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HECKE ACTION ON THE PRINCIPAL BLOCK

ROMAN BEZRUKAVNIKOV AND SIMON RICHE

Abstract. In this paper we construct an action of the affine Hecke category

on the principal block of representations of a simply-connected semisimple

algebraic group over an algebraically closed field of characteristic bigger than
the Coxeter number. This confirms a conjecture of G. Williamson and the

second author, and provides a new proof of the tilting character formula in

terms of antispherical p-Kazhdan–Lusztig polynomials.

1. Introduction

1.1. Representation theory of reductive algebraic groups and the Hecke
category. Let G be a connected reductive algebraic group over an algebraically
closed field k of characteristic p (assumed to be larger than the Coxeter num-
ber of G). In [RW1], G. Williamson and the second author of the present paper
started advocating the idea that the combinatorics of the category Rep(G) of finite-
dimensional algebraic G-modules (e.g. character formulas for simple and indecom-
posable tilting G-modules) should be expressible in terms of the p-Kazhdan–Lusztig
combinatorics, introduced a few years before by G. Williamson (partly in collabora-
tion, see [JMW, JeW]). In this paper it was in particular observed that a concrete
incarnation of this idea (a character formula for indecomposable tilting modules in
the principal block, in terms of antispherical p-Kazhdan–Lusztig polynomials) was
a consequence of a simple “categorical” conjecture stating that the wall-crossing
functors define an action of the Hecke category of the associated affine Weyl group
on the principal block of G. This conjecture was motivated in particular by the phi-
losophy of categorical action of Lie algebras; it was proved in [RW1, Part II] in the
special case when G = GLn(k) for some n, using the machinery of 2-Kac–Moody
algebras [Ro].

Later the “combinatorial” consequence of this conjecture (the tilting character
formula) was proved for general G (in fact, in two very different ways, see [AMRW2]
and [RW2]), but these proofs use other tools, and none of them imply the original
categorical conjecture. The main result of the present paper is a construction of
this Hecke category action. In particular, this provides a third general proof of the
tilting character formula. This new proof does not involve constructible sheaves in
any way; it uses coherent sheaves, but mostly over affine schemes, and hence can
be considered essentially algebraic.

1.2. Localization for Harish-Chandra bimodules. The category Rep(G) can
be naturally seen as a full subcategory of the category of G-equivariant Ug-modules
via differentiation, where Ug is the enveloping algebra of the Lie algebra g of G. As
such it admits an action of the monoidal category of Harish-Chandra Ug-bimodules,
and the wall-crossing functors (and, more generally, the translation functors) can be
described as the action of some specific (completed) such bimodules. To construct
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2 R. BEZRUKAVNIKOV AND S. RICHE

the desired action it therefore suffices to construct a monoidal functor from the
Hecke category to an appropriate category of completed Harish-Chandra bimodules.

The main tool we will use for this is a localization theory for Harish-Chandra
bimodules. Recall that Ug possesses a large central subalgebra ZFr called the Frobe-
nius center and isomorphic to O(g∗(1)) (where the superscript (1) denotes Frobenius
twist). Even though in the end we are interested in G-modules, which when seen as
Ug-modules have a trivial Frobenius central character, we will localize our bimod-
ules on the regular part of ZFr, and more precisely on a Kostant section S∗(1) ⊂ g∗(1)

to the (co-)adjoint quotient. This is made possible by the fact that the appropriate
restriction to such a Kostant section is fully faithful on the “diagonally induced”
Harish-Chandra bimodules that describe translation functors. Hence the bimodules
we are interested in can be studied using bimodules over USg := Ug⊗ZFr

O(S∗(1)),
equivariant with respect to a group scheme over t∗/(W, •) ×t∗(1)/W t∗/(W, •) con-

structed out of the universal centralizer group scheme over t∗(1)/W . (Here t is
the Lie algebra of a maximal torus in G, W is the Weyl group, and the map
t∗/(W, •)→ t∗(1)/W is induced by the Artin–Schreier map.)

It is a classical observation that USg := Ug⊗ZFr
O(S∗(1)) is an Azumaya algebra

over its center. This property is not sufficient for our purposes since the two actions
of this center on Harish-Chandra bimodules do not coincide; however by using
bimodules realizing translation to and from the “most singular” Harish-Chandra
character (namely, −ρ), we construct in Section 3 an equivariant splitting bundle
for each completion of the algebra USg⊗O(S∗(1))USgop at an ideal corresponding to a
pair of weights in the lower closure of the fundamental alcove. As a consequence, we
obtain equivalences of categories between equivariant modules over these algebras
and representations of certain completions of the involved group scheme.

A general theory of localization for modules over Ug has been developed by the
first author with Mirković and Rumynin, see [BMR1, BMR2, BM]. The localization
that we require is however slightly different, and the present paper does not rely
on the results of [BMR1, BMR2, BM]. One difference is that we are interested
in bimodules and not modules, which are in addition equivariant for the diagonal
G-action. Some of the constructions in [BMR1, BMR2, BM] (in particular, the non-
canonicity of the choice of splitting bundle) make it difficult to use in an equivariant
setting, and our construction is different. Finally, as explained above we only need
to consider the regular part of the Frobenius center, which simplifies the situation a
lot, and in particular allows us to work completely at the level of abelian categories,
without having to consider the more involved derived categories.

1.3. The Hecke category and representations of the universal centralizer.
The other crucial ingredient of our proof is a new incarnation of the Hecke category
(for any Coxeter system (W,S)) recently found by Abe [Ab1]. The Hecke cate-
gory is a categorification of the Hecke algebra of (W,S), depending on a choice of
extra data (comprising a representation V of W ). Its original definition in terms
of Soergel bimodules [S3] applies to “reflection faithful” representations of Coxeter
systems, which include natural examples of representations over fields of character-
istic 0 (e.g. geometric representations of finite Coxeter systems and representations
appearing in the theory of Kac–Moody Lie algebras for crystallographic Coxeter
systems), but does not include important examples over fields of positive character-
istic (e.g. some natural representations of affine Weyl groups of reductive groups).
Under this assumption Soergel bimodules can be defined as a full subcategory of
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the category of graded bimodules over the polynomial algebra O(V ). More re-
cently Elias and Williamson [EW] have proposed a definition of the Hecke category
in terms of generators and relations which applies (and behaves as one might ex-
pect) in a much greater generality, encompassing the representation of the affine
Weyl group that we require. It is in terms of this construction that the conjecture
in [RW1] was stated. (For more on the Hecke category, see also [Wi, JeW].)

Remark 1.1. In the case of Coxeter systems associated with Kac–Moody groups
(i.e. the crystallographic Coxeter systems), and for representations appearing natu-
rally in this theory over a field of characteristic 0, it is well known that the category
of Soergel bimodules can also be described in terms of constructible sheaves on the
corresponding flag variety. (The fact that Kazhdan–Lusztig combinatorics in this
case is related to constructible sheaves on the flag variety is a fundamental ob-
servation of Kazhdan–Lusztig [KL1]. The equivalence of categories with Soergel
bimodules is due to Soergel [S2] in the case of finite crystallographic groups—using
the earlier definition of Soergel bimodules in this case in [S1]—and to Härterich for
Kac–Moody groups [Hä].) A similar result relating the Hecke category of [EW] to
constructible sheaves on the associated flag variety (which holds also for coefficients
in a field of positive characteristic) can be found in [RW1, Part III]. Although im-
portant for some other purposes, this realization of the Hecke category will not play
any role in the present paper.

The main drawback of this construction, however, is that it is much less concrete
than Soergel’s original definition, and does not involve O(V )-bimodules. This draw-
back is exactly compensated by Abe’s work; under a minor technical assumption he
proves in [Ab1] that the category of Elias and Williamson identifies with a category
of “enhanced Soergel bimodules,” i.e. graded bimodules over O(V ) together with a
decomposition of its tensor product (on the left) with Frac(O(V )) parametrized by
W .

Based on Abe’s work, in the case of the affine Weyl group acting on X⊗Zk (where
X is the character lattice) through the natural action of the finite Weyl group, we
realize the Hecke category as a full subcategory in coherent sheaves on the preimage
of the Kostant slice in the (Frobenius twist of the) Steinberg variety of triples,1

identified with t∗(1) ×t∗(1)/W t∗(1), equivariant with respect to the pullback of the
universal centralizer. This construction allows us to define a monoidal functor from
the Hecke category to the category of representations considered in §1.2, and then
to the category of completed equivariant USg-bimodules. (This construction applies
when the central character corresponds to a point (λ, λ) with λ in the fundamental
alcove; in this case natural étale maps allow us to identify the completions of the
schemes t∗/(W, •)×t∗(1)/W t∗/(W, •) and t∗(1)×t∗(1)/W t∗(1) at the images of (λ, λ).)

Remark 1.2. Although the concrete incarnation of this idea that is relevant in the
present paper is new, the fact that affine Soergel bimodules are closely related with
representations of the universal centralizer was already known: it dates back (at
least) to [Do]; see also [MR] for an adaptation of these ideas to positive characteristic
coefficients.

1Here, by Steinberg variety of triples we mean the fiber product of two copies of the
Grothendieck resolution over the dual of the Lie algebra, and not the version involving the Springer

resolution.
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At this point, to conclude our proof it only remains to show that our functor sends
the objects of the Hecke category labelled by simple reflections to the bimodules
realizing the wall-crossing functors. In the case when the simple reflection belongs
to the finite Weyl group W , this can be checked explicitly, using localization at a
character involving a weight on the corresponding wall of the fundamental alcove.
The general case is reduced to this one using a standard trick (used e.g. in [R2,
BM]), based on the observation that in the extended affine Weyl group each simple
reflection is conjugate to a simple reflection which belongs to W . The concrete
proof involves the study of an analogue of the affine braid group action from [BR]
in our present context; in this case the situation simplifies however (once again
because we work over the regular part of the Frobenius center) and this action in
fact factors through an action of the extended affine Weyl group.

Remark 1.3. One of the motivations for Abe’s work [Ab1] was an attempt to prove
the conjecture in [RW1]. What he was actually able to construct is rather an
action on the principal block of the category of G1T -modules, which is less useful;
see [Ab2].

1.4. Towards a coherent realization of the Hecke category. Thanks to work
of Kazhdan–Lusztig [KL2] and Ginzburg [CG], it is known that the Hecke algebra
of the affine Weyl group identifies with the Grothendieck group of the category of
equivariant coherent sheaves on the Steinberg variety of triples. The construction
outlined in §1.3 can be seen to provide a fully faithful monoidal functor from the
Hecke category to the category of equivariant coherent sheaves on the regular part
of the Steinberg variety. In later work we will upgrade this construction to a fully
faithful monoidal functor to the category of equivariant coherent sheaves on the
whole Steinberg variety. This construction will be part of our project (joint with
L. Rider) of constructing a modular version of the equivalence constructed by the
first author in [Be]; see [BRR] for a first step towards this goal.

1.5. Contents. In Section 2 we introduce the categories of completed Harish-
Chandra bimodules we will work with, and prove that restriction to a Kostant
section is fully faithful on an appropriate subcategory. In Section 3 we develop our
localization theory for Harish-Chandra bimodules. In Section 4 we prove (for later
use) some technical results using the relation between Ug and differential operators
on the flag variety. In Section 5 we recall Abe’s results, and use them to construct
our monoidal functor from the Hecke category to the appropriate category of rep-
resentations of the universal centralizer. Finally, in Section 6 we prove the main
result of the paper, i.e. we construct the Hecke action on the principal block and
prove that objects associated with simple reflections act via wall-crossing functors.

1.6. Acknowledgements. We are given to understand that J. Ciappara has re-
cently proved a result similar to our main theorem via a completely different
method. His proof relies on the Smith–Treumann theory of [RW2], and is still
in preparation. We thank G. Williamson for keeping us informed of this work, and
for useful comments.
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2. Some categories of equivariant Ug-bimodules

2.1. Weights. We fix an algebraically closed field k of characteristic p > 0, and a
simply connected semisimple algebraic group G over k. We will denote by g the Lie
algebra of G. We also choose a Borel subgroup B ⊂ G and a maximal torus T ⊂ B,
and denote by b and t their respective Lie algebras. Let U be the unipotent radical
of B, n be its Lie algebra, and W be the Weyl group of (G,T ). We set X := X∗(T ),
and denote by R ⊂ X the root system of (G,T ). The choice of B determines a
system of positive roots R+ ⊂ R, chosen as the T -weights in g/b. We will denote
by Rs ⊂ R the corresponding subset of simple roots, and by ρ ∈ X the halfsum of
the positive roots. We also set X∨ := X∗(T ), and denote by R∨ ⊂ X∨ the coroot

system. The canonical bijection R
∼−→ R∨ will be denoted as usual α 7→ α∨.

The affine Weyl group associated with G is the semi-direct product

Waff := W n pZR
where ZR ⊂ X is the lattice generated by R, and the W -action on pZR is induced
by the natural action on X. The group Waff is a normal subgroup in the extended
affine Weyl group

Wext := W n pX.
Given µ ∈ pX, we will denote by tµ the associated element of Wext. It is well known
that the group Waff is generated by the subset Saff consisting of the reflections sα
with α ∈ Rs, together with the products tpβsβ where β ∈ R is such that β∨ is
a maximal coroot. Moreover, the pair (Waff , Saff) is a Coxeter system, see [J2,
§II.6.3]. We will consider the “dot” action of Wext (or its subgroup Waff) on X
defined by

(tµw) • λ = w(λ+ ρ)− ρ+ µ

for µ ∈ pX, w ∈W and λ ∈ X.
Given a character λ ∈ X, we will denote by λ ∈ t∗ the differential of λ. We will

also set
t∗Z := {λ : λ ∈ X} ⊂ t∗.

In this way, the map λ 7→ λ induces an isomorphism of abelian groups

X/pX ∼−→ t∗Z.

(In particular, t∗Z is finite.)
The group W naturally acts on t∗. We also have a “dot” action of W on t∗,

defined by
w • ξ := w(ξ + ρ)− ρ.

With this definition the map X → t∗ sending λ to λ is Wext-equivariant, where
Wext acts on X via the dot-action and on t∗ via the projection Wext →W and the
dot-action of W on t∗. This observation legitimates the use of the same notation for
these actions. It also shows that the subset t∗Z ⊂ t∗ is stable under the dot-action
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of W . Below we will also consider the quotient t∗/(W, •) of the dot-action of W on

t∗. For λ ∈ X, we will denote by λ̃ the image of λ in t∗/(W, •).
We will assume throughout the paper that p is very good for G. This assumption

implies that the quotient X/ZR has no p-torsion, or in other words that

(2.1) ZR ∩ pX = pZR.

This equality has the following consequences.

Lemma 2.1. Let λ ∈ X.

(1) We have

Waff • λ = (Wext • λ) ∩ (λ+ ZR).

(2) The stabilizer of λ for the dot-action of W on t∗ is the image under the
natural surjection Waff →W of the stabilizer of λ for the dot-action of Waff

on X.

Proof. (1) Since W • λ ⊂ λ+ ZR, we have

(Wext • λ) ∩ (λ+ ZR) = (W • λ+ pX) ∩ (λ+ ZR) = W • λ+ (ZR ∩ pX).

The claim follows, in view of (2.1).
(2) For w ∈W we have

w • λ = w • λ,
so that w •λ = λ iff w •λ ∈ λ+pX. Since w •λ ∈ λ+ZR, as above this condition is
equivalent to w•λ ∈ λ+pZR, i.e. to the existence of µ ∈ pZR such that tµw ∈Waff

stabilizes λ. �

For any subset I ⊂ Rs, we will denote by WI ⊂ W the subgroup generated by
the reflections {sα : α ∈ I}. Recall that an element of X is called regular if its
stabilizer in Waff (for the dot-action) is trivial. As a consequence of Lemma 2.1,
we obtain in particular the following claim.

Lemma 2.2. Let λ ∈ X, and assume that the stabilizer of λ for the dot-action of
Waff is WI . Then the morphism

t∗/(WI , •)→ t∗/(W, •)

induced by the quotient morphism t∗ → t∗/(W, •) is étale at the image of λ. In
particular, if λ is regular then the quotient morphism t∗ → t∗/(W, •) is étale at λ.

Proof. By Lemma 2.1(2), the stabilizer of λ for the dot-action of W on t∗ is WI .
Hence the claim follows from the general criterion [SGA1, Exp. V, Proposition 2.2].

�

2.2. The center of the enveloping algebra. Consider the universal enveloping
algebra Ug of g. Its center Z(Ug) can be described as follows. First we set

ZHC := (Ug)G.

(Here, the subscript “HC” stands for Harish-Chandra.) Next, as the Lie algebra of
an algebraic group over a field of characteristic p, g admits a “restricted p-th power”
operation x 7→ x[p], which stabilizes the Lie algebra of any algebraic subgroup of
G. We will denote by

ZFr
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the k-subalgebra of Ug generated by the elements of the form xp − x[p] for x ∈ g.
Then by [MR, Theorem 2] multiplication induces an isomorphism

ZFr ⊗ZFr∩ZHC
ZHC

∼−→ Z(Ug).

It is well known that Ug is finite as a ZFr-algebra (hence a fortiori as a Z(Ug)-
algebra).

These central subalgebras can be described geometrically. Namely, for a k-
scheme X we will denote by X(1) the associated Frobenius twist, defined as the
fiber product X(1) := X ×Spec(k) Spec(k), where the morphism Spec(k)→ Spec(k)

is associated with the map x 7→ xp. (The projection X(1) → X is an isomorphism
of abstract schemes, but not of k-schemes.) With this notation, it is well known
that the map x 7→ xp − x[p] induces a k-algebra isomorphism

(2.2) O(g∗(1))
∼−→ ZFr.

We also have ZFr ∩ ZHC = (ZFr)
G, and the G-action on g∗(1) factors through the

Frobenius morphism G→ G(1), so that we obtain an isomorphism

O(g∗(1)/G(1))
∼−→ ZFr ∩ ZHC.

On the other hand, the “Harish-Chandra isomorphism” provides a k-algebra
isomorphism

(2.3) O(t∗/(W, •)) ∼−→ ZHC,

see [MR, Theorem 1(2)].
The Artin–Schreier morphism

AS : t∗ → t∗(1)

is the morphism associated with the algebra map O(t∗(1)) → O(t∗) defined by
h 7→ hp − h[p] for h ∈ t. It is well known that AS is a Galois covering with Galois
group t∗Z (acting on t∗ via addition). The morphism AS is W -equivariant, where

W acts on t∗ via the dot-action and on t∗(1) via the natural action. It therefore
induces a morphism

t∗/(W, •)→ t∗(1)/W.

Recall the Chevalley isomorphism

t∗(1)/W
∼−→ g∗(1)/G(1),

see [MR, Theorem 1(3)]. Under this identification, the embedding ZFr∩ZHC ↪→ ZHC

is induced by the morphism t∗/(W, •)→ t∗(1)/W considered above.
Combining all these descriptions, and setting

C := g∗(1) ×t∗(1)/W t∗/(W, •),

we therefore obtain a k-algebra isomorphism

O(C)
∼−→ Z(Ug),

see [MR, Corollary 3].
Using this identification one can consider Ug as an O(C)-algebra. The G-action

on C induced by the adjoint G-action on Ug is the action obtained by pullback via
the Frobenius morphism G→ G(1) of the G(1)-action on C induced by the coadjoint
G(1)-action on g∗(1). Using this action, one can therefore see Ug as a G-equivariant
O(C)-algebra.
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2.3. Central reductions. In view of (2.2), the maximal ideals in ZFr are in a
canonical bijection with elements in g∗(1). Given η ∈ g∗(1), we will denote by
mη ⊂ ZFr the corresponding maximal ideal, and set

Uηg := Ug/mη · Ug.
Similarly, in view of (2.3) the maximal ideals in ZHC are in a canonical bijection
with closed points in t∗/(W, •), i.e. with (W, •)-orbits in t∗. Given a closed point
ξ ∈ t∗/(W, •), we will denote by mξ ⊂ ZHC the corresponding maximal ideal, and
set

Uξg := Ug/mξ · Ug.
If η and ξ have the same image in t∗(1)/W , then mη · Z(Ug) + mξ · Z(Ug) is a
maximal ideal in Z(Ug), and we can also set

Uξηg := Ug/(mη · Ug + mξ · Ug).

In the cases we will encounter more specifically below, the point ξ will often be

the image λ̃ of the differential of a character λ ∈ X. In this setting we will write

mλ, Uλg and Uλη g instead of mλ̃, U λ̃g and U λ̃η g. The image of any element of t∗Z
under the Artin–Schreier map is 0; therefore, if we denote by

N ∗ ⊂ g∗

the preimage of the image of 0 under the coadjoint morphism g∗ → t∗/W , then
given any λ ∈ X the elements η ∈ g∗(1) whose image in t∗(1)/W coincides with that

of λ̃ are exactly those in N ∗(1).

2.4. Harish-Chandra bimodules. We will denote by HC the category whose
objects are the Ug-bimodules V endowed with an (algebraic) action of G which
satisfy the following conditions:

(1) the action morphisms Ug⊗V → V and V ⊗Ug→ V are G-equivariant (for
the diagonal actions on Ug⊗ V and V ⊗ Ug);

(2) the g-action on V obtained by differentiating the G-action is given by
(x, v) 7→ x · v − v · x;

(3) V is finitely generated both as a left and as a right Ug-module.

Morphisms in the category HC are morphisms of bimodules which also commute
with the G-actions. Objects in this category are called Harish-Chandra bimodules.
It is easily seen that the tensor product ⊗Ug of bimodules endows HC with the
structure of a monoidal category, where the G-action on the tensor product is the
diagonal action.

If M belongs to HC, the Ug-action obtained by differentiating the G-action must
vanish on ZFr∩ (g · Ug). This implies that the two actions of ZFr on M obtained by
restriction of the left and right Ug-actions coincide; in other words, the action of
Ug⊗kUgop on M must factor through an action of Ug⊗ZFr

Ugop. However, the two
actions of ZHC on a Harish-Chandra bimodule might differ. Note that Ug⊗ZFr Ugop

is in a natural way a finite algebra over the commutative ring

Z := Z(Ug)⊗ZFr Z(Ug) = ZHC ⊗ZFr∩ZHC ZFr ⊗ZFr∩ZHC ZHC
∼= O(C×g∗(1) C).

