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ABSTRACT

The authors have investigated the possibility of elaborating a new generation of radiative transfer models for
climate studies based on the neural network technique. The authors show that their neural network–based model,
NeuroFlux, can be used successfully for accurately deriving the longwave radiative budget from the top of the
atmosphere to the surface. The reliable sampling of the earth’s atmospheric situations in the new version of the
TIGR (Thermodynamic Initial Guess Retrieval) dataset, developed at the Laboratoire de Météorologie Dyna-
mique, allows for an efficient learning of the neural networks. Two radiative transfer models are applied to the
computation of the radiative part of the dataset: a line-by-line model and a band model. These results have been
used to infer the parameters of two neural network–based radiative transfer codes. Both of them achieve an
accuracy comparable to, if not better than, the current general circulation model radiative transfer codes, and
they are much faster. The dramatic saving of computing time based on the neural network technique (22 times
faster compared with the band model), 106 times faster compared with the line-by-line model, allows for an
improved estimation of the longwave radiative properties of the atmosphere in general circulation model sim-
ulations.

1. Introduction

Knowledge of the radiative properties of the atmo-
sphere is fundamental for an improved understanding
of the processes that influence the earth’s climate and
can modulate its variations. Although important prog-
ress has been made since satellite-borne instruments,
such as the earth radiation budget instruments, and has
provided spectrally integrated observations of the ra-
diative budget at the top of the atmosphere (TOA), dra-
matic uncertainties remain concerning the extent to
which clouds, water vapor, and other minor absorbing
gases act to modify the greenhouse effect of the earth’s
atmosphere and to feedback on the earth’s climate. Fur-
ther progress toward answering those questions requires
the understanding of the couplings between the ther-
modynamic structure of the atmosphere and the local-
ization of the radiative energy sources and sinks within
it. Up to now, the need for rapid codes to deal with
global and long-term datasets appeared to be somewhat
inconsistent with the accuracy needed for climate stud-
ies. As a matter of fact, accurate modeling of the at-
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mospheric radiative processes requires line-by-line
models, and so, because they consume so much com-
puting time, cannot be used for climate (global, long
term) simulations. For these reasons, numerous, highly
parameterized radiative transfer schemes have been de-
veloped. The restricted accuracy of these schemes has
been demonstrated to have important consequences on
the sensitivity studies of climate models to various forc-
ings. This is the case for carbon dioxide doubling ex-
periments in which the scattering of the radiative sim-
ulations obtained by several general circulation models
prevents a clear understanding of the radiative impact
of this greenhouse gas on the earth’s climate (Cess et
al. 1993), even though this is not an intrinsic limitation
of all such schemes. In spite of these weaknesses in the
parameterizations, the radiative computational burden
still remains high. As a consequence, the temporal res-
olution of the radiative fluxes diurnal cycle in the sim-
ulations is often degraded. For instance, the longwave
radiative code requires 10% of the computing time in
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) general circulation model and 18% in
the climate model at Laboratoire de Météorologie Dy-
namique (LMD) (Sadourny and Laval 1984), although
the radiative variables in both models are not initialized
at every time step. It is recognized (e.g., Wilson and
Mitchell 1986) that failure to resolve the diurnal cycle
adequately can lead to a degradation of the general cir-
culation model simulations. Faster and accurate radia-
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FIG. 1. An example of a single-hidden-layer neural network. The
spheres symbolize the neurons.

tive codes are the key to a better account of the diurnal
cycle.

Statistical methods draw interesting prospects to solve
this contradiction between speed and accuracy. In this
paper we present a fast and accurate method for the
computation of longwave flux profiles for clear as well
as cloudy situations. The scheme, hereafter referred to
as ‘‘NeuroFlux,’’ is based on a neural network tech-
nique—the multilayer perceptron (MLP), as defined by
Rumelhart et al. (1986). The next section is devoted to
a brief description of the MLP. In section 3 we review
the radiative transfer equations for longwave fluxes in
clear and cloudy atmospheres and describe the features
of the neural network–based radiative transfer scheme.
In section 4 we present the setup of the datasets on which
the parameters of the neural networks are inferred. Sec-
tion 5 presents the results of flux calculations with
NeuroFlux.

2. The multilayer perceptron

Neural network techniques, among others, allow us
to reduce the number of calculations contained in a func-
tion f : A → B, where A , Rn and B , Rm, by ap-
proximating f with a parameterized function g:

g: A → B

x → y 5 g(u, x). (1)

The parameters are gathered in vector u ∈ Rp and
are called ‘‘synaptic weights.’’

