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Abstract

Model checking is an effective way to verify behaviours of an agent-based
simulation system. Three behaviours are analysed: operational, control, and
global behaviours. Global behaviours of a system emerge from operational be-
haviours of local components regulated by control behaviours of the system.
The previous works principally focus on verifying the system from the oper-
ational point of view (operational behaviour). The satisfaction of the global
behaviour of the system conforming to the control behaviour has not been in-
vestigated. Thus, in this paper, we propose a more complete approach for
verifying global and operational behaviours of systems. To do so, these three
behaviours are firstly formalized by automata-based techniques. The meta-
transformation between automata theories and Kripke structure is then pro-
vided, in order to illustrate the feasibility for the model transformation be-
tween the agent-based simulation model and Kripke structure based model.
Then, a mapping between the models is proposed. Subsequently, the global
behaviour of the system is verified by the properties extracted from the control
behaviour and the operational behaviour is checked by general system perfor-
mance properties (e.g. safety, deadlock freedom). Finally, a case study on the
simulation system for aircraft maintenance has been carried out. A counter-
example of signals sending between Flight agent and Plane agent has been
produced by NuSMV model checker. Modifications for the NuSMV model and
agent-based simulation model have been performed. The experiment results
show that 9% out of 19% of flights have been changed to be serviceable.
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1. Introduction

The popularity of the Agent-Based Simulation System (ABSS) has increased
dramatically over the past decade (Macal 2016; Abar et al. 2017). The present
applications of the ABSS span a wide range of areas: project management
(Song et al. 2018), logistics and transportation (Serrano-Hernandez et al. 2018),
emergency evacuation (Joo et al. 2013), aircraft maintenance (Liu et al. 2018),
etc. The basic elements of the ABSS consist of agents, agent relationships, and
the agents’ environment. The modeling of the ABSS is not that difficult. The
modeling process involves the building of individual agents, the definition of
the interactions between agents, and the design of the agents’ environment.
Agents are built individually and the interactions with neighboring agents are
usually clear. However, patterns, structures, and behaviours emerging from
the system are not explicitly programmed into the model but arise through the
agent interactions (Macal and North 2010). Lacking the ability to represent
and control agents not only increases the difficulty for the practical develop-
ment of the ABSS but leads to the distrust for using agents in critical domains
(Fisher 2005).

Formal verification is a powerful tool to demonstrate the correctness of sys-
tem behaviours. In this paper, system behaviours are divided into global and
operational behaviours. Many efforts have been made in this area. However,
most of researches focus on how to extend the formal logic to support the de-
scription of the more complex system (Al-Saqqar et al. 2015; Raimondi 2006).
Some other works contribute to the subject of model transformation (El Men-
shawy et al. 2018; Keshanchi, Souri, and Navimipour 2017). Few studies have
given attention to the system itself. The control behaviour, operational be-
haviour and global behaviour are often involved when we analyze a system.
Understanding the conformity of global behaviours to control behaviours is
another effective way to verify whether the system design is satisfactory (Ben-
tahar et al. 2013). Therefore, the challenge of our research focuses on how to
better verify the behaviours of the ABSS with only the existing formal logics.

In this paper, we address the issue of verifying both the global behaviour
and the operational behaviour of the ABSS. The global behaviour is extracted
from the ABSS, which describes the behaviour of the object of interest instead
of concerning any details. The operational behaviour of the ABSS is based on
how the ABSS functions from the operation level, where any reachable details
will not be ignored. The differentiation of these two behaviours allows us to
verify the behaviour of the ABSS from the abstract and detailed levels. The
behaviour of the detailed level is verified by the general system performance
properties like safety, liveness, etc. On the other hand, the verification for the
behaviour of the abstract level is performed with a control behaviour. Con-
trol behaviours are application-independent, which regulate the operational
behaviour (application-dependent) from the abstract level. In Bentahar et al.
(2013) work, the control behaviour was proposed to verify the conformity of
the operational behaviour of the composite web services. We verify the global
behaviour of the ABSS based on the idea of Bentahar’s work. The control be-
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haviour helps guarantee that the model of the ABSS considers design require-
ments and constraints. At the design time, it permits assessing the impacts of
any changes in the global behaviour on the conformity of the global behaviour
to the control behaviour. For instance, a new agent has to be integrated into the
ABSS to complete its functionality. In this case, the control behaviour remains
the same and it can be utilized to verify the conformity of the global behaviour
of the new ABSS.

The symbolic model checking technique is chosen to verify global and oper-
ational behaviours of the ABSS. The problem of model checking is formally ex-
pressed by M |= ϕ, where M represents the system model, ϕ is a property, and
|= is the satisfaction symbol to check whether the model M satisfies the prop-
erty ϕ. If the property is not satisfied by the system, a counterexample is pro-
duced. The efficiency of this technique for verifying the multi-agent systems
has been proven (Al-Saqqar et al. 2015), as it uses less memory than automata-
based approaches and it alleviates the “state explosion” problem. NuSVM is
a symbolic model checker designed to allow for the description of FSM (Fi-
nite State Machine) which ranges from completely synchronous to completely
asynchronous, and from the detailed to the abstract (Cimatti et al. 2002). The
primary purpose of NuSMV input language is to describe the transition rela-
tion of the FSM, which is quite suitable for describing the state transition of
statecharts in agents. Therefore, in this paper, we choose NuSMV as the model
checker. The approach proposed is employed to verify the behaviours of the
ABSS proposed by Liu et al. (2019). As shown in Fig. 1, a number of agents
such as Flight, Plane, etc., are involved and the general information between
agents is provided. The ABSS has simulated the whole process of aircraft main-
tenance, including strategies, scheduling plans, the cost analysis and the ser-
vice level analysis, etc. A significant exploration of maintenance information
has been also performed in this system. As a result, we choose the design of
this ABSS as our case study.

