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Version: September 23, 2020

ABSTRACT. We consider Mean Field Games without idiosyncratic but with Brownian type
common noise. We introduce a notion of solutions of the associated backward-forward
system of stochastic partial differential equations. We show that the solution exists and
is unique for monotone coupling functions. This the first general result for solutions of
the Mean Field Games system with common and no idiosynctratic noise. We also use the
solution to find approximate optimal strategies (Nash equilibria) for N-player differential
games with common but no idiosyncratic noise. An important step in the analysis is the
study of the well-posedness of a stochastic backward Hamilton-Jacobi equation.

1. INTRODUCTION

We consider Mean Field Games (MFG for short) without idiosyncratic but with Brownian-
type common noise described by the backward-forward system of stochastic partial differ-
ential equations (SPDEs for short)

dtut = [—,BA'LLt =+ H(Dut, .’E) — F(:IZ, mt) — \/ﬁdlv(vt)] dt
+vg - \/ﬁth in R? x (O,T),

1.1
dimy = [ﬁAmt + div(mtDpH(Dut,a:))]dt — div(mt\/ﬁth) in R% x (0,7, 1)

ur(z) = G(z,mr) mo=Tmmp in RY.

We introduce a notion of solution of (1.1), which is adapted to the common noise W, and
prove existence and uniqueness when the couplings F' and G are nonlocal and satisfy the
well-known Lasry-Lions monotonicity condition introduced in [30]. Exact assumptions are
stated later. To the best of our knowledge, this is the first general result for solutions of
the MFG-system with common and no idiosynctratic noise. We also use the solution to
derive approximate Nash equilibria for N-player differential games with common but no
idiosyncratic noise assuming a structure condition on H.

An important step in our analysis is the study of the well-posedness of strong, that is, a.e. in
space-time and semiconcave in space, solutions of the backward stochastic Hamilton-Jacobi
(HJ for short) equation

dyuy = [—BAw + Hi(Duy, z) — /2Bdiv(v)|dt + vy - /2BdW; in R x (0,T),

(1.2)
ur = G in Rd,

with H uniformly convex; again exact assumptions are stated later.

MFG with common noise describe optimal control problems with infinitely many small and

interacting controllers whose dynamics are subjected to common noise. Such models appear
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often in macroeconomics under the name “heterogenous agent models”; see, for instance,
the work of Krusell and Smith [24].

The mathematical description of MFG with common noise, which was introduced by Li-
ons [31] and then discussed, at an informal level, in Bensoussan, Frehse and Yam [5] and
Carmona and Delarue [13], is either probabilistic or analytic.

The probabilistic formulation takes the form of an optimal stochastic control problem in-
volving a random distribution of the agents, which is the conditional law, given the common
noise, of the optimal trajectory of the agents. In this setting, the existence of generalized
solutions, that is, solutions adapted to a larger filtration than the one generated by the
common noise, has been established by Carmona, Delarue and Lacker [15] under very gen-
eral assumptions; see also Ahuja [1] and Lacker and Webster [27]. The former reference
also establishes the existence and uniqueness of a strong solution, which is adapted to the
filtration of the common noise, under the Lasry-Lions monotonicity condition and an as-
sumption on the uniqueness of the optimal solution (with relaxed controls) of the stochastic
control problem. Although the probabilistic formulation allows for general existence and
uniqueness results, it requires the resolution of an optimal stochastic control problem, which
is not convenient for the numerical approximation or the explicit analysis. Moreover, the
condition on the uniqueness of the optimal solution, which is quite demanding, has been
shown to be satisfied only under the strong assumption that either there is a nondegenerate
idiosyncratic noise, or that the value function is convex in space. The latter is known to
hold only for dynamics which are linear in space and for cost functions which are strictly
convex in space and control.

The analytic approach to study MFG problems with common noise involves the value
function and the partial differential equation (PDE for short) it satisfies. There are two
different but also very related formulations involving either stochastic MF'G systems or the
so-called master equation.

The former describes the problem as a coupled system of SPDEs known as the backward-
forward stochastic MFG system. For problems without common noise, the system was
introduced and studied by Lasry and Lions in [28, 29]. In the presence of both idiosyncratic
and common noises the stochastic MFG system was first investigated by Cardaliaguet,
Delarue, Lasry and Lions in [10].

The second analytic approach, which was introduced by Lasry and Lions and presented by
Lions in [31], is based on the master equation, which is a deterministic infinite dimensional
PDE set in the space of measures. The existence and uniqueness of solutions of the general
infinite dimensional version of the master equation with idiosyncratic and common noise
was shown in [10]; see also [14] for a generalization. Among other recent references about
the master equation we point out the works of Cardaliaguet, Cirant and Porretta [9] who
proposed a splitting method, Lions [31] who introduced the Hilbertian approach, in which
the master equation is embedded in the space of square integrable random variables, and,
finally, Bayraktar, Cecchin, Cohen and Delarue [4] and Bertucci, Lasry and Lions [6, 7] who
investigated the existence and uniqueness for problems with common noise in finite state
spaces.

Here we study the stochastic MFG system (1.1) which consists of a backward stochastic
HJ-equation coupled with a forward stochastic Kolmogorov-Focker-Plank (KFP for short)
PDE. In (1.1), the Brownian motion W is the common noise and the unknown is the triplet
(u, m,v), consisting of the value function u of a small agent, which solves the backward HJ
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SPDE with Hamiltonian of the form H(Du,z) — F(z,m;), an auxiliary function v which
ensures that u is adapted to the filtration generated by the noise W, and the density m of
the players which solves the forward stochastic KFP SPDE. The two equations are coupled
through F' and G, which depend on m in a nonlocal way.

The main difference with previous works and, in particular, [10] is that, due to the absence
of idiosyncratic noise, the solution of (1.1) is not expected to be “smooth” since the HJ and
KFP equations are only degenerate parabolic.

To explain this problem, we first consider the HJ equation separately, that is, we look at
(1.2), which is a backward SPDE (BSPDE for short) associated with an optimal control
problem with random coefficients. It follows from the work of Peng [32] that (1.2) has
a unique solution provided that the noise satisfies a nondegeneracy assumption, which,
roughly speaking, means that the 8 in front of Aw, is greater than the § in front of the
terms involving v. More recently, (1.2) was studied by Qiu [33] and Qiu and Wei [34], who
introduced a notion of viscosity solution involving derivatives on the path space and proved
its existence and uniqueness. The equations studied in the last references are more general
than (1.2), in particular, the volatility is not constant, and require few conditions on the
Hamiltonian other than the standard growth and regularity.

The study of MFG with common noise necessitates the use of a completely different ap-
proach, since the continuity equation for m involves the derivative of u in space and not a
weak derivative in the path space.

To motivate the new approach we are putting forward here, we recall what happens for
MFG problems without noise at all, that is, when 8 = 0. In this deterministic case, where
one can take v = 0, the natural concept of solution for (1.1) requires u to be Lipschitz
continuous and to satisfy the HJ equation in the viscosity sense, while m has to be bounded
and to satisfy the KFP equation in the sense of distributions; see [30] and Cardaliaguet and
Hadikhanloo [11] for details. We note that, since m is absolutely continuous and bounded,
the term mD,H (Duy, z) is well-defined. However, it is also known that the boundedness
condition on m can hold on large time intervals only if H = H (p, z) is convex in p; see, for
example, Golse and James [21] where, to study a forward-forward system with nonconvex
H |, it is necessary to consider a much more degenerate notion of solution. When H is convex
in p, the solution of the HJ equation is naturally semiconcave. Then the notion of viscosity
solution of HJ is equivalent to the one of the semiconcave a.e. solution studied by Kruzhkov
[25]; see also Douglis [17], Evans [18], and Fleming [20].

The first contribution of the paper is to show that the notion of semiconcave a.e. solution
can be adapted to the BSPDE (1.2) when reinterpreted in a suitable way. The starting
point is the change of variable

U () = w(z 4 /26W3),

which, using the It6-Wentzell formula, leads, at least formally, to

diiy = Hy(Duy, z)dt +dM, in R x (0,T)  ur=G in RY, (1.3)
with B B
Hi(p,x) = Hi(p,xz + /2W;) and G(z)= G(z+ /28Wr). (1.4)

The problem then becomes to find a pair (u, ]\Z)te[mﬂ adapted to the filtration of (Wy)icpo,77,

where M = ]\Z(x) is a globally bounded martingale, u is continuous and semiconcave in
the space variable, and (1.3) is satisfied in an integrated form.
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Theorem 2.3 and Proposition 2.5 establish respectively that (1.3) has a solution and a
comparison principle is satisfied. In Proposition 2.7 we also provide a stochastic control
representation of the solution. The optimality conditions and the existence and the unique-
ness of optimal trajectories are respectively the topics of Theorem 2.8 and Proposition 2.13.
However, this last point, which relies on the analysis of a continuity equation associated
with the drift —D,H (Du(z), z) (see Proposition 2.11 and Proposition 2.12) requires a much
stronger structure condition on the Hamiltonian, which we discuss later.

Next we apply this approach to (1.1). After the formal change of variables
x) = u(x + \/26Wy,x) and my = (id — \/26Wy)tmy, (1.5)

we obtain the new system
dyiy = [ﬁt(pat(x),x) - ﬁt(x,mt)} dt +dM, in R%x (0,T),
Ay = div(my Dy H (Dy(z), z))dt in R x (0,T), (1.6)
mo=my  urp=G(-,mp) in R

with H as in (1.4), and

Ft(az m) x—l-\/>Wt, zd+th )gm) andG fWT, zd—l—\/>WT Ygmr).

This transformation was used in [10] to prove the existence of a strong solution of the
stochastic MFG system with common and idiosyncratic noises, in which case (1.6) is non
degenerate and has a “smooth” solution.

Comlng back to the degenerate system (1.6), the problem is to find a solution
(ut,Mt,mt)tE[o 7] which is adapted to the filtration (F¢).c(o,r) generated by W and M =
Mt( ) is a (F1)¢epo,r) martingale. By a solution, we mean that w is space-time continuous and

semiconcave in space, while the martingale M is bounded, the HJ equation, once integrated
in time, is satisfied P—a.s. and a.e., and the random measure m has globally bounded
density satisfying the continuity equation in the sense of distribution P—a.s..

Our main result, Theorem 3.3, is that, under suitable structure and regularity assumptions
on the data and assuming that /' and G are strongly monotone in the Lasry-Lions sense,
(1.6) has a unique solution (u, M, m). This is the first existence and uniqueness result of
a strong solution for MFG problems with a common and without idiosyncratic noise with
value function that is neither smooth nor convex in space in contrast with [10, 15].

The final result concerning MFG is Proposition 3.9. It asserts that it is possible to use
the solution of the stochastic MFG system (1.1) to derive approximate Nash equilibria in
N —player differential games with a common noise. Such a statement is standard in the MFG
literature. The first results in this direction go back to Huang, Caines and Malhamé [22],
[23] for linear and nonlinear dynamics respectively. In both these references, the dynamics
and payoff depend on the empirical measure through an average. Hence, the Central Limit
Theorem implies that the error term is of order N~1/2. The result for a genuinely non linear
version of MFG problems without common noise was obtained by Carmona and Delarue
[12]; see also [13], Section 6 in Vol. II. Since then, there have been many variations and
extensions, and we we refer to [13] and the references therein. As far as we know, Proposition
3.9 is the first result for MFG problems with common and without idiosyncratic noises. The
main reason for proving it is that it justifies the (somewhat formal) change of variables made
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to pass from the original MFG system (1.1) to the transformed one (1.6). Indeed, we use
(1.6) to solve a problem which should actually involve the solution of (1.1).