These statistical methods have proved their ability to
deal with nonlinear problems, in particular the MLP, as
defined by Rumelhart et al. (1986). The MLP relies on
processors, called ‘‘formal neurons’’ or ‘‘neurons’’ with
reference to the biological analogy. A neuron computes
a weighted sum of its inputs and transfers this signal
through a sigmoidal function (here the hyperbolic tan-
gent). The weights are the parameters in vector u. The
neurons are gathered in layers. One or more ‘‘hidden’’
layers of neurons may be introduced between the input
layer and the output layer. Figure 1 shows an example
of a single-hidden-layer network. Each neuron of layer
k receives information from the previous layer k 2 1.
Information from the input layer (layer 0) is propagated

to the output layer (the last layer) through the hidden
layer (if any). All of the neural networks used here have
a single hidden layer. The nonlinear response of a neuron
to its inputs, due to the sigmoidal function, allows for
the nonlinear fitting of the function parameterized by
the neural network. The error introduced by the use of
g instead of f depends on the distance of f to the allowed
functions g on B. Given a norm \ · \ on B and given z,
the maximum error that we tolerate, we want:

∃u ∈ Rp, ∀x ∈ A, \ f (x) 2 g(u, x)\ , z. (2)

The learning phase is devoted to the optimization of
the MLP. That is, according to the representativity of
the learning set, the algorithm selects a vector u among
all of the possible u’s. The so-called back-propagation
algorithm enables us to derive the parameters in an it-
erative way. This method minimizes the quadratic error
between the function computed by the network g and
the function to be approximated f for a set of patterns
for which inputs and ouputs are known—the ‘‘learning
set.’’

3. A neural network model for the longwave
radiative transfer

a. Longwave radiative transfer equations

We restrict ourselves to longwave (LW) radiative
transfer modeling. The formal solution of the radiative
transfer equation for a stratified cloudless atmosphere
in local thermodynamic equilibrium is

11

↑F (P) 5 p m dm dnE E
21 n

↑3 I (P , m)t (P , P, m)n 0 n 0[
P ]t (P9, P, m)n1 B (T ) dP9 (3)E n P9 ]]P9P0

and
11

↓F (P) 5 p m dm dnE E
21 n

P ]t (P9, P, m)n3 B (T ) dP9, (4)E n P9 ]P90

where F↑(P) (F↓(P)) is the upward (downward) radi-
ative flux at the pressure level P, integrated over the
longwave spectrum; (P, m) is the monochromatic ra-↑I n

diance of frequency n at pressure level P, propagating
in a direction such that m is the cosine of the zenith
angle; P0 is the pressure at the surface; n is the fre-
quency; Bn(TP) is the Planck function at temperature TP

at pressure level P; and t n(P9, P, m) is the monochro-
matic flux transmittance for isotropic radiation between
the levels of pressure P and P9. By introducing the
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TABLE 1. The 20 pressure levels used for radiative computations.

Level
Pressure

(hPa) Level
Pressure

(hPa)

19
18
17
16
15
14
13
12
11
10

0.0
20.0
40.0
60.8
86.2

119.7
163.6
219.2
286.8
365.4

9
8
7
6
5
4
3
2
1
0

453.1
546.7
642.4
735.3
820.4
892.8
948.5
985.6

1005.2
1013.0

monochromatic surface emissivity , the surface radi-sen

ative emission may be expressed by

(P0, m) 5 Bn(us) 1 (1 2 ) (P0, m).↑ s s ↓I e e In n n n (5)

We divide the atmosphere into N plane-parallel layers
from the surface to the TOA. The bottom layer is layer
1 and the top layer is layer N. Following the graybody
approximation (Stephens 1978), we describe the cloud-
iness in a layer k with its horizontal coverage of the
grid box nk and its longwave emissivity ek. The only
assumptions required are that clouds do not reflect in
the longwave and fill the model layer in the vertical.

When (nkek 5 1) in a layer k and (nle l 5 0) in the
other layers, l ± k, the only cloud in the grid box is a
black cloud (ek 5 1) in layer k, and it completely covers
the grid box (nk 5 1). In this case the vertical upward
(downward) fluxes on level i above (below) the black
cloud in layer k can be expressed as

11

↑F (P ) 5 p m dm dnk i E E
21 n

3 B (T )t (P , P, m)n P n kk[
P ]t (P9, P, m)n1 B (T ) dP9 (6)E n P9 ]]P9Pk

and
11

↓F (P ) 5 p m dm dn B (T )t (P , P, m)k i E E n P n k21k21

21 n

Pk21 ]t (P9, P, m)n1 B (T ) dP9, (7)E n P9 ]P9P

where i ranges from 0 (the surface level) to N (the TOA),
and Pk is the pressure at the top of layer k. The ’s↑F k

( ’s) below (upon) the black cloud are the clear-sky↓F k

fluxes given in (3) and (4).
In the general case, in which the effective emissivity

nkek is measured in a layer k by a number between 0
and 1, we use the probability of a clear line of sight
between the different levels of calculation. This model
of multilayer clouds leads to the following expressions
for the upward and downward fluxes:

↑ ↑F (P ) 5 (1 2 C )F (P )i H,i H i

H21 H

↑1 (1 2 C )F (P ) C (8)O Pk,i k i l,i
k50 l5k11

and
↓ ↓F (P ) 5 (1 2 C )F (P )i i,N J11 i

J11 J

↓1 (1 2 C )F (P ) C , (9)O Pk,i k i l,i
k5i11 l5k21

where H (J) is the index of the highest cloudy layer

below (above) the level of calculation, Ck,i is the prob-
ability of a clear line of sight between the levels k and
i, and (Pi) (Pi) is the upward (downward) flux at↑ ↓F Fk k

pressure level Pi if the only cloud in the atmosphere
was a blackbody in layer k [(6) and (7)]. With this for-
malism, and correspond to the fluxes in the ab-↑ ↓F F0 0

sence of clouds, described in (3) and (4). The Ck,i’s, or
cloud fractional coverages, are functions of the ne’s and
depend on the way the cloudy layers overlap. Three
possibilities are taken into account according to the
structure of the clouds: the overlap may be random,
maximum, or maximum–random (e.g., Harshvardhan et
al. 1987).

b. The scheme

Equations (8) and (9) mean that the LW fluxes in the
presence of multilayer graybodies, F↑ and F↓, can be
deduced from the clear-sky fluxes, and , and from↑ ↓F F0 0

the fluxes in the presence of single-layered black clouds,
and , k . 0. In our approach, the computation of↑ ↓F Fk k

the ’s and ’s, k $ 0, is based on the MLP, whose↑ ↓F Fk k

basic principles are described in section 2. A first neural
network (NN-Clr) computes the clear-sky part of the
longwave fluxes, and . Then a battery of neural↑ ↓F F0 0

networks (the NN-Cld’s) computes the contribution of
every cloudy layer, and , with k . 0. Each neural↑ ↓F Fk k

network among the NN-Cld’s is dedicated to the cal-
culation of the fluxes, either upward or downward, in
the presence of a single black cloud in a specified layer
k. The overall fluxes F↑ and F↓ are then computed ac-
cording to (8) and (9). Thus, if M is the number of
allowed cloudy layers in the model, our radiative code
relies on (1 1 2 3 M) neural networks. In the version
we use, the temperature, water vapor, and ozone con-
centrations are defined in the middle of 19 atmospheric
layers (see Table 1) from the TOA to 1013 hPa. The
cloudiness is described by the effective emissivity pro-
file [(ne) i] i51,M. The surface temperature, the mean CO2

concentration, and the mean longwave surface emissiv-
ity are also inputs to the model. The concentrations of
the minor gases (e.g., N2O and CH4) are set to the mean
current level.

Table 2 describes the neural network architecture. All
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TABLE 2. Architectures of the neural networks in NeuroFlux.

Number of neurons

(a) Clear-sky neural network
Inputs
Hidden layer
Outputs

60
30
40

(b) Cloudy-sky neural networks
Inputs
Hidden layer
Outputs

Between 1 and 58
20

Between 1 and 19

hidden layers are single. NN-Clr uses the 60 inputs de-
scribed in the previous paragraph. The 40 outputs in-
clude 20 upward fluxes and 20 downward fluxes. The
number of inputs and outputs of each one of the (1 1
2M) cloudy networks NN-Cld depends on the position
of the considered cloudy layer and on the kind of flux
computed. For instance, the computation of the down-
ward flux under a black cloud that top arises at 1005
hPa uses only the temperature at 1013 hPa [see Eq. (7)].
Thus, the input number varies between 1 (computation
of the downward flux under a black cloud that top arises
at 1005 hPa) and 58 (computation of the upward flux
above the previous black cloud). Similarly, the output
number varies between 1 and 19.

Note that every neural network can compute quan-
tities of the same form:

11

Q(P, P ) 5 m dm dnb E E
21 n

3 B (T )t (P , P, m)n P n bb[
P ]t (P9, P, m)n1 B (T ) dP9 , (10)E n P9 ]]P9Pb

where P and Pb are the pressures at the boundaries of
a given atmospheric layer.

One neural network would be sufficient for the com-
putation of all of the ’s and the ’s, both clear and↑ ↓F Fk k

cloudy, but the specialization of the neural networks in
our model in selected fields of the computations im-
proves the accuracy of the neural network simulations
because it induces a smaller number of inputs and fewer
parameters to set.

4. Training neural networks

a. The TIGR (Thermodynamic Initial Guess Retrieval)
dataset

It appears from the neural network method (described
in section 2) that the accuracy of our scheme stems from
the statistical characteristics of the training datasets of
neural networks NN-Clr and NN-Clds. The essential
tool for generating them is the TIGR data bank.

The second version of the data bank, TIGR-2 (Achard
1991; Escobar-Munoz 1993), groups together about
1800 atmospheric situations selected from more than
80 000 radiosonde reports collected over 10 years from
all parts of the world.

The selection method is an iterative process. It relies
on a distance DT, which measures the dissimilarity in
the temperature profiles of the atmospheric situations.
During the first step of TIGR-2’s sampling, the first
atmospheric situation in the 80 000 radiosondes is ar-
chived. At step n the nth atmospheric situation is se-
lected if its minimum distance DT to the already archived
situations is greater than an empirically chosen number

. Thus, the unequal distribution of the 80 000 ra-minDT

diosondes over space and time disappeared. TIGR-2 can
be assimilated into an almost regular networking of the
observable atmospheric temperature profiles associated
with their corresponding water vapor and ozone profiles.