A framework is proposed to illustrate the overall approach to verifying the
behaviours of the ABSS via symbolic model checking, which is shown in Fig.
2. This framework addresses the difference between global and operational
behaviors, which implies the importance of the abstract and detailed design
respectively. Global and operational behaviours are verified in different ways.
The former is verified by the control behaviour. The latter is checked by the
general system performance properties. Finally, the verification result can
improve the system design by means of counterexamples. The counterexam-
ple of the global behavior can improve the design of the interactions between
agents. The operational behaviour counterexample is able to correct the agent
behaviour directly.

To conclude, the symbolic model checking technique is used to check the
satisfaction of global and operational behaviours of the ABSS. The main con-
tributions of this research work are illustrated as follows:

• proposing an improved model checking approach to verifying the ABSS
from both the abstract and detailed points of view;
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Figure 2: The framework on model checking for the ABSS

• providing a complete model transformation process from the ABSS to the
formal model for verification;

• giving a concrete case study of formal methods in practice and demon-
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strating the power of formal methods in improving designs and in pro-
viding new insights.

Based on the verification results, the problem of signals transferring between
Flight agent and Plane agent has been discovered, which influences the system
operation for a relatively long period of the simulation execution. The sim-
ulation results show that the efficiency of the aircraft maintenance has been
improved after having modified the behaviour of Flight agent.

The remainder of this paper is structured as follows. Section 2 reviews
the main related works. Section 3 formalizes behaviours of the ABSS. Section
4 provides the meta-model and model transformations as a basis for model
checking and proposes properties to be checked and designs the properties to
be checked. Section 5 gives the modification for agents based on model check-
ing verification results and conducts a comparative simulation experiment to
demonstrate the feasibility of the modification. Section 6 concludes the paper
with future perspectives.

2. Related Researches and Limitations

Operational and control behaviours have been studied in Web services (Sheng
et al. 2010; Bentahar et al. 2013; Souri and Navimipour 2014; Navimipour
et al. 2015). The control behaviour was proposed by Bentahar et al. (2013)
to verify the operational behaviour of composite web services. In their work,
the control behaviour defines a general design of web services and guides and
monitors the execution progress of the operational behaviour. The operational
behaviour implies the business logic of a web service operation. The detailed
formal definition of behaviours and the transformation process were provided.
However, their verification approach is limited. The major problem may be
that it can not check the operational behaviour where states transitions are de-

fined with conditions. For example, the operation like P laneP repared
“invoke”−−−−−−−→

P laneScheduled can not be checked. Because the LTL (Linear Temporal Logic)
or CTL (Computational Tree Logic) (Pnueli 1977) specification representing
this kind of execution sequences can not pass by NuSMV model checker. Ac-
cordingly, we think that their approach is suitable to verify the global be-
haviour where fewer details are involved and no condition exists.

Many efforts have been made to verify the logic of multi-agent systems.
Logic has been extended to support the model checking for complex systems.
Al-Saqqar et al. (2015) extended the CTL logic with knowledge and commit-
ments to verify the multi-agent systems with respect to knowledge and social
commitments. Meski et al. (2014) extended LTL with the epistemic compo-
nent for multi-agent systems. Raimondi (2006) extended the temporal logic to
multi-modal logics for time, knowledge, correct behaviour, and strategies, in
order to develop techniques and tools for the formal verification of the multi-
agent system. These approaches principally contribute to improving the capa-
bility of model checking. Researchers tend to focus on the logic itself in model
checking. However, few of them try to concentrate on better understanding

5



the system, in order to improve the efficiency of model checking. In this pa-
per, we have not extended any logics. We have decided to check the ABSS by
analyzing global and operational behaviours of the ABSS.

Model transformation is usually employed in model checking. Model check-
ing often automatically verifies systems by model checkers. Many powerful
model checkers such as SPIN1, PRISM2, UPPAAL3 and NuSMV4 are widely
used. The modeling languages supported by model checkers are not usually
appropriate to model the systems that need to be checked. Thus, model trans-
formation techniques are involved in model checking. For example, Bordini
et al. (2006) automatically transformed multi-agent systems into Promela or
Java, in order to use the associated Spin and JPF5 model checker to verify sys-
tem. Keshanchi, Souri, and Navimipour (2017) transformed the labeled transi-
tion system into NuSMV code to verify the genetic algorithm for task schedul-
ing in the cloud environment. El Menshawy et al. (2018) transformed RTCTLcc

into RTCTL (real-time CTL) where RTCTLcc expresses qualitative and quan-
titative commitment requirements. Another example is provided by Benta-
har et al. (2013), they presented the process of transforming FSM into Kripke
model. Similar to our work, however, their transformation process was not
involving the messages.

Model checking is capable of verifying and demonstrating system behaviours.
However, industrial applications of model checking are very limited. Researchers
have a tendency to use less concrete examples. For example, Bentahar et al.
(2013) used a ticket reservation system to illustrate their approach. This sys-
tem just described the operation behaviour of the ticket reservation from the
global point of view. No details about reservation processes were involved.
Keshanchi, Souri, and Navimipour (2017) adopted the genetic algorithm to ex-
plain the feasibility of model checking. Only a single module was referred to.
Al-Saqqar et al. (2015) modelled NetBill protocol to demonstrate the efficiency
of their method. A real case was analyzed by El Menshawy et al. (2018). They
chose the landing gear system in Boniol and Wiels (2014) as their case study,
which was a real and industrial case. They corrected their NuSMV model af-
ter having found a counter-example by specifications. However, they did not
discuss the reason why the original model was not correct and the comparison
experiments were not provided regarding original and corrected models.