In contrast with the analysis of the MFG system, to find the approximate Nash equilibria
we need to consider a special class the Hamiltonian H. Indeed, we assume that, for some
smooth and strictly positive coefficient @ and a smooth and bounded vector field b, H is of
the form

Aulp,2) = sau@)pl +hux) p. (L.7)

We suspect that (1.7) may not be necessary. The reason we have to require it is to obtain
the uniqueness, for fixed w and given the bounded variation vector field —D, H (Du(z), x),
of the solution of the continuity equation in (1.6).

The uniqueness of solutions of linear transport and continuity equations under weak as-
sumptions on the vector field is a very intriguing problem. Its study goes back to DiPerna
and Lions [16] and Ambrosio [2]. These results cannot be applied to the case at hand, since
they require regularity which is not satisfied by —D,H (Du(x),x). Instead, here we rely
on a result of Bouchut, James and Mancini [8] which requires a half-Lipschitz condition on
the vector field. To use it, however, here we need to assume (1.7).

Organization of the paper. The paper is organized in two parts. In the first, we study
the backward HJ SPDE (1.2). We state the assumptions in subsection 2.1, show the ex-
istence of a solution in subsection 2.2, prove its uniqueness by a comparison principle in
subsection 2.3, propose an optimal control representation and discuss a maximum principle
in subsection 2.4. In order to prove the existence of optimal solutions in subsection 2.6,
we first discuss in subsection 2.5 the continuity equation associated for the optimal drift.
The second part is devoted to the stochastic MFG system (1.1). We state the assump-
tions in subsection 3.1, and the main existence and uniqueness result in subsection 3.2. In
subsection 3.3 we recall the case without noise, for which we provide sharp estimates. We
then construct approximate solutions of the stochastic MFG system in subsection 3.4 and,
finally, pass to the limit to prove the main result in subsection 3.5. In subsection 3.6 we
show the existence of the approximate Nash equilibria for the N-player game. Finally, in
the appendix we revisit the result of [8] on the uniqueness of the solution to some continuity
equations.

Notation. Throughout the paper O is an open subset of R%, and C?(0) is the space of
C?-maps on O with bounded derivatives endowed with the sup-norm

ullczo) = llull oo o) + |1 Dull Lo (o) + [1D?ul] oo (0);

depending on the context, we often omit the subscript L>°(0O) and simply write || - [|s. We
work on a complete filtered probability space (2, F, (F¢)i>0,P) carrying an d-dimensional
Wiener process W = (W})ecpo,7] such that (F)i>o is the natural filtration generated by W
augmented by all the P—null sets in F. We denote by P the o—algebra of the predictable
sets on Q x [0,7] associated with (F;)¢>0. Given a complete metric space E and p > 1,
S8P(E) is the space of continuous, E-valued, P—measurable processes X = (X;);>0 such
that, for some xg € F and, therefore, any point in F,

E[ sup dg(Xi, xo)Pdt] < +o0.
t€[0,T]
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We set 8"(C? (R%)) = MN>1 8"(C?(By,)), where B, is the open ball centered at 0 and of ra-

dius n, and define similarly 8"(L}, (R?)) and 8" (W, (R%)). We write L=((Q x Fr); C?(R?))

for the the space of bounded C?(R%)-valued and F7 maps on Q. For k > 1, Pi(R%) de-
notes the set of Borel probability measures on R? with finite k—th order moment Mj,(m) =
Jga [z|Fm(dz) , endowed with the Wasserstein distance dj. Finally, v, denotes the external
normal vector to a ball B, at y € 0B,.

Some assumptions and terminology. To ease the presentation and avoid repetitions in
the rest of the paper, we summarize here some of the terminology we use and the assump-
tions make.

A map G : R? x P1(R%) — R is called strongly monotone, if there exists a > 0 such that,
for all mi,mg € iPl (Rd)

[ (Stawm) = S(a,ma))(m ~ ma)(dn) 2 a [ (S m) - S(,ma)Pds. (1)
R4 Rd
A map G :R? x P;(R%) — R is called strictly monotone, if
/ (G(x,m1) — G(x,ma))(m1 — m2)(dx) <0 implies m; = mao. (1.9)
Rd

The typical assumption required for Hamiltonians H : R? x R — R we consider in this
paper is that

(i) H = H(p,z) is convex in p,
(79) for any R > 0, there exists Cr > 0 such that,
for all z,p € R? with |p| < R,

190, 2)] + | Dy3€(p, )] + D23 (p, 2)] + | D2,3(p,2)]| < Cr, o)
(7i7) there exists A > 0 and Cp > such that,
for any p, q,z, 2 € R? with |z| = 1 and in the sense of distributions,
ANDpH(p, ) - p — H(p,x)) + Dy, H(p, 2)q - q

+2D22m5{(p, r)z-q+ D2, Hp,x) z- 2 > —Cy.

\

The typical regularity assumption we will need for maps G : R% x P;(R?%) — R is
G € O(R? x P (R%);R) and there exists Cy > 0 such that

sup ISCm)lloo + 1DS(,m) lloo + [ID?S(-,m) o] < Co,
mePy (RY), t€[0,T)

(1.11)

Acknowledgments. Cardaliaguet was partially supported by the AFOSR grant FA9550-
18-1-0494. Souganidis was partially supported by the NSF grants DMS-1600129 and DMS-
1900599, the ONR grant N000141712095 and the AFOSR grant FA9550-18-1-0494.

2. THE STOCHASTIC BACKWARD HAMILTON-JACOBI EQUATION

Following the discussion in the introduction, here we study the HJ SPDE (1.3) with Hy and
G given by (1.4) and M an unknown martingale.
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2.1. Assumptions and the notion of solution. We introduce the main assumptions
about the continuity of H and G , the convexity and coercivity in the gradient and the higher
regularity in the space and gradient variables of H ((H1) and (H2)), and the continuity in
time of H (H3). To simplify the notation, when possible, we omit the explicit dependence
on w.

We assume that
G e L®(Q,F7r,C*(RY) and H e 8 (C2.(R? x RY)) forall r>1, (H1)
and N
H; satisfies (1.10) uniformly in ¢ € [0,7] and in w € Q. (H2)

To quantify the continuity of H in time, we define, for R > 0,
wh = sup [Hs(p,y) — He(p, y)|- (2.1)

We assume that, for all R > 0,
lim E[w}] = 0. (H3)

N—o00
The notion of solution of (1.3) is introduced next.

Definition 2.1. The couple (@, M) : R% x [0,T] x @ — RZ is a solution of (1.3) if the
following conditions hold:

(i) @ e 8"(W,oH(RY)) and M € 8" (L} (R?)) for all 7 > 1,

loc

(ii) there exists C' > 0 such that, P—a.s., for a.e. ¢ € [0,7] and all z € R? such that |z| < 1
and in the sense of distributions,

[itlo + 1Dl oo + Moo + D%t 2+ 2 < C,

(i) for a.e. € RY, the process (M(ﬂf))te[o,ﬂ is a continuous martingale,
and
(iv) for a.e. (z,t) € R? x [0,7] and P—a.s.,

T — —
ut(x) = G(x) — / Hy(Dus(z), x)ds — Mp(x) + M(x). (2.2)
t
Remark 2.2. As it is often the case in the literature, the martingale M(l‘) can be written
as a stochastic integral of an adapted process Z;(x).
2.2. Existence of a solution. We prove that (1.3) has a solution as in Definition 2.1.

Theorem 2.3. Assume (H1), (H2) and (H3). Then there exists a solution of (1.3).

Proof. The solution is obtained as the limit of solutions of a sequence of approximate prob-
lems which we introduce next.

For each N € N, we consider the partition of (tfy)ne{o .y of (0,T) with tN = Tn/N, set
-E[tN(pvx) = -Fltn (pvx) on [tfyvtfl\gl)v
denote by (FN )telo,7] the piecewise constant filtration given by

FY =F if telty) ),
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define using backward induction the cadlag in time processes u”¥ = u¥ (r) and AMY =
AMt]X(CU) by u¥ =G in R% and, forn=0,...,N — 1,
8l + HN(Dal,z) =0 in RY x (V¢ ,),
and, for z € RY,
W (@) = |, (@) | T, | and AMY_(2) =, (2) ~ E |u . (@) | Ton |
2 thit tnit t thit "
and, finally, set

= > AM(x)

tn<t

Using our assumptions, we have the following lemma. Its proof is presented after the end
of the ongoing one.

Lemma 2.4. Assume (H1), (H2), and (H3). There exists a C' > 0 such that, P—a.s., a.e.
t €10, T] and for all z € R? with |z| < 1, and in the sense of distributions,

[T oo + 1D [loo + Moo + DN 22 < C.
Moreover, for any x € R?, the process (U (x))epo,r] s adapted to the filtration (T} )iejor)
and (]\Z]X(JU))te[O,T] is a martingale with respect to the discrete filtration (Ft,)n=0,...N-
It is immediate from the definition of the filtration (F7).cj07) that (@} (2))tepo,r) is also
adapted to (F¢)sejo,7)-

Continuing with the ongoing proof we note that (", ]\ZN )te[o,T] solves the backward equa-
tion

da = HN(Dal , 2)dt +dMY in R*x (0,7) @Y =G in RY, (2.3)
in the sense that, P—a.s. and for a.e. (x,t) € R% x [0, 7],

~ T ~ o~ —_—~
W (@) = Gla) — /t BN (D (2), 2)ds — MY (2) + DN ().

We show next that (uf’ ,MtN )te[o,T] is Cauchy sequence in a suitable space, and for this we
follow Douglis’ [17] uniqueness proof (see also [18]).

Fix 0 < N < K, let ¢ : R — [0,00) be a smooth, Lipschitz continuous, convex and
nonincreasing map, and set

wi(z) = ¢(af () =y (x)).
Using induction and the convexity of ¢ to cancel the jump terms, which are martingales,
we find that, for any ¢t € [0,7) and h € (0,7 — h),

E[wian (@) - wi(@)] 2
B[/ ¢/(@ (o) - @K (o) (Y (DT, 2) — A (DT 2))ds] (2.4
- E[ N (by(2) - Dwy(x) + <S(w))ds}

where

Gs(w) = ¢/ (@) (@) — @l () (HY (Dl (x), 2) — HE (DUl (x), @),
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and .
by(z) = / D AN (1= N DY (2) + ADTE (), 2)d).
0

Let b® be a regularization of b to be specified below. Then (2.4) can be rearranged to read
t+h
Ewren(z) — wi(z)] > B[ / div(b5uw,) — div(bS)uw, + (b — b) - Duy + Cuds] . (25)
t

For a, 8 > 0 to be chosen, we consider the quantity

e = E[/ wedx],
. Ba+6t
and claim that

er —ep > E[ﬁ ftT faBawS ws(x) dxds] 26)
2.6
+E [ S J, . div(bgws) — div(bg)w, + (b — b) - Du, + csdxds} .

