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[1] NASA’s Orbiting Carbon Observatory will monitor the atmospheric concentrations
of carbon dioxide (CO2) along the satellite subtrack over the sunlit hemisphere of
the Earth for more than 2 years, starting in late 2008. This paper demonstrates the
application of a variational Bayesian formalism to retrieve fluxes at high spatial and
temporal resolution from the satellite retrievals. We use a randomization approach to
estimate the posterior error statistics of the calculated fluxes. Given our prior information
about the fluxes (with error standard deviations about 0.4 g C m�2 d�1 over ocean and
4 g C m�2 d�1 over vegetated areas) and our observation characteristics (with error
standard deviations about 2 ppm), we show error reductions of up to about 40% at weekly
scale for a grid point of the transport model. We simulate the impact of undetected
biases by perturbing the observations and show that regional biases of a few tenths of a
part per million in column-averaged CO2 can bias the inverted yearly subcontinental
fluxes by a few tenths of a gigaton of carbon, which is larger than the uncertainty on
the anthropogenic carbon fluxes but smaller than that of natural fluxes over most vegetated
areas.

Citation: Chevallier, F., F.-M. Bréon, and P. J. Rayner (2007), Contribution of the Orbiting Carbon Observatory to the estimation of

CO2 sources and sinks: Theoretical study in a variational data assimilation framework, J. Geophys. Res., 112, D09307,

doi:10.1029/2006JD007375.

1. Introduction

[2] The carbon cycle in the Earth system results from the
exchange of huge amounts of carbon compounds between
the atmosphere, the ocean, the biosphere, and the fossil
reservoirs (several tens of gigatons of carbon per year).
Since the cycle is nearly stationary on a yearly timescale,
the annual global net flux at the interface between the
atmosphere and the Earth is close to zero, with a relatively
small gain for the atmosphere (about 3 Gt C per year,
mainly of CO2). This slight imbalance feeds back on
another near-balanced budget, that of the energy exchange
between the Earth system and outer space, via radiation
processes. The importance of the topic has triggered nu-
merous efforts to better quantify the carbon surface fluxes at
all spatial scales.
[3] The Orbiting Carbon Observatory (OCO) [Crisp et

al., 2004] has been chosen by NASA to remotely sense
atmospheric CO2 from space and is planned for launch in
late 2008. From its high-resolution spectroscopic measure-
ments of reflected sunlight, this instrument will provide the
data needed to retrieve the column-averaged dry air mole

fraction of CO2, denoted XCO2, over the sunlit part of the
globe. The number of cloud-free soundings and precision
per sounding will vary with latitude, cloud cover, aerosol
optical depth, and other factors, but the minimum require-
ment of the mission is to achieve XCO2 precision of 1 ppm
for monthly averages over regional (1000 � 1000 km2)
spatial scales. Building on the experience using in situ gas
concentration measurements [e.g., Gurney et al., 2002],
inverse methods will be applied to quantify the CO2 surface
sources and sinks from the OCO retrievals. The usefulness
of satellite data for such a task has been demonstrated from
simulations at relatively low spatial and temporal resolu-
tions [Rayner and O’Brien, 2001; Pak and Prather, 2001;
Houweling et al., 2004]. Higher resolutions are being
introduced thanks to a variational formulation of the Bayes-
ian inversion problem [Chevallier et al., 2005b; Rödenbeck,
2005]. However, the inversion of existing satellite CO2

products has not been successful so far most likely because
of the existence of biases both in the observations and in the
transport models [Chevallier et al., 2005a, 2005b;Houweling
et al., 2005]. Furthermore, some of these observations are
restricted to the upper troposphere, which is only remotely
connected to the surface. In the light of these recent
developments, this paper evaluates the usefulness of the
forthcoming OCO measurements for characterizing surface
fluxes, based on a series of observing system simulation
experiments. The design of the experiments allows us to
estimate some diagnostic quantities, like the degrees of
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freedom for signal or the error reduction, that are usually
difficult to obtain for high-dimensional problems. To sum-
marize, our study approaches two distinct scientific prob-
lems: a methodological issue regarding variational systems
in general, and the relevance of OCO to improve our
knowledge about the carbon cycle. Our method and our
data are described in the following section. Section 3
presents the results, which are discussed in section 4.

2. Method and Data

[4] The steps in our observing system simulation experi-
ments (OSSE) can be described as follows:
[5] 1. Use a climatology of surface fluxes as boundary

conditions to a transport model and generate a set of pseudo
observations.
[6] 2. Perturb the pseudo-observations consistently with

assumed observation error statistics.
[7] 3. Perturb the surface flux climatology consistently

with assumed error statistics.
[8] 4. Perform a Bayesian inversion using the perturbed

pseudo-observations as data and the perturbed climatology
as the prior field.
[9] 5. Compare the estimate of the inversion to the flux

climatology to get the errors in the estimate.
[10] The ingredients of this procedure are detailed in the

next subsections.