As a conclusion, we are motivated to propose a more complete approach of
model checking and our method is explained based on a real simulation system
for aircraft maintenance. So, the improvement of the system and comparison
experiments are performed, which provides an example of an application of
formal methods.

1http://spinroot.com/spin/whatispin.html (accessed in March 2019)
2http://www.prismmodelchecker.org/ (accessed in March 2019)
3http://www.uppaal.org/ (accessed in March 2019)
4http://nusmv.fbk.eu/ (accessed in March 2019)
5https://github.com/javapathfinder/ (accessed in March 2019)
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3. The Formalization of ABSS Behaviours

In this section, the specification of the ABSS is formalized as the global be-
haviour, operational behaviour and control behaviour. Control behaviour ex-
presses the general behaviour of any process related to aircraft maintenance.
However, global behaviour and operational behaviour are dependent on appli-
cations. These behaviours have been investigated for isolated or composite web
services (Maamar et al. 2009; Yahyaoui, Maamar, and Boukadi 2010; Bentahar
et al. 2013). Different methods like Büchi automaton and labeled transition
system, were used to formalize the behaviours. Büchi automaton extends a fi-
nite automaton to infinite inputs, which meets the requirements for the contin-
uous invocation of plane’s service. Hence, we use Büchi automaton to describe
the behaviours of the ABSS.

3.1. Global Behaviour and Operational Behaviour
The global behaviour (Fig. 3) describes the behaviours happening in the

life cycle of planes from the global point of view. The operational behaviour
(Fig. 4) is employed to describe the inner behaviour of the component. The
definitions of behaviours are illustrated as follows.

Definition 3.1. (Global Behaviour) The global behaviour of an agent-based
system is a 5-tuple GB =< Σgb,Qgb,Q0,Fgb,∆gb >, where:

• Σgb is a finite set of messages sending between agents;

• Qgb is a finite set of states of agents;

• Q0 ⊆Qgb is a set of initial states;

• Fgb ⊆Qgb is a set of final states;

• ∆gb ⊆Qgb
�
Σgb

�
Qgb is a transition relation.

Definition 3.2. (Agent Operational Behaviour) The operational behaviour of
an agent is a 7-tuple AOB =< Σaob,Σin,Σout ,Qaob,Q0,Faob,∆aob >, where:

• Σaob is a finite set of messages of the agent, including the empty message
∅;

• Σin ⊆ Σaob is a set of messages inside the agent;

• Σout is a set of messages outside the agent;

• Qaob is a finite set of states of the agent;

• Q0 ⊆Qaob is a set of initial states;

• Faob ⊆Qaob is a set of final states;

• ∆aob ⊆Qaob
�
Σaob

⋃
Σout

�
Qaob is a transition relation.
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Figure 3: The global behaviour of the ABSS for aircraft maintenance

Definition 3.3. (Valid Conversation) A conversation in AOB over a sequence

of messages Σ0,Σ1, ...,Σn from Σaob is a sequence Q0 Σ0−−→Q1 Σ1−−→Q2...Qn−1 Σn−1−−−−→
Qn such that ∀i ≥ 0,Qi ,Qi+1 ∈ Qaob, (Qi ,Σi ,Qi+1) ∈ ∆aob,Q0 ∈ Q0,Q

n ∈ Faob.
The conversation is said to be valid iff it visits infinitely an element of Faob.

As the forms of global and operational behaviours are similar, we just pro-
vide an example of the operational behaviour. Fig. 4 represents the operational
behaviour of Flight agent. The elements of AOB over this agent are explained
as follows:

• Σaob = {STA.delay, Plane.ready, Plane.receive, “null”, (“schedule”, plane)};

• Σin = {STA.delay, Plane.ready, Plane.receive};

• Σout ={(“schedule”,plane)};

• ∆aob= {(Init, STA.delay, Checking), (Checking, Plane.ready, Ready), (Ready
, (“schedule”, plane), Scheduling), (Init, (“schedule”, plane), Scheduling),
(Scheduling, Plane.receive, End), (End,“null”, Init)}.

One conversation in the AOB of Flight agent can be:

Init
(“schedule”,plane)
−−−−−−−−−−−−−−−−→ Scheduling

P lane.receive−−−−−−−−−−−→ End.
It should be noted that dashed, dotted and solid arrows imply the messages

of receiving from other agents, sending to other agents, and sending to the in-
terior respectively. The messages of sending or receiving are always associated
with the destination agents. For the message of receiving from other agents like
“STA.delay”, it is composed of the name of agent (e.g. STA) and the signal (e.g.
“delay”). In terms of the message of sending to other agents like “(“schedule”,
plane)”, it consists of the signal (“schedule”) and the agent (Plane).
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Figure 4: The operational behaviour of Flight agent

3.2. Control Behaviour
Control behaviours restrict the operation sequence of system behaviours.

The conformity to the control behaviour reflects the correctness of the system
behaviours. Since the control behaviour is formalized by Büchi automaton as
well, we do not repeat its definition. Here we just introduce the content of the
control behaviour.

Fig. 5 illustrates the control behaviour of the ABSS, which is adapted from
Bentahar et al. (2013). They provided a control behaviour of composite web
services. Since the control behaviour is the application independent specifica-
tion of a business logic, it is possible to adapt control behaviours of one domain
to another domain. In terms of web services, the concept of “compensate” im-
plies the original execution prices will be refunded when the service provider
can not provide the committed service or deliver the ordered commodity (Liu,
Ngu, and Zeng 2004). However, as for aircraft maintenance, we have not in-
volved this issue. Thus, we delete this behaviour. In addition, “Aborted” refers
to one flight has to be canceled because of a long delay.