The set is classified into quite homogeneous groups
of situations determined from statistical methods, the
five airmass classes: tropical (trop), midlatitude (ml1),
cold temperate and summer polar (ml2), Northern Hemi-
sphere very cold (pol1), and winter polar (pol2) (Achard
1991). TIGR-2 has been used successfully for retrieving
the main thermodynamic parameters from satellite ob-
servations with a physicostatistical approach, the Im-
proved Initialization Inversion (3I) (Chédin et al. 1985),
and with neural networks [Escobar-Munoz et al. (1993),
for the retrieval of temperature profiles, and Cabrera-
Mercader and Staelin (1995), for the retrieval of relative
humidity].

Nevertheless, two limitations in the design of the
TIGR-2 dataset appeared in the framework of the pres-
ent study. First, the profile selection relies only on a
temperature criterion, which does not take care of the
variability of the water vapor profiles. Second, the da-
taset does not contain enough situations with high total
water vapor contents. These are mostly below 4 g cm22,
whereas it has been observed that the water vapor con-
tent can exceed 7 g cm22 in areas such as the warming
pool in the western Pacific. These two limitations are
particularly critical in the tropical class.

b. A new tropical class

TIGR-2’s identified deficiencies mostly impact the
tropical class. We undertook to reshape it. The new trop-
ical class has been established according to the follow-
ing parameters:

R the addition of atmospheric situations inferred from
satellite data to the initial radiosonde dataset using the
3I algorithm and

R a new sampling method that takes the water vapor
profiles into account.

The TIGR-2 dataset is based upon radiosonde reports,
although they do not cover the globe equally. Instru-
ments such as the TIROS-N (Television Infrared Ob-
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FIG. 2. Histograms (40 classes) of the total water vapor contents of the situations in the TIGR-3 tropical class (left) and in
the TIGR-2 tropical class (right).

FIG. 3. (Top) TIGR-2’s tropical class and (bottom) TIGR-3’s tropi-
cal class on a Rossby diagram.

servation Satellite) Operational Vertical Sounder
(TOVS) aboard the National Oceanic and Atmospheric
Administration (NOAA) polar-orbiting satellites have
far better coverage. Traveling through all latitudes and
longitudes, TOVS’s are able to observe the properties
of the atmosphere over areas poorly described by ra-
diosondes (sparsely populated lands or oceans). The 3I
algorithm is designed to retrieve the temperature profile,

layered water vapor contents, surface characteristics,
and cloud properties from TOVS-observed radiances.
The 3I algorithm has been used for the analysis of a
multiyear archive of TOVS satellite data in the frame-
work of the NOAA/National Aeronautical and Space
Administration (NASA) Pathfinder program (Scott et al.
1996). The output products for the morning path during
July 1987, January 1988, and July 1989 were extracted
from our in-house archive. Only the temperature and
water vapor information were used from the TOVS 3I-
retrieved variables.

To design the new tropical class, we first merged two
datasets: the 30 000 atmospheric situations of tropical
type among the 80 000 radiosonde reports and the trop-
ical-type 3I retrievals extracted from the archive for the
three months mentioned above. More than 500 000 trop-
ical situations were collected. We then developed an
iterative method to sample the resulting set (Chevallier
1998). The method allowed us to select an atmospheric
situation from the 500 000 tropical situations if its tem-
perature profile, its water vapor profile, or the associ-
ation of the two, was different enough from the already
archived profiles. About 900 tropical situations (a rel-
ative majority of the 30 000 radiosonde reports) were
finally selected due to their high vertical resolution.

The histograms of the water vapor contents of the
new tropical dataset and of the TIGR-2 tropical class
are shown in Figs. 2a and 2b. Note the more regular
spread of the points of the 900 situations that have a
Gaussian-like shape.

We added this tropical set to the four temperate and
polar classes of TIGR-2. This new version, ‘‘TIGR-3,’’
contains approximately 2300 situations.

c. A better representation of the climatological
regimes

As shown by Stephens et al. (1996), the tropical class
of TIGR-2 contains few cases of deep, moist ascent
profiles: many of the atmospheric situations contained
in the data bank have characteristics of the subsidence
process. The irregular representation of the vertical cli-
matological regimes is illustrated in Fig. 3a with a Ross-
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by diagram of TIGR-2’s tropical class. The vertical co-
ordinate Q is the (liquid water) potential temperature,
and the horizontal coordinate q is the water vapor mix-
ing ratio. Each TIGR-2 tropical situation is represented
by 14 points between 300 and 1013 hPa. The highest
part of the profiles appears in the top left corner. For
higher pressure levels, the points spread in a triangular
shape, indicative of the thermodynamic constraints on
the atmospheric profiles. According to their location on
the diagram, a point from a situation can be attributed
to a particular climatological regime: convection; ra-
diative cooling; upper-tropospheric, meridional trans-
port and subsidence; entrainment; and boundary layer
transport (Boers and Prata 1996). Figure 3a shows an
irregular spread of the points, indicating an irregular
repartition of the TIGR-2 tropical situations on the cli-
matological regimes. Figure 3b presents the same type
of projection with the TIGR-3 tropical class. The overall
density of the points has increased due to the increased
number of atmospheric situations. More importantly, the
filling is more regular. We, therefore, have improved the
distribution of the different vertical climatological re-
gimes with the new tropical class—in particular, the
convection process.