2.1. Inversion Scheme

[11] Bayesian inference describes how observations y
transform our knowledge about any related variables x. It
has been particularly useful in numerous fields, although it
is often difficult to define the required error statistics on the
prior information and on the observations. It is at the root of
CO2 surface flux estimations at the global scale [e.g., Enting
et al., 1995; Gurney et al., 2002; Enting, 2002]. The main
developments of the method for CO2 since its introduction
in the 90 s are twofold. First the realism of its ingredients
has been improved: the transport model H which simulates
the atmospheric concentrations y from the surface fluxes x,
and, to a lesser extent, the error covariance matrices B and
R that describe the error statistics, assumed to be Gaussian
and bias free, for x and y respectively. Second, the spatial
and temporal resolutions of x and y have been dramatically
increased, thanks to the evolution of computer power and,
only recently, to the implementation of a variational formu-
lation to the optimization problem [Chevallier et al., 2005b;
Rödenbeck, 2005; Baker et al., 2006], as is done in
numerical weather prediction (NWP).
[12] In this study, the control variables x are the CO2

surface fluxes either at daytime or at nighttime, at each point
of a 3.75� � 2.5� (longitude-latitude) grid every 8 days.
Daytime and nighttime fluxes are defined separately to
account for the diurnal cycle of the biospheric fluxes. The
motivation for the 8-day resolution is given in the coming
section 2.3 from considerations about the prior errors. In the
simulations presented here, fluxes within any of the 8-day
periods are interpolated in time from the control variables.
The 3D carbon field at the start of the assimilation window is
also included in the vector x but the length of the temporal
window (one year) makes it play a minor role. The general
circulation model of the Laboratoire de Météorologie Dyna-

mique (LMDZ) [Sadourny and Laval, 1984; Hourdin and
Armengaud, 1999], nudged to NWPwinds, is ourH operator.
LMDZ is used here with 19 levels in the vertical and the same
horizontal resolution as the surface fluxes.
[13] The concentrations y are here individual OCO

retrievals of XCO2, binned per orbit at the 3.75� � 2.5�
model resolution. As mentioned in the introduction, they are
distributed in cloud-free sunlit areas only and therefore
constrain the control variables in a complicated way. For
instance, a midday XCO2 observation is not influenced by the
surface fluxes later in the day but may integrate significant
information about the fluxes from the night before.
[14] The variational inversion system of Chevallier et al.

[2005b] allows us to find the optimal fluxes xa that fit both
the observations y with their specified error statistics R and
the prior fluxes xb with their specified error statistics B, by
iteratively minimizing the cost function J defined by

J xð Þ ¼ x� xbð ÞTB�1 x� xbð Þ þ H xð Þ � yð ÞTR�1 H xð Þ � yð Þ
ð1Þ

Our notation follows Ide et al. [1997]. One may notice in
equation (1) that J accounts for random errors only.
Systematic errors in the prior or in the observations are
supposed to have been removed before the minimization.
[15] The number of iterations needed for the minimiza-

tion of J(x) to reach convergence depends not only on the
degree of nonlinearity and on the conditioning of the
minimization problem, but also on the minimization strat-
egy. The efficiency of the minimization algorithm is partic-
ularly crucial when the computational cost of each iteration
is high. In our case, a single iteration using 1 year’s worth of
data takes about 7 CPU hours when using a 64-bit processor
at 2.6 GHz. This high computation burden is explained by
the necessity of running the transport model successively in
forward mode (to compute J(x)) and in adjoint mode (to
compute the gradient of J(x)) over the whole period at each
iteration. Our minimization strategy follows the ‘‘inner
loop/outer loop’’ approach developed at the European
Centre for Medium-Range Weather Forecasts (ECMWF)
where operational constraints impose a stringent limitation
to the number of iterations for the NWP analyses. As
initially described by Courtier et al. [1994], the minimiza-
tion is decomposed into a succession of minimizations for
which the observation operator is linearized around the
corresponding first guess (using a first-order Taylor expan-
sion). The updates of the linearization constitute the outer
loop of this system. The overall convergence of such an
‘‘inner loop/outer loop’’ approach depends on the validity of
the tangent-linear hypothesis for the size of analysis incre-
ments considered [Trémolet, 2005]. Note that the transport
of a passive tracer, like CO2, which is a linear process,
becomes nonlinear in a numerical model, given the need of
the model to prevent unrealistic growth of the gradients
while at the same time not being overly diffusive [e.g.,
Hourdin and Armengaud, 1999]. However, the use of a
linear model in the inner loop makes the cost function
quadratic and allows one to use efficient algorithms like the
conjugate gradient methods, as is done here. Conjugate-
gradient methods require fewer iterations to converge if the
Hessian (matrix of second derivatives J00) of J has a lower
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condition number [e.g., Andersson et al., 2000]. Precondi-
tioning techniques reduce the condition number of J00 by an
appropriate change of variable. The perfect preconditioner
is the change to z = (Jx