To illustrate the efficient design of the global behaviour of the system, we
check the conformity of the global behaviour of the system to the control be-
haviour. The conformity is defined as the relationship between the conversa-
tions of the global behaviour and the control behaviour executions. According
to Bentahar et al. (2013), the type of the conformity can be: weak and strong.
The former implies each conversation c in the global behaviour is simulated by
an execution e in the control behaviour, which can be denoted as c # e. The
latter highlights each valid execution e in the control behaviour is simulated
represented by a possible conversation c in the global behaviour (e# c).

Based on the two types of the conformity, all the conversations in Fig. 3
should be mapped onto valid executions in Fig. 5. On the other hand, all the
valid executions in Fig. 5 should be mapped onto the conversations in Fig.
3. Since the control behaviour is application-independent and more abstract,
the mapping is not necessarily state-to-state and transition-to-transition. For

9



Not Activated Receivedstart Suspended

Processed

Done

Activated

invoke

failure

invoke

Aborted

repaired

delay

invoke

invoke

Rolling back

Figure 5: The control behaviour of the ABSS

instance, Conversation 1 in the global behaviour and Execution 1 in the control
behaviour ( * means repetition or loop) are shown as follows:

Conversion1 = (Init
“invoke”−−−−−−−→ P laneInvoked

“invoke”−−−−−−−→ P laneChecking
“T imeIsDue”−−−−−−−−−−−−→ ScheduledMaintenance

“invoke”−−−−−−−→ Analyze
“invoke”−−−−−−−→ Repairing

“invoke”−−−−−−−→ P laneChecking
“invoke”−−−−−−−→ P laneP repared

“delay”
−−−−−−→ P laneCanceled)∗.

Execution1 = (NotActivated
“start”−−−−−−→ Received

“invoke”−−−−−−−→ Activated
“f ailure”
−−−−−−−−→

Suspended
“repaired”
−−−−−−−−−→ Activated

“delay”
−−−−−−→ Aborted

“invoke”−−−−−−−→Done)∗.
The mappings between state-to-state (S-S) and transition-to-transition (T-

T) are explained in Table 1. Verifying this conformity one by one manually is
quite tedious even if a small number of states are involved. The number of
possible conversations grows dramatically with the increase in the number of
states. So, an automatic verification approach is proposed in Section 4.

3.3. The Adaptability of Büchi Automata
A typical agent-based model has three elements (Macal and North 2010):

• A set of agents, their attributes and behaviours;

• A set of agent relationship and methods of interaction: an underlying
topology of connectedness defines how and with whom agents interact;

• The agents’ environment: agents interact with their environment in addi-
tion to other agents.
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Table 1: The mapping between Conversation1 and Execution1

Conversation1 Execution1
S-S Init NotActivated

P laneInvoked Received
P laneChecking,P laneP repared Activated
ScheduledMaintenance,Analyze,
Repairing

Suspended

P laneCanceled Aborted,Done
T-T Init→ P laneInvoked NotActivated→ Received

P laneInvoked→ P laneChecking Received→ Activated
P laneChecking→ ...→ P repared Activated →Suspended →

Activated
P laneP repared→ P laneCanceled Activate→Aborted→Done

From this definition, the agent-based system not only concentrates on the be-
haviour of individual agents but addresses the interactive behaviour between
agents.

The agent-based system is usually formalized by IS (Interpreted System)
to reason about knowledge and temporal properties (Fagin et al. 2004). The
formalism is illustrated as follows (Al-Saqqar et al. 2015) :

• A set of n agents A = {1,2, ...,n} such that each agent i is described by:

– A non-empty set of local states Li . The local state of agent i is repre-
sented by li ∈ Li . Each local state of an agent represents the complete
information about the system that the agent has at a given moment;

– A set of local actions Acti to account for the temporal evolution of
the system;

– A local protocol function Pi : Li → 2Acti to identify the set of enabled
actions that could be performed in a given local state;

– A local evolution function τi that determines the transitions for an
individual agent i between its local states and it is defined as fol-
lows: τi : Li

�
Acti → Li .

• The set of all global states in the system G ⊆ L1
�
...
�
Ln: a subset of the

Cartesian product of all local states of n agents.

– A global state g ∈ G is a tuple g = (l1...ln) that represents a “snapshot”
of the system;

– The local state of agent i in the global state g is represented by the
notation li(g).

• I ⊆ G: the set of initial global states for the system;

• The global evolution (transition) function: it can be defined as follows:
τ : G

�
ACT → G, where ACT = Act1

�
...
�
Actn and each component

a ∈ ACT is a joint action, which is a tuple of actions (one for each agent);
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• A setΦ of atomic propositions and a valuation function V for those propo-
sitions V : G→ 2Φp .

This definition implies that the consideration of the agent level (detailed level)
and the global level (abstract level) is necessary for the description of the agent-
based system. The formalization of states and transitions from both level are
required. As for our definitions, Definitions 3.1 and 3.2 are corresponding
to global level and agent level respectively. The core idea of the agent-based
system from these two definitions is captured by our definitions. As a result,
our definitions are appropriate for the description of the ABSS as well. In
addition, the idea of providing a new definition based on automaton theory
is to take advantage of Büchi automaton. For example, infinite runs can be
captured by finite structures, which is compatible with continuous invocation
of aircraft maintenance.

4. Model Checking for the ABSS

In this section, the meta-model transformation from Büchi automaton to
Kripke structure is firstly proposed. Then, the model transformation from the
ABSS to the NuSMV model is provided. Finally, the specifications of LTL and
CTL are designed.

4.1. Meta-model Transformation
To illustrate the feasibility of the transformation from the ABSS to the

NuSMV model, the meta-model transformation is accomplished. The meta-
model transformation implies the transformation from Büchi automaton to
Kripke structure. This transformation process lays the foundations for the
next model transformation. The definition of Kripke structure is shown in
Definition 4.1. The transformation between them has been provided by (Ben-
tahar et al. 2013). They discussed the transformation of states and transitions
in detail. However, the messages of Büchi automaton has not been involved.
The information of messages should be transformed into the labels of Kripke
structure.