d. Surface characteristics, CO2 concentration, and
cloudiness information

The learning sets that correspond to the clear and
cloudy neural networks, upon which our radiative trans-
fer scheme is based, were selected from TIGR-3. In
order to take into account existing discontinuities be-
tween the surface temperature and the surface air tem-
perature, we defined a surface temperature for each of
the TIGR-3 situations with a random drawing, allowing
temperature discontinuities up to 10 K. The mean long-
wave surface emissivity and the CO2 concentration were
also randomly chosen: between 0.9 and 1.0 and between
200 and 900 ppmv, respectively. For the cloudy-sky
learning datasets, black clouds in each atmospheric layer
among the 19 were alternately introduced, even though
the thermodynamic description of a layer sometimes
made the presence of a cloud unlikely. Thus, the learn-
ing sets contain atmospheric situations that may never
be observed in the atmosphere: they are not only com-
pilations of real atmospheric situations but are also de-
voted to teach to the networks the computation of long-
wave radiative fluxes from thermodynamic profiles. For
this purpose, it is suitable that a physical phenomenon—
such as the presence of a cloud in the atmospheric lay-
ers—has in the learning datasets, a regular distribution,
rather than a more realistic distribution.

e. The vertical pressure grid

All atmospheric profiles in the learning datasets have
been interpolated from the 40 pressure-level grid on
which they are archived in the TIGR dataset, on the grid

that NeuroFlux uses. We defined NeuroFlux in such a
way that each version of the scheme is dedicated to a
specified vertical pressure grid. This is not the case with
the usual wideband models, which allow the pressure
grid to be changed easily. In the versions of NeuroFlux
that we use in this paper, the temperature, water vapor,
and ozone profiles are discretized in the middle of 19
layers, as shown in Table 1. The pressure levels of this
grid are fixed. Surface pressures less than 1013 hPa can
be introduced with a blackbody at the ground pressure:
the altitude is treated in the same way as is cloudiness.

If one wants to choose a different vertical grid, one
has to retrain the networks on this new grid. The most
time-consuming computations are absorbed in the learn-
ing phase: once it is done, the method is very fast. The
sigma-pressure-level grids used in most GCMs can be
introduced easily by adding the surface pressure to the
inputs of the scheme.

f. Computation of the radiative characteristics of the
learning datasets

We used two radiative forward models to obtain the
radiative characteristics of these profiles [the LW fluxes
from (3), (4), (6), and (7)]: the ECMWF wideband op-
erational scheme (Morcrette 1991; Zhong and Haigh
1995) and the Automatized Atmospheric Absorption At-
las line-by-line model (4A) (Scott and Chédin 1981;
Tournier et al. 1995). In the following, the ECMWF
wideband model will be referred to as ‘‘the WBM.’’ It
uses averages of the absorption parameters over spectral
intervals of hundreds of inverse centimeters, whereas
4A takes into account each absorption line of the dif-
ferent atmospheric constituents. In an earlier paper, we
also presented some results of the neural network model
using a narrowband model (Chéruy et al. 1996a).

The WBM refers to nine spectral intervals, for which
absorption by H2O, O3, CO2, CH4, N2O, CFC-11, and
CFC-12 is accounted. This model was calibrated against
the Geophysical Fluid Dynamics Laboratory (Schwarz-
kopf and Fels 1991) line-by-line results. The parame-
terization of the water vapor has been improved recently
by Zhong and Haigh (1995). This code is fast enough
to be used in operational weather forecasts (at ECMWF)
and for climate simulations (in the LMD general cir-
culation model).

The 4A model takes into account all radiatively active
atmospheric constituents, the H2O, N2, and O2 continua
and the CO2 line coupling. This line-by-line and layer-
by-layer method allows us to quickly restore mono-
chromatic optical depths for each absorbing gas in each
atmospheric layer for realistic atmospheric situations:
the most time-consuming computations have been ab-
sorbed, once and for all, by precomputations, the results
of which constitute the 4A atlas. The complete vali-
dation of the method for high spectral resolution is based
on comparisons with the high-resolution interferometer
sounder (Smith et al. 1988) measurements. The 4A mod-
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FIG. 4. Comparison between the computations of 4A and WBM on 1032 radiosonde reports (cooling rates from the WBM
minus cooling rates from 4A, in K day21). Results are shown by airmass class: (a) tropical, (b) midlatitude, and (c) polar.

el is much more accurate than the WBM, but its lengthy
computing time forbids its use for long-term global cal-
culations.

In numerical models of atmospheric circulation, the
radiative cooling rates are used instead of the fluxes
themselves. The cooling rates, in K day21, are the di-
vergences of the radiative fluxes. They equal the rate at
which energy is lost by the atmosphere from radiation:

g ]F(P)
C(P) 5 2 , (11)

C ]Pp

where F(P) 5 F↑(P) 2 F↓(P) is the net flux, Cp is the
heat capacity at constant pressure, and g is the gravi-
tational acceleration.