00)�1/2 x, because it makes all the
eigenvalues of the preconditioned Hessian Jz

00 equal to one
and reduces the minimization to a single iteration when
using steepest descent or conjugate gradient methods. To
draw near to this ideal case, Courtier et al. [1994] estimate
Jx

00 on the basis of a randomized estimate of the covariance
matrix of Jx

0 (the derivative of J with respect to x), while
Fisher and Courtier [1995] use the Lanczos algorithm to
obtain the leading eigenvectors of Jx

00. In our case the
preconditioning with respect to the prior only, as suggested
by Lorenc [1988], was found more practical despite its
lesser efficiency: z = B�1/2 (x � xb) is our minimization
control variable rather than x. Note that this change of
variable is also used at ECMWF in the first minimization.
[16] The configuration that we have selected is a two-

iteration outer loop. Ten iterations are performed in the first
inner loop minimization and 40 in the second. This setup was
chosen empirically after several tests. It provides numerically
stable results at a reasonable computational cost.

2.2. Observations

[17] The atmospheric CO2 fields used to simulate OCO
XCO2 data in the present study have been calculated from a
climatology of carbon fluxes xclim used as the boundary
condition for LMDZ. xclim is considered to be the truth for
the present theoretical study.
[18] The climatology includes three components. First,

fossil fuel CO2 emissions are defined from the EDGAR 3.0
emission database [Olivier et al., 1996]. Second, air-sea
CO2 exchange is prescribed by Takahashi et al. [2002]
with a sink of 1.8 Gt C per year. Last, the biosphere-
atmosphere exchange of CO2 is estimated by the Terrestrial
Uptake and Release of Carbon (TURC) model [Lafont et
al., 2002], which is annually balanced. The daily fluxes
calculated by TURC have been redistributed throughout the
day to account for the diurnal cycle of the fluxes resulting
from the photosynthetic activity (M. Heimann, personal
communication, 2003). The CO2 concentrations at the
initial time step of the LMDZ simulation are defined from
a former simulation using fluxes optimized through the
inversion of monthly surface in situ observations [Bousquet
et al., 2000].
[19] OCO will fly in the A train with a 705 km Sun-

synchronous polar orbit that provides global sampling on a
16-day (233 orbits) repeat cycle with a 1318 local standard
time equator crossing [Crisp et al., 2004]. In these simu-
lations, we assume that OCO is in the glint observing mode,
where the instrument boresight is pointed off nadir at the
specular reflection point. This mode increases the measure-
ment signal to noise over water bodies and provides useful
data over both land and ocean. OCO will continuously
collect 12 to 24 soundings per second as the satellite moves
from pole to pole at 6.8 km per second along its near-polar,
Sun-synchronous orbit track. It therefore collects 490 to 980
samples each time it traverses a 3.75� � 2.5� (longitude-
latitude) LMDZ grid cell, and each grid cell is traversed two
or three times during each 16-day repeat cycle. The sound-
ing foot print size varies from less than 3 km3 when
observing the local nadir, to greater than 25 km3 at the

most extreme viewing angles. Note that the OCO instru-
ment also has a nadir sampling mode, which is believed to
be more favorable over land, but less favorable over ocean.
The sampling of both modes is rather similar. Simulated
XCO2 have been individually sampled along the OCO orbit
track at the glint location. Since only XCO2 retrievals in
clear sky conditions provide direct constraints on the
surface fluxes, these samples were filtered for clouds. The
sampling accounts for a climatological cloud cover [Rossow
et al., 1996] as well as for cloud cover spatial correlation
statistics [Bréon et al., 2005]. To compute XCO2 from the
vertical profile of CO2 concentrations, a uniform weighting
function was used (i.e., the relative contribution of a CO2

molecule does not depend on its pressure level).
[20] The sampled XCO2 have been perturbed with the

specified observation error statistics R following:

y ¼ yclim þ VTv1=2p ð2Þ

with yclim = H(xclim) the simulated XCO2. V and v are the
eigenvector and eigenvalue matrices of the principal
component analysis of R, so that R = VT v V. Vector p is
a vector of size the number of observations, which is a
realization of random variables with standard normal
distributions.
[21] In equation (1), the observation error is defined with

respect to the measurement equivalent given by the trans-
port model. Therefore it includes the measurement error, the
representativeness error (caused by differences in temporal
and spatial resolutions between the observations and the
model) and the transport model error. The simulations
presented by Crisp et al. [2004] indicated random measure-
ment errors between 0.8 and 1.7 ppm for retrievals from
individual OCO XCO2 soundings. Representativeness and
model errors are difficult to quantify but are usually
considered to be of the order of 1 ppm for most surface
stations [Rödenbeck et al., 2003]. For simplicity we have
assumed the total observation error standard deviation to be
2 ppm for all of our data. Following the usual approxima-
tion, correlations between the errors of different retrievals
(in particular between measurements for each adjacent
along-track location, 2.5� apart) are neglected so that
equation (2) reduces to

y ¼ yclim þ v1=2p ð3Þ

2.3. Prior Information

[22] The prior information xb is also specified to be
consistent with the above-described ‘‘true’’ fluxes xclim
and with their specified error matrix B:

xb ¼ xclim þWTw1=2q ð4Þ

where q is a vector of size the dimension of xb, which is
a realization of random variables with standard normal
distributions. W and w are the eigenvector and eigenvalue
matrices of the principal component analysis of B, so that
B = WT w W. The covariance matrix B is defined below.
[23] The correlations of B are assigned from basic con-

siderations about the origin of errors in the prior fluxes.
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Since the processes involved are different for land and for
sea, the errors are supposed to be uncorrelated between these
two geotypes. Chevallier et al. [2006] suggested that current
prior errors for vegetation fluxes have significant temporal
autocorrelations (i.e., larger than 0.5) within about a fort-
night. For the sake of simplicity, land and sea fluxes are
defined here with an 8-day temporal resolution and with zero
error temporal correlations from one 8-day period to the next
and between daytime and nighttime. Spatial correlations are
specified as a function of distance as, e.g., in the study by
Rödenbeck et al. [2003]. Correlation e-folding lengths are set
to 500 km over land, which implies error patterns of about
the size of France. This value is about the smallest possible
given the scale of the transport model (415 � 275 km2 at the
equator) and is motivated by the large spatial variability of
biospheric carbon fluxes that should tend to decorrelate
errors [Chevallier et al., 2006]. Spatial scales are larger over
oceans and an e-folding length of 1000 km over the ocean
was chosen. It specifies the size of coherent error patterns to
be about that of the Bay of Bengal. The square root of the
sum of the error covariances for the individual fluxes was set
to 0.8 and 2.0 Gt C per year for ocean and land respectively
which is consistent with our current uncertainty about the
global carbon budget [Intergovernmental Panel on Climate
Change, 2001]. The errors were spread in space proportion-
ally to grid size over ocean and to the annual mean
heterotrophic respiration flux modeled by TURC over land.
There is no seasonality in these errors. The resulting error
standard deviations are shown in Figure 1. Standard devia-
tions of the errors of the CO2 concentrations at the initial
time step of the LMDZ simulation are set to 1% in each grid
box, with unity vertical correlations and the same spatial
correlations than the fluxes. The results presented here are
only marginally affected by the formulation of the errors of
the initial state, given the length of the temporal window
considered (1 year).
[24] It is of interest to mention that the inversion of B in

equation (1) and its eigenvalue decomposition in (4) are
facilitated despite its large dimension because B is block

diagonal (zero temporal correlations). Still, temporal corre-
lations can be easily introduced as long as the matrix
remains sparse, for instance using its principal components.
Once the eigenvalue decomposition is available, the mini-
mization control variable z (see section 2.1) can be com-
puted in a simple way by expressing it as

z ¼ WTw�1=2 x� xbð Þ ð5Þ

2.4. Inversions

[25] Five inversions have been performed. Each of them
covers 12 months, using meteorological conditions valid for
year 2003. They only differ from each other by the vectors
of perturbations p and q (that have standard normal distri-
bution, as explained in section 2.2). The simulated OCO
orbit and cloud cover give 243,689 independent observa-
tions at the horizontal resolution of the LMDZ transport
model (the cloud screening removed 30% of the original
data). By comparison, the dimension of the control vector is
about 631,000 (i.e., twice-a-day grid point fluxes every
8 days during 1 year). OCO will actually provide hundreds
of observations within a model grid box in most cases.
However, the existence of large correlations among the
measurement errors and of the representativeness errors
between these makes it difficult to assimilate them all
individually. Therefore each one of the 243,689 observa-
tions may be considered either as an average value of the
measurements along the corresponding portion of the sat-
ellite orbit, or as a sample of these. Depending on the actual
value of the measurement error correlations within a model
grid box, this subsampling may underestimate the strength
of the constraint available from the full OCO measurement
data set.