Definition 4.1. (Kripke structure) A Kripke structure is a 4-tupleK =< S,I,δ,L,
where:

• S is a finite set of states;

• I ⊆ S is the subset of initial states;

• δ ⊆ S
�
S is the transition relation;

• L : S→ 2AP (elements of 2AP are called labels) is a labelling function. AP
is a finite set of atomic propositions.

A Büchi automaton is a 5-tuple A =< Σ,Q,Q0,F,∆ >, which is generalized
by Definition 3.1. The transformation process from Büchi automaton to Kripke
structure is illustrated as follows:

12



• S = Q: the states of Kripke structure are the same as those of Büchi au-
tomaton;

• I = Q0: the initial states of Kripke structure are the same as those of
Büchi automaton;

• ∀s, s′ ∈ S, (s, s′) ∈ δ and L(s′) = a, iff ∃s, s′ ∈Q,a ∈ Σ and (s,a, s′) ∈ ∆.

S S’

S’S

{p}

S

Transition 1 Transition 2

{p}
{q}

S {q}

Figure 6: The meta-model transformation from Büchi automata to Kripke structure

Fig. 6 provides an example of the transitions in the transformation process.
For Transition 1, s, s′ ∈ S, (s, s′) ∈ δ and L(s′) = {p}, because ∃s, s′ ∈Q, {p} ∈ Σ and
(s, {p}, s′) ∈ ∆. Transition 2 shows the transition process when s, s′ are the same
state.

4.2. Model Transformation
The model transformation involves global and operational behaviours of

the system. The former behaviour is verified by the control behaviour. So,
the properties to be checked are extracted from the control behaviour. In or-
der to make the verification clearer, all the states in the state chart of global
behaviours will be corresponding to the state names of the control behaviour.
As a result, the final state chart of the global behaviour is illustrated in Fig. 7
where the names of states are simplified as: NA (Not Activated), Re (Received),
Ac (Activated), Su (Suspended), Ab (Aborted), Pr (Processed) and Do (Done).
The mapping between global and control behaviours can be seen in Table 1.
In addition, the states of P laneScheduled, P lanceServiced,P laneArrived of the
global behaviour correspond to state P rocessed of the control behaviour. The
transformation process will be analyzed in the following.

It should be noted that the verification of the global behaviour is not in-
volved with labels. Because the verification focuses on the execution sequences
of the states in the control behaviour. If labels are added to the transitions of
NuSMV model, the properties about the execution sequence will never be satis-
fied. In general, transition processes are described as TRANS constraints. The
constraints do not support that one state has more than one following state
without labels. While the global behaviour of the system does not have any
labels and one state may have more than one following state. Hence, TRANS
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NA Re Ac Su

Pr Ab

Do

Figure 7: The state chart of the global behaviour of the system

constraints is not appropriate. We have chosen another semantically equiva-
lent ASSIGN constraints. The transformation process of the global behaviour
of the system is rather easy. The NuSMV code (Fig. 8) is given just by capturing
the transitions in Fig. 7.

MODULE main

VAR state:{NA, Re, Ac, Su, Pr, Ab, Do};
ASSIGN
init (state) := NA;
next(state):=
           case

   (state = NA)    : {Re};
   (state = Re)     : {Ac};
   (state = Ac)     : {Su, Pr, Ab};
   (state = Su)      : {Ac};
   (state = Pr)      : {Do};
   (state = Ab)     : {Do};

                 TRUE: state;
           esac;

Figure 8: The NuSMV model of the global behaviour of the system

The other transformation is dedicated to verifying the general system prop-
erties of the ABSS. This system has been implemented by simulation toolAnylogic6.
The process principally includes the structure transformation and the agent
transformation. The mapping between the ABSS and the NuSMV model is
illustrated in Table 2.

The structure of the ABSS (Fig. 1) is transformed into the NuSMV code
shown in Fig. 9. Here, we differentiate between module main in the NuSMV
code and the instance of Main agent. The latter is named as mainn.

In terms of the agent operational behaviour, sinceAnylogic is used to create

6https://www.anylogic.com/ (accessed in April 2019)
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Table 2: The mapping between the ABSS and the NuSMV model

ABSS NuSMV model
Agent-based system
structure

agents processes

connections parameters
Agent operational
behaviour

initial states initial states

transitions transitions
messages actions
timeout/ rate Null (action)
agent arrival Reach (action)
condition condition

the simulation system, the transition conditions of Anylogic should be trans-
formed. The triggering types of a transition can be messages, timeout, rate, and
condition. The condition of the ABSS implies either the logic combination of
agent states or agent messages. Fig. 10 shows a complete transformation of
Plane agent into the corresponding NuSMV code. The NuSMV code of lines
five to the last provides an example of the condition transformation. The con-
dition of the transformation fromReadyT oFly to Scheduled in the state chart is
that Plane agent receives Flight.Schedule. This condition is then transformed
into

(arg1.state = b7 & arg2.action = Schedule) : b8.

