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In this work we generalize the definition of the Lebesgue's constant to the case of field interpolation by high-order Whitney's forms on simplices. We underline the important theoretical concepts at play.

Introduction

The polynomial interpolation of a field f over a domain Ω ⊂ R d , d ≥ 1, consists in the construction of a polynomial of degree r ≥ 0 which has a finite number of degrees of freedom (dofs) concident with those of f . This problem is a classical topic in approximation theory and matters because the high quality polynomial interpolation of fields plays an essential role in finite elements (FEs). Standard dofs for the interpolation of a scalar field f in Ω are the values of f at some chosen nodes in the domain and the quality of this approximaton is evaluated on the basis of the well-known Lebesgue's constant associated with the set of nodes (see, e.g, [START_REF] Chung | On lattices admitting unique Lagrange interpolations[END_REF], [START_REF] Pasquetti | Spectral element methods on unstructured meshes: Which interpolation points ?[END_REF]). In many areas of physics, FEs should be able to represent vector fields from a finite number of physical coefficients, the nature of which, fluxes, circulations, etc., associate them with geometric mesh objects other than nodes [START_REF] Bossavit | Computational Electromagnetism[END_REF]. In electromagnetism, for example, fields are invisible and forces act without contact. The perturbations, caused to the surrounding by the presence of the field, are observed via quantities, such as electromotive forces, intensities, etc., which correspond to weights on manifolds, namely line integrals (circulations), surface integrals (fluxes), etc., other than simply pointwise evaluations. The entity of physical significance is thus the k-form, i.e. the mapping curve→circulation (k = 1), surface→flux (k = 2), etc., and not the field itself, i.e. the electric field, the magnetic induction, etc., as a vector. The form w models the field; manifolds S are probes that one locates in Ω to measure the field. The value of the mesure, S w, is the weight of the form w on the manifold S. In FEs, these weights can be considered as dofs. They reflect the nature (and, if properly chosen, global regularity properties) of the field they represent and are the right objects to produce accurate high-order interpolation formulae.

They are the key to extend the concepts of Lebesgue's function and constant to the interpolation of any field over a domain Ω. This generalization is a novelty, resulting from adopting in FEs a point of view typical of differential geometry, thus weights as dofs.

The classical framework

Let T be a d-simplex of R d , P r (T ) the space of polynomials of degree r in T and N r = ( d+r d ) = dim(P r (T )). Given X r (T ) = {x 1 , ..., x Nr }, a set of N r distinct nodes in T , the Lagrange interpolation problem for a given scalar function f ∈ C 0 (T ) consists in finding a polynomial I r f ∈ P r (T ), such that

I r f (x i ) = f (x i ), ∀ i = 1, ..., N r . (1) 
Chosen a basis B = {ψ j } Nr j=1 for the space P r (T ), the interpolation problem is well-defined if the N r × N r generalized Vandermonde matrix V B,Xr with entries (V Xr,B ) ij = ψ j (x i ), i, j = 1, ..., N r , is invertible. The name of Vandermonde matrix is given to V Xr,B in recognition of the fact that, for d = 1, if the chosen basis is the canonical one {x j-1 } Nr j=1 , then det (V Xr,B ) coincides with the Vandermonde determinant Π 1≤j<i≤Nr (x i -x j ). The solution I r f of the interpolation problem (1) can be written in terms of the basis functions in B as I r f (x) = Nr j=1 c j ψ j (x) , for x ∈ T , where the vector c = (c 1 , ..., c Nr ) is the solution of the linear algebraic system

V Xr,B c = f , f = (f (x 1 ), ..., f (x Nr )) . (2) 
Inverting the matrix V Xr,B is necessary to compute the dual basis {φ Xr j } Nr j=1 ⊂ P r (T ) such that φ Xr j (x i ) = δ ij , for 1 ≤ i, j ≤ N r , being δ .. the Kronecker's symbol. The set of points X r (T ) = {x 1 , ..., x Nr } is called unisolvent for the space P r (T ) if the Lagrange interpolation problem (1) is well-defined, namely if for a given basis B of P r (T ) the Vadermonde matrix V Xr,B is invertible.

Definition 1. Given a d-simplex T and a set X r (T ) of N r points in T , unisolvent for the space P r (T ), the Lebesgue's function L Xr : T → R + is defined as

L Xr (x) = Nr j=1 |φ Xr j (x)|
with {φ Xr j } Nr j=1 ⊂ P r (T ) the Lagrange basis associated with X r (T ). The Lebesgue's constant in T is denoted by Λ Xr (T ) and defined as the maximum of the Lebesgue's function L Xr (•) over T , namely