To compare the two codes, we have computed the
mean and standard deviation of their computations of
the fluxes and cooling rates for 1032 radiosonde reports
(Moulinier 1983). These observations—in the following
set ‘‘S’’—cover a wide range of atmospheric situations.

As we did for the 80 000 radiosonde reports, we clas-
sified S into the five TIGR airmass classes. For the
forthcoming statistics, the two midlatitude classes (ml1
and ml2) are mixed in a single midlatitude class and
the two polar classes (pl1 and pl2) are mixed in a single
polar class. Thus, the 1032 radiosonde reports are di-
vided into three airmass classes: tropical (265 situa-
tions), midlatitude (509 situations), and polar (258 sit-
uations). The radiative computations of these atmo-
spheric situations are performed cloudless. The atmo-
sphere is divided into the 19 layers from Table 1. For
4A, the monochromatic optical depths are first computed
on 39 layers from the archived optical depths before
being interpolated into the 19 layers.

Figure 4 shows the differences between the two
codes, 4A and WBM, for the computation of cooling
rates, and Table 3 for the outgoing longwave radiances
(OLRs) and downward longwave radiance at the surface
(DLR). The absolute value of the sytematic differences
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TABLE 3. Mean (m) and standard deviation (s) of 4A (line by line) and the WBM (band model) for the computation of the (a) OLR and
(b) DLR for 1032 atmospheric situations. Fluxes in watts per square meter.

Model

Tropical

m s

Midlatitude

m s

Polar

m s

(a)
WBM
4A
WBM-4A

265.5
263.3

2.1

16.4
16.4

0.7

227.7
226.1

1.6

18.9
18.8

0.7

188.4
187.7

0.7

14.5
14.6

1.1

(b)
WBM
4A
WBM-4A

314.9
312.5

2.4

48.6
47.4

2.0

221.7
222.9
21.3

34.7
33.0

1.9

155.5
158.7
23.3

19.9
19.7

0.8

between the cooling rates from 4A and from WBM
reaches 0.4 K day21 at 300 hPa and near the ground in
the tropical class (Fig. 4). The sign changes around 500
hPa. Compared with 4A, the WBM tends to cool the
high troposphere and heat the boundary layer. The stan-
dard deviations are of the order of 0.2 K day21 above
600 hPa and increase below. Overall, the differences
increase with the water vapor content. For the OLR, the
mean difference is between 2.1 W m22 in the tropical
class and 0.7 W m22 in the polar class. The standard
deviations are about 0.7 W m22. For the DLR, the dif-
ferences are larger, with an rms of the order of 3 W m22.

5. Performances

a. NeuroFlux-A: Comparisons with WBM using
radiosonde data

The ’s and the ’s for the training of the neural↑ ↓F Fn n

networks were first computed with WBM. These learn-
ing datasets led to a first version of our neural network
model, called NeuroFlux-A.

Radiative fluxes obtained by using either NeuroFlux-
A or WBM have been compared for the 1032 radiosonde
reports from the set S. None of them was used in the
learning datasets of the neural networks. For the three
airmass classes, we computed the biases and standard
deviations of the differences between the radiative cal-
culations of NeuroFlux-A and WBM. The computations
are performed cloudless. Results are shown in Fig. 5.
The standard deviations are about 0.2 K day21. The
absolute value of the biases are less than 0.05 K day21

in the midlatitude and polar classes. In the tropical class
the absolute value is slightly higher but less than 0.1 K
day21 except near the ground, where the bias reaches
20.2 K day21. Compared with Fig. 4, the standard de-
viations are similar, but the biases are significantly
smaller. Because NeuroFlux is based on principles that
differ greatly with the principles of WBM, the maximum
errors are also interesting characteristics of the valida-
tion. For NeuroFlux-A, the maximum error in the tro-
posphere equals 1.8 K day21, less than the maximum
error of the WBM compared with 4A, which reaches
2.9 K day21.

For the computation of OLR and DLR (Table 4), the
standard deviations are similar to those between WBM
and 4A: 1.0 W m22 for OLR and 1.6 W m22 for DLR.
The biases, whose absolute value is less than 1.0 W
m22, are significantly smaller.

We checked the accuracy of the cloudy neural net-
works by artificially adding black clouds in the radio-
sondes and comparing the corresponding computations
of the WBM and NeuroFlux-A. The neural network–
based model exhibits, with WBM, differences similar
to the ones observed in clear-sky situations (results not
shown).

