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Abstract

We consider the couples (M,Φ) where M is an odd-dimensional compact manifold
with boundary, endowed with a non-singular Morse-Smale flow Φ, satisfying some given
homological boundary information. We compute, in terms of such given homological
information, a number pmin such that any non-singular Morse-Smale flow Φ on any
manifold M satisfying the given abstract homological data must have at least pmin

closed periodic orbits.
Moreover, we can provide, for any initial homological data, a non-singular Morse-

Smale model (M0,Φ0) for which pmin is attained. Note that in the general case of a
couple (M,Φ) satisfying the given homological information, such a number pmin is a
lower bound.

The algorithm underlying this computation is based on optimization theory in net-
work flows and transport systems.

Keywords: Morse-Conley theory, non-singular Morse-Smale flows, periodic orbits.

AMS Mathematics Subject Classification: 37B30, 37C27, 37D15.

∗Supported by GDRI-RFBM (Réseau Franco-Brésilien en Mathématiques - Rede Franco-Brasileira de
Matemática)
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1 Introduction

In the setting of non-singular Morse-Smale flows on compact n-dimensional manifolds, a
natural question is to understand how the topology of the manifold M forces the number
and indices of the hyperbolic closed periodic orbits of any possible non-singular Morse-Smale
flow over M . Of course it is not reasonable to try to answer precisely this question in its
whole generality. However, it is possible to answer the same question in a wider context and
still get some interesting dynamical information, which is optimal in the new more relaxed
setting.

Inspired by the Morse flows theory, we focus on compact manifolds with boundary and
discuss what is the periodic orbits information carried by the Betti numbers of the boundary,
and how to algorithmically compute it. It is known, in Morse theory, that any Morse flow
on any manifold satisfying some homological boundary information must have at least hmin

singularities of some indices, that such a lower bound can be uniformly computed in terms of
the Betti numbers of the boundary components, regardless of the topology of the underlying
manifold, and that there exist a manifold and a flow for which this lower bound is optimal
(see for instance [7] and [4]). We take here the analogous general approach for periodic orbits
of a non-singular Morse-Smale flows.

More precisely, our main result consists of an algorithm computing a lower bound pmin

of the number of periodic orbits of any non-singular Morse-Smale flow on any manifold with
boundary satisfying some homological boundary conditions. Such a lower bound pmin can be
uniformly computed in terms of the Betti numbers of the boundary components, regardless
of the topology of the underlying manifold, and there exists a manifold and a non-singular
Morse-Smale flow for which this lower bound is optimal. However, despite the analogy of
the statement, some relevant differences appears both in the techniques and in the nature
of the result, especially in large dimension and for large initial homological information. See
Subsection 1.2.3.

Before discussing the interest and the limits of our main theorem, let us state it precisely.
We shall work with some partial abstract homological information, without any reference

to a specific manifold or flow. We shall refer to this information as abstract homological data.
This information consists of

• an odd integer n, n ≥ 3;

• two positive integers e+ and e−;

•
n− 1

2
integers, denoted by the expressions B+

j −B−
j , for j = 1, . . .

n− 1

2
.

For any odd n, let us denote by M any n-dimensional compact connected oriented manifold
with boundary ∂M consisting of (e+ + e−) connected components, endowed with a non-
singular Morse-Smale flow Φ transversally entering M through e+ boundary components
N+

i , i = 1, . . . e+, and transversally exiting through the remaining e− boundary components

N−
i , i = 1, . . . e−. For all j = 1, . . .

n− 1

2
, if βj(N) represents the j-th Betti number of N ,
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then we denote by B+
j −B−

j the sum:

B+
j −B−

j =
e+∑
k=1

βj(N
+
k )−

e−∑
k=1

βj(N
−
k )

Within this notation, we say that a manifold M and a non-singular Morse-Smale flow Φ
on M as in our context satisfy the abstract homological data{

n, e+, e−, {B+
j −B−

j }
n−1
2

j=1

}
.

Let us emphasize here that the flow Φ is non-singular Morse-Smale, that is, all of its
recurrent sets are closed periodic orbits and lie in the interior of M . In the sequel, we shall
simply call them periodic orbits because all the flows we shall consider are non-singular
Morse-Smale.

We can prove the following theorem.

Theorem 1 Let us be given the following abstract homological data
{
n, e+, e−, {B+

j −B−
j }

n−1
2

j=1

}
satisfying (n odd and) e+ − e− −

∑n−1
2

j=1 {B+
j −B−

j ) = 0.
Then the following conclusions hold true.

1. Section 6 provides an explicit algorithm computing a number pmin associated with the
given homological data, such that any non-singular Morse-Smale flow on any manifold
satisfying these given abstract homological data must have at least pmin closed periodic
orbits.