Λ Xr (T ) = L Xr C 0 (T ) := max x∈T |L Xr (x)| .
To ensure the stability of the interpolating problem when increasing the polynomial degree, it is crucial to keep under control the growth of Λ Xr (T ) with respect to r. The Lebesgue's constant appears in the comparison between the interpolation error ||f -I r f || C 0 (T ) in the maximum norm and the best-fit error ||f -f * r || C 0 (T ) in the same norm. Indeed, for any function f ∈ C 0 (T ), we have

||f -I r f || C 0 (T ) ≤ (1 + Λ Xr )||f -f * r || C 0 (T ) (3) 
where f * r is the best-fit polynomial of degree r of the function f with respect to the maximum norm in T , namely, f * r ∈ P r (T ) and

f -f * r C 0 (T ) ≤ f -p C 0 (T ) for all p ∈ P r (T ), so ||f -f * r || C 0 (T ) = inf p∈Pr(T ) ||f -p|| C 0 (T ) = inf p∈Pr(T ) max x∈T |f (x) -p(x)|.
The magnitude of the Lebesgue's constant Λ Xr (T ) depends heavily on the distribution of the points x i ∈ X [START_REF] Pasquetti | Spectral element methods on unstructured meshes: Which interpolation points ?[END_REF]. In the bound (3), the growth of the Lebesgue's constant Λ Xr determines the convergence in the maximum norm. Indeed, we have the indeterminate form lim r→+∞ ((1

+ Λ Xr )||f -f * r || C 0 (T ) ) = ∞ • 0.
If Λ Xr grows faster in r than the best-fit error dies away, convergence in r is impossible to attain. The indetermination is solved when it grows up slowly with respect to the interpolation degree r, that is for example when it satisfies the condition lim r→+∞ Λ 1/r Xr = 1, as proved in [START_REF] Bloom | The Lebesgue constant for Lagrange interpolation in the simplex[END_REF]. Moreover, the inequality (3) suggests that, when the Lebesgue's constant does not grow too fast, we can find an approximation of a function f on T that is almost as good as the best-fit f * r , by just taking the polynomial interpolant I r f , which is generally much easier to compute than f * r .

Whitney's forms

For any integer k, with 0 ≤ k ≤ d a k-simplex σ is the convex hull of k + 1 linear independent vectors or vertices in R d , with orientation induced by the ordering of the vertices σ = [n 0 , . . . , n k ]. The mass |σ| 0 of a k-simplex σ is its k-dimensional Hausdorff's measure. (In particular the mass of any 0-simplex is 1.) A simplicial k-chain c is a formal (finite) sum of k-simplices with real coefficients. The mass |c| 0 of a simplicial chain c = I i=1 a i σ i is defined as

|c| 0 = I i=1 |a i ||σ i | 0 . We denote by C k (resp. C k (T )) the space of simplicial k-chains in R n (resp. supported in T ).
We denote ∆ k (T ) the set of k-subsimplices of T . If d = 3 then ∆ 0 (T ) is the set of the four vertices of T , ∆ 1 (T ) of its edges, ∆ 2 (T ) of its faces, and ∆ 3 (T ) ≡ T . Note that we will consider also other k-simplices supported in T . Whitney's k-forms of degree one [START_REF] Whitney | Geometric Integration Theory[END_REF] are associated with the k-subsimplices of T . For each n ∈ ∆ 0 (T ) the Whitney's 0-forms w n is the barycentric function λ n associated with n. For each σ = [n 0 , . . . , n k ] ∈ ∆ k (T ) we have w σ = k j=0 (-1) j λ nj dw σ-nj being w σ-nj the Whitney's (k -1)-form associated with the (k -1)-subsimplex of T obtained by eliminating the vertex n j from σ, and d the exterior derivative. In particular w T = |T | -1 0 . Whitney's k-forms are element of the dual basis for the weights on the k-subsimplices of T , namely, σ w σ = δ σ,σ for σ, σ ∈ ∆ k (T ). Note that Whitney's k-forms have proxies with components given by polynomials of degree 1 if 0 ≤ k < d and 0 if k = d.

Whitney's k-forms of degree r > 1 [START_REF] Rapetti | Whitney forms of higher degree[END_REF] are the elements of the space

P - r λ k (T ) = Span{λ α w s : s ∈ ∆ k (T ) and α ∈ I(d, r -1)} being I(d, r -1) = {(α 0 , ..., α d ), α i ∈ N, i α i = r -1} and λ α = λ α0 0 ...λ α d d . We denote C 0 Λ k (R d ) the Banach's space of continuous k-differential forms w with bounded C 0 norm: w C 0 < ∞ and C 0 Λ k (T ) the space of restrictions of C 0 Λ k (R d ) to T .
The norm w C 0 has to be intended as the maximum norm of the proxy of w.