b. NeuroFlux-A: Comparisons with the WBM using
TOVS 3I global data

To study the robustness of the method, we have ex-
tended the previous comparisons between the two mod-
els, WBM and NeuroFlux-A, to an observation dataset
consisting of two years of global data. To do so, we
used the geophysical parameters inferred from TOVS
data, actually the TOVS 3I–retrieved products morning
path, obtained from April 1987 to March 1989 (Scott
et al. 1996). The computation of the radiative fluxes
from the TOVS 3I products using WBM is explained
in Chéruy et al. (1996b). Each month groups together
hundreds of thousands of tropical, midlatitude, and polar
clear and cloudy atmospheric situations. We computed
the global monthly mean error of the instantaneous dif-
ferences. For upward flux calculations (Fig. 6a), the rms
of differences between NeuroFlux-A and WBM remains
between 1 and 2 W m22, which represents less than
0.6% of the upward flux values. For downward fluxes
(Fig. 6b), the results are similar with a larger difference
around 500 hPa of about 4%. This larger error is due
to both a particularity in the TOVS 3I–retrieved profiles
and the way NeuroFlux parameters are inferred. The
water vapor profiles inferred from TOVS 3I—actually
amounts in four coarse layers—sometimes present im-
portant discontinuities at 500 hPa. Now, in their com-
putations, the neural networks exploit the correlations
that usually exist in the learning datasets between suc-
cessive water vapor specific humidities in the water va-
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FIG. 5. Comparison between the computations of NeuroFlux-A and WBM on 1032 radiosonde reports (cooling rates from
NeuroFlux-A minus cooling rates from the WBM, in K day21). Results are shown by airmass class: (a) tropical, (b)
midlatitude, and (c) polar.

TABLE 4. Mean (m) and standard deviation (s) of NeuroFlux-A and the WBM for the computation of the (a) OLR and (b) DLR for 1032
atmospheric situations. Fluxes in watts per square meter.

Model

Tropical

m s

Midlatitude

m s

Polar

m s

(a)
NeuroFlux-A
NeuroFlux-A–WBM

265.9
0.5

16.3
1.2

228.6
0.8

18.9
0.8

189.1
0.8

14.3
0.9

(b)
NeuroFlux-A
NeuroFlux-A–WBM

314.6
20.4

49.0
1.6

221.8
0.1

34.2
1.6

155.9
0.5

19.7
2.0

por profiles. A coarse resolution of the profile degrades
both the correlations and the quality of the results.

The difference between outputs of NeuroFlux-A and
WBM decreases below 1% near the ground. For the
calculation of cooling rates, deviations are less than 0.3

K day21. We obtained similar results with the evening
path data.

The neural network method performs equally for the
whole period. Note that the error does not particularly
decrease either during July 1987 or during January
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FIG. 6. Evolution of the rms of the differences between NeuroFlux-
A and WBM for the computation of (a) upward fluxes and (b) down-
ward fluxes during two years of global data (W m22). Values are
given on a 20 pressure-level grid.

1988, although these two months were used for the ex-
tension of TIGR-2. The stability of the method enables
us to use the code for long-term and global simulations,
as is done in numerical models of atmospheric circu-
lation.

c. NeuroFlux-B: Comparisons with 4A

For NeuroFlux-B, the longwave fluxes of the learning
datasets for the neural networks are computed with 4A.
We carried out the validation of the parameterization on
the 1032 radiosonde reports from the set S. Figure 7
shows the results for the computation of the cooling
rates, and Table 5 shows the results for the computation
of the OLR and DLR in clear situations. Although the
training model is much more accurate, the differences
between NeuroFlux-B and 4A are similar to the ones
between NeuroFlux-A and WBM. Compared to the ones

between WBM and 4A, the standard deviations are sim-
ilar, but the biases are significantly smaller. The vali-
dation of the NeuroFlux-B cloudy-skies neural networks
gave similar results (not shown).

Therefore, the neural network parameterization using
line-by-line computations appears to be more accurate
than the classic parameterization of WBM.

d. NeuroFlux-B: Doubling CO2 concentrations
experiment

The computing time of NeuroFlux-B reference code
(4A) forbids global long-term validations of NeuroFlux-
B as was done with NeuroFlux-A, though other kinds
of validations are possible: in particular, the classic sen-
sitivity study doubling concentrations of CO2. Indeed,
for a climate model it is particularly important to obtain
the correct tendency to changes in CO2 concentrations.
To assess this sensitivity, both 4A and NeuroFlux-B
were used to compute the differences in cooling rates
for set S resulting from doubling concentrations of CO2

from its current level of 355 to 710 ppmv. For brevity,
only the results for the tropical class are shown. Figure
8a presents the mean and standard deviation of the 4A
computations. They show known features of the at-
mospheric response to increased CO2 (e.g., Schlesinger
and Mitchell 1987): the stratosphere cools and the tro-
posphere warms. Figure 8b presents NeuroFlux-B com-
putations and the corresponding error. NeuroFlux-B re-
produces the stratospheric tendency well with negligible
biases and standard deviations. In the troposphere,
where the change in cooling rate is far smaller, the error
is characterized by a standard deviation of about 0.03
K day21, that is, more than half of the rms signal (about
0.05 K day21). Nevertheless, the error bias is less than
0.01 K day21 when the mean signal is about 0.04 K
day21.

Every paramerization method brings noise into the
realizations of a function f to be computed. The results
of NeuroFlux-B validation show that the noise intro-
duced by the neural networks is small for computations
of individual fluxes or cooling rates but is not negligible
in sensitivity tests, though the mean tendency is well
reproduced by the method. This is very fundamental for
climate studies.

e. Computing time

The architecture of the neural networks enables fast
computations with modern computers in spite of the
number of parameters the neural networks include. We
compared the computing times of NeuroFlux-A and
NeuroFlux-B to the computing times of WBM and 4A,
respectively.