MODULE main
VAR
     flight    : process Flight(flight, plane, sta);
     plane   : process Plane(plane, flight, sta, ssa, mainn);
     cra        : process CRA(cra, plane);
     sta        : process STA(sta, cra, ssa, sca);
     ssa        : process SSA(ssa, cra, sta);
     sca        : process SCA(sca, sta);
     mainn  : process Main(mainn, plane);

Figure 9: The transformation for the system architecture

4.3. Properties to Check
NuSMV allows to verify both CTL and LTL formulas (Cavada et al. 2019).

CTL formulas specify properties over the computation tree of the FSM (branching-
time approach). LTL formulas verify each linear path induced by the FSM
(linear-time approach). Here, we employ the logics of CTL and LTL to express
the properties. As global and operational behaviours should be checked, the
properties are defined as two parts: global behaviour properties and opera-
tional behaviour properties.
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FlyingTo

Waiting

Checking

FlyingToNext

Ready

Flight.Schedule

Main.Dispatch

Init

Landing

ReadyToFly

SSA.NoRepair

STA.Deliver
“Complete”

Flight.Schedule
Main.Delay

(“UnscheduledMRequest”, cca) | 

(“ScheduledMRequest”, cca)

InitScheduled

Plane.Receive Scheduled

Plane.Receive

------------------------------------------------------------------------------------------------------
-- The definition of Plane agent (plane, flight, sta, ssa, mainn)
-- b0: Init; b1: Ready; b2: InitScheduled; b3: FlyingTo; b4: Waiting; b5: 
Landing; b6: Checking; b7: ReadyToFly; b8: Scheduled; b9 FlyingToNext.
------------------------------------------------------------------------------------------------------
MODULE Plane(arg1, arg2, arg3, arg4, arg5)
VAR state   : {b0,b1,b2,b3,b4,b5,b6,b7,b8,b9};
IVAR action : {Null, Receive, Reach, Request, ScheduleMRequest, 
UnscheduleMRequest, Complete};

INIT (state = b0)

   TRANS(next(state)= case
                  (arg1.state = b0 & arg1.action = Reach)                                       : b1;

  (arg1.state = b1 & arg2.action = Schedule)                                  : b2;
  (arg1.state = b2 & arg1.action = Receive)                                    : b3;

                  (arg1.state = b3 & arg1.action = Reach)                                       : b4;
                  (arg1.state = b4 & arg1.action = Request & arg5.state = g0)    : b4;
                  (arg1.state = b4 & arg5.action = Dispatch)                                  : b5;

  (arg1.state = b4 & arg5.action = Delay)                                        : b7;
  (arg1.state = b5 & arg1.action = ScheduleMRequest)               : b5;
  (arg1.state = b5 & arg1.action = UnscheduleMRequest)          : b5;
  (arg1.state = b5 & arg4.action = NoRepair)                                 : b7;

                  (arg1.state = b5 & arg3.action = Deliver)                                     : b6;
  (arg1.state = b6 & arg1.action = Complete)                                : b7;
  (arg1.state = b7 & arg2.action = Schedule)                                 : b8;
  (arg1.state = b8 & arg1.action = Receive)                                    : b9;
  (arg1.state = b9 & arg1.action = Reach)                                       : b4;

                  TRUE: state;  
             esac)
  

(“Request”, 

mainn)

Figure 10: The transformation for Plane agent

The global behaviour properties are extracted from the control behaviour
of the ABSS, which are illustrated as follows.

CTL specifications:

• C1−ϕ = AG(state =NA − > AX state = Re);

• C2−ϕ = AG(state = Ac − > AX (state = Su | state = P r | state = Ab));

• C3−ϕ = AG(state = Ac − > EX (state = Ab));

• C4−ϕ = AG((state = P r | state = Ab) − > AX state =Do));

• C5−ϕ = AG (state =NA − > EF state = Ab);

• C6−ϕ = AG(state = Su − > EF (state = P r | state = Ab));

• C7−ϕ = AG(state = Su − > AX state = Ac);

• C8−ϕ = AG(state =NA − > AF state = Ac);

The formulas of C1, C2 and C7 follow the same form ϕ = AG(state = A − >
AX state = B). This form addresses that the next states of state A are always
B. For example, property C1 illustrates that state NotActivated is followed
by Received. C3 implies that the next state of state Activated is existentially
Aborted. The properties of C5 and C6 share the form ϕ = AG(state = A − >
EF state = B), which highlights that state B is reachable from state A. The for-
mula of C4 means that the process can reach Aborted state fromNotActivated.
The last formula specifies that the process will eventually in the future reach
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state Activated from NotActivated. Therefore, property C8 shows that start-
ing from state NotActivated, the process will eventually reach state Activated.

LTL specifications:

• L1−ϕ = G(state =NA − > X state = Re);

• L2−ϕ = G(state = Ac − > X F(state = Su | state = P r | state = Ab));

• L3−ϕ = G((state = P r | state = Ab)− > X F state =Do).

Property L1 represents the form ϕ = G(state = A − > state = B). This form
implies in all possible computations, state A is followed by state B. Thus, L1
explains that the next state of state A is always B. The last two properties share
the same form ϕ = G(state = A − > X F state = B). It denotes that one of
the future next states of state A will be state B. So, property L2 shows that
the future next states of Activated will be Suspended or P rocessed or Aborted.
Property L3 denotes that the system is at either P rocessed or Aborted state, it
will eventually reach Done state.

Similar forms of LTL and CTL formulas have been proposed to verify the
behaviour of the composite web services (Bentahar et al. 2013). However, af-
ter testing all the possibilities, some properties defined in their work such as
property L1, C1 and C2 are recognized as incorrect properties. Because p & q
in the formulas means conditions p and q hold at the same time and it can not
express the sequence of states. However, the operator of X,EX,AX implies the
satisfaction of the next state. Accordingly, there is no point in combining &
and X,EX,AX. For example, L1- ϕ = G(!(Su & X Do)) always passes. On the
other hand, L1’- ϕ = G(Su & X Do) is impossible to be satisfied. It is because
X Do is equal to False with no declaration of the current state. Su is treated as
T rue because it is only a simple state declaration. Thus, the counter-example
is as simple as this: “State :1.1: state = NA”.

Properties from general system properties (Al-Saqqar et al. 2015) like safety,
reachability, deadlock freedom, etc. are employed to check the operational be-
haviour of the system. We will define each property in the following.