Note also that since Ug⊗ZFr Ugop is finitely generated both as a left and as a right
Ug-module, the third condition in the definition of Harish-Chandra bimodules can
be equivalently replaced by the condition that the object is finitely generated as a
Ug-bimodule.
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Let us denote by ModGfg(Ug ⊗ZFr
Ugop) the category of G-equivariant finitely

generated (left) modules over Ug⊗ZFr Ugop. As above, since Ug⊗ZFr Ugop is finitely
generated both as a left and as a right Ug-module, the tensor product ⊗Ug endows
this category with a monoidal structure. In this way we obtain a fully faithful
monoidal functor

HC→ ModGfg(Ug⊗ZFr
Ugop).

One can construct interesting objects in HC from G-modules as follows. Let us
denote by Rep(G) the category of finite-dimensional algebraic G-modules. Then
given V in Rep(G) we consider the Harish-Chandra bimodule

V ⊗ Ug,
where the left Ug-action is diagonal (with respect to the action on V obtained by
differentiation, and the action on Ug by left multiplication), the right Ug-action is
induced by right multiplication on Ug, and the G-action is diagonal (with respect to
the given action on V and the adjoint action on Ug). In particular, for x, y, z ∈ Ug
and v ∈ V we have

x · (v ⊗ z) · y = (x(1) · v)⊗ (x(2)zy),

where we use Sweedler’s notation for the comultiplication in the Hopf algebra Ug.
It is easily seen that the map (x⊗y)⊗v 7→ (x(1) ·v)⊗(x(2)y) induces an isomorphism

(Ug⊗ Ugop)⊗Ug V
∼−→ V ⊗ Ug,

where the tensor product on the left-hand side is taken with respect to the morphism
Ug → Ug ⊗ Ugop defined by x 7→ x(1) ⊗ S(x(2)), where S is the antipode. In
particular, the modules V ⊗ Ug are “induced from the diagonal.” For V, V ′ in
Rep(G), we have a canonical isomorphism

(2.4) (V ⊗ Ug)⊗Ug (V ′ ⊗ Ug)
∼−→ (V ⊗ V ′)⊗ Ug.

One can similarly consider, again for V in Rep(G), the Harish-Chandra bimodule

Ug⊗ V
where now the actions of Ug are defined by

x · (z ⊗ v) · y = (xzy(1))⊗ (S(y(2)) · v)

for x, y, z ∈ Ug and v ∈ V (and the G-action is still diagonal). As above we have
an isomorphism

(Ug⊗ Ugop)⊗Ug V
∼−→ Ug⊗ V,

now given by (x⊗ y)⊗ v 7→ (xy(1))⊗ (S(y(2)) · v). In particular, the objects V ⊗Ug
and Ug⊗ V are isomorphic; explicitly the isomorphism is given by

v ⊗ x 7→ x⊗ (S(x) · v).

2.5. Completed Harish-Chandra bimodules. Now, we need to adapt the con-
siderations of §2.4 to the setting of completed Harish-Chandra characters.

Recall from §2.3 that to each λ ∈ X we have associated a maximal ideal mλ ⊂
ZHC. For λ, µ ∈ X, we will denote by

U λ̂,µ̂

the completion of the Z-algebra Ug⊗ZFr
Ugop with respect to the ideal

Iλ,µ := (mλ · Z(Ug))⊗ZFr
Z(Ug) + Z(Ug)⊗ZFr

(mµ · Z(Ug)) ⊂ Z;
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in other words we have

U λ̂,µ̂ = lim←−
n≥1

(Ug⊗ZFr
Ugop)/

(
(Iλ,µ)n · (Ug⊗ZFr

Ugop)
)
.

The natural (algebraic) action of G on Ug⊗ZFr
Ugop induces an (algebraic) action

on each quotient

U λ̂,µ̂/(Iλ,µ)n · U λ̂,µ̂ = (Ug⊗ZFr
Ugop)/

(
(Iλ,µ)n · (Ug⊗ZFr

Ugop)
)
.

If we denote by Z λ̂,µ̂ the completion of Z at Iλ,µ then Z λ̂,µ̂ is a Noetherian

ring, complete with respect to the ideal Iλ,µ · Z λ̂,µ̂, see [SP, Tag 05GH]. Since
Ug⊗ZFr

Ugop is finite as a Z-module the natural morphism

(2.5) Z λ̂,µ̂ ⊗Z (Ug⊗ZFr
Ug)→ U λ̂,µ̂

is an isomorphism, see [SP, Tag 00MA]. In particular, the Z λ̂,µ̂-algebra U λ̂,µ̂ is

finite; therefore any finitely generated U λ̂,µ̂-module is also finitely generated as a

Z λ̂,µ̂-module, which implies that the natural morphism

M → lim←−
n≥1

M/
(
(Iλ,µ)n ·M

)
is an isomorphism, see again [SP, Tag 00MA]. Adapting the definition above, we

define a G-equivariant finitely generated U λ̂,µ̂-module as a finitely generated U λ̂,µ̂-
module M together with the datum of an algebraic G-module structure on each
quotient M/

(
(Iλ,µ)n ·M

)
such that the natural surjection

M/
(
(Iλ,µ)n+1 ·M

)
→M/

(
(Iλ,µ)n ·M

)
and the action map(

U λ̂,µ̂/(Iλ,µ)n · U λ̂,µ̂
)
⊗
(
M/
(
(Iλ,µ)n ·M

))
→M/

(
(Iλ,µ)n ·M

)
are morphisms of G-modules for any n ≥ 1. These modules are naturally objects

of an abelian category, which will be denoted ModGfg(U λ̂,µ̂). More specifically, in

view of [EGA1, Chap. 0, Corollaire 7.2.10], for any finitely generated U λ̂,µ̂-modules
M,N we have

HomU λ̂,µ̂(M,N) ∼= lim←−
n≥1

HomUg⊗ZFr
Ug
(
M/(Iλ,µ)n ·M,N/(Iλ,µ)n ·N

)
.

If M,N are G-equivariant finitely generated U λ̂,µ̂-modules, then we set

(2.6) HomModGfg(U λ̂,µ̂)(M,N) =

lim←−
n≥1

HomUg⊗ZFr
Ug
(
M/(Iλ,µ)n ·M,N/(Iλ,µ)n ·N

)G
,

which we endow with the obvious composition law.

From this definition we see that the forgetful functor from ModGfg(U λ̂,µ̂) to the

category of finitely generated U λ̂,µ̂-modules is faithful. This functor is exact. More

precisely, if M,N belong to ModGfg(U λ̂,µ̂) and if f ∈ HomModGfg(U λ̂,µ̂)(M,N), then the

cokernel C of f (seen as a morphism of U λ̂,µ̂-module) is such that C/(Iλ,µ)n ·C is
the cokernel of the morphism M/(Iλ,µ)n ·M → N/(Iλ,µ)n ·N induced by f , hence
admits a natural structure of algebraic G-module. On the other hand, the kernel K

https://stacks.math.columbia.edu/tag/05GH
https://stacks.math.columbia.edu/tag/00MA
https://stacks.math.columbia.edu/tag/00MA
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of f admits an action of G, seen as an abstract group, since we have such actions on
M and N obtained by taking the projective limits of the actions on M/(Iλ,µ)n ·M
and N/(Iλ,µ)n ·N . By the Artin–Rees lemma, given n ≥ 1, for m � n we have a
(G-equivariant) surjection

K/(K ∩ ((Iλ,µ)m ·M))→ K/(Iλ,µ)n ·K,

which shows that the action on K/(Iλ,µ)n ·K is algebraic, since K/(K ∩ ((Iλ,µ)m ·
M)) is a submodule of the algebraic G-module M/((Iλ,µ)m ·M).

The full subcategory of ModGfg(U λ̂,µ̂) whose objects are the modules M such that

M/(Iλ,µ)n · M is a Harish-Chandra bimodule for any n will be denoted HCλ̂,µ̂.

Objects of this subcategory will be called Harish-Chandra U λ̂,µ̂-modules.

2.6. Completion of diagonally induced bimodules. Given λ, µ ∈ X, we have
a natural exact functor

Cλ,µ : ModGfg(Ug⊗ZFr
Ugop)→ ModGfg(U λ̂,µ̂),

which sends a Ug⊗ZFr
Ugop-module M to its completion with respect to Iλ,µ. This

functor restricts to a functor from HC to HCλ̂,µ̂. We will denote by

HCλ̂,µ̂diag

the full additive subcategory of HCλ̂,µ̂ whose objects are direct summands of objects
of the form Cλ,µ(V ⊗ Ug) with V in Rep(G).

In case λ = µ, we will set

U λ̂ = Cλ,λ(k⊗ Ug),

where here k is the trivial G-module.
For later use, we also introduce some completed bimodules which are closely

related to the translation functors for G-modules (see §6.3 below for details). Recall
that a weight λ ∈ X is said to belong to the fundamental alcove, resp. to the closure
of the fundamental alcove, if it satisfies

0 < 〈λ+ ρ, α∨〉 < p, resp. 0 ≤ 〈λ+ ρ, α∨〉 ≤ p,

for any positive root α. With this notation, the set of weights which belong to the
closure of the fundamental alcove is a fundamental domain for the (Waff , •)-action
on X. Moreover, if λ ∈ X belongs to the closure of the fundamental alcove, then
its stabilizer in Waff is the parabolic subgroup generated by the elements s ∈ Saff

such that s • λ = λ; see [J2, §II.6.3].
Let X+ ⊂ X be the subset of dominant weights determined by R+. For any

ν ∈ X+, we will denote by L(ν) the simple G-module with highest weight ν.
Given two weights λ, µ ∈ X which belong to the closure of the fundamental

alcove, we set

Pλ,µ := Cλ,µ(L(ν)⊗ Ug) ∈ HCλ̂,µ̂diag,

where ν is the unique dominant W -translate of λ− µ.
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2.7. Comparison of completions. For notational simplicity, let us now fix a

subset Λ ⊂ X such that the map λ 7→ λ̃ restricts to a bijection Λ
∼−→ t∗Z/(W, •).

We will denote by I ⊂ O(t∗(1)/W ) = ZHC∩ZFr the maximal ideal corresponding
to the image of 0 ∈ t∗(1). Then I · ZFr is the ideal of definition of N ∗(1) ⊂ g∗(1),
and each ideal Iλ,µ contains I ·Z. We will denote by Z∧ the completion of Z with
respect to the ideal I · Z.

Lemma 2.3. The natural morphism

Z∧ →
∏
λ,µ∈Λ

Z λ̂,µ̂

is a ring isomorphism.

Proof. The morphism considered in this statement is the product of the morphisms

Z∧ → Z λ̂,µ̂ induced by the natural morphisms Z/(In · Z) � Z/(Iλ,µ)n. This
morphism is clearly a ring morphism; to prove that it is invertible we will construct
its inverse.

Let us fix some n ≥ 1, and consider the quotient

(ZHC ⊗ZHC∩ZFr ZHC)/In · (ZHC ⊗ZHC∩ZFr ZHC).

Here ZHC ⊗ZHC∩ZFr ZHC is a finite O(t∗(1)/W )-module (since ZHC is finite, as a
submodule of the finite module O(t∗)); therefore this algebra is finite-dimensional.
Its maximal ideals are in bijection with the maximal ideals of ZHC ⊗ZHC∩ZFr

ZHC

containing I · (ZHC ⊗ZHC∩ZFr
ZHC), hence with Λ× Λ through

(λ, µ) 7→ (mλ ⊗ZHC∩ZFr ZHC + ZHC ⊗ZHC∩ZFr m
µ)/In · (ZHC ⊗ZHC∩ZFr ZHC).

In view of the general theory of Artin rings (see e.g. [AM, Chap. 8]), for any λ, µ ∈ Λ
the quotient

(ZHC ⊗ZHC∩ZFr ZHC)/(
In · (ZHC ⊗ZHC∩ZFr ZHC) + (mλ ⊗ZHC∩ZFr ZHC + ZHC ⊗ZHC∩ZFr m

µ)m
)

does not depend on m for m� 0, and the natural morphism from (ZHC ⊗ZHC∩ZFr

ZHC)/In · (ZHC ⊗ZHC∩ZFr
ZHC) to the product of these rings is an isomorphism.

Now we have

Z = (ZHC ⊗ZHC∩ZFr
ZHC)⊗ZHC∩ZFr

ZFr.

From the preceding considerations we deduce that for m� 0 the natural morphism

Z/(In · Z)→
∏
λ,µ∈Λ

Z/(In · Z + (Iλ,µ)m)

is a ring isomorphism.
Now we are ready to define the wished-for inverse morphism∏

λ,µ∈Λ

Z λ̂,µ̂ → Z∧.

For this it suffices to define, for any n ≥ 1, a ring morphism

(2.7)
∏
λ,µ∈Λ

Z λ̂,µ̂ → Z/(In · Z).
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For this we fix m such that the natural morphism

Z/(In · Z)→
∏
λ,µ∈Λ

Z/(In · Z + (Iλ,µ)m)

is an isomorphism. Then we have natural ring morphisms∏
λ,µ∈Λ

Z λ̂,µ̂ →
∏
λ,µ∈Λ

Z/(Iλ,µ)m →
∏
λ,µ∈Λ

Z/(In · Z + (Iλ,µ)m).

Composing with the inverse of the preceding isomorphism we deduce the desired
map (2.7).

It is easy (and left to the reader) to check that the two morphisms considered
above are inverse to each other. �

Remark 2.4. Another interpretation of the considerations in the proof above (in case
n = 1) is that given λ, µ ∈ X there exists N ∈ Z≥0 such that for any m ≥ N we have

(Iλ,µ)N ⊂ I · Z + (Iλ,µ)m. As a consequence we have (Iλ,µ)N · Z λ̂,µ̂ ⊂ I · Z λ̂,µ̂.

We also have I · Z λ̂,µ̂ ⊂ Iλ,µ · Z λ̂,µ̂; we deduce that for any finitely generated

Z λ̂,µ̂-module M the natural morphism

M → lim←−
n≥1

M/In ·M

is an isomorphism.

We will also denote by U∧ the completion of the Z-algebra Ug ⊗ZFr Ugop with
respect to the ideal I ·Z. By the same considerations as in §2.5, since Ug⊗ZFr

Ugop

is finite as a Z-module, we have a canonical isomorphism

Z∧ ⊗Z (Ug⊗ZFr
Ug)

∼−→ U∧.

Comparing with (2.5) and using Lemma 2.3, we deduce that the natural morphism

(2.8) U∧ →
∏
λ,µ∈Λ

U λ̂,µ̂

is an algebra isomorphism.

Following the same procedure as for the categories ModGfg(U λ̂,µ̂) and HCλ̂,µ̂, we

can define the categories ModGfg(U∧) and HC∧ of G-equivariant finitely generated
U∧-modules and Harish-Chandra U∧-modules. In view of (2.8), we then have
canonical equivalences of categories

(2.9) ModGfg(U∧) ∼=
⊕
λ,µ∈Λ

ModGfg(U λ̂,µ̂), HC∧ ∼=
⊕
λ,µ∈Λ

HCλ̂,µ̂.

We also have a canonical functor

(2.10) C∧ : ModGfg(Ug⊗ZFr
Ugop)→ ModGfg(U∧)

sending a module to its completion with respect to I · Z, or in other words to its
tensor product with Z∧ over Z, which restricts to a functor from HC to HC∧. For
the same reasons as above, for any M in ModGfg(Ug⊗ZFr

Ugop) we have a canonical
isomorphism

C∧(M) ∼=
⊕
λ,µ∈Λ

Cλ,µ(M).
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We will denote by HC∧diag the full additive subcategory of HC∧ whose objects are
the direct summands of objects of the form C∧(V ⊗ Ug) with V in Rep(G). With
this definition, we have a canonical equivalence of categories

HC∧diag
∼=
⊕
λ,µ∈Λ

HCλ̂,µ̂diag.

2.8. Monoidal structure. We now want to define some analogue of the monoidal

structure on ModGfg(Ug⊗ZFr
Ugop) for the categories ModGfg(U λ̂,µ̂). More specifically,

given λ, µ, ν in X we want to define a canonical right exact bifunctor

(2.11) (−) ⊗̂Ug (−) : ModGfg(U λ̂,µ̂)×ModGfg(U µ̂,ν̂)→ ModGfg(U λ̂,ν̂),

these bifunctors satisfying obvious unit and associativity axioms. Explicitly, we
require that:

• in case µ = λ we have a canonical isomorphism of functors

U λ̂ ⊗̂Ug (−) ∼= id,

and in case ν = µ we have a canonical isomorphism

(−) ⊗̂Ug U µ̂ ∼= id;

• for four weights λ, µ, ν, η ∈ X we have an isomorphism(
(−) ⊗̂Ug (−)

)
⊗̂Ug (−)

∼−→ (−) ⊗̂Ug
(
(−) ⊗̂Ug (−)

)
of functors from

ModGfg(U λ̂,µ̂)×ModGfg(U µ̂,ν̂)×ModGfg(U ν̂,η̂)

to ModGfg(U λ̂,η̂).

In particular, in case λ = µ = ν, this construction will equip ModGfg(U λ̂,λ̂) with the
structure of a monoidal category.

For this we can assume that all the weights involved belong to the subset Λ
chosen in §2.7. It therefore suffices to construct a monoidal structure of the cate-
gory ModGfg(U∧), with monoidal unit C∧(k⊗ Ug); the bifunctor (2.11) will then be

deduced by restriction to the factor ModGfg(U λ̂,µ̂)×ModGfg(U µ̂,ν̂) in the decomposi-
tion (2.9).

The corresponding product is defined by setting, for M,N in ModGfg(U∧),

M ⊗̂Ug N = lim←−
n≥1

(M/In ·M)⊗Ug (N/In ·N).

Here, for any n ≥ 1 the transition morphism

(M/In+1 ·M)⊗Ug (N/In+1 ·N)→ (M/In ·M)⊗Ug (N/In ·N)

is surjective, with kernel In ·
(
(M/In+1 ·M) ⊗Ug (N/In+1 ·N)

)
; hence we are in

the setting of [EGA1, Chap. 0, Proposition 7.2.9], which guarantees that M⊗̂UgN
is a finitely generated U∧-module which satisfies

(M ⊗̂Ug N)/In · (M ⊗̂Ug N) = (M/In ·M)⊗Ug (N/In ·N).

By definition of the category ModGfg(U∧) the quotients M/In·M and N/In·N admit

G-module structures; we deduce a (diagonal)G-module structure on (M⊗̂UgN)/In·
(M⊗̂UgN), so that M⊗̂UgN indeed admits a natural structure of G-equivariant
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finitely generated U∧-module. It is clear from the definition that the full subcate-
gory HC∧ of ModGfg(U∧) is a monoidal subcategory. It is clear also that, with this
monoidal structure, the functor C∧ of (2.10) has a canonical structure of monoidal
functor. In particular, using (2.4) we deduce that the full subcategory HC∧diag is
also a monoidal subcategory.

It is easily seen on the definition that if λ, µ, ν ∈ X and if M belongs to

ModGfg(U λ̂,µ̂) and N belongs to ModGfg(U µ̂,ν̂), then seeing M and N as objects

in ModGfg(U∧) via (2.9) the product M⊗̂UgN belongs to the factor ModGfg(U λ̂,ν̂),
which provides the desired bifunctor (2.11). From the corresponding properties for

ModGfg(U∧) we deduce that the subcategories HCλ̂,µ̂ and HCλ̂,µ̂diag are stable under

these bifunctors. In this setting the functor Cλ̂,µ̂ satisfies

Cλ̂,µ̂(M ⊗Ug N) ∼=
⊕
ν∈Λ

Cλ̂,ν̂(M) ⊗̂Ug Cν̂,µ̂(N)

for any M,N in ModGfg(Ug⊗ZFr
Ugop).

2.9. Universal centralizer and Kostant section. From now on we fix once
and for all a G-equivariant isomorphism κ : g

∼−→ g∗. Note that the composition

t ↪→ g
κ−→ g∗ � t∗ is then a W -equivariant isomorphism. This allows in particular

to identify the coadjoint quotient g∗/G with t∗/W .
We will denote by greg ⊂ g the open subsets consisting of regular elements, i.e. el-

ements whose centralizer has dimension dim(T ). The “regular universal centralizer”
is the affine group scheme

Jreg := greg ×greg×greg (G× greg)

over greg, where the morphism greg → greg × greg is the diagonal embedding, and
the map G × greg → greg sends (g, x) to (g · x, x). For any x ∈ greg, the fiber of
Jreg over x is the scheme-theoretic centralizer of x for the adjoint G-action. By
construction Jreg is a closed subgroup scheme in G× greg, and as explained in [R3,
Corollary 3.3.6] it is smooth over greg. We will also denote by g∗reg the image of
greg under κ, and by J∗reg the smooth affine group scheme over g∗reg obtained by
pushforward from Jreg. (It is easily seen that these objects do not depend on the
choice of κ.)

Let us note for later use that there exists a canonical morphism

(2.12) t∗ ×t∗/W J∗reg → (t∗ ×t∗/W g∗reg)× T
of group schemes over t∗ ×t∗/W g∗reg, whose construction we now explain. Recall
that the Grothendieck resolution is the G-equivariant vector bundle over G/B given
by

g̃ := {(ξ, gB) ∈ g∗ ×G/B | ξ|g·n = 0}.
We have natural maps

π : g̃→ g∗, ϑ : g̃→ t∗.