3. Results

[26] A number of useful diagnostics about the inversion
system are directly available as by-products of the inver-

Figure 1. Standard deviation of the prior errors, in g C m�2 d�1.
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sions. This is particularly the case when the system satisfies
consistency, such as ours, as ensured by (2) and (4). The
diagnostics are detailed in the following.

3.1. Linearity of the Transport Model

[27] The validity of the tangent-linear hypothesis used in
the minimization can be evaluated in different ways [e.g.,
Janisková et al., 2002]. Here, the impact of nonlinearities in
the transport model can be simply noticed when studying
the distribution of the variable a = H(xb) � H(xclim). From
equation (4), a should be unbiased in the case of a linear
operator sinceWTw1/2 q is unbiased by definition. Here a is
actually unbiased only south of 50�N. Limiters of the tracer
slopes in the advection scheme [Hourdin and Armengaud,
1999] bias a by up to 0.8 ppm around the North Pole (not
shown). Indeed they slightly slow down the poleward
transport in the presence of the large surface gradients
introduced by WT w1/2 q between the vegetated areas of
the Northern hemisphere and the polar cap, to preserve the
monotonicity of the scheme.
[28] The comparison between the reduction of the mag-

nitude in the gradient Jz
0 of the quadratic cost function J and

the reduction for that of the real (nonlinear) function
provides another evaluation of the tangent-linear hypothe-
sis. In our case, the first ten iterations reduce the gradient of
the quadratic J by a factor between ten and twenty in the
five inversions performed. The gradient reduction for the
real J is about the same. However, at the end of the second
inner loop (see section 2.1), significant differences are
noticed between the two versions of the gradient. The
gradient of the quadratic J is reduced by about a 20-fold
factor when the norm of the real Jz

0 is reduced by a factor
about 4 only. This feature justifies not adding more iter-
ations in the second inner loop, but a third inner loop may
further reduce the discrepancy, since it generates smaller
increments than the second one if the inner loop/outer loop
system converges (see section 2.1).

3.2. Condition Number of the Minimization

[29] As discussed in section 2.1, the rate of convergence
of the minimization is largely determined by the condition
number of Jz

00. Further to our change of variable z = B�1/2 x,
the smallest eigenvalue of Jz

00 equals 1 and its condition
number is its leading eigenvalue. As can be seen from
equation (1), Jz

00 does not depend on the values of the
observations nor on the prior, but only on the spatiotempo-
ral structure of their error statistics and the observation
operator. Its leading eigenvalues are provided by the Lanc-
zos algorithm as a by-product of the conjugate-gradient
minimization [Fisher, 1998]. In our case, the condition
number is about 41,600. By comparison, the condition
number for the ECMWF weather analyses is about 3000
when using the same conditioning as here [Andersson et al.,
2000]. Our relatively large condition numbers indicate that
the observations are much more accurate than the prior or
that the density of the observations is large compared to the
surface flux error patterns [Andersson et al., 2000]. Both
explanations may be valid for OCO.

3.3. Number of Iterations

[30] The value of the cost function at the end of the
minimization provides an interesting diagnostic of the

convergence. Indeed, for a consistent system and given a
realization of the observations y, the cost function at the
minimum J(xa) is chi square distributed with expectation
and variance equal to the number of observations N [e.g.,
Talagrand, 1998; Ménard et al., 2000]. Our idealized
system is consistent by construction and J(x) converges
toward N indeed, starting from about 330,000 and reaching
about 244,000, given about 243,689 observations. This
result justifies nonpursuing the minimization after our
second inner loop.

3.4. Degrees of Freedom for Signal

[31] The quantity Jb(xa) = (xa � xb)
T B�1 (xa � xb)

which is used for the computation of J(xa) reflects the
number of degrees of freedom for signal (DFS) [e.g.,
Rodgers, 2000]. The DFS describes the number of inde-
pendent pieces of information that the observations provide,
given the prior information. Jb(xa) is actually a small
fraction of J(xa) in our case. Even though the latter is rather
stable after the second inner loop minimization, the former
still increases from one iteration to the next and its value
should be considered as a lower bound. We get numbers
about 6000, which indicates that more than 6000 indepen-
dent quantities about the fluxes can be measured from a year
of OCO data. Unsurprisingly, the 244,000 OCO XCO2

measurements yield significantly more surface flux infor-
mation than the 347,000 TOVS measurements studied by
Chevallier et al. [2005b] that were less accurate
and restricted to the tropical upper troposphere (they had
340 DFS).