Indeed, let k be a large integer and set 0F = t + (I —t) for r € {0,...,k}. Integrating
(2.5) over B, ggr with t = 0% and h = 1/k and summing over 7 we obtain

e — et — Z/ wor (x Z/ (wgr () — woy (@)dﬂﬁ}

oz+['19k a+ﬁ6‘k a+[‘19k

> IE Z/ / (div(bZws) — div(bS)ws + (bs — bS) - Dws + Cs)dyds],

a+B0f
and, after letting k — 400, (2.6).
Next, rearranging (2.6) we find, for all ¢ € (0,7).

er < E[ ft fB (div(biws) — div(bg)ws + (bs — bf) - Dws + ¢s)dyds

fﬁft faBa+Bs wsdxds} +er,

and, after integrating by parts,

et SE[= [ [y, (~Av (b, + (by = bE) - Dy + G )dyds
(2.7)
- ft faBaH}S bS - vy + Blwsdyds| + er.

We return now to the choice of b®. For this, let u™¢ = a x £€& and u®° = af x £€° be
space-time regularizations of u"V and @’ with a smooth compactly supported kernel £°.

Then, for all (z,t) € R? x (0,T), z € R? such that |z| < 1 and in the sense of distributions,
@ (2, )] < [T |oo, [ (2, 8)] < 8 |oos
| DU (2, )] < [ DT |loo,  [DEE (2, 8)] < (| DU |oo, (2.8)
D*uNe(x,t) z- 2 < C, D*ule(x,t) 2 2 < C,
and, as € — 0 and for a.e. (x t)
DuNe(x,t) — Du™ (z,t) and Du'*(z,t) — Du®(x,1). (2.9)
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Let
b (z / D, HN (1 = \) Dl (x) + ADT# (2), z)d .
It is immediate from the properties of H , (2.8) and Lemma 2.4 that there exists C; > 0

such that, for all (z,¢) and P—a.s. in w,

[bi(z)] < sup D, HY (p,y,w)| < C4, (2.10)
|p|<C, yeRL, we

where C is the upper bound on || Du"||o and [|Du*||s in Lemma 2.4.

Furthermore, as ¢ — 0 and P—a.s., b® — b for a.e. (z,¢) and in any L .

Finally, since

div (b (x / Te(D2,HN (1 — \DE* + ADTR, 2)((1 — DN + AD?<) )
/ Tr(DZ,HN (1 — \)DUNe + ADTSe 2))d),

it follows from the convexity of H, (H2) with R = C from Lemma 2.4, and (2.8) that there
exists C' > 0 such that

div (b (z)) < C.
We choose 5 = C7 in (2.7). Recalling that w > 0, we find, for some other C > 0,

T ~
et < E[/ / (Cws — (bs — bE) - Duwy — gs)dyds} ter
a+pfBs

T T
< C/ esds + E[/ / (—(bs — bS) - Dy — §S)dyds] +er.
t a+pfBs

Using Gronwall’s inequality and letting € — 0, we get

e < Cler +IE / / dxds]) (2.11)
a+,85

Next we note that, since, in view of Lemma 2.4, || Du” || < C, if w is as in (2.1), we have

I6slloe < N1 lloowsr -

Assume next that ¢ is positive on (—o00,0), vanishes on (0,400) and ||¢/|| < 2. Since
~N

up = ujff, we have e = 0.
Therefore, it follows from (2.11) and the above that, for all ¢ € [0,T7,
€t S CO‘7BE[wg]'
Note that a standard approximation argument implies the same inequality for ¢(s) = (—s) .

Hence, for all t € [0, 7], we have

E[/ (~(@ (@) T (2)) 4| < Co Bl
Ba+ﬁi
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and, after exchanging the roles of u” and u¢, for all ¢ € [0, T],

E

/ @ (x) - uf (z )!dl’] < Co sE[wl].
Baypt

Since « is arbitrary and the @”N’s are uniformly bounded and uniformly Lipschitz continuous
in space, the inequality

lull (5 < Crll DullfA G5

yields that, for all R > 0,

~N ~K | d+1 N
sup E |||’ —u s < CrE|wg].
te0.T] [” t t ”L (BR)] [ C]

In view of (H3), it follows that (u")xyey is a Cauchy sequence for the family of seminorms

(sup B[l 5,0 )R-
te[0,T]

Thus, there is a subsequence, which we denote in the same way as the full sequence, along
which the uV’s converge, in the seminorms above and for every R > 0, to a limit %, which,
in view of the uniform estimates in Lemma 2.4, is Lipschitz continuous and semiconcave in
x. Moreover, the process (ut(7)).e(o,r) is adapted to the filtration (F¢).e(o, ). Finally, up to

a further subsequence, we can assume that @ converge to u locally uniformly in z, P—a.s.
and a.e. t € [0,7]. In view of the uniform semiconcavity, the last observation implies that,
as N — oo and P—a.s. and for a.e. (z,t) € R? x [0,T], DulY (z) — Diig(x).

Let w € Q and t € [0,T] be such that, as N — oo, @} (-,w) converges locally uniformly
to us(-,w). Integrating (2.3) over [t,T], we then find, using Fubini’s theorem, that, for a.e.
z € RY,

~ T ~ —~
N (z) = G(z) — /t HN(DY (z), z)ds + MM (z).

Since Du” converges a.e. to D on R? x (0,T) and is bounded, we can pass in the N — oo
limit in the equality above to get, for a.e. z € RY,

~ T ~
Nlililth (z )—ﬁt(a:)—G(x)—F/t HN (DY (), z)ds. (2.12)

Hence, the MN’s converge P—a.s. and for a.e. € R? to some bounded process denoted
by M and we have, for a.e. z € RY,

— ~ T ~
My(z) = ug(x) — G(z) + /t HN (DN (), z)ds.

Since (J\ZJZ (7))¢ec(o, is a martingale in the filtration (%, )n=o,... N, it follows that (]\Z(J:))te[o’ﬂ
is, for a.e. € R? a martingale in the filtration (Ft)tefo,r)- In particular, for a.e. x € R,

t — My(x) is continuous, which shows that ¢ — U (z) is continuous as well. Therefore
(w, M) is a solution to (1.3). O

We conclude this subsection with the proof of Lemma 2.4.
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Proof of Lemma 2.4. Since the estimates are standard, here we explain only the formal
ideas. As usual the computations can be justified by vanishing viscosity-type arguments.

The uniform L*°-bound follows by backward induction of a straightforward application of
the comparison principle, which implies that, for any n € {0,..., N — 1},
sup [ [|oo < ‘W?I[\’,—HOO"'CNil < HﬂtN&HOO"‘CNilv
te[tﬁ’,tﬁ_‘_l) et et
where the last inequality holds because the conditional expectation is a contraction in the
L°°-norm.

For the semiconcavity estimate, we note that, if v is a viscosity solution of the Hamilton-
Jacobi equation

—8ww+ Hy(Dv,z) =0 in R % (0,T) wvp(-)=wvp in RY,
with H satisfying (1.10), then there exist c¢g,c1 > 0 such that, for any |z| < 1 and in the
sense of distributions,
if D*vp z-z—Xvp <e¢p, then D?v z-z— vy < e1 + ¢oT. (2.13)
Indeed, for any z € RY with |z| < 1, the map wy(x) = D?v;(x)z-2— v () satisfies (formally)
— Oywy + DpHy(Dvy, x) - Dwy + Df,th(th, x) Dvy , - Dvg , + 2D,2,th(DUt, z) - Dug .

+ D2, Hy(Dvy, ©) — AN(Hy(Dvy, ©) — DypHy(Duy, x) - Do) = 0,
and, hence, in view of given (1.10), (2.13) follows from the comparison principle.

Applying (2.13) to u" provides the uniform semiconcavity estimate by a backward induction
argument similar to the one for the L°°-bound. The bounds above immediately imply the
Lipschitz estimate of Du'V.

Recall that, for each 2 € RY, (uN())seo,r) is adapted to the filtration (F;)iepo and

(]\A/[;N (2))tefo,r) is a cadlag martingale with respect to the discrete filtration (J%,).

The bound on MY follows from the observation that, since MT = 0, by induction we have,
for z € R? and P—a.s.,

o~ o~ T o~
MY () = 7 (2) — G(a) + / Y (DT (2), 2)ds.
]

2.3. Comparison and uniqueness. We say that (ﬂl,Ml) (resp. (172,]\72)) is a su-
persolution (resp. subsolution) of (1.3), if u' (resp. u?) satisfies all the conditions of
Definition 2.1 but (2.2) which is replaced by the requirement that, P—a.s., and for a.e
(z,t,t") € R x [0,T] x [0,T] with t < ¢,
¢ N N ~
g (x) > up(z) — H (Dul(z),z)ds — M}(x) + M}(z) and uk>G in RY
t

<resp.

v N N _
ur(z) < up(x) — Hy(Du*(z),x)ds — M3 (z) + M?(x) and v% <G in Rd.)
t
The comparison result between supersolutions and subsolutions is stated next.
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Proposition 2.5 (Comparison). Assume (H1), (H2), (H2) and (H3), and let (@', M*) and
(w2, M?) be respectively a supersolution and a subsolution of (1.3). Then, P—a.s., u' > u?
in R x [0, T).

The following uniqueness result follows immediately.

Corollary 2.6 (Uniqueness). Assume (H1), (H2) and (H3). Then there exists a unique
solution to (1.3).

Proof of Proposition 2.5. The proof follows again Douglis’s uniqueness proof and is very
similar with the proof of Theorem 2.3 with %! and 2 in place of @V and @’. Hence, in
what follows we present a brief sketch.

Fix a smooth, convex and nonincreasing map ¢ : R — R, and let w;(x) = ¢(uf (x) —u7 (x)).
Then by Ité’s formula and the inequalities satisfied by the u'’s, we have

dwi(z) > ¢ (H(Duj (x), x) — Hy (D7 (x), x))dt + %qﬁ”d < M(x) > +¢/dM,(x)
> by(z) - Dwi(w)dt + ¢'dM(x),
where ¢ and its derivatives are evaluated at u} (z) — u2(z), My = M} — M2 and
b (z / D Ht (1 — s)Du} () + sDu(x))ds.

The rest of the proof follows almost verbatim the arguments of the proof of Theorem 2.3. It
consists of an appropriate regularization b® similar to the one in the aforementioned proof
and a rewriting of the inequality satisfied by w; as

dwi(z) > (div(b; (z)w;) — div(bi (z))w; + (by — bf) - Dwy)dt + &' dM,.

Next we consider the quantity

et:E

/ wt(x)dwv
Ba+ﬁt

and we find, as in the proof of Theorem 2.3, for ¢; € [0,7],

T
er — e > E| / / (dliv (b ()wr) — div(be())ws + (b — bE) - Duwy)dydt
t1 J Bayigt

+8 / / dydt]
t1 8Ba+5t

=] / / (b5 (x) - vy + B)widydt
t1 8Ba+5t

+/:/a+m(—div(b§(m))wt+ (b, —bi)-Dwt)dydt].

The properties of b®, a suitable choice of 5 and Grownwall’s inequality lead after letting
€ — to

ey, < eCTeT.
We choose (after approximation) ¢(r) = (—r)4. Then ey = 0 since u} > @%. Therefore

e; = 0 for any ¢, which shows that u' > %2 since « is arbitrary.
O



14 PIERRE CARDALIAGUET! AND PANAGIOTIS E SOUGANIDIS?

2.4. Optimal control representation. We develop a stochastic optimal control formu-
lation for @ and present a stochastic maximum principle-type result.