(The morphism π is induced by the first projection. The morphism ϑ sends a pair
(ξ, gB) to ξ|g·b, seen as an element in (g · b/g · n)∗ ∼= (b/n)∗ ∼= t∗, where the first
isomorphism is induced by conjugation by the inverse of any representative for the
coset gB.) If we denote by g̃reg the preimage of g∗reg in g̃, then these maps induce
an isomorphism of schemes

(2.13) g̃reg
∼−→ g∗reg ×t∗/W t∗,
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see [R3, Lemma 3.5.3]. Moreover, under this identification, by [R3, Proposi-
tion 3.5.6] the group scheme t∗ ×t∗/W Jreg identifies with the universal centralizer
associated with the action of G on g̃reg, which is such that the fiber over (ξ, gB) is
the scheme-theoretic stabilizer of ξ for the action of gBg−1. Now as above in the def-
inition of ϑ, there exists for any g ∈ G a canonical isomorphism gBg−1/gUg−1 ∼= T ,
which allows us to define the wished-for morphism (2.12).

Let us choose a regular nilpotent element e ∈ n and an affine subspace S ⊂ g as
in [R3, §3.1] (in other words, a “Kostant section” for the adjoint quotient). Such a
subspace is automatically contained in greg, see [R3, Equation (3.1.1)]. Moreover,
the composition S ↪→ g → g/G (where the second map is the adjoint quotient
morphism) is an isomorphism, see [R3, Theorem 3.2.2]. We will denote by S∗ the
image of S under κ, by J∗S the restriction of J∗reg to S∗ (a closed subgroup scheme
of G× S∗, smooth over S∗), and set

I∗S := (G× S∗(1))×G(1)×S∗(1) (J∗S)(1),

where the map G × S∗(1) → G(1) × S∗(1) is the product of the Frobenius mor-
phism of G and the identity of S∗(1). Since G is smooth its Frobenius morphism is
flat, and therefore I∗S is a flat affine group scheme over S∗(1). Note also that the
morphism (2.12) induces a group-scheme morphism

(2.14) t∗(1) ×t∗(1)/W I∗reg → (t∗(1) ×t∗(1)/W S∗(1))× T (1).

Finally, we set

USg := Ug⊗ZFr O(S∗(1)),

where O(S∗(1)) is seen as a ZFr-algebra via the identification (2.2). If we set

CS := S∗(1) ×t∗(1)/W t∗/(W, •),

then USg is an O(CS)-algebra. Recall that the algebra Ug can be seen as a G-
equivariant O(C)-algebra (see §2.2). Using the general construction recalled in [MR,
§2.2], from this we deduce on USg a natural structure of module for the group scheme
CS ×S∗(1) I∗S , such that the multiplication morphism is equivariant.

2.10. (Completed) Harish-Chandra bimodules for USg. We now want to de-

fine, given λ, µ ∈ X, a category analogous to ModGfg(U λ̂,µ̂) but for the algebra USg
in place of Ug. We start with the non-completed version.

First we consider the category ModIfg(USg⊗O(S∗(1)) (USg)op) of finitely generated

USg⊗O(S∗(1)) (USg)op-modules endowed with a compatible structure of I∗S -module.

Since I∗S is flat over S∗(1), this category is abelian. Here USg ⊗O(S∗(1)) (USg)op is
an algebra over

ZS := O(t∗/(W, •))⊗O(t∗(1)/W ) O(S∗(1))⊗O(t∗(1)/W ) O(t∗/(W, •))
∼= O(t∗/(W, •))⊗O(t∗(1)/W ) O(t∗/(W, •)) = O(t∗/(W, •)×t∗(1)/W t∗/(W, •)).

As in §2.4 the tensor product⊗O(S∗(1)) defines a monoidal structure on this category,

and using the construction of [MR, §2.2] considered above the functor O(S∗(1))⊗ZFr

(−) defines a monoidal functor

ModGfg(Ug⊗ZFr
Ugop)→ ModIfg(USg⊗O(S∗(1)) (USg)op).
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Now we add completions to the picture. Given λ, µ ∈ X, one can define as in §2.5
the algebra

U λ̂,µ̂S
as the completion of USg⊗O(S∗(1)) (USg)op with respect to the (maximal) ideal

Iλ,µS := Iλ,µ · ZS = mλ ⊗O(t∗(1)/W ) O(t∗/(W, •)) + O(t∗/(W, •))⊗O(t∗(1)/W ) m
µ

in ZS . The category ModIfg(U λ̂,µ̂S ) can also be defined by the same procedure as for

ModGfg(U λ̂,µ̂), namely as the category of finitely generated U λ̂,µ̂S -modules M together

with a (CS ×S∗(1) CS)×S∗(1) I∗S -module structure on each quotient M/(Iλ,µS )n ·M ,
such that the quotient morphism

M/(Iλ,µS )n+1 ·M →M/(Iλ,µS )n ·M
is equivariant for any n ≥ 1, and similarly for the action morphism.

By exactness of completion we have

U λ̂,µ̂S = U λ̂,µ̂ ⊗ZFr O(S∗(1)).

In particular, the functor O(S∗(1))⊗ZFr
(−) defines a natural functor

(2.15) ModGfg(U λ̂,µ̂)→ ModIfg(U λ̂,µ̂S ).

Similarly, if we set

Z λ̂,µ̂S := O(S∗(1))⊗O(g∗(1)) Z λ̂,µ̂,

then U λ̂,µ̂S is a Z λ̂,µ̂S -algebra, and Z λ̂,µ̂S identifies with the completion of the algebra

ZS with respect to Iλ,µS . If λ, µ ∈ X belong to the closure of the fundamental
alcove, we will also set

Pλ,µS := O(S∗(1))⊗O(g∗(1)) Pλ,µ.

Using considerations similar to those of §2.8 one constructs, again for λ, µ, ν ∈ X,
a canonical bifunctor

(2.16) (−) ⊗̂USg (−) : ModIfg(U λ̂,µ̂S )×ModIfg(U µ̂,ν̂S )→ ModIfg(U λ̂,ν̂S ),

this construction being unital, associative, and compatible in the natural way with
the bifunctors (−)⊗̂Ug(−) via the functors (2.15). More explicitly, one remarks that
if Z∧S is the completion of ZS with respect to the ideal I ·ZS , then as in Lemma 2.3
we have a canonical isomorphism

Z∧S
∼−→

∏
λ,µ∈Λ

Z λ̂,µ̂S .

One then defines in the natural way the category ModIfg(U∧S ), where

U∧S = O(S∗(1))⊗O(g∗(1)) U∧

is the completion of the ZS -algebra USg with respect to the ideal I · ZS , and the
bifunctor

(−) ⊗̂USg (−) : ModIfg(U∧S )×ModIfg(U∧S )→ ModIfg(U∧S )

by

M ⊗̂USg N = lim←−
n≥1

(M/In ·M)⊗USg (N/In ·N).
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As in (2.9) we have

(2.17) ModIfg(U∧S ) ∼=
⊕
λ,µ∈Λ

ModIfg(U λ̂,µ̂S ),

and the bifunctor (2.16) is then obtained by restriction to the appropriate sum-

mands. In case λ = µ = ν, this bifunctor equips ModIfg(U λ̂,λ̂S ) with a structure of
monoidal category, with unit object

U λ̂S := O(S∗(1))⊗O(g∗(1)) U λ̂.

Lemma 2.5. For any λ, µ ∈ X which belong to the closure of the fundamental
alcove and any ν ∈ X, the functor

Pλ,µS ⊗̂USg (−) : ModIfg(U µ̂,ν̂S )→ ModIfg(U λ̂,ν̂S )

is both left and right adjoint to the functor

Pµ,λS ⊗̂USg (−) : ModIfg(U λ̂,ν̂S )→ ModIfg(U µ̂,ν̂S ).

A similar property holds for the functors (−)⊗̂USgP
λ,µ
S and (−)⊗̂USgP

µ,λ
S .

Proof. We prove the case of convolution on the left; convolution on the right can
be treated similarly. We remark that for any V ∈ Rep(G), the functor(

O(S∗(1))⊗O(g∗(1)) C
∧(V )

)
⊗̂USg (−) : ModIfg(U∧S )→ ModIfg(U∧S )

is both left and right adjoint to the functor(
O(S∗(1))⊗O(g∗(1)) C

∧(V ∗)
)
⊗̂USg (−) : ModIfg(U∧S )→ ModIfg(U∧S ).

(In fact, these functors can be realized more concretely as tensor product with V
and V ∗ respectively.) On the other hand, the inclusion functor

ModIfg(U λ̂,ν̂S )→ ModIfg(U∧S )

(see (2.17)) is both left and right adjoint to the corresponding projection functor

ModIfg(U∧S )→ ModIfg(U λ̂,ν̂S ),

and similarly for µ in place of λ. The desired claim follows, since the functors

Pλ,µS ⊗̂USg(−) and Pµ,λS ⊗̂USg(−) are isomorphic to compositions of functors of this
form. �

2.11. Restriction to the Kostant section for diagonally induced bimod-
ules. In this subsection we aim at proving the following claim.

Proposition 2.6. For any λ, µ ∈ X, the functor (2.15) is fully faithful on the

subcategory HCλ̂,µ̂diag.

The proof of this proposition will use a preliminary lemma. For this we denote by

j : g
∗(1)
reg ↪→ g∗(1) the open embedding, and identify in the natural way the category

of quasi-coherent sheaves on the affine scheme g∗(1) with the category of modules
over the ring O(g∗(1)).

Lemma 2.7. For any n ≥ 1, the adjunction morphism

O(g∗(1))/(In · O(g∗(1)))→ j∗j
∗(O(g∗(1))/(In · O(g∗(1)))

)
is an isomorphism.
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Proof. We proceed by induction on n. The case n = 1 follows from the fact that
the subscheme N ∗ of g∗ considered in §2.3 is normal (in fact, it is isomorphic to the
unipotent cone of G, which is known to be normal; see [BK, §5.3] for references)
and that the open subset g∗reg ∩ N ∗ has a complement of codimension 2 (since N ∗
is a union of finitely many G-orbits, which all have even dimension).

Now, assume the claim is known for some n ≥ 1. Since g∗ is isomorphic to g
as a G-module, the coadjoint quotient morphism g∗(1) → t∗(1)/W is flat (see [Sl,
§3.14]), and t∗(1)/W is isomorphic to an affine space (see [Sl, §3.12]). Hence there
exists m ∈ Z≥1 and an exact sequence of O(g∗(1))-modules

O(g∗(1))/(I ·O(g∗(1)))⊕m ↪→ O(g∗(1))/(In+1 ·O(g∗(1))) � O(g∗(1))/(In ·O(g∗(1))).

Applying the left exact functor j∗j
∗ we obtain an exact sequence

0→ j∗j
∗(O(g∗(1))/(I · O(g∗(1)))⊕m

)
→ j∗j

∗(O(g∗(1))/(In+1 · O(g∗(1)))
)

→ j∗j
∗(O(g∗(1))/(In · O(g∗(1)))

)
.

Here the rightmost morphism is surjective, since the composition

O(g∗(1))/(In+1 · O(g∗(1)))→ j∗j
∗(O(g∗(1))/(In+1 · O(g∗(1)))

)
→ j∗j

∗(O(g∗(1))/(In · O(g∗(1)))
)

is surjective, as follows from the induction hypothesis. The desired claim for n+ 1
follows, using the 5-lemma. �

Proof of Proposition 2.6. We remark that the functor O(S∗(1))⊗O(g∗(1))(−) induces
a monoidal functor

(2.18) ModGfg(U∧)→ ModIfg(U∧S ),

from which the functor (2.15) is obtained by restriction to the direct summand

ModGfg(U λ̂,µ̂). To prove the proposition, it therefore suffices to prove that (2.18)

is fully faithful on the subcategory HC∧diag. In fact, what we will prove is that

for any M in ModGfg(Ug ⊗ZFr
Ugop) and any V in Rep(G), our functor induces an

isomorphism

HomModGfg(U∧)

(
C∧(M),C∧(V ⊗ Ug)

) ∼−→
HomModIfg(U∧S )

(
O(S∗(1))⊗O(g∗(1)) C

∧(M),O(S∗(1))⊗O(g∗(1)) C
∧(V ⊗ Ug)

)
.

Let us fix M and V as above. In view of (the analogue for U∧ of) (2.6), we have

HomModGfg(U∧)

(
C∧(M),C∧(V ⊗ Ug)

)
=

lim←−
n≥1

HomModGfg(Ug⊗ZFr
Ugop)

(
M/(In ·M), V ⊗ (Ug/In · Ug)

)
,

and similarly we have

HomModIfg(U∧S )

(
O(S∗(1))⊗O(g∗(1)) C

∧(M),O(S∗(1))⊗O(g∗(1)) C
∧(V ⊗ Ug)

)
=

lim←−
n≥1

HomModIfg(USg⊗O(S∗(1))(USg)op)

(
MS/(In ·MS), V ⊗ (USg/In · USg)

)
,
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where MS := O(S∗(1)) ⊗O(g∗(1)) M . To complete the proof, it therefore suffices to

prove that for any n ≥ 1 the functor O(S∗(1))⊗O(g∗(1)) (−) induces an isomorphism

HomModGfg(Ug⊗ZFr
Ugop)

(
M/(In ·M), V ⊗ (Ug/In · Ug)

) ∼−→
HomModIfg(USg⊗O(S∗(1))(USg)op)

(
MS/(In ·MS), V ⊗ (USg/In · USg)

)
.

The algebra Ug⊗ZFr
Ugop is a G-equivariant finite O(g∗(1))-algebra. Therefore,

it identifies with the global sections of a G-equivariant coherent sheaf of Og∗(1)-

algebras U on g∗(1). Moreover, the restriction US of U to S∗(1) is an I∗S -equivariant

sheaf of OS∗(1)-algebras on S∗(1), whose global sections are USg ⊗O(S∗(1)) (USg)op.

Consider now the open embedding j as in Lemma 2.7, and set Ureg := j∗(U ). Let

us denote by CohG(g
∗(1)
reg ,Ureg) the category of G-equivariant coherent sheaves on

g
∗(1)
reg equipped with a structure of Ureg-module, compatible with the G-equivariant

structure in the natural way. Then we have a natural restriction functor

j∗ : ModGfg(Ug⊗ZFr Ugop)→ CohG(g∗(1)
reg ,Ureg).

We claim that this functor induces an isomorphism

HomModGfg(Ug⊗ZFr
Ugop)

(
M/(In ·M), V ⊗ (Ug/In · Ug)

) ∼−→
Hom

CohG(g
∗(1)
reg ,Ureg)

(
j∗(M/(In ·M)), j∗(V ⊗ (Ug/In · Ug))

)
for any n ≥ 1. In fact, consider the category ModG(Ug⊗ZFr

Ugop) of all (non nec-
essarily finitely generated) G-equivariant Ug⊗ZFr

Ugop-modules, and the category

QCohG(g
∗(1)
reg ,Ureg) of G-equivariant quasi-coherent sheaves of Ureg-modules. The

functor j∗ considered above is the restriction of a functor

j∗ : ModG(Ug⊗ZFr
Ugop)→ QCohG(g∗(1)

reg ,Ureg).

which admits a right adjoint

j∗ : QCohG(g∗(1)
reg ,Ureg)→ ModG(Ug⊗ZFr Ug),

which coincides with the usual pushforward functor at the level of quasi-coherent

sheaves on g
∗(1)
reg and g∗(1). We deduce a canonical isomorphism

Hom
CohG(g

∗(1)
reg ,Ureg)

(
j∗(M/(In ·M)), j∗(V ⊗ (Ug/In · Ug))

) ∼=
HomModG(Ug⊗ZFr

Ug)

(
M/(In ·M), j∗j

∗(V ⊗ (Ug/In · Ug))
)
.

Now since Ug is free of finite rank as an O(g∗(1))-module Lemma 2.7 guarantees
that the adjunction morphism

V ⊗ (Ug/In · Ug)→ j∗j
∗(V ⊗ (Ug/In · Ug))

is an isomorphism, which finishes the proof of our claim.
Now we can conclude as follows. By [R3, Proposition 3.3.11], restriction to S∗(1)

induces an equivalence of abelian categories

CohG
(1)

(g∗(1)
reg )

∼−→ Rep((J∗S)(1)),

where the right-hand side denotes the category of representations of the affine group
scheme (J∗S)(1) (see §2.9) on coherent OS∗(1)-modules. The same considerations
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provide an equivalence of categories

CohG(g∗(1)
reg )

∼−→ Rep(I∗S).

(Here we use the fact that the Frobenius morphism of G is flat and surjective,
hence faithfully flat.) This equivalence is monoidal with respect to the natural
tensor product on each side, and the image of the algebra Ureg is US ; therefore it
induces an equivalence of abelian categories

CohG(g∗(1)
reg ,Ureg)

∼−→ ModIfg(USg⊗O(S∗(1)) USg),

which provides for any n an isomorphism

Hom
CohG(g

∗(1)
reg ,Ureg)

(
j∗(M/(In ·M)), j∗(V ⊗ (Ug/In · Ug))

) ∼−→
HomModIfg(USg⊗O(S∗(1))USg)(MS/(In ·MS), V ⊗ (USg/In · USg)).

This concludes the proof. �

3. Localization for Harish-Chandra bimodules

3.1. Azumaya algebras. We start by recalling the basic theory of Azumaya al-
gebras.

Let R be a commutative ring. Recall that an R-module P is called faithfully
projective if it is projective of finite type and if moreover the only R-module M
such that P ⊗R M = 0 is M = 0. By [KO, Chap. I, Lemme 6.2] this condition
is equivalent to requiring that P is projective of finite type and faithful (i.e. its
annihilator in R is trivial). An R-module P is finitely generated and projective
iff it is finitely presented and moreover the localization Pp is free over Rp for any
p ∈ Spec(R), see [KO, Chap. I, Lemme 5.2] or [SP, Tag 00NX]. In this setting, P is
faithful iff the rank of Pp is positive for any p, see [KO, Chap. I, Lemme 6.1]. This
notion is important in Morita theory since if P is a faithfully projective R-module,
then we obtain quasi-inverse equivalences of categories

Mod(R) // Mod(EndR(P ))oo

given by M 7→ P ⊗R M and N 7→ HomR(P,R) ⊗EndR(P ) N where Mod(A) is the
category of left A-modules for any ring A; see [KO, Chap. I, Lemme 7.2]. In case
R is Noetherian, the ring EndR(P ) is left Noetherian (as a noncommutative ring),
and these equivalences restrict to equivalences

(3.1) Modfg(R) // Modfg(EndR(P ))oo

between subcategories of finitely generated modules. (Here, a left EndR(P )-module
is finitely generated iff it is finitely generated as an R-module.)

Let A be an R-algebra. (By this mean we mean that we are given a ring mor-
phism from R to the center of the nonnecessarily commutative algebra A.) Recall
(see [KO, §III.5]) that A is called an Azumaya R-algebra if it satisfies one of the
following equivalent conditions:

• A is faithfully projective as an R-module, and the morphism sending a⊗ b
to the map x 7→ axb induces an isomorphism of R-algebras

A⊗R Aop ∼−→ EndR(A);

https://stacks.math.columbia.edu/tag/00NX
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• A is finite as an R-module, the ring morphism R → A is injective, and
moreover for any maximal ideal m ⊂ R the finite dimensional R/m-algebra
A/mA is a central simple algebra.

In particular, the first characterization shows that in this case we have canonical
equivalences of categories

Mod(R) // Mod(A⊗R Aop).oo

3.2. Azumaya property of USg. The following property is standard (see [BG,
BGor]); we recall its proof for the reader’s convenience.

Proposition 3.1. The O(CS)-algebra USg is Azumaya.

Proof. What we have to prove is that if m ⊂ Z(Ug) is a maximal ideal which belongs
to CS , then Ug/mUg is a central simple algebra. In fact, this property holds more

generally if m belongs to Creg := g
∗(1)
reg ×t∗(1)/W t∗/(W, •). Indeed, let M(g) be the

maximal dimension of a simple Ug-module. By [BG, Proposition 3.1], if m ⊂ Z(Ug)
is a maximal ideal such that Ug/mUg admits a simple module V of dimension M(g),
then Ug/mUg is a central simple algebra; more specifically, the algebra morphism
Ug/mUg → Endk(V ) is an isomorphism. Now by [PS, Theorem 4.4] we have
M(g) = pdim(n). And by [PS, Theorem 5.6], if m belongs to Creg then any simple

Ug/mUg-module has dimension divisible by pdim(n) hence equal to M(g). �

It follows in particular from Proposition 3.1 that USg is faithfully projective as
an O(CS)-module.

One can make the Azumaya property from Proposition 3.1 a bit more concrete
as follows. First we need to recall the definition of baby Verma modules. Given a
Borel subgroup B′ ⊂ G, we will denote by ru(B′) its unipotent radical. Consider
some element η ∈ g∗(1), and some Borel subgroup B′ ⊂ G such that η vanishes on
Lie(ru(B′))(1). (Such a Borel subgroup exists for any η, see [J1, Lemma 6.6].) Then
η defines an element in (Lie(B′)/Lie(ru(B′)))∗(1). Let ξ ∈ t∗ be an element whose
image under the map

t∗ ∼= (Lie(B)/Lie(U))∗
∼−→ (Lie(B′)/Lie(ru(B′)))∗ → (Lie(B′)/Lie(ru(B′)))∗(1)

is η, where the second map is induced by conjugation by an element g ∈ G such
that gBg−1 = B′ (it is well known that the isomorphism does not depend on the
choice of g), and the second one is the Artin–Schreier map associated with the torus
B′/ru(B′). Then we can consider the associated baby Verma module

Zη,B′(ξ) := Uηg⊗UηLie(B′) kξ,

where UηLie(B′) is the central reduction of the enveloping algebra of Lie(B′) at

the image of η in Lie(B′)∗(1), and kξ is its 1-dimensional module defined by the

image of ξ in (Lie(B′)/Lie(U ′))∗. This module has dimension pdim(n); if we assume

furthermore that η ∈ g
∗(1)
reg , then the considerations in the proof of Proposition 3.1

therefore imply that this module is simple, and that the algebra morphism

(3.2) Uξ
′

η g→ Endk(Zη,B′(ξ))

is an isomorphism, where we denote by ξ′ the image of ξ in t∗/(W, •).