3.5. Error Reduction

[32] The statistical characteristics of the analysis error are
another very useful quantity. They will be one of the key
metrics to evaluate the usefulness of the XCO2 data product.
Given unbiased Gaussian error statistics for the observations
and the prior, and a linear transport model, the analysis
errors are also unbiased and Gaussian, and can be fully
described by a covariance matrix A. The analysis error
covariance matrix A can be written in various analytical
forms [e.g., Rodgers, 2000]. They are exact as long as the
error statistics of the observations and of the prior are
correctly described. All of these expressions require the
inversion of matrices that are too large to be feasible for the
current study. Instead of using these given exact expres-
sions, we take advantage here of the fact that the statistics of
the analysis errors are the statistics of the differences
between xa and our ‘‘truth’’ xclim. Such an a posteriori
estimation is all the more reliable since the statistical sample
is large. The high computational cost of an inversion
prevents the accumulation of many inversion results, but
each 1-year inversion inherently contains 45 global maps of
8-day fluxes. The five inversions thus generate an ensemble
of 225 maps that allow us to estimate the annual mean
variance of the analysis errors of the 8-day fluxes. Note that
temporal correlations are absent in our prior errors and in
our observation errors, but are induced in the analysis by the
atmospheric transport. Therefore the number of truly inde-
pendent realizations of the 8-day fluxes is smaller. To
estimate the errors on the monthly fluxes, 60 realizations
are available.

D09307 CHEVALLIER ET AL.: CO2 FLUX INVERSIONS USING OCO

5 of 11

D09307



[33] The existence of spatial and temporal correlations in
the analyzed flux increments makes the error reduction
scale-dependent. Positive correlations between the errors
of the individual fluxes (i.e., large increments in space or
time) tend to increase the errors of the aggregated fluxes.
Negative correlations (i.e., dipoles) have the opposite effect.
Figure 2 displays the global map of the estimated uncer-
tainty reduction achieved by the analysis for 8-day fluxes
and monthly fluxes. In both cases, daytime and nighttime
fluxes have been aggregated together. By definition, these
error reductions are relative to our prior errors (section 2.3)
and would vary with other error characteristics. The map for
8-day (monthly) fluxes displays error reduction of 0–15%
(0–25%) for fluxes over oceans and over boreal forests, and
of about 15–45% (20–50%) over other vegetated areas.
The patterns are robust with respect to the individual
realizations. For instance, using any 2 years only, out of
the five available, gives the same patterns. They rather

reproduce the spatial variations of the background errors
(Figure 1), with larger reductions where the prior errors are
larger, i.e., over the vegetated areas, and smaller reductions
where the prior errors are negligible, i.e., over the polar caps
and over the deserts. Over the oceans, where our back-
ground errors are the same everywhere and are smaller than
over vegetated land, the relatively small error reduction is
controlled by the meteorology and by the observation
location, which are the same in the five simulations. The
error reduction is smaller when separating daytime and
nighttime fluxes (not shown). This feature shows the
existence of large negative correlations between the two
types of fluxes, or, in other words, confirms the ambiguity
of XCO2 information with respect to surface fluxes at
subdaily timescales.
[34] The impact of spatial aggregation is illustrated by

aggregating the fluxes within the 11 land and 11 ocean
regions defined in phase 3 of the Atmospheric Tracer

Figure 2. Fractional error reduction of (top) the 8-day mean and (bottom) the monthly mean grid point
CO2 surface fluxes. The error reduction is defined as (1 � sa/sb), where sa is the posterior error standard
deviation and sb is the prior error standard deviation. The map of sb for the 8-day mean fluxes is shown
in Figure 1.
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Transport Model Intercomparison Project (TransCom3)
[Gurney et al., 2002]. Together with the ice caps (23rd
region with negligible fluxes and uncertainties), they cover
the globe entirely. Figure 3 presents the fractional change in
flux uncertainty for the 22 regions. It emphasizes the better
constraint of the monthly fluxes versus the 8-day ones, in
particular over oceans. One may also notice that the Trans-
Com3-scale error reduction is larger than at the grid point
scale, in particular over land where the reduction rises to
50–80%. Indeed the ambiguity of the XCO2 information
with respect to the spatial location of the fluxes translates
into negative spatial error correlations in the analyzed
fluxes, attenuated by our specified error correlation lengths
(smaller over land than over oceans, section 2.3).