Safety property
The safety property is often expressed by formula AG ! ϕ (CTL property),

where ϕ implies something bad. This formula means that the property ϕ is
never satisfied in all possible computations. In the ABSS, bad situations like
scheduling signal have been sent to the corresponding plane by Flight agent,
whereas the plane has not received it. This situation can be expressed as fol-
lows:

CTL - S1 -ϕ = AG(!(f light.state = Scheduled & plane.state = ReadyT oFly)).
Liveness property
The liveness property means something good will be always possible to

happen. The formulas of the liveness property are shown as follow. For exam-
ple, the plane is always possible to fly (CTL - S2).

CTL - S2 - ϕ = SP EC AG EF(plane.state = FlyingT oNext);
CTL - S3 - ϕ = SP EC AG EF(plane.state = Waiting − > plane.state =

ReadyT oFly);
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CTL - S4 - ϕ = SP EC AG EF(sca.state = Buying);
CTL - S5 - ϕ = SP EC AG EF(mainn.state =Delaying).
Reachability property
The reachability property represents that some particular situation can be

reached. The corresponding formulas are shown as follows. For example, in
SSA agent, state End can be existentially reached from StatesCheck.

CTL - S6 - ϕ = SP EC EF(ssa.state = StatesCheck − > ssa.state = End);
CTL - S7 - ϕ = SP EC EF(sca.state = Buying).
Deadlock property
The dead-lock property can be checked by using the commands under the

interactive mode. The commands are shown as follows:

1. NuSMV -int ass.smv;
2. go;
3. check f sm.

The first two commands allow the NuSVM to enter the interactive mode. Com-
mand 3 checks the dead-lock situation for all the transition relations.

5. Simulation Experiment Results

In this section, we firstly illustrate the verification results from NuSMV
model checker. The modification of the agent-based simulation model is then
implemented according to counterexamples. Finally, a detailed discussion on
our method is provided.

5.1. Verification Results
After combining the LTL, CTL specifications and the transformed NuSMV

model, a verifiable NuSMV program has been obtained. The verification re-
sults are separated into two types: global behaviour (Fig. 11) and operational
behaviour (Figs. 12 and 14). A counterexample of property CTL-S1 is pro-
posed by NuSMV model checker, which is shown in Fig. 12. In this figure, the
states transitions for Flight agent and Plane agent are concluded in Table 3.
The meaning of codes like b0 can be seen in Fig. 10. In order to make it easier
to follow the action in system with a large number of variables, only the values
of variables that have changed in the last step are printed in the states of the
trace (Cimatti et al. 2002). Thus, there is no value of state 1.3 for Flight agent.
The transition between states 1.5 and 1.6 implies Plane agent missed the signal
from Flight agent, because Plane agent was at state b4. However, state b4 is not
the appropriate state to receive the signal from Flight agent. As a result, some
constraints should be imposed on signals sending between these two agents.

The condition of “plane.state = Ready | plane.state = ReadyToFly” is added
to transition b0→ b1, which implies the scheduling signal can be sent to Plane
agent, iff Plane agent reaches at state “Ready” or “ReadyToFly”. Similarly, the
condition of “plane.state = ReadyToFly” is added to transition b2→ b1. The
former state b3 is deleted. It should be noted that “Ready” means the plane
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Table 3: The states transitions for Flight and Plane agents of the counter-example

state 1.1 state 1.2 state 1.3 state 1.4 state 1.5 state 1.6
flight a0 a1 a4 a0 a1
plane b0 b1 b2 b3 b4 b7

Figure 11: The results on checking properties of global behaviour of the system

is ready for the first scheduling, since then each ready state of the plane is ex-
pressed by “ReadyToFly”. Specification CTL-S1 has passed over NuSMV model
checker, which is shown in Fig. 13.

The other properties are all satisfied by the checker. Deadlock property
is checked by using commands and interactive mode of the model checker is
necessary. So, this property is verified separately.

Therefore, verification results show that the global behaviour satisfies the
constraints of the control behaviour. All the properties on liveness, reacha-
bility and deadlock are satisfied. Only property CTL -S1 does not pass. The
problem is identified as an issue about signals sending between Flight agent
and Plane agent.

5.2. Simulation Model Modification
Flight agent has been modified with respect to the correction of the NuSMV

model. The original and modified processes are shown in Figs. 15 and 16
respectively. The difference between these two processes is highlighted by red
lines. Some basic concepts are introduced, which aims to better understand
the process. For example, downtime is the difference between totalRepairTime
and scheduledInterval. scheduledInterval implies the interval between the time
of the arrival and departure for a plane. totalRepairTime is only involved all the
time used to repair faulty parts, excluding the time of waiting for the existing
resources and scheduling. Additionally, pollingTime means the time used to
check the state of a plane. In terms of service level, onTimeFlights, delayFlights
and canceledFlights are defined. One flight is supposed to be canceled if the
delayed time from the departure of a plane is more than 4 hours (Liu et al.
2019).

Comparison experiments have been conducted in order to investigate the
impacts of the modified process of Flight agent on service level. The run length
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Figure 12: The result on checking general system properties (except for deadlock)

is set to twelve months, which takes around five hours. Fig. 17 shows the
simulation results. The data on service level is the average of 10 repetitions’

20



Figure 13: The result on the corrected NuSMV model

Figure 14: The result on checking the deadlock property

data. Warm-up period is set to five days to avoid initialization bias since the
simulation system starts with new planes.