HECKE ACTION ON THE PRINCIPAL BLOCK 23

3.3. Some categories of coherent sheaves. Below we will construct some tools

that will allow us to study the categories HCλ̂,µ̂ via geometric methods. In this
subsection we introduce the categories of sheaves that will be involved in these
constructions. Our model will be the category CohG(C ×g∗(1) C) of G-equivariant
coherent sheaves on C×g∗(1) C, or in other words of G-equivariant finitely generated
Z-modules, which is a monoidal category for the operation sending a pair (M,N)
to

M ⊗Z(Ug) N,

where in the tensor product Z(Ug) acts on M via the right action and on N via the
left action. The Z-action on M ⊗Z(Ug) N comes from the left action of Z(Ug) on
M and the right action on N . In practice however, we will have to add generalized
characters to this picture.

Recall the isomorphism

Z∧ ∼−→
∏
λ,µ∈Λ

Z λ̂,µ̂

of Lemma 2.3. If we define the notion of a G-equivariant finitely generated Z∧-

module, resp. Z λ̂,µ̂-module, as a finitely generated Z∧-module, resp. Z λ̂,µ̂-module,
M together with an algebraic G-module structure on each quotient M/In · M ,
resp. M/(Iλ,µ)n · M , compatible with the natural projections and action maps,

then one obtains in a natural way abelian categories ModGfg(Z∧) and ModGfg(Z λ̂,µ̂)
whose objects are these equivariant modules. The isomorphism above provides a
canonical equivalence of categories

(3.3) ModGfg(Z∧) ∼=
⊕
λ,µ∈Λ

ModGfg(Z λ̂,µ̂).

Following the same pattern as in §2.8, one obtains a monoidal structure on the
category ModGfg(Z∧) by setting, for any M,N in ModGfg(Z∧),

M ?̂ N = lim←−
n≥1

(M/In ·M)⊗Z(Ug) (N/In ·N).

For any λ, µ, ν ∈ X, the bifunctor ?̂ restricts to a bifunctor

ModGfg(Z λ̂,µ̂)×ModGfg(Z µ̂,ν̂)→ ModGfg(Z λ̂,ν̂),

which will again be denoted ?̂. (Here we see each of the categories involved as

a direct summand in ModGfg(Z∧) via (3.3).) In particular, when λ = µ = ν we

obtain a monoidal structure on the category ModGfg(Z λ̂,λ̂). The unit object in this

category is the completion Z λ̂ of the diagonal Z-module Z(Ug) with respect to the
ideal Iλ,λ.

This construction also has natural analogues in the setting of §2.10. As above

we have abelian categories ModIfg(Z∧S ) and ModIfg(Z λ̂,µ̂S ) (where we replace the da-
tum of a G-module structure by that of an I∗S -module structure), and a canonical
equivalence

ModIfg(Z∧S ) ∼=
⊕
λ,µ∈Λ

ModIfg(Z λ̂,µ̂S ).

The category ModIfg(Z∧S ) admits a natural monoidal structure, with monoidal prod-
uct denoted

(−) ?̂S (−) : ModIfg(Z∧S )×ModIfg(Z∧S )→ ModIfg(Z∧S ),
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which restricts to a bifunctor

ModIfg(Z λ̂,µ̂S )×ModIfg(Z µ̂,ν̂S )→ ModIfg(Z λ̂,ν̂S )

for any λ, µ, ν ∈ X. In particular, for any λ ∈ X we obtain a monoidal category(
ModIfg(Z λ̂,λ̂S ), ?̂S

)
with unit object Z λ̂S = O(S∗(1)) ⊗O(g∗(1)) Z λ̂, which identifies

with the completion of O(t∗/(W, •)) with respect to mλ.
With these definitions, the functor O(S∗(1))⊗O(g∗(1)) (−) induces functors

ModGfg(Z∧)→ ModIfg(Z∧S ), ModGfg(Z λ̂,µ̂)→ ModIfg(Z λ̂,µ̂S )

for λ, µ ∈ X which are compatible with the bifunctors ?̂ and ?̂S in the natural way.

3.4. Splitting bundles for the algebras U λ̂,µ̂S . Recall that a weight λ ∈ X is
said to belong to the lower closure of the fundamental alcove if it satisfies

0 ≤ 〈λ+ ρ, α∨〉 < p

for any positive root α. Recall also the completed bimodules introduced in §2.6.
In particular, given λ, µ ∈ X which belong to the lower closure of the fundamental
alcove, we have the objects

Pλ,−ρ = Cλ,−ρ
(
L(λ+ ρ)⊗ Ug

)
∈ HCλ̂,−̂ρdiag ,

P−ρ,µ = C−ρ,µ
(
L(−w0µ+ ρ)⊗ Ug

)
∈ HC−̂ρ,µ̂diag .

We set

Mλ,µ := Pλ,−ρ ⊗̂Ug P−ρ,µ ∈ HCλ̂,µ̂diag.

We also set Mλ,µ
S := O(S∗(1))⊗O(g∗(1)) Mλ,µ, so that

Mλ,µ
S = Pλ,−ρS ⊗̂USg P

−ρ,µ
S

where we use the notation of §2.10.
The main technical result of this section is the following theorem. Its proof will

be given in §3.6, after some preliminaries treated in §3.5.

Theorem 3.2. For any λ, µ ∈ X in the lower closure of the fundamental alcove,

the Z λ̂,µ̂S -module Mλ,µ
S is faithfully projective, and the natural algebra morphism

U λ̂,µ̂S → End
Zλ̂,µ̂S

(Mλ,µ
S )

is an isomorphism.

3.5. Study of some fibers. Let us set

ZS := Spec(ZS),

which we identify with

t∗/(W, •)×t∗(1)/W t∗/(W, •),
see §3.6. We also set

Z̃S := t∗ ×t∗(1) t
∗.

Since the Artin–Schreier map t∗ → t∗(1) is a Galois covering with Galois group
t∗Z, we have a canonical isomorphism

t∗Z × t∗
∼−→ Z̃S
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defined by (η, ξ) 7→ (η + ξ, ξ). For λ ∈ X we will denote by Z̃S(λ) the image of

{λ+ ρ} × t∗ in Z̃S ; if Λ̃ ⊂ X is a subset of representatives for the quotient t∗Z, we
then have

Z̃S =
⊔
λ∈Λ̃

Z̃S(λ).

We have a natural finite morphism

Z̃S → ZS .

It is easily seen that the image of the latter morphism contains all the closed
points of ZS , so that this morphism is surjective since closed points are dense in
ZS (see [SP, Tag 02J6]). For any λ ∈ X we denote by ZS(λ) the scheme-theoretic

image of Z̃S(λ) in Z̃S . Since Z̃S(λ) is integral, so is ZS(λ). Moreover, we have

ZS(λ) = ZS(µ) iff λ̃ = µ̃.

If Λ ⊂ X is (as in §2.7) a subset of representatives for t∗Z/(W, •), we therefore have

ZS =
⋃
λ∈Λ

ZS(λ),

and this constitues the decomposition of ZS into its irreducible components.
Let us consider the open subset

t∗◦ := {ξ ∈ t∗ | ∀w ∈W, w • ξ − ξ /∈ t∗Z r {0}} ⊂ t∗.

Then t∗◦ is stable under the (W, •)-action, and is in fact the pullback of an open
subset of t∗/(W, •), which therefore identifies with the quotient t∗◦/(W, •).

Recall the Grothendieck resolution g̃ and the morphism ϑ : g̃ → t∗ introduced

in §2.9. If we denote by S̃∗ the (scheme-theoretic) preimage of S∗ in g̃, then by [R3,

Proposition 3.5.5] the morphism ϑ restricts to an isomorphism S̃∗ ∼−→ t∗. In concrete
terms, this means that given ζ ∈ t∗(1)/W identified with an element in S∗(1), the
datum of a preimage of ζ in t∗(1) is equivalent to the datum of a Borel subgroup
B′ ⊂ G such that ζ|Lie(ru(B′)) = 0.

Proposition 3.3. Let λ ∈ X be a weight which belongs to the lower closure of the
fundamental alcove. Consider some element ξ ∈ t∗◦, and denote by (ζ1, ζ2) ∈ ZS(λ)

the image of (ξ + λ+ ρ, ξ) ∈ Z̃S(λ) in ZS . Let also η ∈ S∗(1) be the element
corresponding to the images of ζ1 and ζ2 in t∗(1)/W , and let B′ ⊂ G be the Borel
subgroup such that η|Lie(ru(B′)) = 0 corresponding to the image of ξ in t∗(1).

If we denote by i : Spec(k) → ZS the morphism defined by (ζ1, ζ2), there exists
an isomorphism of Uζ1η g⊗ (Uζ2η g)op-modules

i∗
(
L(λ+ ρ)⊗ USg

) ∼= Zη,B′(ξ + λ+ ρ)⊗ Zη,B′(ξ)
∗.

Proof. By definition we have

i∗
(
L(λ+ ρ)⊗ USg

) ∼= kζ1 ⊗ZHC

(
L(λ+ ρ)⊗ Uζ2η g

)
.

By construction, the image of ξ in t∗(1) corresponds to the element in the space
(Lie(B′)/Lie(ru(B′)))∗(1) defined by η; by (3.2), we therefore have a canonical iso-
morphism

Uζ2η g
∼−→ Endk(Zη,B′(ξ)) ∼= Zη,B′(ξ)⊗ Zη,B′(ξ)

∗,

https://stacks.math.columbia.edu/tag/02J6
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under which the action of Ug induced by left multiplication on the left-hand side
corresponds to the natural action on Zη,B′(ξ). We deduce an isomorphism

i∗
(
L(λ+ ρ)⊗ USg

) ∼= kζ1 ⊗ZHC

(
L(λ+ ρ)⊗ Zη,B′(ξ)

)
⊗ Zη,B′(ξ)

∗,

which shows that to conclude the proof it suffices to construct an isomorphism of
Uζ1η -modules

(3.4) kζ1 ⊗ZHC

(
L(λ+ ρ)⊗ Zη,B′(ξ)

) ∼= Zη,B′(ξ + λ+ ρ).

As above we have a canonical isomorphism

Uζ1η g
∼−→ Endk(Zη,B′(ξ + λ+ ρ));

therefore, any Uζ1η g-module is isomorphic to a direct sum of copies of Zη,B′(ξ +

λ+ ρ). To analyze how many copies we have for the specific module in the left-
hand side of (3.4), we observe that

HomUζ1η g
(kζ1 ⊗ZHC

(
L(λ+ ρ)⊗ Zη,B′(ξ)

)
,Zη,B′(ξ + λ+ ρ)) =

HomUηg(L(λ+ ρ)⊗ Zη,B′(ξ),Zη,B′(ξ + λ+ ρ)) ∼=
HomUηg(Zη,B′(ξ), L(−w0λ+ ρ)⊗ Zη,B′(ξ + λ+ ρ)).

We now consider the module L(−w0λ+ρ)⊗Zη,B′(ξ+λ+ ρ), and more specifically
the direct summand on which ZHC acts with a generalized character corresponding
to ζ2. We have a canonical isomorphism of Uηg-modules

L(−w0λ+ ρ)⊗ Zη,B′(ξ + λ+ ρ) ∼= Uηg⊗UηLie(B′)

(
L(−w0λ+ ρ)|B′ ⊗ kξ+λ+ρ

)
.

The B′-module L(−w0λ+ ρ)|B′ admits a filtration

0 ⊂M1 ⊂ · · · ⊂Mn = L(−w0λ+ ρ)|B′

where each Mi/Mi−1 is 1-dimensional; moreover these modules are associated
with the characters of B′/ru(B′) ∼= B/U ∼= T corresponding to the T -weights
of L(−w0λ + ρ), counted with multiplicities. This filtration induces a filtration of
L(−w0λ+ ρ)|B′ ⊗ kξ+λ+ρ, and then of L(−w0λ+ ρ)⊗ Zη,B′(ξ + λ+ ρ), whose sub-

quotients are of the form Zη,B′(ξ + λ+ ρ+ µ), where µ runs over the T -weights of
L(−w0λ+ ρ), counted with multiplicities.

We claim that there exists exactly one subquotient in this filtration on which
ZHC acts via the character ζ2, corresponding to the multiplicity-1 weight −λ − ρ
of L(−w0λ + ρ). Indeed, assume that ZHC acts with character ζ2 on Zη,B′(ξ +

λ+ ρ+ µ). Then there exists w ∈ W such that ξ + λ+ ρ+ µ = w • ξ. Since ξ
belongs to t∗◦, this condition implies that ξ + λ+ ρ+ µ = ξ, hence that λ + ρ +
µ ∈ pX. On the other hand, µ is a weight of L(−w0λ + ρ), hence it belongs to
−w0λ + ρ + ZR = −λ − ρ + ZR. In view of (2.1) these conditions imply that
λ+ ρ+ µ ∈ pZR, i.e. that λ+ µ ∈ −ρ+ pZR = Waff • (−ρ). By [J2, Lemma II.7.7]
(applied to the pair of elements (λ,−ρ)), there must then exist w ∈Waff such that
w • λ = λ and λ+ µ = w • (−ρ). Here, since λ belongs to the lower closure of the
fundamental alcove, the first condition implies that w ∈ W (see §2.6); it follows
that w • (−ρ) = −ρ, hence that λ+ µ = −ρ, which finishes the proof of our claim.

This claim implies that the direct summand of L(−w0λ+ ρ)⊗ Zη,B′(ξ + λ+ ρ)
corresponding to the generalized character of ZHC given by ζ2 is isomorphic to
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Zη,B′(ξ); it follows that

HomUζ1η g

(
kζ1 ⊗ZHC

(
L(λ+ ρ)⊗ Zη,B′(ξ)

)
,Zη,B′(ξ + λ+ ρ)

)
is 1-dimensional, which finally proves (3.4). �

The statement of Proposition 3.3 is not symmetric, in that the conditions we
impose imply that ζ2 necessarily belongs to t∗◦/(W, •), whereas ζ1 might not. Below
we will also need the other variant of this statement, in which the first component
has to belong to t∗◦/(W, •). Its proof is analogous to that of Proposition 3.3. (More
precisely, in this case the counterpart of (3.4) can be obtained directly, without
recourse to the computation in the paragraph following this equation.)

Proposition 3.4. Let µ ∈ X be a weight which belongs to the lower closure of
the fundamental alcove. Consider some element ξ ∈ t∗◦, and denote by (ζ1, ζ2) ∈
ZS(−w0µ) the image of (ξ, ξ + µ+ ρ) ∈ Z̃S(−w0µ) in ZS . Let also η ∈ S∗(1) be the
element corresponding to the images of ζ1 and ζ2 in t∗(1)/W , and let B′ ⊂ G be the
Borel subgroup such that η|Lie(ru(B′)) = 0 corresponding to the image of ξ in t∗(1).

If we denote by i : Spec(k) → ZS the morphism defined by (ζ1, ζ2), there exists
an isomorphism of Uζ1η g⊗ (Uζ2η g)op-modules

i∗
(
L(−w0µ+ ρ)⊗ USg

) ∼= Zη,B′(ξ)⊗ Zη,B′(ξ + µ+ ρ)∗.

3.6. Proof of Theorem 3.2. The proof of Theorem 3.2 will require two more
preliminary lemmas.

Lemma 3.5. Let X be a reduced scheme locally of finite type over k, and let F be
a coherent sheaf on X. Assume that there exists d ≥ 0 such that for any morphism
i : Spec(k) → X the pullback i∗(F ) ∈ Coh(Spec(k)) = Vectk has dimension d.
Then F is a locally free OX-module of rank d.

Proof. Of course we can assume that X is also affine and of finite type, i.e. that
X = Spec(A) for some finitely generated reduced k-algebra A. Let us denote by
M the A-module corresponding to F . In this setting the datum of a morphism
i : Spec(k)→ X is equivalent to the datum of a maximal ideal m ⊂ A, and we have
i∗(F ) = M/m ·M . In view of [SP, Tag 0FWG], to show that M is locally free of
rank d it suffices to prove that for any p ∈ Spec(A) we have

dimAp/pAp
(Mp/pMp) = d.

Now by [Pe, Theorem 7.33], the function

p 7→ dimAp/pAp
(Mp/pMp)

is upper semi-continuous. By assumption, this function is constant (equal to d) on
the subset of Spec(A) consisting of maximal ideals, i.e. of closed points. Hence the
open subset

{p ∈ Spec(A) | dimAp/pAp
(Mp/pMp) ≤ d}

contains all closed points. Since Spec(A) is Jacobson (see [SP, Tag 02J6]) this
implies that this open subset is the whole of Spec(A). On the other hand the open
subset

{p ∈ Spec(A) | dimAp/pAp
(Mp/pMp) ≤ d− 1}

does not contain any closed point, hence it is empty. �

https://stacks.math.columbia.edu/tag/0FWG
https://stacks.math.columbia.edu/tag/02J6
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Lemma 3.6. The morphism

t∗/(W, •)×t∗(1)/W t∗/(W, •)×t∗(1)/W t∗/(W, •)→ ZS

induced by projection on the first and third factors is étale at any point of the form

(λ̃, −̃ρ, µ̃) with λ, µ ∈ X.

Proof. To prove this claim it suffices to prove that the morphism t∗/(W, •) →
t∗(1)/W is étale at −̃ρ. The dot-action of W and the natural action of t∗Z on t∗

combine to provide an action of the semi-direct product t∗Z oW (where W acts on

t∗Z through the natural, unshifted, action) defined by (λw) • ξ = w(ξ + ρ) − ρ + λ

for λ ∈ t∗Z and w ∈ W . Moreover, the composition t∗ → t∗/(W, •) → t∗(1)/W is
the quotient morphism for this action. Since −ρ is stabilized by W , the claim then
follows from [SGA1, Exp. V, Proposition 2.2]. �

For λ ∈ X, whose image in t∗Z/(W, •) is that of λ′ ∈ Λ, we set

Z0
S(λ) :=

(
t∗/(W, •)×t∗(1)/W t∗◦/(W, •)

)
r

 ⋃
µ∈Λr{λ′}

ZS(µ)

 .

Then Z0
S(λ) is an open subset of ZS , contained in ZS(λ). We will denote by jλ :

Z0
S(λ)→ ZS the embedding.

Continuing with the same notation, we also set

Z0′
S (λ) :=

(
t∗◦/(W, •)×t∗(1)/W t∗/(W, •)

)
r

 ⋃
µ∈Λr{λ′}

ZS(µ)

 ,

and we denote by j′λ : Z0′
S (λ)→ ZS the open embedding.

Proof of Theorem 3.2. Let λ, µ ∈ X which belong to the lower closure of the fun-

damental alcove. Note that (λ̃, −̃ρ) ∈ Z0
S(λ); in fact, −ρ belongs to t∗◦ since this

point is stable under the dot-action of W . On the other hand, if ν ∈ X is such that

(λ̃, −̃ρ) ∈ ZS(ν), then there exists ξ ∈ t∗ such that the point (ξ+ν + ρ, ξ) ∈ Z̃S has

image (λ̃, −̃ρ) in ZS ; we then have ξ ∈ W • −ρ = {−ρ} and ξ + ν + ρ ∈ W • λ, so

that λ̃ = ν̃. Similarly, we have (−̃ρ, µ̃) ∈ Z0′
S (−w0µ).

Consider the morphism

f : Z0
S(λ)×t∗/(W,•) Z

0′
S (−w0µ)→ t∗/(W, •)

induced by projection on the middle summand. The algebra USg is an O(t∗/(W, •))-
algebra; it therefore defines a coherent sheaf of Ot∗/(W,•)-algebras A on t∗/(W, •).
Consider also the projections

p : Z0
S(λ)×t∗/(W,•) Z

0′
S (−w0µ)→ Z0

S(λ),

q : Z0
S(λ)×t∗/(W,•) Z

0′
S (−w0µ)→ Z0′

S (−w0µ).

The sheaves p∗j∗λ(L(λ+ρ)⊗USg) and q∗(j′−w0µ)∗(L(−w0µ+ρ)⊗USg) are naturally
sheaves of modules for f∗A , so that we can consider the tensor product

(3.5) p∗j∗λ(L(λ+ ρ)⊗ USg)⊗f∗A q∗(j′−w0µ)∗(L(−w0µ+ ρ)⊗ USg).

We claim that this sheaf is a locally free OZ0
S(λ)×t∗/(W,•)Z

0′
S (−w0µ)-module, of

rank p2 dim(n). In fact, by Lemma 3.5, to prove this it suffices to prove that for any
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closed point (ζ1, ζ2, ζ3) ∈ Z0
S(λ) ×t∗/(W,•) Z

0′
S (−w0µ), denoting by i : Spec(k) →

Z0
S(λ)×t∗/(W,•) Z

0′
S (−w0µ) the corresponding morphism, the vector space

(3.6) i∗
(
p∗j∗λ(L(λ+ ρ)⊗ USg)⊗f∗A q∗(j′−w0µ)∗(L(−w0µ+ ρ)⊗ USg)

)
has dimension p2 dim(n). If we denote by i1 : Spec(k) → ZS and i2 : Spec(k) → ZS
the embeddings of the points (ζ1, ζ2) and (ζ2, ζ3) respectively, then this vector space
can be written as

i∗1
(
L(λ+ ρ)⊗ USg

)
⊗Uζ2η g

i∗2
(
L(−w0µ+ ρ)⊗ USg

)
,

where η ∈ S∗(1) is the image of the ζi’s. Let ξ ∈ t∗ such that (ζ1, ζ2) is the image
of (ξ + λ+ ρ, ξ), and let B′ ⊂ G be the Borel subgroup such that η|Lie(ru(B′)) = 0

corresponding to the image of ξ in t∗(1). By Proposition 3.3 we have

i∗1
(
L(λ+ ρ)⊗ USg

) ∼= Zη,B′(ξ + λ+ ρ)⊗ Zη,B′(ξ)
∗.