3.6. Tolerance to Observational Biases

[35] The error reduction estimated in the previous section
is strictly theoretical. In practice, inadequate specifications
of the error statistics introduce inconsistencies and prevent
the inversions from converging on optimal fluxes. The
detrimental impact of undetected regional biases in the
observations has been underlined in several studies [e.g.,
Rayner et al., 2002; Patra et al., 2003]. Chevallier et al.
[2005a] quantified the tolerance of the inversion systems on
the basis of the statistics of the observation minus prior
departures d = y � H xb. They indicate that biases larger
than about one tenth of the variation of the departures are
likely to degrade the quality of the analysis increments. The
upper part of Figure 4 shows the departure statistics in our

simulations. On the basis of the former criterion, a few
tenths of a part per million bias would be enough to affect
the inversions to some extent, in particular over sea. We
checked this property by introducing known biases in our
simulated observations. There are several potential sources
of biases in the satellite estimate of XCO2, each with a
particular spatial and temporal pattern. As an example, we
focus here on the potential impact of submicron aerosol
particles, the optical thickness of which has a strong and
variable spectral signature, which could be a source of error
[O’Brien and Rayner, 2002]. These aerosols are mostly
generated by anthropogenic activities and biomass burning.
For the present experiment, we used 3D aerosol concen-
trations derived from the assimilation of satellite retrievals
of aerosol optical depths into an atmospheric transport
model [Generoso et al., 2007]. For this exercise, we assume
a bias (in ppm) in the OCO retrievals as five times the
submicronic aerosol 850 nm optical thickness (unitless).
The bias is defined so that it increases the observation value.
The global average bias is 0.29 ppm while the 90th
percentile is 0.49 ppm. With this choice, the bias is, on
average, one order of magnitude smaller than the departure
standard deviation (see Figure 4, bottom). Some regions
show a more significant bias however, in particular down-
wind of China, North America and Europe. Regions of
biomass burning (Sahel, South Africa, South and Central
America) also show significant biases, but only during the
corresponding season so that the impact on the annual mean
is small. The large values around 50�S are the result of

Figure 3. Fractional error reduction of the CO2 surface fluxes over the 22 TransCom-3 regions. Results
for monthly and for 8-day fluxes are shown. As in Figure 2, the error reduction is defined as (1 � sa/sb),
where sa is the posterior error standard deviation and sb is the prior error standard deviation.
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both marine aerosol load and small departure standard
deviations.
[36] The impact of the biases on the inversion is illus-

trated by the resulting bias in the annual carbon budget in
each one of the 22 TransCom3 regions (Figure 5). As
expected, significant biases occur in Europe (0.6 Gt C
yr�1), in temperate Eurasia (0.7 Gt C yr�1), in Northern
and Southern temperate America (0.25 Gt C yr�1 in both
cases). Over the oceans, a 0.2 Gt C yr�1 bias is seen in the
Southern ocean. Interestingly, the inversion system gener-
ates negative flux biases to conserve CO2 mass between the
areas where the observations are biased and the ones located
downstream. For instance, the boreal Eurasian region,
downstream of Europe, is biased by about �0.2 Gt C
yr�1. By comparison, the analysis error standard deviation
for monthly fluxes is between 0.1 and 0.2 Gt C yr�1 in each
region and the prior one between 0.1 and 0.7 Gt C yr�1 (not
shown). The biased analysis has still smaller root mean
square errors (RMSE) than the prior in all land regions, but
Europe and temperate Eurasia. Owing to the small prior

errors over ocean, the observation bias cancels any RMSE
improvement in these two regions.

4. Discussion and Conclusions

[37] The variational formulation of Bayesian estimation
plays an increasingly important role for the analysis of large
numbers of observations, as is the case for satellite data. It
circumvents the difficulty of inverting a large and possibly
dense matrix in the search for the minimum variance
solution. Unfortunately, unlike the formulation by a suite
of matrix operations, the characterization of the uncertainty
of this solution remains a challenge, which affects the
conditioning of the minimization and hampers the compu-
tation of useful diagnostics, like the number of degrees of
freedom for signal or the observation influence matrix. A
few strategies have been proposed to estimate some quan-
tities related to the analysis error covariance matrix, based
on randomization [Rabier and Courtier, 1992; Fisher, 2003;
Desroziers et al., 2005] or on reduced rank decomposition