Polynomial interpolation of forms

Given a set X k,r = {s 1 , ..., s N k,r } of N k,r = dim(P - r Λ k (T )) distint k-simplices in T (not necessarily subsimplices of T ), the interpolation problem for a given differential k-form w ∈ C 0 Λ k (T ) consists in finding a Whitney's differential k-form, I r w ∈ P - r Λ k (T ), such that si I r w = si w for all s i ∈ X k,r . As in the case of Lagrange's interpolation, chosen a basis B = {w j } N k,r j=1 for the space P - r Λ k (T ) the interpolation problem is well-defined if the generalized Vandermonde's matrix V X k,r ,B with entries (V X k,r ,B ) i,j = si w j , i, j = 1, . . . , N k,r , is invertible. We say that the set X k,r of N k,r k-simplices supported in T is unisolvent for the space P - r Λ k (R n ) if the interpolation problem is well-defined. With any unisolvent set X k,r , it is possible to associated a dual basis {w

X k,r j } N k,r j=1 of P - r Λ k (R n ) (namely, such that si w X k,r j = δ i,j
). Examples of unisolvent sets of k-simplices for the space P - r Λ k (R n ) are given in [START_REF] Rapetti | Whitney forms of higher degree[END_REF] and [START_REF] Alonso Rodríguez | Minimal sets of unisolvent weights for high order Whitney forms on simplices. Enumath 2019 procs[END_REF].

Definition 2. Given a set X k,r = {s 1 , ..., s N k,r } of N k,r k-simplices supported in the d-simplex T that is unisolvent for the space P - r Λ k (T ), the Lebesgue's function L X k,r (T ) : C k (T ) → R + is defined as Proof: To prove that Λ X0,r ≤ Λ 0 X0,r , we recall that the 0-simplices supported in T are points x of T , |x| 0 = 1, and φ 

L k X k,r (c) = N k,r j=1 |s j | 0 c w X k,r j with {w X k,r j } N k,r j=1 ⊂ P - r Λ k (T ) the dual basis associated with X k,r . The Lebesgue's constant is then Λ k X k,r = sup c∈C k (T ) L k X k,r (c) 
= I i=1 |a i |. Therefore Λ 0 X0,r = sup c∈C0(T ) L 0 X 0,r (c) |c|0 
≤ Λ X0,r .

For any L 1 -differential k-form w we define w 0 := sup σ =0 | σ w| |σ|0 , where the supremum is taken over all k-subsimplices of T . If w ∈ C 0 Λ k (T ) then w 0 = w C 0 . (See, e.g., [START_REF] Harrison | Continuity of the integral as a function of the domain[END_REF].) Proposition 2. Let X k,r (T ) = {s 1 , ..., s N k,r } be a unisolvent set of N k,r ksimplices supported in the d-simplex T that is unisolvent for the space P - r Λ k (T ).

For each differential k-form w ∈ C 0 Λ k (T ) it holds

w -I r w 0 ≤ (1 + Λ X k,r ) w -w * 0 ( 4 
)
where w * is the best-fit reconstruction of w for the given norm • 0 , namely w * ∈ P - r Λ k (T ) and it verifies w -w * 0 ≤ w -z 0 for all z ∈ P - r Λ k (T ). Proof: First we notice that I r w * = w * and

w -I r w 0 ≤ w -w * 0 + I r (w * -w) 0 ≤ (1 + I r 0 ) w -w * 0 (5) 
being I r 0 := sup w∈C 0 Λ k (T )

Irw 0 w 0 . Recalling that I r w = N k,r j=1 sj w w X k,r j we have c I r w = N k,r j=1 sj w c w X k,r j ≤ N k,r j=1 s j w |sj |0 |s j | 0 c w X j ≤ max 1≤j≤N k,r s j w |sj |0 N k,r j=1 |s j | 0 c w X k,r j ≤ w 0 L k X k,r (c) .
It is easy to check that w 0 = sup c∈C k | c w| |c|0 , so

I r w 0 = sup c∈C k c I r w |c| 0 ≤ w 0 sup c∈C k L k X k,r (c) |c| 0 = w 0 Λ k X k,r
and I r 0 := sup w∈C 0 Λ k (T )

Irw 0 w 0 ≤ Λ k X k,r .
Replacing in [START_REF] Chung | On lattices admitting unique Lagrange interpolations[END_REF] we obtain (4).

Some remarks and conclusions

We have generalized the definition of the Lebesgue's function and constant to the case of k-form interpolation in P - r Λ k , the space of "trimmed" polynomial differential forms widely used in the finite elements exterior calculus (see [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF]). This extension is very natural when using the weights on subsimplices as degrees of freedom due to their clear physical meaning. For r > 1, the subsimplices have to be viewed as an enrichment of the geometrical description of the weights' support, as if we were computing a more accurate approximation of circulations (k=1), fluxes (k=2), etc. As in the classical setting of Lagrange's polynomial interpolation (that in fact correponds to the case k = 0), the Lebesgue's constant is a quality indicator when selecting among unisolvent sets of degrees of freedom, the ones that minimize the local interpolation error in the maximum norm. Applications are postponed to future works.

|c|0 .Proposition 1 .

 |c|01 If k = 0 then Definition 2 coincides with Definition 1.

  hand, if c = I i=1 a i x i ∈ C 0 (T ) then, taking into account that |s i | 0 = 1 for each s i ∈ X 0,r , one has | = |c| 0 Λ Xr , because for a chain c = I i=1 a i x i ∈ C 0 (T ) one has |c| 0
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