From this figure, we can observe that the modified process outperforms
the original process in the number of cancelled flights. However, the modified
process has failed to surpass the original process in the numbers of delayed and
on-time flights. More precisely, the number of delayed flights has increased
from 12% to 34% and the number of on-time flights has decreased from 69%
to 56%. The disadvantages of the modified process on delayed and on-time
flights cannot illustrate the inefficiency of the modification. In fact, it is quite
reasonable to obtain this result. As less flights are cancelled in the modified
model, it leads to more delayed flights. Delayed flights may result in producing
more flights of delay. Therefore, the number of delayed flights has grown.
On-time flights could be less for the modified model as well, because delayed
flights may cause the “chain reaction” (i.e. one delayed flight maybe causes the
next flight delayed). However, if one flight has to be cancelled, it just leads to
the increase in the number of cancelled flights but it will start to serve on time
in the next time. Therefore, less number of on-time flights is appropriate.
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Figure 15: The original process for Flight agent
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Figure 16: The modified process for Flight agent

Additionally, the efficiency of the modified process can been explained
more clearly if the opposite of cancelled flights is considered. Nine percent
of cancelled flights have turned to be serviceable flights. Since more flights are
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Figure 17: The simulation results on the original and modified models of the ABSS

serviceable, the resource will become more limited. Therefore, it will definitely
influence the numbers of on-time and delayed flights.

To conclude, the modification for Flight agent has assured that Plane agent
will not miss signals from Flight agent. It has successfully improved the per-
formance for the ABSS in terms of cancelled flights, which illustrates the fea-
sibility of the correction for the NuSMV model of the simulation system.

5.3. Discussion
The results on the simulation experiments demonstrate the efficiency of

our method. The approach allows us to not only verify global behaviours but
check operational behaviours. It focuses on how to verify the system behaviour
from different points of view rather than extend the formal logic, which aims
to improve the efficiency of model checking.

The original design of Flight agent (Fig. 4) seems to be rational. There are
two ways to send signals to Plane agent. One is to send signals when there is no
delay, the other is to receive the delay signal from STA agent, then continuing
checking the state of Plane agent until it is ready, finally sending the schedul-
ing signals. We have not noticed that the delay of one flight may have an influ-
ence on the departure of next flights that have no maintenance requests. For
example, the downtime of one plane has exceeded the time of the interval of
its next flight. It means this plane will be demanded to serve for the flight after
next even if it has not arrived at the airport of the next flight. In this case, the
downtime of this plane for the next flight is equal to zero. If sending schedul-
ing signals only depends on delay signals, this plane will miss the signal for
the scheduling for the flight after next. We can not ensure that one plane will
depart on time even if it does not need repairing. Therefore, the original de-
sign of Flight agent should be improved. Checking the state of Plane agent is
definitely necessary before sending scheduling signals.

Our way of verifying the global behaviour is quite similar to the work of
Bentahar et al. (2013). However, we have identified the limits of their work.
Firstly, their approach is not suitable to verify the system behaviour where
transitions are associated with conditions. The detailed discussion can be seen
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in the first paragraph of Section 2. Subsequently, alternating Büchi automaton
was chosen to express the control behaviour, since it considered both universal
choices and existential choices. The core concept of alternating Büchi automa-
ton is the partial transition function (Vardi 1995). The partial function implies
that one state can be transited to two states concurrently with one message in
the system. However, the verified system has not been involved with messages.
If their system is modified into the system of transitions with conditions, the
LTL and CTL specification discussed in Section 4.3 for verifying the global be-
haviour will never pass by NuSMV. So, in our opinion, there is no point in
choosing alternating Büchi automaton. Finally, the model transformation was
provided in their work, but the messages-related transformation was not dis-
cussed. Three fundamental differences between our work and their work are
identified. The first one is that we clarify the limit of the way we verify the
global behaviour where the transitions with messages are not considered. The
second one is that we propose the approach on the verification for the opera-
tional behaviour of the system as a complement. The last one is that we provide
a complete process for transforming Büchi automaton into Kripke model.

Another advantage of our approach is that it enables us to check the satis-
faction of the global behaviour of the ABSS with respect to standards. ABSSs
of different domains address different key properties. The difference of prop-
erties can be represented by different control behaviours. Thus, a global sense
of the satisfaction of the ABSS conforming to standards can be analyzed.

As a result, we propose an approach to verifying the behaviours of the ABSS
from the point of view of the system itself. It permits system designers who
know systems well but are not experts in analyzing formal logics to better ver-
ify the systems of interest.

6. Conclusion and Future Work

In this paper, we discussed about how to verify the behaviours of the ABSS
from the point of view of the system itself. System behaviours are composed
of global and operational behaviours. The division of system behaviours al-
lows us to investigate whether the system design is satisfactory from both the
abstract and the detailed points of view.

The Büchi automaton described system behaviours and the control behaviour,
which satisfied the continuous invocation of the plane’s service. The meta-
transformation between Büchi automaton and Kripke structure (the theory
of NuSMV model) was provided, aiming at giving the theoretic support be-
tween system behaviours and the corresponding NuSMV model. A mapping
between the ABSS and the NuSMV model was then created. LTL and CTL were
used to formulate the specifications, in order to verify the conformity of system
behaviours. Simulation experiments were carried out to compare the perfor-
mances of the original and modified processes, which illustrates the feasibility
of the proposed approach.

The proposed approach have attempted to check the global behaviour of
the ABSS, which lays the foundation for verifying the system behaviour from
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the abstract level without concerning any details. It can be recognized as a
general way of verifying behaviours of the ABSS implemented by Anylogic.
This paper gave also a concrete case study of formal methods in practice and
demonstrated the efficiency of formal methods in improving system designs.

However, the verification for the global behaviour can not support transi-
tions between states with messages. This is the limit of NuSMV model checker.
Hence, in the future, other model checking techniques like SPIN, PRISM and
UPPAAL should be investigated in order to provide a more flexible approach
to verifying system behaviours. On the other hand, few researchers have con-
centrated on extracting the global behaviour of the system. the automatic ap-
proach of extracting the system global behaviour from the ABSS will be our
future work.
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