2. There exists a manifold M and a non-singular Morse-Smale flow Φ with exactly pmin

periodic orbits satisfying the given abstract homological data.

1.1 On the assumptions of Theorem 1

The assumption n odd will be discussed later (see Subsection 1.2.5).

The assumption e+ − e− −
∑n−1

2
j=1 {B+

j − B−
j ) = 0 means that the Euler characteristic

of any manifold admitting a non-singular Morse-Smale flow is necessarily zero. It is known
that this is required for having non-singular Morse-Smale flows. Hence this assumption on
the abstract homological data is natural because of their interpretation.

Moreover, this condition is crucial in one of the main ingredients of the proof: the use
of attaching handles vs. attaching round handles. On the one hand, in Morse theory,
where each singularity of index j corresponds to a handle of index j, we know the effect of
attaching one handle of index j of the Betti numbers of the boundary. This tells us that the
list h = (h0, . . . , hn) of the number of singularities hj of index j compatible with the initial
homological data are of the form ((see [4]) h = hmin + hconsecutive + hdual where

the (integer) vector hmin contains the minimal number of singularities that any Morse flow
on any manifold compatible with the data must have and we have a finite number of
choices for it which are explict ;
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the (integer) vector hconsecutive is a sum of vectors of type {(a0, . . . , an) | ∃j, 0 ≤ j < n, aj =
aj+1 = 1 and ai = 0 for all i ̸= j, i ̸= j + 1};

the (integer) vector hdual is a sum of vectors of type {(a0, . . . , an) | ∃j, 0 < j < n, aj =
an−j = 1 and ai = 0 for all i ̸= j, i ̸= n− j};

On the other hand, in non-singular Morse-Smale theory ([2]), where each orbit of index j
corresponds to a round handle of index j, replacing it by two handles of indices j and j + 1
(see [16]) implies that among all compatible vectors h as above, there must be some h′ of the
form h′ = h′

consecutive. Well, the assumption on the Euler characteristic, ensures that each
vector hmin can be completed with some hconsecutive + hdual in order to obtain a vector h′ of
the form h′ = h′

consecutive which is also compatible with the given homological data.

1.2 On the conclusions of Theorem 1

1.2.1 The topology behind Item 1

Item 1 of the above theorem starts from the fact that some loose information on the homology
of any compatible underlying manifold M together with the knowledge of the entry and exit
boundary of the underlying flow Φ allow us to guarantee the existence of a lower bound for
the number of the periodic orbits of Φ. However, if we wish to work with a restricted class
of manifolds admitting non-singular Morse-Smale flows, such a bound may not be sharp.

Consider for instance the data
{
n = 3, e+ = e− = 1, B+

1 −B−
1 = 0

}
. For these fixed data

one has pmin = 0. The manifold M = T2 × I endowed with the trivial flow ΦM entering
T2×{1} and exiting T2×{0} is an example of manifold and flow satisfying the homological
data for which the computed pmin coincides with its minimal number of periodic orbits,
denoted by Amin(M,∂). If we consider M ′ obtained by attaching a round handle to M as in
Fig 1 below, we can see that the boundary of M ′ is also made of two copies of T2.

Figure 1: Exit and entry boundary of the nontrivial manifold M ′

The respect of the homological data implies that the non-singular Morse-Smale flows we
shall consider must enter through one torus component and exit through the other. The
computation of the Conley index of the manifold and the way we constructed it show that
Amin(M

′, ∂) = 1 which is strictly greater than pmin.
The situation here is analogous to the one discussed in [7] where the minimal number

of singularities of Morse flows on manifolds satisfying some abstract homological data is
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discussed. In our present context we can also consider that the manifolds and flows for which
pmin is sharp (that is, Amin(M,∂) = pmin) are in some sense the “simplest”, topologically
speaking, among those admitting non-singular Morse-Smale flows and satisfying the given
abstract homological information.

Let us also stress the fact that the abstract homological information only deals with the
difference of the Betti numbers of the entry and exit boundary. For instance, in dimension 3,
the couple (N+, N−) = (S2 ⊔ S2, S2 ⊔ S2), the couple (N+, N−) = (S2 ⊔ T2,S2 ⊔ T2) and the
couple (N+, N−) = (S2 ⊔ T2#T2,T2 ⊔ T2) all correspond to the same abstract homological
data

{
n = 3, e+ = e− = 2, B+

1 −B−
1 = 0

}
1.2.2 On the algorithm of Item 1

The description of the algorithm of Item 1 is very technical. Here are the guidelines. The
conditions ensuring the existence of a solution starting from the abstract data are expressed
in terms of a semi-algebraic system with integer coefficients. We are looking for the positive
solutions of this system whose sum is minimal. We are therefore dealing with an optimization
problem. The initial pairing problem is hence reformulated as a minimum cost flow (MCF)
problem (see Theorem 12). Then the interpretation of the specific MCF problem as a
transportation problem yields the wanted algorithm.