In what follows, L is the Legendre transform of H , that is, for z,a € R4t € [0,7] and
w € Q,

Et(a, T,w) = sup[—p-a— fIt(p, z,w)].
peERE

Moreover, for € R? and ¢ € [0,T], A, is the set of admissible paths defined by
Atz ={7 € SQ(Rd) :yy=xandy € Hl([t,T];Rd) a.s.}.

Proposition 2.7. Assume (H1), (H2), (H2) and (H3), and let u be the solution of (1.3).
Then

T ~ ~

u(z) = essinf E [/ Ls(Ys,7vs)ds + G(yr) | Ft| - (2.14)
YEAL t

Proof. To simplify the notation, we present the proof for t = 0. Let (u") ~N>1 be as in the

proof of Theorem 2.3. Since on each time interval (t)', ¢ ;), uV is a viscosity solution of a

standard HJ equation, for any fixed w and LV the Legendre transform of HN , we have
b

@) = inf /t LY Gy yo)ds + %, (7 ),

~ 1
YEAN N JEN ntbl
n s n+17

where
Apse =1{y € H'(t,s];R?) : 7 = a}.
The J;ny —measurability of ﬂi\f allows to find a J;, —measurable selection

n+1
(w,z) — ﬁz{v(w’x))te[ﬁ;’,tml] of minimizers. Note that, since D% is uniformly bounded,
<N . .
~  is uniformly bounded as well by some constant C'.

Concatenating these minimizers, we find, for any = € R%, a (?tg)nzo,...,N —adapted path
N € Ag . such that

T T

~ ~n AN ~ . ~ . ~

W) =& | [ DA+ G| = it B [ I Gunds+ ]
0 'YE-AO,Z 0

where the second equality can be proved by dynamic programming and induction.

Then, in view of the continuity of the filtration (J),c(o,r) and the definition of LY we find

(o) = Jim i (0) <t B[ Tisws,mdwé(m]

N—o0 YEAQ,z

> N
On the other hand, the time regularity of L and the uniform in N bound on ¥ , which we
denote by C, imply that

T~ . ~
W (2) > E [ | LG s + Gﬁ%] B,
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It follows that

T ~ ~
to(z) = lim u) (z) > limsup { inf E / Ls(Ys,7s)ds + G(yr)| — E[wg]}
N—o0 N—oo LYEA0 0

T _ ~
= inf E [/ Ls(s,7s)ds + G(VT)} -

’YE-AO,x 0
O

We now discuss the maximum principle and the regularity of the value function along
optimal solutions. We point, however, that we do not claim the existence of an optimal
solution.

Theorem 2.8 (Maximum principle). Assume (H1), (H2), (H2) and (H3), let 7 € Aoz be
optimal for ug(w) and define, for t € [0,T}], the (Ft)ejo,r—adapted continuous process p by

n-z|/ " D.L(7,)ds + DG() | 7. (215)
Then, fort € [0,T],
Yo = =DpHi(p, 7:) (2.16)
and p solves the BSDE
dp, = Do Hy(Py, 7,)dt +dmy in [0,T],  pr = DG(r), (2.17)
where (My)iepo,r) € 8" (R) is a continuous martingale.
Remark 2.9. The theorem implies that 7 is of class C'.

Proof. Fix h > 0 small and ¢t € [0,7) at which 7 is differentiable P—a.s., and let v €
L>=(Q,R?) be Fi-measuarable.

Define 7" by 4"(0) = = and
o ¥, ifs€[0,t]U[t+h,T],
73 - .
v otherwise,
note that, since for s >t + h,

Vo =g + hv — Fepn — T1)s (2.18)

~" is admissible, and use the dynamic programming principle to get

T . . T _ . .
E [ | Etatas+ G | sz] > E [ [ LG + G | :ﬂ] .
t t
Hence

B / T Ea0.) = (5 5.))ds

T . ~ . ~ ~
4 [ @Gl - LG 7))ds + GOok) - Gar) | 3] = o,
t+h
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Then

5[/ T Eao) = L 7.))ds

T ~ . ~
+/t (Ls(76:78) = Lo 7)ds + DG () - (4 =) + Chg =l | 5| =0
+

Dividing by h, letting h — 0% and using (2.18) we find

~ ~ . T ~ . ~
Luw,7) = Le(G0) + (0 —5) - E [ [ DLGL s+ D) | sn} > 0.
t

Since v € F; is arbitrary, we conclude that, P—a.s.,

~ T ~ . ~
DaLi(7p,7,) + E [ [ PLG s + DG | s"t] _o,
t

and (2.16) holds with p, is defined by (2.15).

To prove (2.17), we first note that the (standard) BSDE (2.17) has a unique solution
and szt(a,x) = —Dxf:ft(p, x) if a = —Dpf:it(p, x). Thus, in view of (2.16), we have
Do Li(7,,7,) = —Dpﬁt(ﬁt,%) and (2.15) can be written, for ¢ € [0,T], as

T ~ ~
5, =E [—/ D, (5 7.)ds + DG(7r) | fﬂ} .
t
It follows that ¢t — p, — Py — fg D, H(p,,7,)ds is a martingale, which proves (2.17).

The next result is about the regularity of % along the optimal path.
Lemma 2.10. Let 5 and p be as in Theorem 2.8. Then, P—a.s. and for any t € (0,T],
x — w(x) is differentiable at 5, and p, = Du(7,).

Proof. Tt follows from the dynamic programming principle that, for any h > 0 small, all F;
measurable and bounded v, and 4" such that v , =%, , and 4" = v" = E[v | F;_;] on
[t — h,t],

(s =E[ |

t—h

t t

Lo(¥s,7)ds + U (7;) ) &"t_h} <E[ / Lo(v", 4"y ds + (7] ] :ﬂ_h].

t—h
Let ¢ = g(w) be a measurable selection of DT u;(7,,w). Then, using the semiconcavity of
g, we find

0< E[/tth(is(v", ) = LG s +a- (O = 7) + Chf =7l | Fioa).
Dividing by h, letting h — 0% and using that the filtration (F;) is continuous, we obtain
0< Li(v, %) — L3, 70) + - (v —F).
Since 7, maximizes v — —¢q - v — Zt(v,ﬁt), it follows from (2.16), that
Y, = —DpHi(q,7,) = —DpHy(P1, 71)-

Thus q = p, and DT (y;) is a singleton. In view of the semiconcavity of @, the last fact
implies that u; is differentiable at 7, and p, = Dus(7,). O
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2.5. The continuity equation. We now investigate the continuity equation associated
with the vector field —D,H (Du(x),x). As in the previous subsections, (u, M) is the solu-
tion of (1.3).

Proposition 2.11. Assume (H1), (H2) and (H3). Then, for each my € L>(R?) N Py(RY),
there exists a (F¢)epo,r)—adapted process m € 8™ (P1(R?)) N L®(R% x (0,T)) which solves,
P—a.s. and in the sense of distributions, the continuity equation (with random coefficients)

By = div(my Dy Hy(Dy(x),2))dt in R x (0,T) 7o =mp in RY (2.19)
Proof. We use the discretization in the proof of Theorem 2.3 and consider the solution

(@l MN ) of the discretized problem defined there.
Let m~ € C(]0,T]; P1(R%)) be the (F;,)n=0,. ~—adapted process that solves, in the sense
of distributions,

oyml = div(m) D,HY (DY, z))dt in R?x (0,T) mo=mp in RY (2.20)

which, following the discussion in the appendix of [11], can be built by induction. Indeed,
we can construct m” on each time interval [t),¢), ], since on this interval u¥ satisfies a
standard HJ equation. In addition, for some C' > 0 and P—a.s.,

(1) sup / |z (x)dz < C,
te[0,7] /R

(i) di(mY,mN) < C|s—t| forall s,te0,7T],
(@ii)  [|™]|o < C.

Let m be an (up to a subsequence) limit of (M) yen in L°(RY x [0, T] x Q) —weak*. Then,
since, as N — oo and P—a.s. and (z,t) a.e., DY — D, we can pass to the limit in (2.20).
The claim then follows. O

We now turn to the question of uniqueness, for which, unfortunately, we require a much
stronger condition than the standing ones. Indeed, we need to assume that H is of the form

6t<$)

Hy(p,x) = == Ip* + Bi(2) - p + fi(@), (221)
where, for some constant Cy > 0,
a, f € 8*(C*(RY)) and B € 8*(C*(R4RY)  with C5t < @y(z) < Co. (2.22)

We note that (2.21) and (2.22) yield that H satisfies (H1), (H2), and (H3).

The following result is a variation of the one in [7].

Proposition 2.12. Assume (H1), (2.21) and (2.22). Then, for each Ty € L®(R?) N
P1(RY), there erists a unique (Ft)tefo,r)—adapted process m € 82(P1(RY)) with bounded
density in R x (0,T)) which solves (2.20), P—a.s. and in the sense of distributions.

In the deterministic case considered in the appendix of [11], the uniqueness of a solution
does not require an addition structure assumption on H. Instead, it relies on the fact that
the forward-forward Hamiltonian system (2.16)-(2.17) has a unique solution given the initial
condition (%, pg). Unfortunately this does not seem to be the case in the random setting.
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Proof of Proposition 2.12. Set by(z) = —Dpﬁt(Dﬂt(m),x). Then, in view of (2.21) and the

definition of a solution % of (1.3), by(z) = —ay(2)Duy(z) — By(z) is bounded and one-side
Lipschitz, that is, there exists Cy > 0 such that, for all (z,y,t) € R? x R? x [0, 77,

Blloo < Co and (be(x) = bi(y)) - (& —y) > =Colx —y*.

Then we can apply w by w the uniqueness result to the continuity equation given in Propo-
sition A.1 in the appendix. O

2.6. Existence of optimal paths of the stochastic control problem. We now address
the problem of the existence of optimal paths for the control representation of u established
in Proposition 2.7 . For simplicity we assume again that ¢ = 0 and recall that

T ~ ~
tg(z) = essinf,cyq, B [/ Ls(§s,7vs)ds + G(yr) | - (2.23)
t

The problem is that (2.23) is a non convex stochastic optimal control problem with a (a
priori) non smooth value function, hence the existence of an optimal path is far from obvious.

Proposition 2.13. Assume (H1), (2.21) and (2.22). Then, P—a.s. and for a.e. x € R?
there exists a unique minimizer ¥* € Aoy of the stochastic optimal control problem (2.23)

and this minimizer satisfies 7, = —Dpﬁt(Dﬁt(ﬁt),it).
Proof. Fix g € Po(R?) with smooth and positive density. According to Proposition 2.12,
the random continuity equation
Oy — div(me Dy Hy(Diig, 2)) = 0 in R x (0,00) g = myp in R?
has a unique solution m with bounded density.

A simple adaptation of the Lagrangian approach introduced in Ambrosio [2] shows that, in
view of the uniqueness of the solution to the continuity equation, there exists a dx x dP—a.e.
unique Borel measurable map R x Q 3 (z,w) — 7« € T' = C([0, T); R?), which is adapted
to the filtration (F;);c[07), such that, P-a.s. and for any ¢ € [0,7], 75 = = and

ﬁlt(~,w) :/ (Sﬁf,wm()(l’)dx.
We show next that the process (3§ )ic[o,1] is%0ptimal in the optimization problem (2.23) for
mo—a.e. ¢ € R%. For this, we claim that

/R E [ /OT Lo, 77 )dt + é(v%)] mo(x)da = /R o (w)mo()da. (2.24)

Assuming for the moment (2.24), we proceed with the proof of the optimality, and recall
that, for any = € R,

T _
) <B| [ LT e+ G|
Integrating the inequality above against 7, we infer by (2.24) that 7 is optimal for my—a.e.

z € R?. Since g > 0, this holds for a.e. z € R%.