Similarly, if ξ′ ∈ t∗ is such that (ζ2, ζ3) is the image of (ξ′, ξ′+µ+ ρ), and if B′′ ⊂ G
is the Borel subgroup such that η|Lie(ru(B′′)) = 0 corresponding to the image of ξ′

in t∗(1), then we have

i∗2
(
L(−w0µ+ ρ)⊗ USg

) ∼= Zη,B′′(ξ
′)⊗ Zη,B′′(ξ

′ + µ+ ρ)∗.

Here Zη,B′(ξ) and Zη,B′′(ξ
′) are two simple modules over the matrix algebra Uζ2η g,

see §3.2; they must therefore be isomorphic. Fixing an isomorphism ϕ : Zη,B′(ξ)
∼−→

Zη,B′′(ξ
′), we obtain a pairing

Zη,B′(ξ)
∗ ⊗ Zη,B′′(ξ

′)→ k

defined by f ⊗ v 7→ f(ϕ−1(v)), which induces an isomorphism

Zη,B′(ξ)
∗ ⊗Uζ2η g

Zη,B′′(ξ
′)
∼−→ k.

Combining these observations we obtain that the vector space in (3.6) is isomorphic
to

Zη,B′(ξ + λ+ ρ)⊗ Zη,B′′(ξ
′ + µ+ ρ)∗,

hence has dimension p2 dim(n), as desired.
Now we consider the morphism

Z0
S(λ)×t∗/(W,•) Z

0′
S (−w0µ)→ ZS

obtained from that of Lemma 3.6 by restriction to the open subset

Z0
S(λ)×t∗/(W,•) Z

0′
S (−w0µ) ⊂ t∗/(W, •)×t∗(1)/W t∗/(W, •)×t∗(1)/W t∗/(W, •).

This lemma ensures that this morphism is étale at (λ̃, −̃ρ, µ̃); it therefore identifies

the completion of Z0
S(λ) ×t∗/(W,•) Z

0′
S (−w0µ) at (λ̃, −̃ρ, µ̃) with the completion of

ZS at (λ̃, µ̃), i.e. with the spectrum of Z λ̂,µ̂S . By construction the completion of the

sheaf (3.5) at (λ̃, −̃ρ, µ̃) is Mλ,µ
S ; since this sheaf is locally free this proves that Mλ,µ

S

is faithfully projective. In fact, since the ring Z λ̂,µ̂S is local, this module is even free

(of rank p2 dim(n)).
Finally we consider the natural morphism

U λ̂,µ̂S → End
Zλ̂,µ̂S

(Mλ,µ
S ).
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Here, both sides are free as modules over Z λ̂,µ̂S . In fact, for the ring-hand side this

follows from the same property for the module Mλ,µ
S , which we have seen above.

For the left-hand side, we observe that USg is projective over O(CS) by Lemma 3.1;

it follows that USg ⊗O(S∗(1)) USgop is projective over ZS , and finally that U λ̂,µ̂S
is projective, hence free, over the local ring Z λ̂,µ̂S . Given this property, to prove
that our morphism is an isomorphism it suffices to prove that it is invertible after
application of the functor k⊗

Zλ̂,µ̂S
(−). Now we have

k⊗
Zλ̂,µ̂S

U λ̂,µ̂S = Uλχg⊗ (Uµχg)op,

where χ := κ(e), seen as a point in g∗(1). (See §2.9 for the definitions of κ and e.)

On the other hand, since Mλ,µ
S is a free module we have

k⊗
Zλ̂,µ̂S

End
Zλ̂,µ̂S

(Mλ,µ
S ) ∼= Endk(k⊗

Zλ̂,µ̂S
Mλ,µ
S ),

and applying the considerations above with ξ = ξ′ = −ρ we have

(3.7) k⊗
Zλ̂,µ̂S

Mλ,µ
S
∼= Zχ,B′(λ)⊗ Zχ,B′(µ)∗,

where B′ ⊂ G is the unique Borel subgroup such that χ|Lie(ru(B′)) = 0. By (3.2)
our morphism is indeed an isomorphism, which finishes the proof. �

3.7. Localization for Harish-Chandra bimodules. The main consequence of
Theorem 3.2 that will be used below is the following statement.

Corollary 3.7. For any λ, µ ∈ X in the lower closure of the fundamental alcove,

the functor Mλ,µ
S ⊗

Zλ̂,µ̂S
(−) induces an equivalence of abelian categories

Lλ,µ : ModIfg(Z λ̂,µ̂S )
∼−→ ModIfg(U λ̂,µ̂S ).

Moreover, in case λ = µ, there exists a canonical isomorphism

(3.8) Lλ,λ(Z λ̂S) ∼= U λ̂S .

Proof. The properties stated in Theorem 3.2 ensure that the functor

Mλ,µ
S ⊗

Zλ̂,µ̂S
(−)

induces an equivalence of abelian categories

Modfg(Z λ̂,µ̂S )
∼−→ Modfg(U λ̂,µ̂S ),

see (3.1). Adding the I∗S -actions in the picture we obtain the desired equivalence

ModIfg(Z λ̂,µ̂S )
∼−→ ModIfg(U λ̂,µ̂S ).

Finally, we consider the special case λ = µ, and construct a canonical isomor-

phism Lλ,λ(Z λ̂S) ∼= U λ̂S . Adjunction (see Lemma 2.5) provides a canonical morphism

Pλ,−ρS ⊗̂USg P
−ρ,λ
S → U λ̂S ,

which factors through a morphism

Lλ,λ(Z λ̂S) = Mλ,λ
S ⊗

Zλ̂,λ̂S
Z λ̂S → U λ̂S .
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Here both sides are finite free modules over the local ring Z λ̂S ; to prove that this
morphism is an isomorphism it therefore suffices to check that the induced mor-
phism (

Mλ,λ
S ⊗

Zλ̂,λ̂S
Z λ̂S
)
⊗Zλ̂S k→ U λ̂S ⊗Zλ̂S k

is invertible. The right-hand side identifies with Uλχg, and by (3.7) the left-hand side

identifies with Zχ,B′(λ)⊗Zχ,B′(λ)∗, where B′ ⊂ G is the unique Borel subgroup such
that χ|Lie(ru(B′)) = 0; the desired claim is therefore clear from the isomorphism (3.2).

�

Remark 3.8. We will prove later (at least in the special case when µ belongs to the
fundamental alcove, see §4.5) that the equivalences of Corollary 3.7 intertwine the
bifunctors

⊗̂USg : ModIfg(U λ̂,µ̂S )×ModIfg(U µ̂,ν̂S )→ ModIfg(U λ̂,ν̂S )

and

?̂S : ModIfg(Z λ̂,µ̂S )×ModIfg(Z µ̂,ν̂S )→ ModIfg(Z λ̂,ν̂S )

for any λ, ν ∈ X.

4. Ug and differential operators on the flag variety

In this section we study the equivalences Lλ,µ of Corollary 3.7 further, using the
relation between the algebra Ug and differential operators on the flag variety of G.

4.1. Universal twisted differential operators. Set B := G/B, and consider the
natural projection morphism

ω : G/U → B.
Here G/U admits a natural action of T induced by multiplication on the right
on G, and ω is a (Zariski locally trivial) T -torsor. The sheaf of universal twisted
differential operators on B is the quasi-coherent sheaf of algebras

D̃ := ω∗(DG/U )T ,

where the exponent means T -invariants. The actions of G and T on G/U induce a
canonical algebra morphism

(4.1) Ug⊗ZHC
O(t∗)→ Γ(B, D̃),

see [BMR1, Lemma 3.1.5].
Recall the Grothendieck resolution g̃ introduced in §2.9. Consider the Frobenius

morphism FrB : B → B(1) and the natural morphism f : g̃(1) ×t∗(1) t
∗ → B(1). As

explained in [BMR1, §2.3], there exists a canonical algebra morphism

f∗Og̃(1)×
t∗(1) t

∗ → (FrB)∗D̃

which takes values in the center of (FrB)∗D̃ , and which makes (FrB)∗D̃ a locally
finitely generated f∗Og̃(1)×

t∗(1) t
∗ -module. Since all the morphisms involved in this

construction are affine, using this morphism one can consider D̃ as a coherent sheaf
of Og̃(1)×

t∗(1) t
∗ -algebras on g̃(1)×t∗(1) t

∗. (We will not introduce a different notation

for this sheaf of algebras.)
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Recall also (see §3.5) that we denote by S̃∗ the preimage of S∗ under the natural

morphism π : g̃→ g∗, and that the morphism ϑ restricts to an isomorphism S̃∗ ∼−→
t∗; in particular, S̃∗ is an affine scheme. We set

D̃S := D̃|S̃∗(1)×
t∗(1) t

∗ , DS := Γ(S̃∗(1) ×t∗(1) t
∗, D̃S).

We will also set

ŨSg := USg⊗ZHC O(t∗).

Lemma 4.1. The morphism (4.1) induces an algebra isomorphism

ŨSg
∼−→ DS .

Proof. Consider the natural morphism

h : S̃∗(1) ×t∗(1) t
∗ → S∗(1) ×t∗(1)/W t∗/(W, •).

If we still denote by USg the sheaf of OS∗(1)×
t∗(1)/W t∗/(W,•)-algebras associated with

this O(S∗(1) ×t∗(1)/W t∗/(W, •))-algebra, then as in [BMR1, Proposition 5.2.1] the

morphism (4.1) induces a canonical isomorphism of sheaves of algebras

h∗(USg)
∼−→ D̃S .

Now h induces an isomorphism

S̃∗(1) ×t∗(1) t
∗ →

(
S∗(1) ×t∗(1)/W t∗/(W, •)

)
×t∗/(W,•) t

∗

(in fact, both sides identify canonically with t∗) so that the claim follows by taking
global sections. �

Remark 4.2. One can give a different proof of Lemma 4.1 as follows. By [BMR1,
Proposition 3.4.1], the morphism (4.1) is an isomorphism; in other words, identi-
fying quasi-coherent sheaves on g∗(1) and O(g∗(1))-modules, we have a canonical
isomorphism of sheaves of O(g∗(1))-algebras

g∗D̃ ∼= Ug⊗ZHC
O(t∗),

where g : g̃(1)×t∗(1) t
∗ → g∗(1)×t∗(1)/W t∗ is the morphism induced by π. Restricting

this isomorphism first to g
∗(1)
reg ×t∗(1)/W t∗ and then to S∗(1) ×t∗(1)/W t∗ we deduce

the isomorphism of the lemma, since g restricts to an isomorphism on the preimage

of g
∗(1)
reg ×t∗(1)/W t∗ (see (2.13)).

4.2. Study of some equivariant USg-bimodules. Given any λ ∈ X, we have a
line bundle OB(λ) on B attached naturally to λ. (Our normalization is that of [J2],
so that line bundles attached to dominant weights are ample.) This line bundle
identifies with the direct summand of ω∗OG/U consisting of sections which have
weight λ for the T -action induced by right multiplication on G; it therefore admits

a natural action of the sheaf of algebras D̃ . Using this action and the natural action

on D̃ , we obtain a left action of D̃ on the tensor product

OB(λ)⊗OB D̃ .

As for D̃ itself, this module can be also considered as a sheaf of modules on g̃(1)×t∗(1)

t∗. We set

DS,λ := Γ
(
S̃∗(1) ×t∗(1) t

∗, (OB(λ)⊗OB D̃)|S̃∗(1)×
t∗(1) t

∗

)
,
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which therefore admits a natural left action of DS , hence of ŨSg (see Lemma 4.1).

The tensor product OB(λ)⊗OB D̃ also admits a natural right action of D̃ , induced by

right multiplication on the second factor. The action of π
(1)
∗ Og̃(1) on (FrB)∗OB(λ)

being trivial, the two actions of this subalgebra of (FrB)∗(OB(λ)⊗OB D̃) coincide,

and DS,λ therefore also admits a right action of ŨSg; moreover these actions combine

to provide an action of ŨSg ⊗O(S∗(1)) (ŨSg)op. By construction the action of the
central subalgebra

O(t∗)⊗O(S∗(1)) O(t∗) ∼= O(t∗ ×t∗(1)/W t∗)

factors through an action of the image of the closed embedding t∗ → t∗ ×t∗(1)/W t∗

given by

ξ 7→ (ξ + λ, ξ).

The object OB(λ) ⊗OB D̃ also admits a natural structure of G-equivariant quasi-
coherent sheaf, compatible with the actions considered above. The module DS,λ
therefore also admits a natural and compatible structure of module for the group
scheme

t∗ ×t∗(1)/W I∗S ×t∗(1)/W t∗,

see §2.9.
For λ, µ ∈ X, we will denote by

Ũ λ̂,µ̂S
the completion of the O(t∗ ×t∗(1)/W t∗)-algebra ŨSg ⊗O(S∗(1)) (ŨSg)op at the ideal

corresponding to the point (λ, µ) ∈ t∗×t∗(1)/W t∗. Copying the constructions in §2.10

(replacing U λ̂,µ̂S by Ũ λ̂,µ̂S and t∗/(W, •)×t∗(1)/W I∗S ×t∗(1)/W t∗/(W, •) by t∗ ×t∗(1)/W

I∗S ×t∗(1)/W t∗) we define the category ModIfg(Ũ λ̂,µ̂S ). Copying the definition of ⊗̂USg
we obtain, for λ, µ, ν ∈ X, a bifunctor

(−) ⊗̂ŨSg (−) : ModIfg(Ũ λ̂,µ̂S )×ModIfg(Ũ µ̂,ν̂S )→ ModIfg(Ũ λ̂,ν̂S ).

For any λ, µ ∈ X we have a natural “forgetful” functor

ModIfg(Ũ λ̂,µ̂S )→ ModIfg(U λ̂,µ̂S ),

which we will usually omit from notation. In case λ and µ are regular, this functor

is an equivalence by Lemma 2.2. In case µ is regular, for M ∈ ModIfg(Ũ λ̂,µ̂S ) and

N ∈ ModIfg(Ũ µ̂,ν̂S ) we also have a canonical identification

M ⊗̂USg N
∼−→M ⊗̂ŨSg N.

For λ, µ ∈ X, we will denote by Bλ,µ the completion of the module DS,λ−µ at

the ideal of O(t∗ ×t∗(1)/W t∗) corresponding to the element (λ, µ). In view of the
remarks above, this object can equivalently be obtained by completing DS,λ−µ at

the ideal of O(t∗) corresponding to λ for the left action, or by completing DS,λ−µ
at the ideal of O(t∗) corresponding to µ for the right action. This construction

provides an object in ModIfg(Ũ λ̂,µ̂S ), hence a fortiori in ModIfg(U λ̂,µ̂S ).

Lemma 4.3. For λ, µ, ν ∈ X, there exists a canonical isomorphism

Bλ,µ ⊗̂ŨSg Bµ,ν
∼−→ Bλ,ν
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in ModIfg(Ũ λ̂,ν̂S ). In particular, in case µ is regular there exists a canonical isomor-
phism

Bλ,µ ⊗̂USg Bµ,ν
∼−→ Bλ,ν

in ModIfg(U λ̂,ν̂S ).

Proof. There exist canonical isomorphisms(
OB(λ− µ)⊗OB D̃

)
⊗D̃

(
OB(µ− ν)⊗OB D̃

) ∼−→
OB(λ− µ)⊗OB OB(µ− ν)⊗OB D̃ ∼= OB(λ− ν)⊗OB D̃ ,

where the first map is given locally by f ⊗ ∂ ⊗ f ′ ⊗ ∂′ 7→ f ⊗ (∂ · f ′)⊗ (∂∂′). The

desired isomorphism follows by restriction to S̃∗(1)×t∗(1) t
∗ and then completion at

(λ, ν). �

If λ ∈ X is regular, Lemma 2.2 and Lemma 4.1 imply that we have U λ̂S ∼= Bλ,λ.
Hence the functor of convolution on the left, resp. right, with Bλ,λ is isomorphic

to the identity of ModIfg(U λ̂,µ̂S ), resp. ModIfg(U µ̂,λ̂S ), for any µ ∈ X. Combining this
observation with Lemma 4.3, we see that if λ ∈ X belongs to the fundamental
alcove, then for any w ∈ Wext the object Bλ,w•λ is invertible in the monoidal

category ModIfg(U λ̂,λ̂S ), with inverse Bw•λ,λ.

Recall the morphism of group schemes (2.14). Restricting to S∗(1) and then

taking the fiber product with the morphism t∗ ×t∗(1)/W t∗ → t∗
AS−−→ t∗(1) (where

the first morphism is the first projection) we obtain a morphism of groups schemes

t∗ ×t∗(1)/W I∗S ×t∗(1)/W t∗ → (t∗ ×t∗(1)/W t∗)× T (1).

Using this morphism, for any character η of T (1) we obtain a structure of represen-
tation of t∗ ×t∗(1)/W I∗S ×t∗(1)/W t∗ on O(t∗ ×t∗(1)/W t∗) defined by this character.

Tensoring with this representation we obtain an autoequivalence of ModIfg(Ũ λ̂,µ̂S ),
which we denote M 7→M(η).

Note that the morphism from X∗(T (1)) to X induced by the Frobenius morphism
T → T (1) is injective, and that its image is p·X. We will therefore identify X∗(T (1))
with p · X via this morphism.

Lemma 4.4. For any λ, ν ∈ X, there exists a canonical isomorphism

Bλ+pν,λ
∼= Bλ,λ(pν)

in ModIfg(Ũ λ̂,λ̂S ).

Proof. By definition, Bλ+pν,λ is the completion at the ideal corresponding to (λ, λ)

of the ŨSg ⊗O(S∗(1)) (ŨSg)op-module DS,pν . If we denote by U+ the unipotent

radical of the Borel subgroup opposite to B, then U+B/B ⊂ B is an open subva-

riety isomorphic to U+, and the projection S̃∗ → B factors through a morphism

S̃∗ → U+B/B, see [MR, Lemma 4.8]. As a consequence, the sheaf (OB(pν) ⊗OB

D̃)|S̃∗(1)×
t∗(1) t

∗ can be obtained as a further restriction of (OB(pν)⊗OB D̃)|U+B/B .
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Since D̃ acts on OB(pν), we have an action of the algebra Ug ⊗ZHC
O(t∗) on

Γ(U+B/B,OB(pν)), see (4.1). We have

Γ
(
U+B/B,OB(pν)

)
=

{f : U+B → k | ∀b ∈ B, x ∈ U+B, f(xb−1) = (pν)(b) · f(x)}.

In this space we have a canonical vector, namely the function f : U+B → k defined
by f(u1tu2) = (pν)−1(t) for all u1 ∈ U+, t ∈ T and u2 ∈ U . This section does

not vanish on U+B/B, hence induces an isomorphism of line bundles OU+B/B
∼−→

OB(pν)|U+B/B . We claim that it is furthermore annihilated by the action of g ⊂ Ug
and t ⊂ O(t∗). In fact, the second case is clear. For the action of g, in case ν ∈ X+

the claim follows from the fact that our vector is the restriction of the unique (up to
scalar) vector of weight pν in Γ

(
B,OB(pν)

)
(see [J2, Proof of Proposition II.2.6]),

and that this vector belongs to the G-submodule L(pν), on which the action of g is
well known to vanish. From this we deduce the general case by using the Leibniz
rule for the action on tensor products of line bundles.

Tensoring this section with the unit in D̃ we obtain a section of (OB(pν) ⊗OB

D̃)|U+B/B . The right action on this section provides an isomorphism

D̃|U+B/B → (OB(pν)⊗OB D̃)|U+B/B ,

which commutes with the natural left and right actions of Ug⊗ZHC
O(t∗). Restrict-

ing further we obtain an isomorphism

D̃|S̃∗(1)×
t∗(1) t

∗
∼−→ (OB(pν)⊗OB D̃)|S̃∗(1)×

t∗(1) t
∗ ,

and then taking global sections and completing an isomorphism of Ũ λ̂,λ̂S -modules

Bλ,λ
∼−→ Bλ+pν,λ. Taking the action of t∗ ×t∗(1)/W I∗S ×t∗(1)/W t∗ into account, this

provides the desired isomorphism Bλ,λ(pν)
∼−→ Bλ+pν,λ. �

4.3. Relation with translation bimodules. We now explain the relation be-
tween the objects Bλ,µ and the “translation bimodules” introduced in §2.6.

Lemma 4.5. Let λ, µ ∈ X, with λ belonging to the fundamental alcove and µ
belonging to the closure of the fundamental alcove. Then for any w ∈ Wext there
exist isomorphisms

Pµ,λS ∼= Bw•µ,w•λ, Pλ,µS ∼= Bw•λ,w•µ

in ModIfg(U µ̂,λ̂S ) and ModIfg(U λ̂,µ̂S ) respectively.

Proof. We prove the first isomorphism; the second one can be obtained similarly.
It is clear that we can assume that w ∈ W . Let ν ∈ X be the unique dominant

weight which belongs to W (µ − λ). Then by definition, Pµ,λS is the completion of
the module

L(ν)⊗ USg
at the ideal corresponding to the point (µ̃, λ̃) ∈ t∗/(W, •)×t∗(1)/W t∗/(W, •). Now by

Lemma 2.2 the quotient morphism t∗ → t∗/(W, •) is étale at w • λ. It follows that

Pµ,λS can also be obtained as the completion of the USg⊗O(S∗(1)) (ŨSg)op-module

L(ν)⊗ ŨSg
with respect to the ideal of O(t∗/(W, •)×t∗(1)/W t∗) corresponding to (µ̃, w • λ).
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By Lemma 4.1 we have canonical isomorphisms

L(ν)⊗ ŨSg ∼= L(ν)⊗ DS ∼= Γ(S̃∗(1) ×t∗(1) t
∗, L(ν)⊗ D̃S).