Figure 4. (top) Standard deviation (in ppm) of the observation minus prior departure. (bottom) Ratio of
the annual mean bias introduced in the inversions to this standard deviation.
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[Fisher and Courtier, 1995]. More directly, the influence of
observations on an assimilation system is also studied by
comparison to independent observations or with observing
system simulation experiments (OSSE). For OSSEs, the
‘‘truth’’ is usually defined from another model, which is
likely to be inconsistent with the specified prior errors. Our
study combines an OSSE framework with a randomization
approach to build OCO observations and prior fluxes that
are perfectly consistent with their specified error statistics.
This method relies on the availability of sufficiently accu-
rate reduced-rank eigenvector decompositions of the prior
and of the observation errors. This is straightforward for the
observation error covariance matrix which is usually diag-
onal. The prior error covariance matrix is usually built in
such a way that it has both realistic features and convenient
mathematical properties [e.g., Derber and Bouttier, 1999],
so that its eigenvalue decomposition may also be available
despite its large dimension, as is the case here. Our
approach allows one to directly estimate mean analysis
error variances and the number of degrees of freedom for
signal as by-products of the inversion. It also helps to
choose the number of iterations of the minimization proce-
dure. These possibilities may motivate the design of such
OSSEs for both existing and future instruments. Additional
benefit may be found for the minimization preconditioning,
but this remains a topic for future work.
[38] Our method has been applied to the estimation of the

impact of the forthcoming OCO observations on the anal-
ysis of CO2 surface fluxes. Other CO2 observations could
be usefully studied in a similar way (e.g., those from

NASA’s Atmospheric Infra-Red Sounder or those from
the forthcoming Greenhouse Gases Observing Satellite
planned by the Japan Aerospace Agency). Given our
assigned error statistics for the prior fluxes and the obser-
vations, we show significant error reduction even at the
weekly timescale and at the grid point resolution over land
(15–45% over vegetated areas). The reduction over oceans
becomes significant (20–40%) only when aggregating at
the oceanic basin monthly scales. These results are consis-
tent with the results from previous low-resolution studies.
They are based on a series of reasonable assumptions about
the error statistics, the importance of which needs to be
stressed. The error statistics are assumed to be unbiased,
Gaussian, uncorrelated for the observations, uncorrelated in
time and correlated with an e-folding distance by geotype in
space. Therefore our study should be considered as a best-
case estimate and careful examination of each one of these
hypotheses will be essential for optimal use of the OCO
data. The existence of regional biases, or equivalently of
strong spatial correlations, linked to scattering by clouds
and aerosols, is of particular concern. We show that the
failure to limit the regional biases to within a few tenths of a
part per million would have a detrimental impact on the flux
estimation. Therefore the usefulness of OCO observations
for the study of the carbon cycle will depend on the quality
control of the data. The assimilation of OCO observations in
concert with another instrument would reduce the impact of
the biases provided the biases of the two observing systems
do not share the same space-time characteristics. A similar
issue could be raised about the biases of the transport

Figure 5. Flux bias (in Gt C yr�1) induced by the OCO bias of Figure 4 in each one of the
22 TransCom-3 regions.
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models that are used to link the atmospheric measurements
to the boundary fluxes. It is important to stress that the
exploitation of the surface network for flux inversion faces
the same challenges. Other issues that still need to be
addressed are the contributions of fossil fuel emissions
and biomass burning, whose distinct features are not studied
here, i.e., a large spatiotemporal variability and an injection
height possibly well above the surface.
[39] In our reference case estimate, the uncertainty in the

monthly carbon budget over Europe is reduced by 70%,
leaving a residual uncertainty of about 0.16 Gt C yr�1

(annual total). By comparison, the 2003 European summer
drought induced an anomaly of about 0.5 Gt C [Ciais et al.,
2005], so that such large climate induced anomaly should be
detected by an observation system like OCO plus a suitable
assimilation system. However, it is very unlikely that a
single CO2-sensitive satellite instrument, like OCO, will be
sufficient to address scientific questions about smaller
signals (like the compliance to international treaties) or
smaller scales (like the quantification of the role of peat-
lands raised by Sottocornola and Kiely [2005]). For in-
stance, European fossil emissions are less than 1 Gt C yr�1,
while the reduction objective of the Kyoto protocol (see
http://unfccc.int/) are of a few percent averaged on a 5-year
period. The verification of European compliance with the
Kyoto protocol therefore requires an accuracy of the order
of 1 percent of current emissions, or 0.01 Gt C yr�1. Our
results indicate that such accuracy is not feasible with an
OCO-like instrument alone. Following the example of
numerical weather prediction, a multi-instrument strategy
is desirable to build robust carbon cycle data assimilation
systems.
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and P. Ciais (2004), Inverse modeling of CO2 sources and sinks using
satellite data: A synthetic inter-comparison of measurement techniques
and their performance as a function of space and time,Atmos. Chem. Phys.,
4, 523–538.

Houweling, S., W. Hartmann, I. Aben, H. Schrijver, J. Skidmore, G.-J.
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