It remains to prove (2.24). For this let, ¢, = nT/N for n € {0,..., N} with N € N and
note that, in view of the equation satisfied by u, we have, for a.e. z,

Uty 1 () = U, (7) = —/t - Hy(Diiy(x), 2)dt — (M, (x) = My, (). (2.25)
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Integrating (2.25) against my, , which is absolutely continuous with a bounded density, and
summing over n gives

N-1
7;) /]Rd(Utn+1 (l‘) - Utn(l'))mtn (l‘)d:E

N-1 g1 _ N-1 N .
__ 7;] /t [ (D (a). )i, () ot — ;‘6 /R (Wl (2) — Tl (), ()

Reorganizing the left-hand side of the expression above taking into account the equation
satisfied by m yields

N-1
nz:;) /Rd(utn+l(x) - utn($)>mtn($)d$

N-1

= [ i@y, (@de = [ oo = 3 [ @)@ @) = i, @)

n=1
= [ Gy (@) - /R o))

N-1 4 _
S / Diis, () - Dy Ho(Diig (), )i () davdlt.
_ tn—1 J R
We let N — 400 and take expectation to find
~ T o~
E [ G(z)mr(x)dx — / uo(z)mo(x)dx +/ Duy(z) - DpyH(Duy(x), x)ﬁ@t(x)]
Rd Rd 0 JRd

_E [— /O ' [ (Di(a). )i () dodt /0 ! mt(g;)dﬂ“@(x)dx].

Rd

Recalling that M is a martingale and that p-DpI:jt (p,z)+Hy(p, ) = Et(—Dpﬁt(Dﬂt(a:), x),x),
we rearrange the last expression to get

o~ T o~ o~
E[ G(2)ip (2)dz + / / Lt(—Dth(Dﬂt(:n),m),x)ﬁlt(:v)] _ / o ()70 (2)dz.
R4 0 R4 R4
Finally, the facts that
o= [ oo(ahds and 37 = D, BUDE() T PO~ aee,)
R
imply that (2.24) holds. O

3. THE STOCHASTIC MFG SYSTEM

We investigate the stochastic MFG system (1.1). We begin recalling that, after the change
of the unknowns in (1.5) we obtain, at least formally, (1.6) which we study here.
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3.1. The assumptions and the notion of solution. To study (1.6) we assume that

mo € Po(RY) N L®(RY),
F:R% % [0,T] x P1(R%) x Q — R is such that, for any m € P;(R%),
F(-,m) € 8"(C2%(R%)) for any 7 > 1, and
F; satisfies (1.11) uniformly in ¢ € [0,7] and in w € Q,
and
G:RYx Pi(RY) x Q= R is Fr—measurable, G € C(R? x P1(R?);R),
and (1.11) is satisfied uniformly in w € Q.
For H : R? x [0,T] x Q — R, we assume that
Hy satisfies (1.10) uniformly in ¢ € [0, 7] and in w € Q.
Moreover, if
Wi = sup [Ho(y,p) = Hi(y, p)| + | Fsly,m) = Fi(y.m
|s—t|<1/N,yeRe,meP; (R?),|p|<R
then, for any R > 0,
E [wN]=0.
Finally, we assume that N
F, and G are strongly monotone uniformly in ¢ € [0,7] and in w € Q,

and F; is strictly monotone for all ¢ € [0,7] and P—a.s. in w.

(MFG1)

(MFG2)

(MFG3)

(MFG4)

I

(MFG5)

(MFG6)

A classical example of a map F satisfying the above conditions, which goes back to [28, 29,

30, 31], is of the form

Fu(a,m) = fusm+ p()) % p,
where

p is a smooth, non negative and even kernel,

with Fourier transform p vanishing almost nowhere,

and

FREX[0,T] xR xQ—=Ris (Ft)iejo,m adapted and, for any R > 0,
there exists C'r > 0 such that

sup (Ui 9)lloo + DTy 8) oo + D2, ) loo] < Cr
0<s<R, te[0,T]

and

NE [ sup |ﬁ1 (ya S) - ﬁQ(y7 S)” =0,
0 |t —t9|<1/N,0<s<R

and, finally,
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f is strictly increasing and Lipschitz in the second variable, that is, there exists a € (0,1)
such that

Of; -1
< = < .
a< oo (z,s) <«

It is immediate that F satisfies the regularity conditions in (MFG2) and (MFG5) and,
moreover,

[ (Filwamy) = File.ma)) ms = ma)(d)
= [ oy pla) = Folasma < ) s 5 pla) = ma 5 plo)
>a [ (s p(@) = ma s p(o) P
Then
[ (Fitama) = Fi.ma) Pdo < ol [ (Fie.my « o) = Filayma x pla) P
R4 Rd
< lplZa™ [ (1 pla) = ma + ) P

<ol [ (FiGoms) = Filo,ma)) (s = mo)(do)

and F is strongly monotone.

The strict monotonicity follows from the observation that, if
/d(ﬁt(a:,ml) — Fy(x,my))(my — my)(dz) = 0,
R

then (m; — ma) * p = 0, which implies that (m; —m2)p = 0. Since p vanishes almost
nowhere, it follows that (mj; — msg) = 0 and, hence, m; = my.

Remark 3.1. It follows from (MFG2) and (MFG6) that F' is Holder continuous in m with
respect to the dq— distance, that is, for all my, mo € CPl(Rd)

|F(oma) = Byl oma) oo < Oy (ma, ma).
Indeed, in view of the interpolation inequality

[ flloo < CdHDf”éé(d—ﬂ)Hf||i/2(d+2)’
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with C,; depending only on the dimension, we find

1B (om1) = Fy(yma) |5
< Ca(IDF,(-ym1) o + [DE(-,m2) o) /Rd(ﬁt(w,mﬂ — Fy(w,m2))*dx

< 20,Cra"! /R (B, m) — Fu(e, ma))(my — ms) ()

< 2CoCaa” (| DF(-;m1) oo + | DE(-, m2) [loo)di (ma, m2)
< 4030(101_1(11 (m17m2).
We continue with the definition of a weak solution of (1.6).

Definition 3.2. The triplet (u,m, M) is a solution of (1.6) if:
(i) @ € 8"(WoH(RY), M € 8" (L) (RY) and m € 8"(P1(R?)) for any 7 > 1,

loc

(ii) there exits C' > 0 such that, P—a.s., for a.e. ¢t € [0,7T], all z € R such that |z| < 1, and
in the sense of distributions,

[Floo + 1Tellyroe ey + 1 Melloo + Dty 2+ 2 < C,

(iii) the process (M(z)) is a (F1)tefo,r] continuous martingale for a.e. z € R%.
(iv) for a.e (x,t) € R? x [0,T] and P—a.s. in w,
T ~ ~ — —
u(z) = G(x,mr) — / (Hs(Dus(x),x) — Fs(z,mg))ds — Mrp(x) + M(x),
¢

and
(v) in the sense of distributions and P—a.s. in w,

dyiny = div(my Dy Hy (D, z)) in RY x (0,T) g =y in R

3.2. The existence and uniqueness result. The main result of the paper about the
existence and uniqueness of a solution of (1.6) is stated next.

Theorem 3.3. Assume (MFG1), (MFG2), (MFG3), (MFG4), (MFG5) and (MFG6).
Then there ezists a unique solution of (1.6).

The proof consists of several steps. Similarly to the Hamilton-Jacobi case, the solution is
constructed by discretizing the noise in time. Hence, the first step is to recall and refine
known regularity results for deterministic MFG systems. Then we explain the construction
of an approximate solution by time discretization and, finally, we pass to the limit to obtain
the solution of (1.6).
3.3. The deterministic MFG system. We consider the deterministic MFG system
—Owu + H(Du,z) = F(z, 1) in R x (0,7),
O — div(peDpH (Dug, z)) = 0 in R? x (0,7), (3.1)

mo = Mo u(aT) = G('va)'
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A solution of (3.1) is a pair (u,m) such that u is a continuous, bounded and semiconcave
in z uniformly in t viscosity solution of the HJ equation, while m € C([0, T], P2(R%)) N
L>®(R? x (0,7)) is a solution of the continuity equation in the sense of distribution.

Next we state some general hypotheses, which imply the existence of a solution of (3.1).

We assume that

H:RYxRY - R satisfies (1.10), (3.2)
F € C(RY x P1(R?);R) is Lipschitz continuous and
semiconcave in z uniformly in m, (33)
there exits ap > 0 such that, for all my, my € P1(R?),
e, 1) — F (o)) — ma)(da) > apl|FCma) — Foma)je2, O
and
G :R% x P;(R?) — R is Hélder continuous in m uniformly in z, bounded and
semiconcave in x uniformly in m, and there exists ag > 0 such that (3.5)

for all my, my € P1(RY),

Jpa(G(z,m1) = Gz, ma))(m1 — ma)dx > ag||G(-,mi) = G(-, ma)||&2.

We refer to Remark 3.1 about about the connection between (3.4) and the more standard
strong monotonicity condition.

The following result can be derived from [30]; see also [11]. In the sequel, we give some
details about the proof of the estimates that are needed for the proof of Theorem 3.3.

Lemma 3.4. Assume (3.2), (3.3), (3.4) and (3.5). There exists Cy > 1 such that, for any
Mo € Po(R?) N L>®(RY), there exists a unique solution u of (3.1) such that

[tlloo < [|Gllec + CoT, (3.6)

u 1s semiconcave in x uniformly in m, that is, if, for some C1; > 0,

all z € R with |z| < 1, all m € Py, and in the sense of distributions,

(3.7)
if D2G(-,m)z -z — AG(-,m) < C1, then for all t € [0,T],
{ D?uy(+)z - 2 — dug(+) < C1 + CoT,
and
m is bounded in R% x (0,T) and has finite second moments, that is, there
exists C > 0 depending on ||Dul|« and the semiconcavity (38)
3.8

constant of u such that, for allt € [0,T],

My(my) < Ma(mo) + CT and |[mylleo < |[Molloo + CT.

We note the claim is that u remains bounded and uniformly semiconcave in x uniformly in
time and in the initial measure my.
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In addition, u is also uniformly Lipschitz continuous in x. This is a consequence of the
elementary fact that, if v : R? — R is bounded by some M and semiconcave with constant
K, v is Lipschitz continuous with a Lipschitz constant bounded by 2(M K )1/ 2,

Finally, the fact that the estimates on u and m grow only linearly in time 7" will be important
in the construction of the next subsection and justifies the awkward formulation of the
semiconcavity estimate.

The proof of Lemma 3.4. The existence and uniqueness of the solution (u, m) and the esti-
mates on m can be found in [11, 30]. The bound and the semiconcavity estimates on u can
be established as in the proof of Lemma 2.4. Here we only repeat some the formal argument
for convenience, noting that everything can be justified using “viscous” regularizations.

Formally, it is immediate that
d d
Dy (my) = 2 / 2y (d) = — / 22 - Dy H(Duy(x), 2)mq(dz)
dt dt Jga R
< 4||DypH (Duy) |13, + Ma(my),

and the estimate on My (my) follows by Gronwall’s Lemma.