Let us emphasize that, especially in large dimension1 and when the difference of the Betti
numbers is also large and arbitrarily distributed, we cannot expect to compute the number
pmin by any naif strategy. Let us take for instance the homological data{
n = 17, e+ = 7, e− = 6, B+

1 −B−
1 = 3, B+

2 −B−
2 = −1, B+

3 −B−
3 = −2, B+

4 −B−
4 = −7,

B+
5 −B−

5 = −6, B+
6 −B−

6 = 8, B+
7 −B−

7 = −4,
B+

8 −B−
8

2
= −10

}
Our algorithm gives us (among other information) the solution

• pmin = 32;

• the sequence h′ = [h′
1, . . . , h

′
16] = [5, 5, 1, 1, 2, 2, 0, 0, 10, 10, 0, 6, 6, 2, 8, 6],

which can be translated into the sequence [R1, . . . , R15] = [5, 0, 1, 0, 2, 0, 0, 0, 10, 0, 0, 6, 0, 2, 6]
where Rj would correspond to the number of round handles (or equivalently, periodic
orbits) of index j;

• the fact that h′ has been obtained by completing hmin = [5, 0, 0, 0, 1, 2, 0, 0, 10, 10, 0, 6, 6, 2, 4, 6]
by hconsecutive+hdual = [0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]+[0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0]

Now, trying to complete hmin in any other naif way (by adding couples of handles of con-
secutive indices from left to right, or from right to left, or by adding couples of handles of
dual indices from the extremities of hmin ) gives strict upper bounds of pmin and makes one
understand that a more sophisticated and complex strategy is unavoidable.

This is a main difference with the Morse setting. There, the value hmin can be computed
by hand directly from the homological data. Moreover, all the possible sequences of the

1For n = 3, the computation is straightforward, see Section 5.
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indices of the Morse singularities associated with hmin can be listed explicitly. Here, in
contrast, the computation of pmin is intrinsically more laborious and our algorithm gives us
just one way of realizing it as a sequence of round handles.

Let us underline that a Python program associated with this algorithm is freely available
on the page https://github.com/MargaridaMello/OddMinimumPairingProblem/ At the
end of Section 6 it is explained how to use it and how to extract the needed information.

1.2.3 Unexpected indices of periodic orbits

As a counterpart of the complexity of the algorithm discussed above, we discover that, in
contrast with the Morse setting, here the indices of the appearing periodic orbits cannot be
always foreseen. For instance, for the homological data{

n = 15, e+ = 1, e− = 1, B+
1 −B−

1 = B+
6 −B−

6 = 1, B+
j −B−

j = 0∀j = 1 . . . 7, j ̸= 1, 6
}

we have (hmin = 2 and) pmin = 3. The algorithm outputs an abstract realization of pmin

with an orbit of index 3, an orbit of index 5 and an orbit of index 12 appearing from the
combinatorics of the algorithm. The index 5 orbit is of course related to the fact that the
6-th (and the 8-th) Betti number vary; the index 12 orbit is related to the variation of the
1st (and 13-th) Betti number of the boundary. The index 3 orbit is somehow hidden in the
data even though the difference B+

j − B−
j of the Betti numbers of indices 2, 3 and 4, as

well as 10, 11 and 12, are zero). For the sake of completeness, let us mention that there are
three other solutions (each with three orbits of indices respectively (1, 3, 5), (5, 10, 12) and
(8, 10, 12) for which the analogous observations hold. Note that in this case only three of the
four possible hmin can be completed to a h′

min combinatorially realizing pmin = 3 and one
can be completed in two different ways2.

1.2.4 On the realizations

Item 2 is constructive and explicit once we have run the algorithm of Item 1. In fact, as a
result, such an algorithm gives not only the value of pmin but also a list of abstract round
handles R1, . . . Rpmin

, of given index and type, associated with pmin. The type contains the
information of the effect of the corresponding round handle on the Betti number of the
boundary. Using the realizations described in [12] one can easily conclude: for any Rk given
by the algorithm, let (Uk, ϕk) be the isolating neighborhood of the corresponding index and
type built as in [12]. A connected sum along the boundary of these Uk, k = 1, . . . pmin is a
manifold M endowed with a non-singular Morse-Smale flow Φ (conjugate to ϕk on each Uk)
such that (M,Φ) satisfies the given homological data. By construction, Φ has pmin periodic
orbits.