The computing times of our schemes vary according
to the number of cloud layers since for each additional
layer in the atmosphere the algorithm includes two more
neural networks to perform the computations. Figure 9
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FIG. 7. Comparison between the computations of NeuroFlux-B and 4A on 1032 radiosonde reports (cooling rates from NeuroFlux-B mi-
nus cooling rates from 4A, in K day21). Results are shown by airmass class: (a) tropical, (b) midlatitude, and (c) polar.

TABLE 5. Mean (m) and standard deviation (s) of NeuroFlux-B and 4A for the computation of the (a) OLR and (b) DLR for 1032
atmospheric situations. Fluxes in watts per square meter.

Model

Tropical

m s

Midlatitude

m s

Polar

m s

(a)
NeuroFlux-B
NeuroFlux-B–4A

263.6
0.3

16.4
1.0

226.4
0.3

18.9
0.9

188.0
0.4

14.2
1.1

(b)
NeuroFlux-B
NeuroFlux-B–4A

312.8
0.3

47.3
1.0

223.1
0.1

33.1
1.2

158.5
20.2

19.2
1.6

shows the gain in rapidity of NeuroFlux-A compared
with the WBM versus the number of cloudy layers. The
computations were performed on a CRAY C98. For
clear skies, the neural network method saves computing
time by a factor of 32, as compared with the initial
scheme. For 15 cloudy layers, the computing time is
smaller by a factor of 16. For an entire month of TOVS

data, with both clear and cloudy situations, NeuroFlux-
A is 22 times as fast.

Since the architectures of NeuroFlux-B and
NeuroFlux-A neural networks are the same, their com-
puting times are exactly the same, although the code
NeuroFlux-B simulates—the 4A line-by-line model—
is much more accurate. The neural networks allow us

Unauthenticated | Downloaded 04/30/21 06:04 AM UTC



1396 VOLUME 37J O U R N A L O F A P P L I E D M E T E O R O L O G Y

FIG. 8. Effect on the cooling rates due to doubled concentrations
of carbon dioxide from current level (355 ppmv) for the 509 mid-
latitude situations of set S. (a) Computation with 4A, mean, plus or
minus one standard deviation (cooling rates at 355 ppmv minus cool-
ing rates at 710 ppmv). (b) Corresponding NeuroFlux-B error (dif-
ference in cooling rates from NeuroFlux-B minus difference in cool-
ing rates from 4A). Cooling rates in K day21.

FIG. 9. Speed ratio between WBM and NeuroFlux-A (computing
time of the WBM on computing time of NeuroFlux-A). Computation
performed on a Cray C98 for 200 atmospheric situations.

to benefit from the accuracy of the line-by-line model
while drastically reducing the required computing time.
Compared with 4A, the required computing time is di-
vided by a factor of 106.

6. Conclusions

We showed that neural networks can be used suc-
cessfully to derive the vertical atmospheric longwave
radiative budget from the TOA to the surface. We used
a wideband model and a line-by-line model for the long-
wave radiative transfer—two codes differing widely in
their computing time requirements and accuracy—to
compute profiles of longwave fluxes and cooling rates
from the TOA to the surface. The results of these com-

putations were used for both training and controlling
the quality of two neural network models—NeuroFlux-
A and NeuroFlux-B.

Global-scale comparisons with the wideband model
showed that the error associated with our parameteriza-
tion stays significantly below the error commonly ad-
mitted for a wideband model. By comparison, the dis-
crepancies observed between various wideband models
in the 1991 ICRCCM-2 exercise (Ellingson and Ellis
1991) were significantly larger. For example, the dis-
crepancies reach 12% for the downward flux at the tro-
popause of a midlatitude summer profile, whereas we
estimated the error introduced by our parameterization
to be less than 5% in similar conditions. Compared with
WBM, the use of neural networks trained with the line-
by-line scheme leads to a more accurate parameteriza-
tion of longwave radiative processes: the systematic dif-
ferences between the parameterized radiative transfer
scheme and the line-by-line model are significantly re-
duced, while the standard deviations are similar. The
impact of these differences is currently evaluated in the
framework of the LMD GCM. The decrease of the bi-
ases should induce a reduction of the systematic un-
desirable tendencies of the simulations, such as exces-
sive cooling in the high troposphere, as shown in
Fig. 4.

The major advantage of NeuroFlux is its reduction
in computing time; it is 22 times faster than WBM and
106 times faster than 4A. NeuroFlux enables more fre-
quent calls to the longwave routines and, thus, takes the
diurnal cycle into account better.
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climatiques: Une nouvelle approche fondée sur les réseaux de
neurones artificiels. Ph.D. thesis, University Paris VII, 225 pp.
[Available from LMD, Ecole Polytechnique, 91128 Palaiseau
Cedex, France.]

Ellingson, R. G., and J. Ellis, 1991: The intercomparison of radiation
codes used in climate models: Longwave results. J. Geophys.
Res., 96 (D5), 8929–8953.

Escobar-Munoz, J., 1993: Base de données pour la restitution de
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