For the L°°—bound, we rewrite the continuity equation as
O¢m — DpH (Duy, x) - Dmy — mydiv(DpH (Dug, z)) = 0,
where
div(DpH(Du(x), x)) = Tr(szH(Dut, z)D?uy () + Dme(Dut(a:), x)) < C,
in view of the Lipschitz and semiconcavity estimates of u. The bound follows using the

maximum principle. O

Later in the paper it will be convenient to define the solution of (3.1) in a unique way for
less regular initial measures. For this we use the following regularity result.

Proposition 3.5. Assume (3.2), (3.3), (3.4), and (3.5). Then, if (u',m'), (u?,m?) are
the solutions of the MFG system (3.1) with m$,m? € ?Q(Rd)‘ﬂ L>®(RY), then, there exist
positive constants C,C", which depend on d, ag, ap and ||Du’| s, such that

lut —w?| 5 < C/ (u'(2,0) — u?(z,0))(mg — mg)(dz) < C'di(mg, mg).
Rd

It follows that the map U : R? x [0, 7] x (P2(RY) N L>®(R?)) — R given by
Ui(z,mo) = wi(z),

where (u, m) is the solution of the MFG system (3.1) with initial condition m(0) = 7, has
a unique extension on R? x [0, 7] x Py (R9).

Moreover, in view of Lemma 3.4 and Proposition 3.5, the extended map U : R? x (0,77 x
P1(RY) — R is Holder continuous in m uniformly in , Lipschitz continuous and semiconcave
in  uniformly in m, and strongly monotone in the sense of (3.4).

We also note that the map my — m, where (u, m) is the solution of the MFG system (3.1)
with initial condition m(0) = My, is continuous in C([0,T]; P1(R?)). Indeed, Proposition
3.5 gives that the map Mg — u is continuous from Py(R%) to C(R? x [0,77]). In view of
the semiconcavity estimate on w, this in turn yields the continuity of the map mg — Du

in L}, (R? x [0,7]). The claimed continuity of my — m follows combining the uniform in
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time continuity of m in P;(R?), which depends on ||Du| s, the L% —estimate on m and the
uniqueness of the solution of the associated continuity equation.

Proof of Proposition 3.5. Using a viscous approximation to justify it, the standard proof of
uniqueness of the MFG system (3.1) yields

T

[ [y = F i ond =) < - [ [t =)’ =y

It then follows from the strong monotonicity condition on F' and and G that

0

T
agl|G(,my) — G- mp)|I55% + aF/O 1F(ymy) = F(-mi) |82 dt

T
< [ (Gmb) = Glami)mp —md)de) + [ [ (Famd) = Flamd)m} = md)(ds)
< [ @.0) = w0 (m§ —md)(de) < (1D oo + [Pl )ds (b, ).

Using the uniform Lipschitz estimates on u’ and the comparison principle in the equations
for the u* we find

T
[ut = w?||oo <IG(-;mp) = G(ym7) |0 +/0 IF(mg) = F(-;mi)) |l odt.
Hence, there exists C' > 0, which depends on d, ag, ar and ||Du’||«, such that
T
Ju' = w22 < C(IGCmb) = Glm) |42 + /0 |FComd) = F(om?) |42t

<C Rd(ul(x, 0) — u2(x, 0))(m(1] — mg)(daz) < C’dl(m(l), mg).

O

3.4. The discretized stochastic MFG system. We use the same discretization tech-
nique and the same notation as in the proof of Theorem 2.3. Let N € N and set tflv =Tn/N,

ﬁtjv(pa$) = ﬁtﬁ’(p7x) and ﬁtN(m’m) = ﬁt{y (m,m) on [t'r]yatnN—&-l)a
and consider the filtration (F )telo,r] defined by
FN =F for telt) t))

The goal here is to build a triplet (u%, MN , 1Y) such that
i) (@, MV, 1Y) is adapted to the filtration (SriN)te[O,T]a

(ii) on each interval (t),tX,;) with n = 0,...,N — 1, 4" is a viscosity solutions of the

backward HJ equation
—opu™ + HY (DN, 2) = FN (2, i) on RY x (¢, 1)),

V(N ) =R [aN(-,tﬁg)wftﬂ in RY,
(iii) AMY is defined by

AMN (@) = @ (2, t017) = B [0 (@, 01T, | on (6, 6),0),
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and
MY (@) =" AMY ().
tN <t
(iv) g € C([0, T]; P2(R?)) is P—a.s. a weak solution of
N — div(aN D, HN (DuN,x)) =0 in R? x (0,7),
{ Y =my in RY
This is the topic of the next lemma.

Lemma 3.6. Assume (3.2), (3.3), (3.4) and (3.5). Then, there exists at least one solution
(@™, MN V) of the problem above and C > 0 such that, P—a.s., a.e. int € [0,T], all
z € R% with |z| < 1, and in the sense of distributions,

(i) @V lloe + 1 DT [loo + [M oo + ¥ [loc + D*5Yz - 2 < C,

(i) for any = € RY, (ﬂgv(:c))te[oj] and (ﬁiv(x))te[oj] are adapted to the filtration (fﬂ{v)te[oj]

and, therefore, the filtration (Ft)icpo, 1), and (MP(2))n=0,....N is a martingale with respect to
the discrete filtration (¥4, )n=o0,... N -

Proof. We show first (u”, MN , 1) is well-posed. For this, we define by backward induction
a sequence of maps UV : R% x [tV tN 1) x P1(R?) x Q — R such that, for each t € [t]/, ¢, ),
ﬁtN is I~ —measurable, Holder continuous in m uniformly in x, bounded and semiconcave
inx unifgrmly in m and strongly monotone in the sense of (3.4).

We set U N = G and, given (7;,\(, , we define UN on [t (N 1) as follows: for any my €
n+1

Py N L>® we solve the MFG system
~ 00 + HN (DO, ) = FN(z, i) in R (), ),),
Oy — div(my Dy HN (Do, x)) =0 in RY x (¢, N, )),

my, =mo nd Un- =B|UN (,m%.) | Fuw| in R
t t
n+1 n+1 tn+1 n

We know from the discussion after Proposition 3.5 that, if we set UN (z,7m0) = 0;(z), then
UY can be extended on R? x P; and satisfies the required regularity properties.

In what follows it will be convenient to set ﬁiv "z, mo) = my(x). We remark that p™" is
Jt, —measurable and continuous in mg in ‘Pl(Rd).

Given g € P2 N L, we now build (ﬂN,ﬁN,MN). We set, for ¢ € [0, ],

@@ (), i () = (U (,m0), py " (x,70)),

and note that, in view of Lemma 3.4, /i’ is bounded in L> and has bounded finite second
order moment both uniformly in N. Then, using a forward in time induction, we define,
for ¢t € [tgatnN—l—l)a

@ (@), 71y (@) = (O (2, i), 50" (0, i)
and

F ~ N,— ~ N,
AN (&) = @ (@, )17) — B [ (@, 01Ty | on (4, 60,0),
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and
MY (@) =Y AMY ().

tN <t

In view of the definition of UN and pN" the triplet (Y ,M N ™) solves the required
equations and is adapted to the discrete filtration (57" );co,7]- The estimates on @ and
follow from Lemma 3.4 applied on each time interval (), ¢Y, ;). We remark that this is the

place we use that the estimates in Lemma 3.4 is grow linearly in time. The bound on MY
is obtained as in the proof of Lemma 2.4. O

3.5. Passing to the limit. The aim is to pass to the limit in the discrete MFG system.
Using the strong monotonicity of F' and G, we obtain the following estimate.

Lemma 3.7. Let (ﬂN,MN,ﬁN) be defined as above. There exists a random variable w™
such that E [wN} =0 and, for K,N € N with K > N,

N—oo
~ ~ T ~ ~
B[IGC ) - GO AL + [ 1B - B, 14 < cBf"].

Proof. Using the fact that the pair (uV,z"V) is piecewise classical solution of the MFG
system, with i continuous in time and adapted, we find, following the classical Lasry-
Lions computation, that

B (@ @) = ) o) = i )
= B[ [ (N (D7 (@).2) = FY (0. i) = T (DT (@).0) + B 0 ) G (@) = i )
+ [ (@ @) = T @) @i i (0)D, Y (DT (0). ) = div(if () D, AL (D ). 0|
= B[ [ (RN i) = B G ) i () = 7 ()]
B[ [l @) (A D (@).2) ~ B (D7 (@),
- (DT («) - D (&) - DY (DT (@), )} + [ () (B (DT (2. 2)
Rd
~ BE (DA (v), %) - (Dif («) - Dl (2) - DyHF (D (2), ) ) de

In order to use the strong monotonicity assumption on F and the convexity of H , we replace
the discretized maps FV and HYV by the continuous ones and find

SB[ @)~ )@ @) - )]
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where, with C being the uniform bound on Du" and on DuX,

W = sup |Fi(w,m) = Fy(z,m)| + |Hi(p,x) — H(p,2)l|.  (3.9)
T€R,|[t—s5|<1/N,|p|<CymePy

Integrating in time inequality above and using the fact that ,uév = u{f , we get

B[ [ (Gl i) - Gla ) ) ~ 7 (o)ie |
R4

T ~ ~
B[ [ (R i) = e i) i (0) =t (@) o] < CE["].
Therefore, in view of the strong monotonicity of F and G in (3.4) and (3.5), we find
~ ~ T ~ ~
B[ (Gle i)~ Gl if)Pdo+ [ [ (Fua i) - Fila, i) Pdoct] < CE[o"].
R4 0 Rd

Finally, the uniform Lipschitz regularity of Fand Gin space and an elementary interpolation
yield

T
E [sup |Gi(, /i) — G, i )|+ + / sup |Fy (e, i) — Fi(w, 7%t < CE[w").
T 0 T
O
Next we estimate the difference between @V and u*.

Lemma 3.8. The sequence (ﬂN)Nzl 1s a Cauchy with the respect to the family of seminorms

sup B |||ag]dH
(te[o,T] [H tHL (BR)}

Proof. Since the arguments are almost identical to the ones used in the proof of Theorem
2.3 and Proposition 2.5, here we only present a sketch.

R>0

Let 1 < N < K and ¢ : R — R smooth, Lipschitz continuous, convex and nonincreasing

map, and set w;(z) = ¢(u} (z) — ul ()). Using induction and the convexity of ¢ to cancel

the jump terms, which are martingales, for any ¢ € [0,7) and h € (0,7 — h), we find

E [th(x) — wt(;c)]
t+h _ N
SB[ o @) - @) (DT (@)0) ~ FY @)

~ ~ t+h
— HE(DT (@), 2) + FY (@, i) ds| > B / (b (@) - Duwy(@) + Cs(w))ds]
where
Co(@) = ¢/ (@ () — @l (@) (AN (Dl (2), @) — HE (DT (@), 0) = FY (i) + B (@, 7))
and

b,(z) = /01 D, HYN (1 — \)DuY () + ADU (2))dA.
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For some «, 8 > 0 to be chosen below, let

/Ba+5t wt(y)dy] :

As in the proof of Theorem 2.3 and for § large enough, but independent of N and K, we

get
e < Cler —i—E[/tT/B (s(y)dyds]).
a+fBs

Choosing, after approximation, ¢(s) = (—s)4, we derive that, for all ¢ € [0,T], w® is as in
(3.9), and constants C' > 0 and C, g = C(a, 5) > 0,

€t:E

E < CE

| @ - W)y
Boc+3t

/ (—(Cly. ) - Gy, 7 )))m]
Boypt

T -~ ~
cOm [ [ VR ) - Pty ) dds] + Ol
a+fBs

Reversing the roles of u”¥ and u’, we then obtain, for all t € [0,T],

[ i@ - a el
Boypt

T -~ ~
+CE |:/ /B |F5(y7ﬁ¥) - Fs(y7ﬁ¥)|dyd5:| +C’a75E[wN]
a+fs

E < CE

/ Gy, 7Y — é(y,ﬁéf)uy]
Ba+5t

It follows from Lemma 3.7, for some 4 g(N) — 0 as N — 400,

E

/ @ (y) — @i (y )|dy] < ea,g(N).
Boypt

The uniform Lipschitz estimate for the @V gives the result. O

We have now established all the ingredients needed for the proof of the existence and
uniqueness of solution of the stochastic MFG system.