1.2.5 Perspectives

The proof of this result opens the way to the even dimension. Even though the guidelines for
finding an algorithm are comparable, the combinatorics in the even setting is richer because of

2hmin such that h1 = 1, h6 = 1 yields the (1, 3, 5) triple; hmin such that h6 = 1, h13 = 1 yield the
(3, 5, 12) and the (5, 10, 12) triples; hmin such that h8 = 1, h13 = 1 yields the (8, 10, 12) triple and hmin such
that h1 = 1, h8 = 1 cannot be completed in order to realize pmin = 3.
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the existence of “invariant” handles3 and must be treated independently. Moreover, handles
of invariant type are difficult to realize in the non-singular Morse-Smale context, so that the
realization of the general abstract solution by a non-singular Morse-Smale model remains an
open question.

1.2.6 Application to Lyapunov graphs

We shall conclude by an application of the reasoning to the problem of the continuation of
Lyapunov graphs into Lyapunov graphs of Smale type (Lyapunov graphs associated with
non-singular Morse-Smale flows). More precisely, in works [9], [10], [8] the authors showed
that a generalized Lyapunov graph can be continued to a Lyapunov graph of Morse type
if and only if some inequalities, called the Poincaré-Hopf inequalities are satisfied. In the
present setting where we are concerned by non-singular Morse-Smale flows instead of Morse
flows, we can prove

Theorem 2 A (generalized) vertex of a Lyapunov graph associated with the homological{
n, e+, e−, {B+

j −B−
j }

n−1
2

j=1

}
can be continued to a Lyapunov graph of Smale type if and only if

a set of explicit inequalities (Poincaré-Hopf inequalities (1), (2), (5), (8) and (11) + coupling
inequalities Lemma 4 (or Lemma 3)) are satisfied by such data.

This theorem holds true in any dimension and constitutes the first step to tackle our
main question in even dimension.

The paper is organized as follows. Section 2 contains background material. Section 3 is
a first combinatorial translation of our problem into combinatorial terms. In Section 4 is
given the explicit formulation and context of Theorem 2. Section 5 is devoted to the three-
dimensional case. Section 6 explains the proof of our main theorem. Numerical examples
are also treated there. Section 7 provides partial results concerning the even dimensional
case.

2 Poincaré-Hopf inequalities

In this section we present an adaptation of the Poincaré-Hopf inequalities described in [9]
for non-singular Morse-Smale flows on isolating blocks case.

A set S ⊂ M is an invariant set of a flow ϕt if ϕt(S) = S for all t ∈ R. A compact set
N ⊂ M is an isolating neighborhood if inv(N, ϕ) = {x ∈ N : ϕt(x) ⊂ N, ∀ t ∈ R} ⊂ int N .
A compact set N is an isolating block if N− = {x ∈ N : ϕ[0,t)(x) ̸⊂ N, ∀t > 0} is closed and
inv(N, ϕ) ⊂ int N . An invariant set S is called an isolated invariant set if it is a maximal
invariant set in some isolating neighborhood N , that is, S = inv(N, ϕ).

A component R of the chain recurrent set4, R, of the flow ϕt, is an example of an invariant
set. We will work under the hypothesis that R is the finite union of isolated invariant sets

3Handles whose attaching produces no effect on the Betti numbers of the boundary.
4A point x ∈ M is chain recurrent if given ε > 0 there exists an ε-chain from x to itself, i.e., there exists

points x = x1, x2, . . . , , xn−1, xn = x and t(i) ≥ 1 such that d(ϕt(i)(xi), xi+1) < ε ∀ 1 ≤ i < n. A set of such
points will be denoted by R and is called a chain recurrent set.
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Ri. If f is a Lyapunov function5 associated with a flow and c = f(R) then for ε > 0, the
component of f−1[c − ε, c + ε] that contains R is an isolating neighborhood for R. Take
(N,N−) = (f−1[c− ε, c+ ε], f−1(c− ε)) as an index pair for R. The Conley index is defined
as the homotopy type of N/N−. Its homology is denoted by CH∗(S) and its rank denoted
by h∗ = rank CH∗(S). For more details see [13].

Let N be any compact manifold of dimension n such that ∂N = ∂N+ ∪ ∂N−, with ∂N+

and ∂N− non-empty where ∂N+(∂N−) is the disjoint union of e+(e−) components of ∂N ,

and denote it by ∂N± =
⋃e±

i=1N
±
i . Also, consider the sum of the Betti numbers, βj(N

±
i ), of

these components, i.e. B±
j =

∑e±

i=1 βj(N
±
i ) where j = 1, . . . , ⌊n−1

2
⌋.