It is a classical fact that the coherent sheaf L(ν)⊗OB on B admits a filtrations whose
subquotients have the form OB(η) where η runs over the weights of L(ν) (counted

with multiplicities). We deduce a similar filtration for the sheaf L(ν)⊗ D̃ , and then

for its restriction to S̃∗(1) ×t∗(1) t
∗. (Here we use the fact that restriction along

the closed embedding S̃∗(1) ↪→ g̃(1) is exact on the category QCohG(g̃(1)), since it

identifies with the composition of pullback along the flat morphism G×S̃∗(1) → g̃(1)

composed with the obvious equivalence QCohG(G×S̃∗(1)) ∼= QCoh(S̃∗(1)).) In other

words, we have obtained a filtration of L(ν)⊗ ŨSg with subquotients DS,η where η
runs over the weights of L(ν) (counted with multiplicities). This filtration is clearly

compatible with the action of USg ⊗O(S∗(1)) (ŨSg)op and the natural structure of

module over the group scheme t∗/(W, •)×t∗(1)/W I∗S ×t∗(1)/W t∗.

Let us denote by $ : t∗ → t∗/(W, •) the quotient morphism. The irreducible
components of the scheme

t∗/(W, •)×t∗(1)/W t∗

are parametrized by t∗Z, with the component corresponding to γ being the image of
the closed embedding t∗ → t∗/(W, •) ×t∗(1)/W t∗ given by ξ 7→ ($(ξ + γ), ξ). The

components containg the point (µ̃, w • λ) correspond to the elements γ ∈ t∗Z such

that w • λ + γ ∈ W • µ, i.e. λ + w−1γ ∈ W • µ. On the other hand, the module
DS,η is supported on the component corresponding to η. Hence, after completion at

(µ̃, w •λ), the only subquotients that survive are those corresponding to the weight
η such that λ+w−1η ∈W •µ, i.e. λ+w−1η ∈Wext•µ. Since η is a weight of L(ν), it
belongs to µ−λ+ZR, so that λ+w−1η ∈ µ+ZR. By Lemma 2.1(1) the condition
that λ+w−1η ∈Wext•µ is therefore equivalent to λ+w−1η ∈Waff •µ. Now by [J2,
Lemma II.7.7] this condition is satisfied only when λ+w−1η = µ, i.e. η = w(µ−λ).
We deduce the desired isomorphism, since w • µ− w • λ = w(µ− λ). �

Remark 4.6. Let λ, µ ∈ X belonging to the closure of the fundamental alcove,
and assume that the stabilizer of λ for the dot-action of Waff is contained in the

stabilizer of µ. Then, if we denote by O(t∗×t∗(1)/W t∗/(W, •))λ̂,µ̂ the completion of

O(t∗×t∗(1)/W t∗/(W, •)) at the ideal corresponding to (λ, µ̃), the same considerations
as in the proof of Lemma 4.5 show that there exists an isomorphism

Bλ,µ ∼= O(t∗ ×t∗(1)/W t∗/(W, •))λ̂,µ̂ ⊗
Zλ̂,µ̂S

Pλ,µS .

Recall that given a simple reflection s ∈ Saff , a weight λ ∈ X belonging to the
closure of the fundamental alcove is said to be on the wall corresponding to s if
s • λ = λ.

Lemma 4.7. Let λ, µ ∈ X, with λ belonging to the fundamental alcove and µ on
exactly one wall of the fundamental alcove, attached to the simple reflection s. Let
also w ∈W .

If ws • λ > w • λ, then there exists an exact sequence

Bw•λ,w•λ ↪→ Pλ,µS ⊗̂USg P
µ,λ
S � Bws•λ,w•λ
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in ModIfg(U λ̂,λ̂S ). If ws • λ < w • λ, then there exists an exact sequence

Bws•λ,w•λ ↪→ Pλ,µS ⊗̂USg P
µ,λ
S � Bw•λ,w•λ

in ModIfg(U λ̂,λ̂S ).

Proof. By Lemma 4.5 we have

Pλ,µS ⊗̂USg P
µ,λ
S
∼= Pλ,µS ⊗̂USg Bw•µ,w•λ.

Hence, if we denote by ν the unique dominant weight in W (λ− µ), this object can
be obtained by completing the bimodule

L(ν)⊗ DS,w•µ−w•λ

with respect to the ideal of O(t∗/(W, •) ×t∗(1)/W t∗) corresponding to (λ̃, w • λ).
Now we have

L(ν)⊗DS,w•µ−w•λ ∼= Γ
(
S̃∗(1)×t∗(1) t

∗, L(ν)⊗(OB(w•µ−w•λ)⊗OB D̃)|S̃∗(1)×
t∗(1) t

∗

)
.

Hence, as in the proof of Lemma 4.5, if we choose an enumeration η1, · · · , ηn of
the T -weights of L(ν) (counted with multiplicities) such that ηi < ηj implies i < j,
then this bimodule admits a filtration

{0} = M0 ⊂M1 ⊂ · · · ⊂Mn = L(ν)⊗ DS,w•λ−w•µ
such that Mi/Mi−1

∼= DS,w•µ−w•λ+ηi for any i. The subquotient DS,w•µ−w•λ+ηi

survives after completion at the ideal corresponding to (λ̃, w • λ) iff

w • µ− w • λ+ ηi ∈W • λ− w • λ,

i.e. iff

µ+ w−1ηi ∈Wext • λ.
Here w−1ηi is a weight of L(ν), hence µ + w−1ηi belongs to λ + ZR; in view of
Lemma 2.1(1), this condition is therefore equivalent to µ+w−1ηi ∈Waff •λ. Since
the stabilizer of µ for the dot-action of Waff is {e, s}, by [J2, Lemma II.7.7] this
condition is satisfied for two values of ηi, corresponding to

µ+ w−1ηi = λ and µ+ w−1ηi = s • λ,

i.e.

w • µ+ ηi = w • λ and w • µ+ ηi = ws • λ.
Hence Pλ,µS ⊗̂USgP

µ,λ
S admits a filtration with two subquotients, isomorphic respec-

tively to Bw•λ,w•λ and Bws•λ,w•λ. The order in which these subquotients appear
depends on wether ws • λ > w • λ or ws • λ < w • λ, and are as indicated in the
statement. �

4.4. Convolution with translation bimodules. Let λ, µ ∈ X, and assume that
λ is regular. Then there exists a canonical algebra morphism

(4.2) Z µ̂,λ̂S → Z λ̂,λ̂S

which can be defined as follows. The algebra Z µ̂,λ̂S is by definition the completion of

O(t∗/(W, •)×t∗(1)/W t∗/(W, •)) at the ideal corresponding to (µ̃, λ̃). Hence it admits

a canonical morphism to the completion O(t∗×t∗(1)/W t∗/(W, •))µ̂,λ̂ of O(t∗×t∗(1)/W
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t∗/(W, •)) at the ideal corresponding to (µ, λ̃). Now the morphism t∗ → t∗ defined
by ξ 7→ ξ + µ− λ provides an isomorphism

t∗ ×t∗(1)/W t∗/(W, •) ∼−→ t∗ ×t∗(1)/W t∗/(W, •)

sending (λ, λ̃) to (µ, λ̃), which therefore induces an isomorphism

O(t∗ ×t∗(1)/W t∗/(W, •))µ̂,λ̂ ∼−→ O(t∗ ×t∗(1)/W t∗/(W, •))λ̂,λ̂,

where the right-hand side is the completion of O(t∗×t∗(1)/W t∗/(W, •)) at the ideal

corresponding to (λ, λ̃). Finally, the natural morphism

Z λ̂,λ̂S → O(t∗ ×t∗(1)/W t∗/(W, •))λ̂,λ̂

is an isomorphism by Lemma 2.2; combining these constructions we obtain the
wished-for morphism (4.2).

Our goal in this subsection is to prove the following claim.

Proposition 4.8. Assume that p 6= 2. Let λ, µ ∈ X, with λ belonging to the
fundamental alcove and µ on exactly one wall of the fundamental alcove, attached
to a simple reflection s which belongs to W . Then there exists an isomorphism

Pλ,µS ⊗̂USg P
µ,λ
S
∼= Lλ,λ

(
Z λ̂,λ̂S ⊗

Zµ̂,λ̂S
Z λ̂S
)

in ModIfg(U λ̂,λ̂S ), where Z λ̂S is regarded as a Z µ̂,λ̂S -module via the morphism (4.2).

This proposition will be deduced from the following claim.

Lemma 4.9. Assume that p 6= 2. Let λ, µ ∈ X, with λ belonging to the fundamental
alcove and µ on exactly one wall of the fundamental alcove, attached to a simple
reflection s which belongs to W . Then there exist isomorphisms of functors which
make the diagrams

ModIfg(Z λ̂,λ̂S )

Lλ,λ

��

// ModIfg(Z µ̂,λ̂S )

Lµ,λ

��

ModIfg(U λ̂,λ̂S )
Pµ,λS ⊗̂USg(−)

// ModIfg(U µ̂,λ̂S )

(where the upper horizontal arrow is the restriction-of-scalars functor associated
with the morphism (4.2)) and

ModIfg(Z µ̂,λ̂S )

Lµ,λ

��

Zλ̂,λ̂S ⊗
Zµ̂,λ̂S

(−)

// ModIfg(Z λ̂,λ̂S )

Lλ,λ

��

ModIfg(U µ̂,λ̂S )
Pλ,µS ⊗̂USg(−)

// ModIfg(U λ̂,λ̂S )

commutative.

Proof. By definition we have

Pµ,λS ⊗̂USg Lλ,λ(−) ∼=
(
Pµ,λS ⊗̂USg P

λ,−ρ
S ⊗̂USg P

−ρ,λ
S

)
⊗
Zλ̂,λ̂S

(−).
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Using Lemma 4.3 and Lemma 4.5, we deduce that

Pµ,λS ⊗̂USg Lλ,λ(−) ∼=
(
Bµ,−ρ ⊗̂USg P

−ρ,λ
S

)
⊗
Zλ̂,λ̂S

(−).

Hence to prove the commutativity of the first diagram it suffices to construct an
isomorphism (

Pµ,−ρS ⊗̂USg P
−ρ,λ
S

)
⊗
Zµ̂,λ̂S

Z λ̂,λ̂S
∼−→ Bµ,−ρ ⊗̂USg P

−ρ,λ
S

or in other words an isomorphism

(4.3)
(
Pµ,−ρS ⊗̂USg P

−ρ,λ
S

)
⊗
Zµ̂,λ̂S

O(t∗×t∗(1)/W t∗/(W, •))µ̂,λ̂ ∼−→ Bµ,−ρ ⊗̂USg P
−ρ,λ
S .

To construct such a morphism it suffices to construct a morphism

(4.4) Pµ,−ρS ⊗̂USg P
−ρ,λ
S → Bµ,−ρ ⊗̂USg P

−ρ,λ
S

in ModIfg(U µ̂,λ̂S ). By Remark 4.6 we have

Bµ,−ρ ∼= O(t∗ ×t∗(1)/W t∗/(W, •))µ̂,−̂ρ ⊗
Zµ̂,−̂ρS

Pµ,−ρS ;

in particular there exists a natural morphism Pµ,−ρS → Bµ,−ρ, which allows to define
the wished-for morphism (4.4), hence the morphism (4.3).

Now we claim that O(t∗×t∗(1)/W t∗/(W, •))µ̂,λ̂, resp. O(t∗×t∗(1)/W t∗/(W, •))µ̂,−̂ρ,
is free of rank 2 over Z µ̂,λ̂S , resp. Z µ̂,−̂ρS , which will imply that the morphism (4.3) is
an isomorphism. The two cases are similar, so that we only consider O(t∗ ×t∗(1)/W

t∗/(W, •))µ̂,λ̂. It follows from Lemma 2.2 that Z µ̂,λ̂S identifies canonically with

the completion O(t∗/({e, s}, •) ×t∗(1)/W t∗/(W, •))µ̂,λ̂ of O(t∗/({e, s}, •) ×t∗(1)/W

t∗/(W, •)) with respect to the ideal corresponding to the image of (µ, λ̃). Now
O(t∗ ×t∗(1)/W t∗/(W, •)) is free of rank 2 as a module over O(t∗/({e, s}, •)×t∗(1)/W

t∗/(W, •)), and its completion with respect to the ideal corresponding to (µ, λ̃)
coincides with its completion with respect to the ideal of O(t∗/({e, s}, •) ×t∗(1)/W

t∗/(W, •)) corresponding to the image of (µ, λ̃) (because (µ, λ̃) is the only closed
point in the fiber over its image in t∗/({e, s}, •) ×t∗(1)/W t∗/(W, •)). The desired
claim follows.

We have finally proved the commutativity of the first diagram of the lemma.
The commutativity of the second diagram follows from that of the first one by
adjunction, in view of Lemma 2.5. �

Proof of Proposition 4.8. Lemma 4.9 provides isomorphisms

Pλ,µS ⊗̂USg P
µ,λ
S
∼= Lλ,λ(Z λ̂,λ̂S ⊗

Zµ̂,λ̂S
L −1
µ,λ(Pµ,λS )) ∼= Lλ,λ(Z λ̂,λ̂S ⊗

Zµ̂,λ̂S
L −1
λ,λ(U λ̂S )).

The desired claim follows, using the isomorphism (3.8). �

4.5. Monoidality of the functors Lλ,λ. Our goal in this subsection is to prove
the following claim, announced in Remark 3.8.

Proposition 4.10. Let λ, ν ∈ X in the lower closure of the fundamental alcove,

and let µ ∈ X be in the fundamental alcove. Then for M ∈ ModIfg(Z λ̂,µ̂S ) and

N ∈ ModIfg(Z µ̂,ν̂S ) there exists a canonical (in particular, bifunctorial) isomorphism

Lλ,ν(M ?̂S N) ∼= Lλ,µ(M) ⊗̂USg Lµ,ν(N).
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In case λ = µ = ν, this isomorphism and (3.8) define on Lλ,λ the structure of a
monoidal functor.

Proof. By definition we have

Lλ,µ(M) = Mλ,µ
S ⊗

Zλ̂,µ̂S
M =

(
Pλ,−ρS ⊗̂USg P

−ρ,µ
S

)
⊗
Zλ̂,µ̂S

M

and

Lµ,ν(N) = Mµ,ν
S ⊗Zµ̂,ν̂S M =

(
Pµ,−ρS ⊗̂USg P

−ρ,ν
S

)
⊗Zµ̂,ν̂S N.

The object Lλ,µ(M)⊗̂USgLµ,ν(N) is therefore the projective limit (over n) of the
objects(

Pλ,−ρS /(In · Pλ,−ρS )⊗USg P
−ρ,µ
S /(In · P−ρ,µS )⊗USg P

µ,−ρ
S /(In · Pµ,−ρS )

⊗USg P
−ρ,ν
S /(In · P−ρ,νS )

)
⊗O(t∗/(W,•)×

t∗(1)/W t∗/(W,•)×
t∗(1)/W t∗/(W,•))(

M/(In ·M)⊗O(t∗/(W,•)) N/(In ·N)
)
.

By Lemma 4.5 and Lemma 4.3 we have

P−ρ,µS ⊗̂USg P
µ,−ρ
S

∼= B−ρ,µ ⊗̂USg Bµ,−ρ ∼= B−ρ,−ρ.

By Lemma 4.1, B−ρ,−ρ identifies with the completion of ŨSg with respect to the
ideal of O(t∗) corresponding to −ρ. Recall that the projection t∗/(W, •) ×t∗(1)/W

t∗/(W, •) ×t∗(1)/W t∗/(W, •) → t∗/(W, •) ×t∗(1)/W t∗/(W, •) on the first and third

summands is étale at (λ̃, −̃ρ, ν̃), see Lemma 3.6. From these remarks we deduce
that Lλ,µ(M)⊗̂USgLµ,ν(N) is the projective limit of the objects(

Mλ,ν
S /(In ·Mλ,ν

S )
)
⊗O(t∗/(W,•)×

t∗(1)/W t∗/(W,•))

O(t∗/(W, •)×t∗(1)/W t∗ ×t∗(1)/W t∗/(W, •))
⊗O(t∗/(W,•)×

t∗(1)/W t∗/(W,•)×
t∗(1)/W t∗/(W,•))

(
M/(In ·M)⊗O(t∗/(W,•))N/(In ·N)

)
,

where the morphism t∗/(W, •) ×t∗(1)/W t∗ ×t∗(1)/W t∗/(W, •) → t∗/(W, •) ×t∗(1)/W

t∗/(W, •) is the projection on the first and third summands. Now since the natural
morphism

t∗/(W, •)×t∗(1)/W t∗ ×t∗(1)/W t∗/(W, •)→
t∗/(W, •)×t∗(1)/W t∗/(W, •)×t∗(1)/W t∗/(W, •)

is étale at (λ̃, µ, ν̃) by Lemma 2.2, Lλ,µ(M)⊗̂USgLµ,ν(N) identifies with the pro-
jective limit of the objects(
Mλ,ν
S /(In ·Mλ,ν

S )
)
⊗O(t∗/(W,•)×

t∗(1)/W t∗/(W,•))
(
M/(In ·M)⊗O(t∗/(W,•))N/(In ·N)

)
,

i.e. with Lλ,ν(M ?̂S N).
In case λ = µ = ν, the fact that the relevant isomorphisms define a monoidal

structure on Lλ,λ is clear from constructions. �

Remark 4.11. Proposition 4.10 also holds in case µ is singular (in the lower closure
of the fundamental alcove). This case can be treated using the methods of §4.6
below; since it is not needed in this paper, we omit the details.
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4.6. Singular analogues. Let I ⊂ Rs be a subset, and let PI ⊂ G be the associ-
ated standard (i.e., containing B) parabolic subgroup of G. (In practice, only the
case #I = 1 will be considered below.) Let UI ⊂ PI be the unipotent radical of PI ,
and let LI be the Levi factor containing T , so that PI ∼= LI nUI . Let PI := G/PI ,
and consider the natural projection

ωI : G/UI → G/PI .

The group LI acts naturally on G/UI on the right, via the action induced by
multiplication on the right on G; this action makes ωI a (Zariski locally trivial)
LI -torsor. We set

D̃I := (ωI)∗(DG/UI )
LI ,

where the exponent means LI -invariants. The actions of G and LI on G/UI induce
a canonical algebra morphism

(4.5) Ug⊗ZHC O(t∗/(WI , •))→ Γ(PI , D̃I),

see [BMR2, Proposition 1.2.3].
Let g̃I be the parabolic Grothendieck resolution associated with I, defined as

g̃I := G×PI (g/Lie(UI))
∗.

Here g̃I is a vector bundle over PI , and there is a natural morphism

g̃I → Lie(LI)
∗/LI ∼= t∗/WI ,

where WI ⊂ W is as in §2.1 (or, in other words, the Weyl group of (LI , T )).

Consider the induced morphism fI : g̃
(1)
I ×t∗(1)/WI

t∗/(WI , •) → P(1)
I , and the

Frobenius morphism FrPI : PI → P(1)
I . As explained in [BMR2, §1.2.1], there

exists a canonical algebra morphism

(fI)∗Og̃
(1)
I ×t∗(1)/WI

t∗/(WI ,•)
→ (FrPI )∗D̃I ,

where the morphism t∗/(WI , •)→ t∗(1)/WI is induced by the Artin–Schreier map.

This morphism takes values in the center of (FrPI )∗D̃I , and makes (FrPI )∗D̃I a lo-
cally finitely generated (fI)∗Og̃

(1)
I ×t∗(1)/WI

t∗/(WI ,•)
-module. Since all the morphisms

involved in this construction are affine, using this morphism one can consider D̃I

as a coherent sheaf of O
g̃
(1)
I ×t∗(1)/WI

t∗/(WI ,•)
-algebras on g̃

(1)
I ×t∗(1)/WI

t∗/(WI , •).

(We will not introduce a different notation for this sheaf of algebras.)

We also have a canonical morphism g̃I → g∗, and we denote by S̃∗I the (scheme-
theoretic) inverse image of S∗ under this morphism. As in the case I = ∅, using [R3,
Remark 3.5.4] one can check that the morphism g̃I → t∗/WI considered above

restricts to an isomorphism S̃∗I
∼−→ t∗/WI ; in particular, this scheme is affine. We

set

D̃I,S := (D̃I)|S̃∗(1)I ×
t∗(1)/WI

t∗/(WI ,•)
, DI,S = Γ(S̃∗(1)

I ×t∗(1)/WI
t∗/(WI , •), D̃I,S).

The following lemma is a parabolic analogue of Lemma 4.1, for which the same
proof applies.

Lemma 4.12. The morphism (4.5) induces an algebra isomorphism

USg⊗ZHC
O(t∗/(WI , •))

∼−→ DI,S .
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Let

XI := {λ ∈ X | ∀α ∈ I, 〈λ, α∨〉 = 0}.
Then any λ ∈ XI defines a line bundle OPI (λ) on PI , from which one can define
the object

DI,S,λ := Γ
(
S̃∗(1)
I ×t∗(1)/WI

t∗/(WI , •), (OPI (λ)⊗ D̃I)|S̃∗(1)I ×
t∗(1)/WI

t∗/(WI ,•)

)
.

This object admits a natural action of the algebra

(USg⊗ZHC
O(t∗/(WI , •)))⊗O(S∗(1)) (USgop ⊗ZHC

O(t∗/(WI , •)))
and of the group scheme

t∗/(WI , •)×t∗(1)/W I∗S ×t∗(1)/W t∗/(WI , •).

Since λ is WI -invariant, the map ξ 7→ λ + ξ factors through an isomorphism τ Iλ :

t∗/(WI , •)
∼−→ t∗/(WI , •), and the action of the subalgebra O(t∗/(WI , •) ×t∗(1)/W

t∗/(WI , •)) on DI,S,λ factors through an action of the spectrum of the image of the
closed embedding

τ Iλ × id : t∗/(WI , •)→ t∗/(WI , •)×t∗(1)/W t∗/(WI , •).
Given λ, µ ∈ X such that λ− µ ∈ XI , one can then define the object

BIλ,µ ∈ ModIfg(U λ̂,µ̂S )

as the completion of DI,S,λ−µ at the ideal of O(t∗/(WI , •) ×t∗(1)/W t∗/(WI , •))
corresponding to the image of (λ, µ). As for Bλ,µ, this object can be obtained
by completing DI,S,λ−µ at the ideal of O(t∗/(WI , •)) corresponding to the image

of λ with respect to the left action, or by completing DI,S,λ−µ at the ideal of
O(t∗/(WI , •)) corresponding to the image of µ with respect to the right action.