Proof of Theorem 3.5. Lemma 3.8 and the properties of F and G yield that the sequences
(@) yen, (F(-, i) nyen and G( ) ven are Cauchy, with respective limits , f and g.

It follows, as in the proof of Theorem 2.3, that the sequences (Du™) yen and (]\7[/ N Nen

also converge, as N — oo, to D@ and M respectively, M is a continuous process, and, in
addition, (@, M) solves

diiy = (Hy(Diig, z) — fo(z))dt + dM; in R* x [0,T) @ = g on R%
Next we need to check that the sequence (i )yey has a limit 7 and that f;(z) = Fy(, fir)
and §(z) = G(x, ir).
Fix w for which a" converges to @ locally uniformly and Du” converges to Du a.e.. In view

of the bound on (i) yen, the sequence (i) yen is relatively compact in C([0, T]; P1(R%))
and in L™ weak-*. So we can find a subsequence, which we denote in the same way, which
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converges, in C([0,T]; P1(RY)) and in L>®—weak-*, to some i, which is a bounded solution
of the continuity equation

Oyfir = div(fi Dy Hy(Diiy, ) in RY x (0,TT  Jip = mp onRY.

In addition, the continuity of F, with respect to the measure argument implies that (Fy(z, 7))
converges to Fy(x, i) for any (z,t) € [0,T] x R%. Hence,

Fy(x, i) = fi(x). (3.10)

Since (3.10) holds true along any converging subsequence, we infer from the strict mono-
tonicity of F; that the compact sequence (1i)yen has a unique accumulation point in
C([0,T7; P1(RY)), and, thus it converges a.s. to an adapted and bounded process ji satisfy-

ing the continuity equation.

It follows that the sequences (EN (z,7i¥))nen and (GV (z, 1)) Nven converge locally uni-
formly to Fy(z, ;) and G(x,ur) respectively. We can therefore conclude that the pair
(w, M, 1) is a solution to the MFG system (1.6).

Since the proof of the uniqueness of solutions follows the standard argument, we only sketch
it. Let (u!, M',m') and (a2, M?,m?) be two solutions of (1.6). We show that

T
Fy(x,mp) — Fy(x,m?)) (M) — m?)(dx :
B[ [ (Fite.md) = File. i) f - ) o) (3.11)

+ [ (@) - G, i)~ 7) d)] <0
Rd

For this, for n = 0,..., N, let & = nT/N, and note that, in view of the equation satisfied
by u = u' — 42, we have, letting M = M — M?,

Uy, (2) = Ty (2) = - /t N”“(E(Dal, z) — Fy(x,m*(t)) — Hy (D@2, z) + Fy(z, m?(t))dt

— (M () — Myx ().

n+1

Let m = m! —m?. Integrating the equality above against myn and summing over n gives
N-1
> | (G, @) = Ty (@) ()
"0 Rd n+1 n
N-1 tﬁrﬂ - - - -
-y / / (F (D (v), %) — Fy(w, ind) — Hy(D@(w), o) + Fiw, )iy (x)dwdt
o Jt& R4

n+1

- Z /Rd(]\ZN (z) _J\Zg(x))ﬁltg(a:)dx.
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After reorganizing the left-hand side above by taking into account the equation satisfied by
m yields

> | (g, @) = i @)y (@)
N—-1
= [ i@y (@ds = [ o)) - > | ey @iy ) = gy, (a)da
= [ (Glaih) ~ o)) ly (2) =iy (e))da
N—-1 tﬁf _ _
+ Z / " Diyn (z) - (DpHy(D; (x), x)mf (x) — DypHy(DUZ (), x)ymi (z))dxdt.
n=1 n—1

We let N — +o00 and find, after taking expectation,
B [ (Glawiid) = Glo. i) () — i ) da
T
+ [ [ D) (D, E( D (), )i () — D, F D o)) ()
0 JRrd

T B _
- £ / (B(Dil(x), ) — Fi(a, i1}) — (D} (@), 2) + Fy(e, i) iy (x)dwdt.
R4

We can now rearrange the expression in the usual way, and taking into account the convexity
of H, = Hy(p,z) in p, to conclude that (3.11) holds.

Using the strict monotonicity assumption on F we infer that, P—a.s. and for a.e. (z,t) €

[0,T] x RY, m; = m?. Thus u' and u? solve the same HJ equation. It follows from
Proposition (2. 5) that u! = u2.
The equality M M = M? follows from the equation satisfied by the u’. O

3.6. Application to N—player differential games. We consider here a game with N
players and show that, if NV is large enough, the optimal controls given by the solution of
the stochastic MFG system (1.6) provide an approximate Nash equilibrium for the game.

We begin with the notation, terminology and the general setting. In what follows, N € N,
mo € Pa(RY) with an L>®—density, (Z%);en is a sequence of independent random initial
conditions on R? with law 7o, and W is a Brownian motion independent of the (Z")ien-
The state X of the i—th player satisfies, for ¢ = 1,..., N, the stochastic differential
equation _ _

dX® = aldt +/28dW; in [0,T] X§ =2, (3.12)
with o an admissible control of player 7, that is, an R?—valued measurable process adapted
to the filtration generated by (W;)s<: and the (Z7);en, and such that E[ f() |lad|2dt] < +oo.
Note that the noise W is the same for all the players.

The cost Qf player 7, associated to the admissible control o’ and given the admissible controls
of the (a);4; of the other players, is

JN,z(al,(a;#i)):E[/o (L(ak, X¢') + F(XP" mih))dt + (X5, QN) :
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where X; = (X',..., X2") with X* a solution of (3.12) and

1 N
Ny )
mx, = N—1 Z 5Xf‘] ’

J=Lj#i
Given ¢ > 0, we say that the family (ai)izl,,,,,N of admissible controls is an e— Nash
equilibrium of the game, if, for any ¢ = 1,..., N and for any admissible control o’ of the

player i, o o
VU@ (@) i) < TV (@) ) +
The associated Hamiltonian of is

H(p,z) = S;gd[*p ra— L(a, 7).

We assume that

F,G :R? x Py — R are globally Lipschitz continuous and, for some Cy > 0,

(3.13)
sup [[F'(-;m)|[c2 + |G(-m)|[c2 < Co,
mePy
F and G are strongly monotone with constant o and F' is strictly monotone (3.14)
and the Hamiltonian H is of the form
H(p,a) = “F P + B(x) - p
(3.15)

with a € C?(R%), B € C2(R%R?) and C;t < a(z) < Cp.
It is then immediate that

L(a,z) = 2;@“ B(@)P

As in the earlier parts of the paper, we set
ﬁt('rap) = H(p,LU + V 2/8Wt))

Fy(z,m) = F(x + 28Wy, (id + /28W;)tm;) and (3.16)
G(z) = Gz — V2BWr, (id + 2BWr)imr).

In view of the conditions above, I:T, ﬁ, G and g satisfy (MFG1), (MFG2), (MFG3),
(MFG4), (MFG5), and (MFG6).

We denote by (u, M, m) the solution of (1.6), and recall that Proposition 2.13 implies, for
a.e. € R%, the existence of a family (7¥ )te[O,T] of adapted processes which minimize

T ~ ~ ~
o) = 0 | [ Eutiun) + Birin)ds + Gomai)| . (37
where
Et(p,a,x,w) = 25,51(x) lp + Et(x)\z and a;(z) = a(x + \/%Wt), Et(x) = B(x+ \/%Wt)

Set @ =73 = —DpHi(Du(77). 7).
Proposition 3.9. Assume (MFG1), (3.13), (3.14) and (3.15). Then, for any ¢ > 0,

there exists No = No(¢) € N such that, for any N > No, the family of random controls

(a Z)Z-:L,”’N is an e—Nash equilibrium of the game.
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Proof. To simplify the notation, in what follows we set X' = X7 and note that

Xi:Zi+/a ‘s + \J2BW, = 77 1 \J2BW,.

We check that the conditional law of (Yt)te[O,T] given (Wi)secjo, is my = (Id+/2BWy)imy.
Indeed, in view of Proposition I1-2.7 of [14] and since ¥4 solves the ODE

A ~ — L giy _ i
Yt :_Dth(Dut(’YtZ):’)’tZ );

the conditional law fi; of (Wtzl) given W is a solution in the sense of distributions of the
continuity equation

Oy — div(fi Dy Hy (Diiy(x),2)) = 0 in R x (0,T)  Jip = .

It follows from Proposition 2.12 that this solutlon is unique. Therefore, the conditional law
fiz of (77 )te[O 7] given W is m;. Since X 7' +\/2W,, this implies that the conditional

law of X, given W is my.

Since the Z¥’s and W are independent, it is clear that the X" are conditionally independent
and have the same law m given W. It then follows from the Glivenko-Cantelli law of large
numbers that, P—a.s

lim E |d(mk", m) ]W} =0.
N—+o00

In view of the Lipschitz continuity and boundedness of F' and G, the limit above implies
that, for any (z,t),

lim E ||F(z,mY" — F(z,m)| + |Gz, mY

Jlim X N = Gla,ma)l| =o.

As the integrant is uniformly continuous in z uniformly in ¢ and N and has a uniform
modulus in ¢, which in expectation is uniform in x and N, we deduce that, for any R > 0
and e > 0, there exists N € N such that, if N > Np,

E (3.18)

N,i Nyi €
sup F(x,m< F(x,m)| + |G(x, m< Glx,mp)|| £ ———.
IEBRJE[QT}I (x,mg”") = F(z,my)| + [G(z,mg’ ) = G( )| 1)

Note that, since D is bounded, there exists M > 0 such that &’ = —Dpﬁt(Dﬂt FZ',1),7%")
is bounded by M and, thus, we have

TNA@” @)0) =B Jy b |+ BOX)P + F(XG, mag ) (3.19)
+G(Xr, iT)} < <coM2+couB||zo+ 1Flloe) + G loc-

Let o be an admissible control for player i. To prove the claim, it is necessary to estimate
JNi(al, (@?)4) in terms E[fOT |ai|?ds].