The Poincaré-Hopf inequalities for an isolated invariant set S in an isolating block N
with entering set for the flow N+ and exiting set for the flow N−, are obtained by analysis
of long exact sequences of (N,N+) and (N,N−). This analysis can be found in [9] in a more
detailed exposition.

Note that (N,N−) is an index pair for S and (N,N+) is an index pair for the isolated
invariant set of the reverse flow, S ′.

Consider the long exact sequences for the pairs (N,N−) and (N,N+), denoted by LES−
and LES+, respectively:

0 → Hn(N
−)

in−→ Hn(N)
pn−→ Hn(N,N−)

∂n−→ Hn−1(N
−)

in−1−−→ Hn−1(N)
pn−1−−−→ Hn−1(N,N−)

∂n−1−−−→

· · · ∂2−→ H1(N
−)

i1−→ H1(N)
p1−→ H1(N,N−)

∂1−→ H0(N
−)

i0−→ H0(N)
p0−→ H0(N,N−) → 0

0 → Hn(N
+)

i′n−→ Hn(N)
p′n−→ Hn(N,N+)

∂′
n−→ Hn−1(N

+)
i′n−1−−→ Hn−1(N)

p′n−1−−−→ Hn−1(N,N+)
∂′
n−1−−−→

· · ·
∂′
2−→ H1(N

+)
i′1−→ H1(N)

p′1−→ H1(N,N+)
∂′
1−→ H0(N

+)
i′0−→ H0(N)

p′0−→ H0(N,N+) → 0

Throughout the analysis, the Conley duality condition on the indices is assumed. That
is, the isolated invariant sets S and S ′ have the property that rank Hj(N,N−) = hj and
rank Hj(N,N+) = hj = hn−j. Denote rank H0(N

−) = e−, rank H0(N
+) = e+ and

rank (Hj(N
±)) = B±

j .
By simultaneously analyzing the following pairs of maps

{[(pi, ∂′
i) , (p

′
i, ∂i)] , . . . [(p2, ∂

′
2) , (p

′
2, ∂2)]}

and analyzing p1 and p′1 we obtain the Poincaré-Hopf inequalities in all its generality, where

hj is the dimension of the homology Conley index and B−
j =

∑e−

i=1(β
−
j )i, B

+
j =

∑e+

i=1(β
+
j )i,

where j ∈ {1, . . . , n− 2}. If n is odd, n = 2i+ 1, i ≥ 1, then (1)–(5) need to be satisfied.

5Given a continuous flow ϕt : M → M , on a closed n-manifold M , results of Conley [13] imply the
existence of a continuous Lyapunov function f : M → R associated with the flow with the property that it
strictly decreases along the orbits outside the chain recurrent setR, that is, if x /∈ R then f(ϕt(x)) < f(ϕs(x))
for t > s and is constant on the chain recurrent components R of R.
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hj ≥
j−1∑
k=1

(−1)k+j(B+
k −B−

k ) +

j−1∑
k=0

(−1)k+j(hn−k − hk)

+(−1)j+1(e− − e+), j = 2, . . . ,
⌊n
2

⌋
(1)

hn−j ≥
j−1∑
k=1

(−1)k+j+1(B+
k −B−

k ) +

j−1∑
k=0

(−1)k+j+1(hn−k − hk)

+(−1)j(e− − e+), j = 2, . . . ,
⌊n
2

⌋
(2)

h1 ≥ h0 − 1 + e− (3)

hn−1 ≥ hn − 1 + e+ (4)
i−1∑
k=1

(−1)k(B+
k −B−

k ) + (−1)i
B+

i −B−
i

2
−

n∑
k=0

(−1)khk − (e− − e+) = 0

 (5)

Non-singular Morse-Smale flows on a smooth n-dimensional manifold M were consid-
ered together with a handle decomposition associated with a Lyapunov function in [14].
Thus, after the attachment of a handle corresponding to a singularity (or a round handle
corresponding to a periodic orbit) one can consider the effect on the new regular level set.
The authors completely describe how the Betti numbers of the level set vary after attach-
ing a (round) handle when the homology coefficients are taken in Z

2Z . These results were
generalized in [9] by considering continuous flows associated with Lyapunov functions on
n-dimensional manifolds. More specifically, a flow in the isolating block N of an isolated
invariant set S with possibly complicated dynamical behavior was considered. The effect on
the Betti numbers of the regular level sets corresponding to the incoming N+ and outgoing
N− boundaries of the flow in N were determined in terms of the homology indices of S.
The classification of singularities presented in [14] was generalized in [6] when the homology
coefficients are in Z, Q, R, or Z

pZ with p prime. In other words, as for the boundary, attaching

a handle of index j (j = 1 . . . n − 1) to N− can produce one of the following effects if n is
odd:

(H1) the j-th Betti number of the boundary N+ is increased by 1 (or by 2, if n = 2j + 1),
and the handle will be said of type j-d (d standing for disconnecting);

(H2) the (j−1)-th Betti number of the boundaryN+ is decreased by 1 (or by 2, if n = 2j+1),
and the handle will be said of type (j − 1)-c (c standing for connecting);

Using these two effects, the Poincaré-Hopf inequalities described above were used in [9] in
order to ensure that given an isolating neighborhood containing a singularity with possi-
bly complicated dynamical behavior, this neighborhood can be replaced by a neighborhood
related to a Morse flow, i.e., where the singularities of the flow are points. Being more
precise, the Poincaré-Hopf inequalities ensure that given an isolating neighborhood N , with
incoming N+ and outgoing N− boundaries of the flow in N , containing a singularity whose
dimensions of the homology indices are (h0, . . . , hn), this neighborhood can be replaced by
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a neighborhood where the singularities of the flow are points, that is, hj = 1, where j is the
dimension of the unstable manifold of this isolated singularity for all j = 0 . . . n.

Consider the example as in Figure 3. This example is illustrating by means of a graph for
facilitating the understanding. First, observe that the two handle effects described above,
(H1) et (H2), can be viewed in terms of graphs in the following way. A handle containing a
singularity of index ℓ corresponds to a vertex on the graph LN labeled with hℓ = 1, which
can produce the two possible algebraic effects:

(G1) hℓ = 1 is ℓ-d if it has the algebraic effect of increasing the corresponding βℓ label on
the incoming edge.

(G2) hℓ = 1 is (ℓ − 1)-c if it has the algebraic effect of decreasing the corresponding βℓ−1

label on the incoming edge.

See the corresponding graphs in Figure 2.

βℓ−1(N
+) = β − 1

βℓ−1(N
−) = β

hℓ = 1

(ℓ− 1)-cℓ-d

hℓ = 1

βℓ(N
+) = β + 1

βℓ(N
−) = β

uu
?

?

?

?

Figure 2: Two possible algebraic effects in odd dimension.

Coming back to Figure 3, we start with a neighborhood in dimension 5 containing a singu-
larity whose the dimension of the homology indices are given by (h0 = 0, h1 = 2, h2 = 2, h3 =
1, h4 = 1, h5 = 0), the components of the incoming and outgoing boundary components, N+

and N−, are labeled with the Betti numbers (β0, β1, β2, β3, β4) as illustrated in Figure 3.
Note that since (β0, β1, β2, β3, β4) satisfy the Poincaré duality and since β0 and β4 represent
the number of boundary components, we have put only (β1, β2) in Figure 3.

The procedure exemplified in Figure 3 is called a continuation of an abstract Lyapunov
graph to an abstract Lyapunov graph of Morse type in [9], where the left side of Figure 3
represents the abstract Lyapunov graph while the right side represents the abstract Lyapunov
graph of Morse type, in which any vertex v is labeled by hj = 1 if it corresponds to a
singularity of index j. The graphs here are used only to better illustrate the example, but
what is important to note is that, since the Poincaré-Hopf inequalities (1)–(5) are satisfied,
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0-c h1 = 1

0-c h1 = 1

1-c h2 = 1

1-c h2 = 1

2-c h3 = 1

4-d h4 = 1

β1 = 5 β2 = 4

β1 = 4 β2 = 4

β1 = 3 β2 = 4

β1 = 3 β2 = 2

β1 = 1

β2 = 2

β1 = 2

β2 = 2

β1 = 2

β2 = 0

β1 = 2

β2 = 0

β1 = 1

β2 = 2

Figure 3: A continuation of an abstract Lyapunov graph to an abstract Lyapunov graph of
Morse type.

it is possible to replace the initial neighborhood by another connected neighborhood with
the same data, but with a simplified dynamical behavior.

The Poincaré-Hopf inequalities for non-singular Morse-Smale flows on isolating blocks
are an adaptation of the Poincaré-Hopf inequalities above described. They differ only in
inequalities (3) and (4). These adaptation should be done in order to ensure the continuation
of an abstract Lyapunov graph LN to an abstract Lyapunov graph of Smale type, in which
any vertex v is labeled by Aj = 1 if it corresponds to a periodic orbit of index j.