Lemma 4.13. Let λ, µ, ν ∈ X.

(1) Assume that that the stabilizer of µ for the dot-action of Waff is WI , and
that ν ∈ −ρ+ XI . Then there exists a canonical isomorphism

Bλ,µ ⊗̂USg BIµ,ν
∼−→ Bλ,ν

in ModIfg(U λ̂,ν̂S ). Similarly, if the stabilizer of µ for the dot-action of Waff

is WI , and λ ∈ −ρ+ XI , then there exists a canonical isomorphism

BIλ,µ ⊗̂USg Bµ,ν
∼−→ Bλ,ν

in ModIfg(U λ̂,ν̂S ).
(2) Assume that that the stabilizer of µ for the dot-action of Waff is WI , and

that λ, ν ∈ −ρ+ XI . Then there exists a canonical isomorphism

BIλ,µ ⊗̂USg BIµ,ν
∼−→ BIλ,ν

in ModIfg(U λ̂,ν̂S ).

Proof. (1) We only prove the first isomorphism; the proof of the second one is
similar. Our assumptions ensure that µ − ν ∈ XI , so that the object BIµ,ν is well
defined. Consider the natural morphism a : B → PI . By [BMR2, Proposition 1.2.3]
there exists a canonical morphism of sheaves of algebras

D̃I → a∗D̃ .
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By the projection formula, and since a∗OB ∼= OPI , we also have

a∗OB(µ− ν) ∼= OPI (µ− ν),

and via this isomorphism the action of D̃I on OPI (µ− ν) is obtained by restriction

of scalars along the morphism above from the natural action of a∗D̃ on a∗OB(µ−ν).
We deduce a natural isomorphism(

a∗OB(λ− µ)⊗a∗OB a∗D̃
)
⊗D̃I

(
OPI (µ− ν)⊗OPI

D̃I

) ∼−→
a∗OB(λ− µ)⊗OPI

OPI (µ− ν)⊗OPI
a∗D̃ ∼= a∗OB(λ− ν)⊗OPI

a∗D̃ ,

where the first map is similar to that considered in the proof of Lemma 4.3. We

deduce the desired isomorphism by restricting to S̃∗(1)
I ×t∗(1)/WI

t∗/(WI , •) and then

completing, using Lemma 4.12 and the fact that the natural morphism t∗/(WI , •)→
t∗/(W, •) is étale at the image of µ, see Lemma 2.2.

(2) The proof is similar to that of Lemma 4.3. �

4.7. Conjugation of wall-crossing bimodules. The following proposition will
eventually reduce the question of the description of the bimodules realizing wall-
crossing functors for G to the case of wall-crossing functors attached to simple
reflections in W .

Proposition 4.14. Let λ, µ, µ′ ∈ X, let s ∈ Saff , and let s′ ∈ Saff ∩W . Assume
that λ belongs to the fundamental alcove, and that µ, resp. µ′, belongs to the wall
of the fundamental alcove attached to s, resp. s′, and on no other wall. Let also
w ∈Wext be such that s′ = wsw−1. Then there exists an isomorphism

Pλ,µ
′

S ⊗̂USg P
µ′,λ
S
∼= Bλ,w•λ ⊗̂USg

(
Pλ,µS ⊗̂USg P

µ,λ
S
)
⊗̂USg Bw•λ,λ

in ModIfg(U λ̂,λ̂S ).

Proof. By Lemma 4.5 we have isomorphisms

Pλ,µS ∼= Bw•λ,w•µ, Pµ,λS ∼= Bw•µ,w•λ.
Using Lemma 4.3, we deduce isomorphisms

Bλ,w•λ ⊗̂USg
(
Pλ,µS ⊗̂USg P

µ,λ
S
)
⊗̂USg Bw•λ,λ

∼= Bλ,w•λ ⊗̂USg Bw•λ,w•µ ⊗̂USg Bw•µ,w•λ ⊗̂USg Bw•λ,λ ∼= Bλ,w•µ ⊗̂USg Bw•µ,λ.
Now the stabilizers of both µ′ and w • µ for the dot-action of Waff is W{α}, where
α ∈ Rs is the simple reflection such that s = sα. By Lemma 4.13(1), it follows that
we have isomorphisms

Bλ,w•µ ∼= Bλ,µ′ ⊗̂USg B
{α}
µ′,w•µ, Bw•µ,λ ∼= B{α}w•µ,µ′ ⊗̂USg Bµ′,λ,

from which we obtain an isomorphism

Bλ,w•µ ⊗̂USg Bw•µ,λ ∼= Bλ,µ′ ⊗̂USg B
{α}
µ′,w•µ ⊗̂USg B

{α}
w•µ,µ′ ⊗̂USg Bµ′,λ.

Then by Lemma 4.13(2) we have

B{α}µ′,w•µ ⊗̂USg B
{α}
w•µ,µ′

∼= B{α}µ′,µ′ ,

which implies (using again Lemma 4.13(1)) that

Bλ,w•µ ⊗̂USg Bw•µ,λ ∼= Bλ,µ′ ⊗̂USg Bµ′,λ.
The desired claim follows, in view of Lemma 4.5. �



44 R. BEZRUKAVNIKOV AND S. RICHE

5. The affine Hecke category and representations of the regular
centralizer

This section is independent of the previous ones, and applies in a slightly more
general setting. Here we explain that the category of “enhanced Soergel bimodules”
recently investigated by Abe [Ab1] can be interpreted as a category of representa-
tions of (a pullback of) the universal centralizer.

5.1. The affine Weyl group and the associated Hecke category. In this
section we denote by G a connected reductive group over k. We fix a Borel subgroup
B ⊂ G and a maximal torus T ⊂ B. The Lie algebras of G, B, T will be denoted
g, b and t respectively. (We use notations different from those of previous sections
since in our later applications the reductive group G will not be G, but rather its
Frobenius twist.) We set X := X∗(T), resp. X∨ := X∗(T), and denote by Φ ⊂ X,
resp. Φ∨ ⊂ X∨, the root system, resp. coroot system, of (G,T). The canonical

bijection Φ
∼−→ Φ∨ will be denoted α 7→ α∨. The choice of B determines a subset

Φ+ ⊂ Φ of positive roots, consisting of the T-weights in g/b; the corresponding
basis of Φ will be denoted Φs. In this section we will make the following assumptions:

• ` is good for G, and ` ≥ 5;
• neither X/ZΦ nor X∨/ZΦ∨ has p-torsion;

• there exists a G-equivariant isomorphism g
∼−→ g∗.

For simplicity we will fix once and for all a G-equivariant isomorphism κ : g
∼−→ g∗.

As in §2.9, this choice also provides an identification of t and t∗.
Let W = NG(T)/T be the Weyl group of (G,T). The associated affine Weyl

group is the semi-direct product

Waff := W n ZΦ

where ZΦ ⊂ X is the lattice generated by the roots. For λ ∈ ZΦ we will denote by
tλ the image of λ ∈ Waff . It is well known that Waff is generated by the subset
Saff consisting of the reflections sα with α ∈ Φs, together with the products tβsβ
where β ∈ Φ is such that β∨ is a maximal coroot. Moreover, the pair (Waff ,Saff)
is a Coxeter system, see [J2, §II.6.3].

As in §2.1 we will “enlarge” this group by considering translations by all elements
of X. Namely, the extended affine Weyl group is the semi-direct product

Wext := W n X.

Then Waff is a normal subgroup in Wext.
We will consider the balanced “realization” of Waff over k (in the sense of [EW])

defined as follows:

• the underlying k-vector space is t∗;
• if α ∈ Φs and s = sα, then the “root” αs ∈ t (resp. “coroot” α∨s ∈ t∗)

associated with s is the differential of α∨ (resp. of α);
• if β ∈ Φ+ is such that β∨ is a maximal coroot and s = tβsβ then the “root”
αs (resp. “coroot” α∨s ) associated with s is the differential of −β∨ (resp. of
−β).

This realization is an example of a Cartan realization in the sense of [AMRW1,
§10.1]. There is an associated action of Waff on t∗, which simply is the natural
action of W, seen as an action of Waff via the projection Waff →W.
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Lemma 5.1. For any distinct s, t ∈ Saff such that st has finite order, the action of
the subgroup Ws,t generated by {s, t} on t is reflection faithful in the sense of [S3].

Proof. By definition, what we have to prove is that the representation is faithful,
and that the elements having a fixed points set of codimension 1 are exactly the
conjugates of s or t. Here, all the conjugates of s or t act as reflections on t;
in particular their fixed-point sets indeed are hyperplanes. If m ∈ {2, 3, 4, 6} is
the order of st in Waff , then the other elements of Ws,t are the elements (st)k

and (ts)k with k ∈ {0, · · · ,m − 1}. The Cartan matrix
(
〈αs,α∨s 〉 〈αs,α

∨
t 〉

〈αt,α∨s 〉 〈αt,α
∨
t 〉

)
being

invertible since ` ≥ 5, the subspace of t generated by α∨s and α∨t is 2-dimensional.
Hence to conclude it is enough to check that (st)m−1 has no nontrivial fixed point
on this subspace, which can be easily done by hands in each case. �

We will denote by DBS the “diagrammatic Hecke category” defined by Elias–
Williamson [EW] for the Coxeter system (Waff ,Saff) and this choice of realization.
(For a discussion of this definition, see also [AMRW1, Chap. 2].) By definition the
objects in this category are pairs (w, n) where w is a word in Saff and n ∈ Z, and
for any words w,w′ the direct sum of morphism spaces⊕

n∈Z
HomDBS

((w, 0), (w′, n))

is a graded bimodule over R := O(t∗) = Sym(t) (where the grading is such that ele-
ments in t have degree 2). Following usual conventions, the object (w, n) will rather
be denoted Bw(n). Then there exists a natural “grading shift” autoequivalence of
DBS such that (Bw(n))(1) = Bw(n+ 1) for any w and any n ∈ Z.

5.2. Abe’s incarnation of the Hecke category. The proof of Theorem 6.3 will
use a description of DBS in terms of R-bimodules due to Abe [Ab1], which is close
to the definition of Soergel bimodules [S3], and which we now recall.

We will denote by Q the fraction field of R. Following [Ab1], we denote by C′ the
category defined as follows. Objects are pairs consisting of a graded R-bimodule
M together with a decomposition

(5.1) Q⊗RM =
⊕

w∈Waff

Mw
Q

such that:

• there exist only finitely many w’s such that Mw
Q 6= 0;

• for any w ∈Waff , r ∈ R and m ∈Mw
Q we have

(5.2) m · r = w(r) ·m.

Morphisms in C′ are defined in the obvious way, as morphisms of graded bimodules
compatible with the decompositions (5.1). We also denote by C the full subcategory
of C′ whose objects are those whose underlying graded R-bimodule M is finitely
generated as an R-bimodule and flat as a left R-module. As explained in [Ab1,
Lemma 2.6], the underlying R-bimodule of any object in C is in fact finitely gener-
ated as a left and as a right R-module; this property shows that the tensor product
over R induces in a natural way a monoidal product on C. We also have a “grad-
ing shift” autoequivalence of C, which only changes the grading of the underlying
graded R-bimodule in such a way that M(1)i = M i+1.
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For s ∈ Saff , we consider the s-invariants Rs ⊂ R, and the graded R-bimodule
BBim
s := R⊗Rs R(1). This object has a natural “lift” as an object in C, which will

also be denoted BBim
s (see [Ab1, §2.4]).

The following result follows from [Ab1, Theorem 5.6]. (The assumptions of this
theorem hold in our present setting by Lemma 5.1.)

Theorem 5.2. There exists a canonical fully-faithful monoidal functor

DBS → C

sending Bs to BBim
s for any s ∈ Saff and intertwining the grading shifts (1).

Below we will have to consider a slight extension of the category C, adapted to
the group Wext. Namely, the action of Waff on t∗ extends in a natural way to Wext

(using now the projection Wext →W). We will denote by C′ext the category whose
objects are pairs consisting a graded R-bimodule M together with a decomposition

Q⊗RM =
⊕

w∈Wext

Mw
Q

such that:

• there exist only finitely many w’s such that Mw
Q 6= 0;

• for any w ∈Wext, r ∈ R and m ∈Mw
Q we have m · r = w(r) ·m,

and where morphisms are defined in the obvious way. We will also denote by Cext

the full subcategory of C′ext whose objects are those whose underlying graded R-
bimodule M is finitely generated as an R-bimodule and flat as a left R-module. It
is clear that C′ is a full subcategory in C′ext, that C is a full subcategory in Cext,
and that the tensor product ⊗R defines a monoidal structure on Cext.

In addition to the objects BBim
s considered above, the category Cext also possesses

“standard” objects (∆x : x ∈ Wext) defined as follows. For any x ∈ Wext, ∆x is
isomorphic to R as a graded vector space, and the structure of R-bimodule is given
by

r ·m · r′ = rmx(r′)

for r, r′ ∈ R and m ∈ ∆x. The decomposition of Q ⊗R ∆x is defined so that
this object is concentrated in degree x. For any x, y ∈ Wext we have a canonical
isomorphism

(5.3) ∆x ⊗R ∆y
∼−→ ∆xy

in Cext, defined by m⊗m′ 7→ mx(m′).

Lemma 5.3. Let s, t ∈ Saff and x ∈ Wext be such that s = xtx−1. Then there
exists a canonical isomorphism

BBim
s
∼= ∆x ⊗R BBim

t ⊗R ∆x−1 .

Proof. The isomorphism of R-bimodules

∆x ⊗R BBim
t ⊗R ∆x−1

∼−→ BBim
s

is defined by

r1 ⊗ (r2 ⊗ r3)⊗ r4 7→ (r1x(r2))⊗ (x(r3)x(r4)).

We leave it to the reader to check that this morphism is well defined, and indeed
defines an isomorphism in Cext. �
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In Section 6 we will also need the following standard claim, for which we refer
to [EW, §3.4].

Lemma 5.4. Assume that s ∈ Saff ∩W. Then there exist exact sequences of
R-bimodules

∆s ↪→ R⊗Rs R� ∆e, ∆e ↪→ R⊗Rs R� ∆s.

5.3. The universal centralizer and restriction to a Kostant section. We
now repeat the considerations of §2.9 in the present setting. We will denote by
g∗reg ⊂ g∗ the open subset consisting of regular elements, i.e. elements whose cen-
tralizer has minimal dimension (namely, dim(T)). The “regular universal central-
izer” is the affine group scheme

J∗reg := g∗reg ×g∗reg×g∗reg (G× g∗reg)

over g∗reg, where the morphism g∗reg → g∗reg×g∗reg is the diagonal embedding, and the
map G×g∗reg → g∗reg sends (g, x) to (g ·x, x). As explained in [R3, Corollary 3.3.6],
J∗reg is smooth over g∗reg. As in §2.9, we also have a canonical morphism of group
schemes

(5.4) J∗reg ×t∗/W t∗ → T× (g∗reg ×t∗/W t∗).

Let now grs ⊂ g denote the open subset of semisimple regular elements, and
set g∗rs := κ(grs). We will denote by J∗rs the restriction of J∗reg to g∗rs. Finally, we
consider the adjoint quotient g∗/G, which we identify with t∗/W in the standard
way, see e.g. [R3, Proposition 2.3.2].

Lemma 5.5. The morphism (5.4) restricts to an isomorphism

J∗rs ×t∗/W t∗
∼−→ T× (g∗rs ×t∗/W t∗)

of group schemes over g∗rs ×t∗/W t∗.

Proof. The lemma is obvious from the construction of the morphism (5.4) and
the fact that the centralizer of any regular semisimple element is a maximal torus
(see [R3, Lemma 2.3.3]). �

As in §2.9 we choose an affine subspace S ⊂ g as in [R3, §3.1] (in other words,
a “Kostant section” for the adjoint quotient), and set S∗ := κ(S). We then have
S∗ ⊂ g∗reg, see [R3, Equation (3.1.1)], and the composition S∗ ↪→ g∗ → g∗/G (where
the second map is the adjoint quotient) is an isomorphism, see [R3, Theorem 3.2.2].
As explained e.g. in [MR, §4.4], there exists a natural action of the multiplicative
group Gm on S∗ such that this map is Gm-equivariant, where t ∈ k× acts on g∗ by
multiplication by t−2, and on g∗/G by the induced action. We also set

J∗S := S∗ ×g∗reg J∗reg.

Then J∗S is a smooth affine group scheme over S∗, and as explained in [MR, §4.5,
p. 2302] there exists a natural Gm-action on J∗S such that the structure morphism
J∗S → S∗, the multiplication map J∗S ×S∗ J∗S → J∗S and the inversion morphism
J∗S → J∗S are Gm-equivariant.

Consider once again the isomorphism given by the composition

S∗ ↪→ g∗ → g∗/G ∼= t∗/W.

Transporting the group scheme J∗S along this isomorphism we obtain a group scheme
over t∗/W, which we denote by J∗adj. The considerations above show that there
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exists an action of Gm on J∗adj such that the projection J∗adj → t∗/W is Gm-

equivariant, where the action on t∗/W is induced by the action on t∗ where t ∈ k×
acts by multiplication by t−2.

5.4. Representations of the universal centralizer and Abe’s category. The
actions of Gm on t∗ and t∗/W considered in §5.3 provide an action on the fiber
product t∗ ×t∗/W t∗. Let us now consider the category

RepGm(t∗ ×t∗/W J∗adj ×t∗/W t∗)

of Gm-equivariant coherent representations of the affine group scheme t∗ ×t∗/W

J∗adj ×t∗/W t∗ over t∗ ×t∗/W t∗, i.e. t∗ ×t∗/W J∗adj ×t∗/W t∗-modules equipped
with a structure of Gm-equivariant coherent sheaf on t∗ ×t∗/W t∗, such that the
action map is Gm-equivariant. This category admits a natural convolution product
?, such that the O(t∗ ×t∗/W t∗)-module underlying the product M ? N is the
tensor product M ⊗O(t∗) N (where O(t∗) acts on M via the second projection
t∗×t∗/W t∗ → t∗ and on N via the first projection t∗×t∗/W t∗ → t∗). In this way,

(RepGm(t∗ ×t∗/W J∗adj ×t∗/W t∗), ?) is a monoidal category. We will denote by

RepGm

fl (t∗ ×t∗/W J∗adj ×t∗/W t∗)

the full subcategory of RepGm(t∗ ×t∗/W J∗adj ×t∗/W t∗) whose objects are the rep-
resentations whose underlying coherent sheaves are flat with respect to the first
projection t∗ ×t∗/W t∗ → t∗. It is not difficult to check that this subcategory is
stable under ?, hence also admits a canonical structure of monoidal category.

Proposition 5.6. There exists a canonical fully faithful monoidal functor(
RepGm

fl (t∗ ×t∗/W J∗adj ×t∗/W t∗), ?
)
→ (Cext,⊗R).

Proof. We start by constructing a functor

(5.5) RepGm(t∗ ×t∗/W J∗adj ×t∗/W t∗)→ C′ext.

By definition, any object in RepGm(t∗ ×t∗/W J∗adj ×t∗/W t∗) is in particular a
Gm-equivariant coherent sheaf on t∗ ×t∗/W t∗, hence can be seen as a graded
R-bimodule. To equip this graded bimodule with the structure of an object in C′ext,
we must provide a decomposition of its tensor product with Q parametrized by
Wext. In fact, we will provide such a decomposition for its tensor product with
O(t∗rs), where t∗rs := t∗ ∩ g∗rs.

First, the open subset t∗rs ⊂ t∗ is the complement of the kernels of the differ-
entials of the coroots. This open subset is stable under the action of W, and the
restriction of this action is free, see [R3, Lemma 2.3.3]. In particular we have an
open subset t∗rs/W ⊂ t∗/W, the morphism t∗rs → t∗rs/W is étale, and the map
(w, x) 7→ (x,w(x)) induces an isomorphism of schemes

W × t∗rs
∼−→ t∗rs ×t∗rs/W

t∗rs,

see [SGA1, Exp. V, §2]. As a consequence, for any coherent sheaf F on t∗×t∗/W t∗,
the tensor product

O(t∗rs)⊗R Γ(t∗ ×t∗/W t∗,F )

admits a canonical decomposition (as an O(t∗rs)-bimodule) parametrized by W,
such that the action on the factor corresponding to w ∈ W factors through the
quotient

O(t∗rs × t∗rs) � O(Gr(w, t∗rs))
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(where in the right-hand side Gr(w, t∗rs) denotes the graph of w acting on t∗rs),
i.e. satisfies the condition in (5.2).

Next, let us explain how this decomposition can be refined if F belongs to
Rep(t∗×t∗/W J∗adj×t∗/W t∗). For this, we consider the restriction Mw of t∗×t∗/W

J∗adj ×t∗/W t∗ to Gr(w, t∗rs). Identifying the latter subscheme with t∗rs via the
first projection and using Lemma 5.5, we obtain a canonical isomorphism of group
schemes

Mw
∼−→ t∗rs ×T.

This means that the category of representations of Mw on coherent sheaves on
Gr(w, t∗rs) is canonically equivalent to the category of X-graded coherent sheaves
on t∗rs. Starting with an object F in Rep(t∗ ×t∗/W J∗adj ×t∗/W t∗), we therefore

obtain a decomposition of O(t∗rs)⊗R Γ(t∗ ×t∗/W t∗,F ) parametrized by Wext by
defining, for λ ∈ X and w ∈W, the summand associated with tλw as the λ-graded
part in the summand associated with w (which is a representation of Mw). This
finishes the description of the functor (5.5).

