DCNN and sub-figures d), h) and l) correspond to the fODF
estimation with S2U -net3×3×3
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