The difference in inequalities (3) and (4) comes from the fact that in the case of the
Poincaré-Hopf inequalities one treats h0 by imposing, as necessary and sufficient condition,
that h1 ≥ h0 + e− − 1, i.e., inequality (3). This inequality adjusts the problem of connec-
tivity, that is, it ensures that the continued graph – as well as the corresponding isolating
neighborhood – are connected. By this inequality we guarantee the possibility of having
h0 + e− − 1 singularities of index 1 of type 0-c, hc

1, which means connecting. Hence,

hc
1 ≥ h0 + e− − 1. (6)

It is important to observe that the singularities h1 of type 0-c are responsible for connect-
ing the outgoing boundary components. For example, if we have three outgoing boundary
components, representing by h0 = 3 we need two h1 of type 0-c for producing a connected
neighborhood. In order to better understand, consider the example in three-dimension pre-
sented in Figure 4. In this example we have a vertex vk which is labeled by h0 = 1 and
h1 = 1. Since these data satisfy inequality (3), we can replace the vertex as in the right side
of Figure 4: by two vertices vk1 and vk2 respectively labeled with h0 = 1 and h1 = 1. It
is important to note that the left and the right side of Figure 4 have the same number of
incoming and outgoing edges and moreover they are both connected.
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β1 = 0

h1 = 1vk1

vk1 h0 = 1β1 = 0

Figure 4: Connectivity of the outgoing edges.

In the case of the Poincaré-Hopf inequalities for non-singular Morse-Smale flows, inequal-
ity (3) should be modified, because the presence of h0 ̸= 0 implies the existence of periodic
orbits of index 0. Each one is obtained by joining a singularity of index 0 with a singularity
of index 1 of type 1-d, hd

1 (observe that all singularities h1 of type 0-c, h
c
1, were already used

for solving the connectivity problem as explained above). Hence, we have that

hd
1 ≥ h0. (7)

For this reason, since h1 = hc
1 + hd

1 inequalities (6) and (7) imply that we have the following
inequality replacing (3)

h1 ≥ 2h0 − 1 + e− (8)

Each of the remaining singularities of index 1 is to be coupled with a singularity of index 2,
thus creating a periodic orbit of index 1. Therefore, the left side of inequalities (1) remains
the same for all j ̸= 1.

Observe that the graph presented in Figure 4 cannot be replaced by a connected graph
containing a periodic orbit of index 0: if it were the case we would use h1 = 1 and h0 = 1 to
have a vertex labeled with A0 = 1, with one incoming edge and no outgoing edges, and we
would be in the situation of the right side of Figure 5, that is, a non connected graph. It is
also important to observe that inequality (8) is not satisfied.

Figure 6 gives an example in dimension three where inequality (8) is satisfied and hence
we can replace the initial vertex to a connected one containing only periodic orbits. It is
important to note that the left and the right side of Figure 6 have the same number of
incoming and outgoing edges and moreover they are both connected.

Analogously, the necessary and sufficient condition when one treats hn is hn−1 ≥ hn +
e+ − 1, i.e. inequality (4), which assures the existence of hn + e+ − 1 singularities of type
(n− 1)-d, which means disconnecting. Hence,

hd
n−1 ≥ hn + e+ − 1. (9)

In the case of the Poincaré-Hopf inequalities for non-singular Morse-Smale flows, the presence
of hn ̸= 0 implies the existence of periodic orbits of index n − 1. Each one is obtained by
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β1 = 0
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?

u

β1 = 0

A0 = 1β1 = 0

Figure 5: Impossibility of continuation to a connected graph containing a periodic orbit of
index 0.
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β1 = 0

A1 = 1

A0 = 1β1 = 0

Figure 6: Continuation to a connected graph containing only periodic orbits.

joining a singularity of index n with a singularity of index n − 1 of type (n − 1)-c, hc
n−1.

Hence, we have that
hc
n−1 ≥ hn. (10)

For this reason, since hn−1 = hc
n−1 + hd

n−1 inequalities (9) and (10) imply that we have the
following inequality replacing (4)

hn−1 ≥ 2hn − 1 + e+ (11)

Each of the remaining singularities of index n−1 is to be coupled with a singularity of index
n−2, thus creating a periodic orbit of index n−2. Therefore, the left side of inequalities (1)
remains the same for all j ̸= n− 1.