It is clear from construction that this functor sends objects in RepGm

fl (t∗ ×t∗/W

J∗adj×t∗/W t∗) to objects in Cext, which therefore provides the functor of the state-
ment. This functor is also easily seen to be monoidal. Let us now explain why
it is fully faithful. Consider F ,G in RepGm

fl (t∗ ×t∗/W J∗adj ×t∗/W t∗), and denote

their images by M,N (so that the underlying graded bimodule of M , resp. N ,
is Γ(t∗ ×t∗/W t∗,F ), resp. Γ(t∗ ×t∗/W t∗,G )). By construction, morphisms in
Cext from M to N are morphisms of graded bimodules from Γ(t∗ ×t∗/W t∗,F ) to
Γ(t∗×t∗/Wt∗,G ) whose restriction to η×t∗ (where η is the generic point of t∗) com-
mutes with the action of the restriction of t∗×t∗/WJ∗adj×t∗/W t∗. Now, since by as-

sumption Γ(t∗×t∗/Wt∗,G ) is flat as a left R-module and O(t∗×t∗/WJ∗adj×t∗/Wt∗)

is flat over O(t∗ ×t∗/W t∗), such a morphism is automatically a morphism of
O(t∗×t∗/WJ∗adj×t∗/Wt∗)-comodules. This proves the desired fully faithfulness. �

Lemma 5.7. For any w ∈W, the object ∆w belongs to the essential image of the
functor of Proposition 5.6.

Proof. The isomorphism (5.3) reduces the proof to the case w belongs either to W
or to X. The case w ∈W is obvious: in this case ∆x is the image of its underlying
graded R-bimodule, endowed with the trivial structure of representation. For the
case w ∈ X, in view of the construction of the functor in Proposition 5.6, the claim
follows from the fact that the isomorphism of Lemma 5.5 is the restriction of the
morphism (5.4). �

Remark 5.8. For w ∈Wext, we will denote by ∆J
w the unique object in the category

RepGm(t∗ ×t∗/W J∗adj ×t∗/W t∗) which is sent to ∆w.

5.5. Representations of the universal centralizer and the Hecke category.
By Proposition 5.6 the category RepGm

fl (t∗ ×t∗/W J∗adj ×t∗/W t∗) can be seen as a
full monoidal subcategory in Abe’s category Cext, and by Theorem 5.2 the same is
true for the Hecke category DBS. We now investigate the relation between these
two subcategories.

Lemma 5.9. The essential image of the functor of Theorem 5.2 is contained in
the essential image of the functor of Proposition 5.6.
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Proof. By definition, the category DBS is generated under convolution and grading
shift by the objects (Bs : s ∈ Saff). Hence to prove the lemma it suffices to prove
each BBim

s belongs to the essential image of the functor of Proposition 5.6.
If s = sα for some α ∈ Φs, then BBim

s is the image of the appropriate shift of
O(t∗×t∗/{e,s} t∗), endowed with the trivial structure of representation of t∗×t∗/W

J∗adj×t∗/W t∗. If s ∈ Saff is not of this form, then there exist x ∈Wext and t ∈ Saff

such that t = sα for some α ∈ Φs and s = xtx−1. (In fact, such a statement is
even true in the braid group associated with Wext: see [R2, Lemma 6.1.2] or [BM,
Lemma 2.1.1].) By Lemma 5.3 we then have BBim

s
∼= ∆x ⊗R BBim

t ⊗R ∆x−1 ; since
BBim
t is now known to belong to the essential image of our functor, and since ∆x

also satisfies this property by Lemma 5.7, this finishes the proof. �

From this lemma we deduce the following claim.

Theorem 5.10. There exists a canonical fully-faithful monoidal functor

DBS → RepGm

fl (t∗ ×t∗/W J∗adj ×t∗/W t∗).

6. Hecke action on the principal block

We come back to the setting and notation of Sections 2–3–4, assuming now that
p > max(h, 4), where h is the Coxeter number of G. (In particular, this ensures
that p is very good for G.)

6.1. Categories of G-modules and G-equivariant Ug-modules. We now take
a closer look at the category Rep(G) of finite-dimensional algebraic G-modules, and
review its decomposition into “blocks.” This will involve some of the constructions
of Section 5 applied to the group G = G(1), its Borel subgroup B = B(1), and the
maximal torus T := T (1). Recall (see §4.2) that the morphism from X = X∗(T (1))
to X induced by the Frobenius morphism T → T (1) is injective, and that its image
is p ·X, which allows us to identify X with p ·X. The Frobenius morphism G→ G(1)

also induces an isomorphism

NG(T )/T
∼−→ NG(1)(T (1))/T (1),

which allows us to identify the Weyl group W of G(1) with the Weyl group W
of G. In this way, the identification X = p · X is W -equivariant, and we have
Φ = {p ·α : α ∈ R}. In particular, the affine Weyl group Waff of §2.1 identifies with
the affine Weyl group Waff of §5.1. To make our notation more consistent, we will
now denote byWext the extended affine Weyl group Wext, so thatWext = Wn(p·X).
The dot-action of Waff on X considered in §2.1 extends in the obvious way to an
action of Wext, such that the map X → t∗ sending a character to its differential
is Wext-equivariant, where Wext acts on X via the dot-action, and on t∗ via the
projection Wext →W and the action of W on t∗ also denoted • in §2.1.

Recall (see §2.6) that for any λ ∈ X+ we have a simple G-module L(λ) of highest
weight λ, and that all simple G-modules are of this form. The linkage principle
(see [J2, Corollary II.6.17]) states that for λ, µ ∈ X+ we have

Ext1
Rep(G)(L(λ), L(µ)) 6= 0 ⇒ Waff • λ = Waff • µ.

As a consequence, if for a Waff -orbit c ⊂ X we denote by Repc(G) the Serre sub-
category of Rep(G) generated by the simple objects L(λ) with λ ∈ c ∩ X, then we



HECKE ACTION ON THE PRINCIPAL BLOCK 51

have a direct sum decomposition

(6.1) Rep(G) =
⊕

c∈X/(Waff ,•)

Repc(G).

For λ ∈ X, we will write [λ] for the Waff -orbit of λ. We will also set

Rep〈λ〉(G) =
⊕

c∈X/(Waff ,•)
c⊂Wext•λ

Repc(G).

We will also denote by ModGfg(Ug) the category ofG-equivariant finitely generated
Ug-modules. For ξ ∈ t∗/(W, •), we will denote by

ModG,ξfg (Ug)

the full subcategory of ModGfg(Ug) whose objects are the modules annihilated by a

power of mξ. As for other similar notations, in case ξ = λ̃ for some λ ∈ X, we will

write ModG,λfg (Ug) for ModG,λ̃fg (Ug). If we denote by ModG,∧fg (Ug) the category of
G-equivariant finitely generated Ug-modules annihilated by a power of the ideal I
defined in §2.7, then as e.g. in (2.9) we have a canonical decomposition

ModG,∧fg (Ug) ∼=
⊕
λ∈Λ

ModG,λfg (Ug),

where Λ ⊂ X is as in (2.9).
There is a natural fully faithful functor

(6.2) Rep(G)→ ModGfg(Ug)

sending a G-module V to itself, with its G-module structure, and with the Ug-
module structure obtained by differentiating the G-action. The essential image of
this functor consists of the finite-dimensional G-equivariant Ug-modules having the
property that their Ug-module structure is obtained from their G-module structure
by differentiation. Since, for any λ ∈ X+, the action of ZHC on L(λ) factors through
the quotient ZHC/m

λ, the functor (6.2) restricts to a functor

Rep[λ](G)→ ModG,λfg (Ug)

for any λ ∈ X. Since mλ only depends on the orbit Wext • λ, in this way we also
obtain a fully faithful functor

Rep〈λ〉(G)→ ModG,λfg (Ug).

6.2. Action of completed bimodules. There exists a canonical bifunctor

(−) ⊗̂Ug (−) : ModGfg(U∧)×ModG,∧fg (Ug)→ ModG,∧fg (Ug)

which can be defined as follows. Consider some M in ModGfg(U∧) and some V in

ModG,∧fg (Ug). By definition, there exists m ∈ Z≥1 such that Im acts trivially on V .
Then the tensor product

(M/Im ·M)⊗Ug V
is a finitely generated left Ug-module (where in the tensor product we consider the
right Ug-action on M/Im ·M), which does not depend on the choice of m, and
which admits a natural (diagonal) structure of algebraic G-module. Moreover the
action of I on this module is nilpotent. We can therefore take this as the definition
for M⊗̂UgV .
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The bifunctor ⊗̂Ug defines on ModG,∧fg (Ug) a structure of module category for the

monoidal category ModGfg(U∧). It is also easily seen that for λ, µ ∈ X this bifunctor
restricts to a bifunctor

ModGfg(U λ̂,µ̂)×ModG,µfg (Ug)→ ModG,λfg (Ug),

which itself restricts to a bifunctor

HCλ̂,µ̂ × Rep〈µ〉(G)→ Rep〈λ〉(G).

6.3. Relation with translation functors. Recall the definition of the translation
functors for G-modules. Fix λ, µ ∈ X, and denote by ν the only element in X+ ∩
{w(λ− µ) : w ∈W}. Then the translation functor

Tλµ : Rep[µ](G)→ Rep[λ](G)

is the functor sending an object V to the direct summand of L(ν)⊗V which belongs
to Rep[λ](G) in the decomposition provided by (6.1). We will consider these functors
only in case λ and µ both belong to the closure of the fundamental alcove. In this

setting, we have defined in §2.6 an object Pλ,µ ∈ HCλ̂,µ̂diag.

Lemma 6.1. Let λ, µ ∈ X belonging to the closure of the fundamental alcove. The
composition

Rep[µ](G)→ Rep〈µ〉(G)
Pλ,µ⊗̂Ug(−)
−−−−−−−−→ Rep〈λ〉(G)

is canonically isomorphic to the composition

Rep[µ](G)
Tλµ−−→ Rep[λ](G)→ Rep〈λ〉(G).

Proof. By definition, the first functor sends a module V in Rep[µ](G) to the quotient

(L(ν)⊗ V )/(mλ)n · (L(ν)⊗ V )

for n� 0, i.e. to the direct sum of the factors in L(ν)⊗ V corresponding to orbits
included in Wext • λ in the decomposition provided by (6.1). However, all the T -
weights in L(ν)⊗V belong to λ+Z ·R. In view of Lemma 2.1(1), this implies that
[λ] is the only Waff -orbit contained in Wext • λ that can contribute to the direct
sum above. �

Remark 6.2. See [R2, Lemma 4.3.1] for a different proof of this claim, under more
restrictive assumptions which would be sufficient for our present purposes.

6.4. Main result. We now consider the category DBS of §5.1 associated with the
group G = G(1). We also fix a weight λ in the fundamental alcove. For any s ∈ Saff ,
we choose a weight µs ∈ X in the closure of the fundamental alcove, which lies on
the wall associated with s but on no other wall. (For the existence of such a wall,
see [J2, §II.6.3]

The main result of the present section (and of this paper) is the following.

Theorem 6.3. There exists a monoidal functor

DBS → HCλ̂,λ̂

sending Bs to Pλ,µs⊗̂UgPµs,λ, for any s ∈ Saff .
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The category DBS admits a canonical autoequivalence ı which satisfies ı(X ·Y ) =
ı(Y ) · ı(X) for any X,Y ∈ DBS, see e.g. [RW1, §4.2]. In view of Lemma 6.1,
Theorem 6.3 therefore implies that there exists a right action of the monoidal
category DBS on Rep[λ](G), where Bs acts by the wall-crossing functor TλµsT

µs
λ for

any s ∈ Saff . This confirms [RW1, Conjecture 5.1.1], or rather the slightly less
precise statement considered in [RW1, Remark 5.1.2(3)]. (As explained in loc. cit.,
this version is however sufficient to deduce all the applications considered in [RW1,
Part I], and in particular the character formula for tilting modules in Rep[λ](G).)

6.5. Proof of Theorem 6.3. Recall that by construction we have a canonical
morphism I∗S → (J∗S)(1) of group schemes over S∗(1), see §2.9. Now if the Kostant

section S ⊂ g = g(1) of §5.3 is chosen as S(1), and if the isomorphism κ of §5.1 is
chosen as κ(1), then the group scheme (J∗S)(1) identifies with the group scheme J∗S
of §5.3. In this way, Theorem 5.10 provides a monoidal functor

DBS → Rep(t∗(1) ×t∗(1)/W (J∗S)(1) ×t∗(1)/W t∗(1)).

Pulling back under the morphism I∗S → (J∗S)(1) we deduce a monoidal functor

(6.3) DBS → Rep(t∗(1) ×t∗(1)/W I∗S ×t∗(1)/W t∗(1)),

where the monoidal product in the right-hand side is defined by the same recipe
as for Rep(t∗(1) ×t∗(1)/W (J∗S)(1) ×t∗(1)/W t∗(1)). For consistence of notation, in this

section we will denote by (∆J
w : w ∈Wext) the objects considered in Remark 5.8; we

will also denote by (∆I
w : w ∈ Wext) their images in Rep(t∗(1) ×t∗(1)/W I∗S ×t∗(1)/W

t∗(1)).
Now we observe that since λ belongs to the fundamental alcove, it is regular, so

that the quotient morphism

t∗ → t∗/(W, •)
is étale at λ, see Lemma 2.2. Similarly, the Artin–Schreier map

t∗ → t∗(1)

is étale (everywhere, hence in particular at λ), and sends λ to 0. Using these maps
we obtain morphisms

t∗(1) ×t∗(1)/W t∗(1) ← t∗ ×t∗(1)/W t∗ → t∗/(W, •)×t∗(1)/W t∗/(W, •)

étale at (λ, λ), which identify the algebra Z λ̂,λ̂S with the completion O(t∗(1)×t∗(1)/W

t∗(1))0̂,0̂ of O(t∗(1) ×t∗(1)/W t∗(1)) with respect to the maximal ideal of (0, 0). Using
this identification, the functor of completion with respect to this maximal ideal
defines a monoidal functor

(6.4) Rep(t∗(1) ×t∗(1)/W I∗S ×t∗(1)/W t∗(1))→ ModIfg(Z λ̂,λ̂S ).

Precomposing this functor with (6.3), and then composing with the equivalence of
Corollary 3.7 we obtain a monoidal functor

(6.5) DBS → ModIfg(U λ̂,λ̂S ).

Proposition 6.4. For any s ∈ Saff ∩W , the functor (6.5) sends the object Bs to

Pλ,µsS ⊗̂USgP
µs,λ
S .
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Proof. In the course of the proof of Lemma 5.9 we have seen that the image of
Bs in Rep(t∗(1) ×t∗(1)/W (J∗S)(1) ×t∗(1)/W t∗(1)) is O(t∗(1) ×t∗(1)/{e,s} t

∗(1)), endowed
with the trivial module structure. It follows that the same is true for its image
under (6.3). On the other hand, by Proposition 4.8 the wall-crossing bimodule

Pλ,µsS ⊗̂USgP
µs,λ
S corresponds to the object Z λ̂,λ̂S ⊗

Zµ̂,λ̂S
Z λ̂S . The considerations in

the proof of Lemma 4.9 show that the algebra Z µ̂,λ̂S identifies with the completion

of O(t∗/({e, s}, •)×t∗(1)/W t∗) at the ideal corresponding to (µ, λ), and that via this

identification the morphism Z µ̂,λ̂S → Z λ̂,λ̂S is induced by the natural morphism

t∗ ×t∗(1)/W t∗ → t∗/({e, s}, •)×t∗(1)/W t∗

sending (λ, λ) to the image of (µ, λ). This morphism fits in a natural commutative
diagram

t∗(1) ×t∗(1)/W t∗(1)

��

t∗ ×t∗(1)/W t∗oo //

��

t∗/(W, •)×t∗(1)/W t∗/(W, •)

t∗(1)/{e, s} ×t∗(1)/W t∗(1) t∗/({e, s}, •)×t∗(1)/W t∗oo // t∗/(W, •)×t∗(1)/W t∗/(W, •).

Here the morphisms on the upper row are étale at (λ, λ), and those on the lower
row are étale at the image of (µ, λ). (In fact, for the right-hand side this has already
been observed in the course of the proof of Lemma 4.9, and for the left-hand side the

proof is similar to that of Lemma 3.6.) This observation shows that Z λ̂,λ̂S ⊗
Zµ̂,λ̂S
Z λ̂S

identifies with the O(t∗(1) ×t∗(1)/W t∗(1))0̂,0̂-module

O(t∗(1) ×t∗(1)/W t∗(1))0̂,0̂ ⊗O(t∗(1)/{e,s}×
t∗(1)/W t∗(1))0̂,0̂ O(t∗(1))0̂,

where O(t∗(1)/{e, s} ×t∗(1)/W t∗(1))0̂,0̂ is the completion of O(t∗(1)/{e, s} ×t∗(1)/W

t∗(1)) at the ideal corresponding to the image of (0, 0), and O(t∗(1))0̂ is the com-
pletion of O(t∗(1)) (seen as an O(t∗(1)/{e, s} ×t∗(1)/W t∗(1))-module in the natural

way) at the ideal corresponding to 0. Using the same considerations as in the proof
of Lemma 4.9, it is easily seen that this module identifies with the completion of
O(t∗(1) ×t∗(1)/{e,s} t

∗(1)), which finishes the proof of our claim. �

Lemma 6.5. For any w ∈Wext, the object L −1
λ,λ(Bλ,w•λ) is the image of ∆I

w under

the functor (6.4).

Proof. Write w = tνx with ν ∈ pX and x ∈W . Then by Lemma 4.3 we have

Bλ,w•λ = Bλ,x•λ+pν
∼= Bλ,x•λ ⊗̂USg Bx•λ,x•λ+pν .

It is easily seen from Lemma 4.4 that L −1
λ,λ(Bx•λ,x•λ+pν) is the image of ∆I

tν . In

view of (5.3), to conclude it therefore suffices to prove that L −1
λ,λ(Bλ,x•λ) is the

image of ∆I
x. In turn, if x = s1 · · · sr is a reduced expression (with each si in

W ∩ Saff) then we have

Bλ,x•λ ∼= Bλ,s1•λ ⊗̂USg Bs1•λ,s1s2•λ ⊗̂USg · · · ⊗̂USg B(s1···sr−1)•λ,x•λ.

If we write yj = s1 · · · sj for any j, then by monoidality of Lλ,λ (see Proposi-

tion 4.10), to conclude it suffices to prove that L −1
λ,λ(Byi−1•λ,yi•λ) is the image of

∆I
si for any i.
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Here we have yi • λ < yi−1 • λ. By Lemma 4.7 we therefore have an exact
sequence

Byi•λ,yi−1•λ ↪→ Pλ,µsiS ⊗̂USg P
µsi ,λ

S � Byi−1•λ,yi−1•λ.

As seen in the course of the proof of Proposition 6.4, L −1
λ,λ(Pλ,µsiS ⊗̂USgP

µsi ,λ

S ) is

the completion of O(t∗(1) ×t∗(1)/{e,si} t
∗(1)) (with the trivial action of the group

scheme t∗(1) ×t∗(1)/W I∗S ×t∗(1)/W t∗(1)), and it is clear that L −1
λ,λ(Byi−1•λ,yi−1•λ) is

the completion of O(t∗(1)). The object L −1
λ,λ(Byi•λ,yi−1•λ) is therefore the kernel of

a surjection from the former completion to the latter completion. However, up to
an automorphism of the completion of O(t∗(1)) there exists only one such surjection,
and its kernel is isomorphic to the completion of ∆I

si by Lemma 5.4. �

We can finally complete the proof of Theorem 6.3.

Proof of Theorem 6.3. Consider the functor (6.5). For any s ∈ Saff , this functor

sends Bs to Pλ,µsS ⊗̂USgP
µs,λ
S . In fact, if s ∈ W this claim is the content of Propo-

sition 6.4. Otherwise, as already seen in the course of the proof of Lemma 5.9,
there exist x ∈ Wext and t ∈ Saff ∩W such that s = xtx−1. By Lemma 5.3 and
Lemma 6.5, the image of Bs is then

Bλ,w•λ ⊗̂USg
(
Pλ,µtS ⊗̂USg P

µt,λ
S

)
⊗̂USg Bw•λ,λ,

which by Proposition 4.14 is isomorphic to Pλ,µsS ⊗̂USgP
µs,λ
S .

Since each object of DBS is isomorphic to a shift of a product of objects Bs,
and since both of the involved functors are monoidal, our claim implies that the
functor (6.5) takes values in the essential image of the fully faithful functor of
Proposition 2.6. Composing with the inverse of the latter functor, we therefore
obtain a monoidal functor

DBS → ModGfg(U λ̂,λ̂)

sending Bs to Pλ,µs⊗̂UgPµs,λ for any s ∈ Saff . Since each object Pλ,µs⊗̂UgPµs,λ be-

longs to HCλ̂,λ̂, and since this subcategory is monoidal, our functor factors through

a functor DBS → HCλ̂,λ̂, which finishes the proof. �
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Ann. Sci. Éc. Norm. Supér. 45 (2012), 535–599.
[BRR] R. Bezrukavnikov, S. Riche, and L. Rider, Modular affine Hecke category and regular

unipotent centralizer, I, preprint arXiv:2005.05583.

[BK] M. Brion and S. Kumar, Frobenius splitting methods in geometry and representation
theory, Progress in Mathematics 231, Birkhäuser Boston, 2005.
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[Hä] M. Härterich, Kazhdan–Lusztig-Basen, unzerlegbare Bimoduln und die Topologie
der Fahnenmannigfaltigkeit einer Kac–Moody-Gruppe, PhD thesis (1999), available

at https://freidok.uni-freiburg.de/data/18.

[J1] J. C. Jantzen, Representations of Lie algebras in prime characteristic, notes by Iain
Gordon, in Representation theories and algebraic geometry (Montreal, PQ, 1997),

NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514, 185–235, Kluwer Acad. Publ.,

1998.
[J2] J. C. Jantzen, Representations of algebraic groups, Second edition, Mathematical sur-

veys and monographs 107, Amer. Math. Soc., 2003.

[JeW] L. T. Jensen and G. Williamson, The p-canonical basis for Hecke algebras, in Cate-
gorification and higher representation theory, 333–361, Contemp. Math. 683, Amer.

Math. Soc., 2017.

[JMW] D. Juteau, C. Mautner, and G. Williamson, Parity sheaves, J. Amer. Math. Soc. 27
(2014), 1169–1212.

[KL1] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, in Geometry of
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