In what follows, we introduce the constant
T )
A = max 4TC0(C’0M2 + QCOHBHgO + 2||F||0o) + 8CoH||G |00 » E[/ |aSZZ\2ds]},
0

which is independent of N and 4, since the law of @ a " does not depend on 1.
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If ]E[f(;f |ai|?ds] > A, then, in view of (3.19) and the choice of A, we find

T
TN, (@) 44 —EU ————Ja} + B(XM)|? + F(XP,mdt + G(Xg,mE!
(', ( )j#i) 0 2at(X?Z)‘ ¢ (X7l (X; Xt) (X7 XT)

1 r .
> 1g / o 2dt | — TCo|[BI2 — TI|Fllso — Gl
4Co  LJo

> A/(4Co) = TCol|Bll%, =TI Fllsc — IGlloc = TV (@', (@) ).

If ]E[f(;‘r la’|2ds] < A, an estimate which is satisfied by @', then, for any R > 0, we obtain

P [ sup |XP'|> R

te[0,T
<P[|Zi| > R/3] + P [fOT ||t > R/3} Y P |28 sup Wi > R/3 (3.20)
t€[0,T]
< 9R2 (E[yzim +TE [fOT |a§\2dt} +26E | sup Wt|2]> < CR72(1 + A).
L t€[0,T]

We fix R large enough to be chosen below and N > Ng as in (3.18). Then

T
Nya( i (=27, \ _ 7 a'y|2 at N,i a’ Ny
PO G)) =B | [ ool BOGR + PO i+ G mig)|
t
2B | [ ool + BOGOR + FXE modt + G(XF )]
0 2a(Xt°‘ )
~E [ngp [F(XEmy’) = FOXP mo)| + |G(Xg mT) - G(XE, mT>|] :

where, in view of (3.18) and (3.20) and R suffciently large,

E|T s[up]|F<Xfi m3") = F(XE me)| + |GXE myt) = GXE )|
tel0,T
S(THDE|  sup  |F(a,mY") = Fla,m)| +|G(z,m") - G(z,m7)]
z€BR,t€[0,T) t T

C
+2(T+ D[ Flloc + [|Glloc)P| sup [X7| >R <~ + 5(1+4) <
t€[0,T] R

B W
N ™

It follows that
JN,Z(QZ’ (aZJ)]#Z) 2 E |:/
0

Therefore, setting vf‘i = Xto‘i — /28Wy, we get

jaf + B(XP) 2+ F(XE" my)dt + G(X%’;mﬂ} -

| M

2a(Xf)

T
i 4 (=77 Tdat Soal o~ =Nl o~ g
TNi(al, (@2 )j45) > E [/O Llag, i) + F(v s me)dt + Gy ,mT)] ~ 3
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The same argument, with an estimate from above instead of an estimate from below, shows
that

: i j i i ~ i ~ i €
I¥@ @ )y) < B | [ L5 + FOE i+ G )| + 5
0
Since, in view of the optimality of @%" in (3.17), we also have
r_ . i ~ i ~ i
B| [ Lladont') + o mat + Glogt )|
0
T _ i i ~ i ~ i
> B | [ Lt )+ Faf i+ G )|
0

combining the three last inequalities we conclude that (azi)i_lw.7 ~ 1s an e—Nash equilib-

rium. O

APPENDIX A. A UNIQUENESS RESULT FOR A CONTINUITY EQUATION
We study here the uniqueness of distributional solutions of the forward continuity equation
dym +div(mb) =0 in RYx (0,T) m(0) =7y in RY, (A1)

where 7 is a Borel probability measure on R? with a bounded density and b : [0, T] x R? —
R? is a bounded, half-Lipschitz from below Borel vector field, that is, there is a constant
Cp such that, for all z,y € R? and ¢ € [0, T7,

|be(2)] < Co and (b(t,x) = b(t,y)) - (& —y) > —Colz — y|*. (A.2)

The existence and uniqueness of distributional solution of (A.1) is closely related to the
existence and uniqueness of solutions of the ODE

= b(xy) in [0,t0], =(to) = =o. (A.3)
The following result is a variant of a theorem in [7]:

Proposition A.1. Assume (A.2) and let g € P1(R?) be absolutely continuous with
bounded density. Then there exists a unique bounded and absolutely continuous with re-
spect to the Lebesgue measure solution of (A.1l).

The proof requires several steps and is based on the Filippov regularization b’ of b; see Fil-
ippov [19]. Recall that b¥ is an upper semicontinuous set-valued map with convex compact
values. It follows from (A.2), that, if N = {(=x,t) : {b;(x)} # bf'(z)}, then

LITLHN) = 0. (A.4)

It is known that, in view of (A.2), for any (zq,t9) € R? x (0,T], there exists a unique
absolutely continuous solution X (zg, to, ) of the backward differential inclusion

T € bf(xt) in [0,to], @, = o,

which is referred to as the Filippov solution of the ODE, and, for all zg,z; € R? and
te [0, to],

|X($0,t0,t) —X($1,t0,t)| S 600T|.’E0—331|. (A5)
Note that any smooth approximation b¢ of b obtained by, for example, a convolution with
a nonnegative, smooth kernel, satisfies (A.2) with the same constant Cp.
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It then follows that the classical backward flow X¢(xg,to,-) of
7 =bi(z7) in [0,to], Ty, =T,
satisfies (A.5) with a uniform constant, hence, it converges locally uniformly to X.

Lemma A.2. Assume (A.2). Then, for any 0 <t < tg < T, the map x — X(x,to,t) is
surjective.

Proof. Arguing by contradiction, we assume that, for some ¢ € [0,tp], there exists y €
R4 X (R?, ¢, t). The finite speed of propagation property and the continuity the flow yield
some & > 0 such that Bs(y) N X (R%, tg,t) = (.

Let g be a probability measure with a smooth density supported in Bs(y) and b° a smooth
approximation of b satisfying (A.2) with a constant independent of €. Note that, for any
0<t<ty<T,the map z — X¢(x,tp,t) is smooth and one-to-one.

We consider the classical solution m® to the continuity equation
oymf + div(m®b*) =0 in RY x (t,T) mS(t) = .
Since div(b%) > —Cp, we infer from the maximum principle that

Im oo < [I70 o™

Passing (up to a subsequence) to the e — 0 limit, we obtain m € L>(R? x (0,T)) solving
oym +div(mb) =0 in RYx (t,T) m(t) =mp in RY, (A.6)
in the sense of distributions.

Next, we use Ambrosio’s superposition principle [2] which provides a connection between
solutions of the continuity equation (A.6) and the ODE (A.3) in the form of a Borel measure
n on I' = C([t, to], R?) which is concentrated on solutions of (A.3) and is such that m(s) =
estn for s € [t,T7.

We claim that, for n—a.e. v € ', 7y is a Filippov solution of (A.3). Indeed, it follows from
(A.4) that, since m is absolutely continuous with respect to the Lebesgue measure,

T T
0= / / 1n(z, s)m(x, s)dxds = // In(v(s), s)dsn(dy).
t JR4 rJt
Hence, for n—a.e. v € T, (vs,5) ¢ N for a.e. s € [t,T] and, therefore, for a.e. s € [¢,T],
A5 = bi(vs) € b (7).

Thus, for n—a.e. v € I', v is a Filippov solution of (A.3), and, in view of the uniqueness
of the backward solution, v(s) = X (v(to), to,s). Since 7(t) belongs to the support of
which is contained in Bs(y), this leads to a contradiction. O

Lemma A.3. Assume (A.2). Then, for any s,t € [0,T] with s < t, there exists a set Es;
of full L1—measure on which X (-, t,5) is a singleton.

Proof. The main step of the proof is the fact that, for any = € R%, the set X' ({z},s,1),
which, in view of Lemma A.2, is nonempty, is connected.

Since X ~!({x},s,t) is compact, it suffices to show that, if O; and Oy are two open subsets
of R? such that X ~1({z},s,t) C O1UOz and O1 N Oz = (), then X1 ({x}, s, ) is contained
either in O7 or in Os.
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Let O1 and O3 be as above. The upper-semicontinuity of X ~!(-, s,t), which is a consequence
of the stability of the flow, yields some 7 > 0 such that X ' (B,(z),s,t) C O; U Os.

Let b° and X¢ be respectively a smooth approximation of b and the associated group of
solution. Then (X¢)~™Y(B,(z),s,t) = X°(B,(x),t, s) is connected and, for € small enough, is
contained in O1 UQO4. Thus, it is contained either in O; or in Os. Without loss of generality,
we can assume that there exists £, — 0 such that (X*)~}(B,(z),s,t) C O;.

Passing to the limit up to this subsequence, we infer that

X' ({x},s,t) C () limsup(X=") (B, (x),s,t) C Os.
r>0

Since O1N03 = ) and X1 ({z}, s,t) C O1UOs, this implies that X ~!({z}, s,t) is contained
in O1, and, hence, X !({x}, s,t) is connected.

The fact that * — X(z,s,t) is Lipschitz continuous and the area formula imply that
X~1({z},s,t) is at most countable for a.e. € R%. Then the fact that X1 ({z},s,t) is
nonempty and connected implies that, as soon it is countable, X ~'({z},s,t) must be a
singleton for a.e. z € R%. O

The next Lemma is about the existence and uniqueness of a forward solution of the Fillipov
ODE.

Lemma A.4. Assume (A.2). Then, there exists E C R%of full L%—measure such that,
for any x € E, there exists a unique forward maximal absolutely continuous solution of
iy € bF (24) on [0,T) with zo = =.

Proof. Let (tn)nen be a countable and dense set of times in [0,7] with tgo = T and F =
N, Eo,, where Eg; is given in Lemma A.3. Note that E had a full L% —measure in RY.
Then, for any « € E, there exists a unique y € R¢ such that X(y,T,0) = z.

We claim that ¢ — X(y,T,t) is the claimed unique forward maximal solution. Indeed,
by definition, it is a maximal solution. Assume that z : [0,#*) — R? is another maximal
solution defined on an interval [0, ¢*) with ¢* € (0, 7] and xy = z. Note that, the backward
uniqueness of the flow, implies that zs = X (x¢,t,s) for any 0 < s < ¢ < t*.

Let t, € (0,t*). Then t — X(y,T,t) is a solution on [0,t,] starting from X(y,T,t,).
Therefore 4, and X (y, T, t,) belong to X ~}({x},t,,0), which is a singleton by the definition
of Eyy,. It follows that zy, = X(y,T,t,). So x¢ = X(y,T,t) on [0,t*), and, hence, the
uniqueness. ]

We are now in a position to complete the proof of the existence and uniqueness of bounded
and absolutely continuous distributional solutions of the continuity equation.

Proof of Proposition A.1. Since the existence of a bounded solution of the continuity equa-
tion can be achieved by standard approximation, we concentrate only on the uniqueness.

Let m be an absolutely continuous solution to the continuity equation with initial condition
mmp. The Ambrosio superposition Theorem [2] yields a measure n on I' such that m(t) = e;fin,
where e;(y) = v, and for n—a.e. v € T, 7y is an absolutely continuous solution to the ODE
Ve = be(n)-

Arguing as in the proof of Lemma A.2, we find that, that n—a.e. v € I is a Filippov solution
of the ODE.
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We now disintegrate 1 with respect to mo into n(dy) = [ga n2(dy)mo(x)dx in such a way
that, for mg—a.e. © € R? and n,—a.e. v €', 79 = x. Since, by Lemma A.4, the Filippov
solution to the ODE is unique for a.e. z € RY, we obtain that, for my—a.e. = € R%, 1,
is a Dirac mass. The uniqueness of the bounded and absolutely continuous solution of the
continuity equation then easily follows from [2]. O

(1]
2]
8]
(4]
(5]
(6]
(7]
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