In [9] it is shown that:

Proposition 1 The system (110)–(115) has nonnegative integral solutions (h, hc
1, h

d
1, . . . ,

hc
n−1, h

d
n−1) if and only if the Poincaré-Hopf inequalities (1)–(5) are satisfied.
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hc
1 = e− − 1, (12)

hd
n−1 = e+ − 1, (13)

hj = hc
j + hd

j , j = 1, . . . , n− 1 and j ̸=
⌊n
2

⌋
, (14)

hd
j − hc

j+1 − hc
n−j + hd

n−j−1 = B+
j −B−

j , j = 1, . . . ,

⌊
n− 2

2

⌋
, (15)

 hd
i − hc

i+1 =
B+

i −B−
i

2
, if n = 2i+ 1. (16)

Observe that, as described previously, the inequalities (1)-(5) presented in [9] coincides
with the Poincaré-Hopf inequalities for non-singular Morse-Smale flows except to the in-
equalities:

h1 ≥ 2h0 − 1 + e−

hn−1 ≥ 2hn − 1 + e+

which are replaced by:
h1 ≥ h0 − 1 + e−

hn−1 ≥ hn − 1 + e+

But, under the hypothesis conditions imposed in the labels, as described previously, these
two groups of conditions are equivalents. Therefore, Proposition 1 remains true for the
Poincaré-Hopf inequalities for non-singular Morse-Smale flows, i.e.:

Proposition 2 The system (110)−(115) has nonnegative integral solutions (hc
1 h

d
1, . . . , h

c
n−1 h

d
n−1)

if and only if the Poincaré-Hopf inequalities for non-singular Morse-Smale flows (1), (2), (5), (8)
and (11) are satisfied.

3 Periodic orbits and coupling inequalities

3.1 Periodic orbits

Recall that in [17] Franks proved that a hyperbolic periodic orbit of index j, can be viewed as
the joining of two hyperbolic singularities p and q of adjacent indices j and j+1 respectively.
Given a nondegenerate singularity of index j, one can associate with it the dimensions of the
Conley homology indices, hj = 1 and hk = 0 for all k ̸= j. Let Aj be the number of periodic
orbits of index j and hj be the number of singularities of index j.

In this dimension (n odd), given the data (A0, A1, . . . , An−1) we have (h0, h1, . . . , hn−1, hn)
associated with it and vice versa. If one starts the procedure with data consisting of singular-
ities (h0, h1, . . . , hn−1, hn) one can do a coupling procedure in order to construct our periodic
orbits set (A0, A1, . . . , An−1). The number h1 together with h0 will construct A0 but together
with h2 will construct A1. Then the number of periodic orbits of index 0 depends on the
number of h0 and the number of periodic orbits of index 1 depends on the number of h1,
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although some part of h1 was already used for creating the periodic orbits of index 0. And
the procedure continues by considering h2, and so on. Therefore, coupling from the left to
right produces

A0 = h0

A1 = h1 − h0

A2 = h2 − (h1 − h0)
...

...
Ak = hk − hk−1 + . . .± h0
...

...
An−1 = hn−1 − hn−2 + . . .± h0

or equivalently



A0 = h0

A1 = h1 − A0

A2 = h2 − A1
...

...
Ak = hk − Ak−1
...

...
An−1 = hn−1 − An−2

(17)

Coupling from the right to the left produces

An−1 = hn

An−2 = hn−1 − hn

An−3 = hn−2 − (hn−1 − hn)
...

...
An−k = hn−1−k − hn−1−(k−1) + . . .± hn
...

...
A0 = h1 − h2 + . . .± hn

or equivalently



An−1 = hn

An−2 = hn−1 − An−1

An−3 = hn−2 − An−2
...

...
An−k = hn−1−k − An−k−1
...

...
A0 = h1 − A1

(18)
We can also do the coupling procedure symmetrically. First observe that hk =

rank (Hk(N,N−)) = rank (Hn−k(N,N+)) = hn−k (using Poincaré-Lefschetz duality). For
details see [3] (Corollary 2.1) and [19]. The number h1 together with h0 will construct A0 but
together with h2 will construct A1. Then the number of periodic orbits of index 0 depend
on the number of h0 and the number of periodic orbits of index 1 depend on the number of
h1, but some part of h1 was already used for creating the periodic orbits of index 0. And
the procedure continues by considering h2, and so on. By duality of the indices, the number
hn−1 together with hn will construct An−1 but together with hn−2 will construct An−2. Then
the number of periodic orbits of index n− 1 depends on the number of hn and the number
of periodic orbits of index n− 2 depends on the number of hn−1, but some part of hn−1 was
already used for creating the periodic orbits of index n− 1. And the procedure continues by
considering hn−3, and so on. Then we can define

A0 = h0

A1 = h1 − h0

A2 = h2 − (h1 − h0)
...

...
Ak = hk − Ak−1
...

...
Ai = hi − Ai−1

=



An−1 = hn

An−2 = hn−1 − hn

An−3 = hn−2 − (hn−1 − hn)
...

...
An−1−k = hn−k − An−k
...

...
An−i−1 = hn−i − An−i

(19)
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3.2 Coupling inequalities

Lemma 3 A collection (h0, . . . , hn) can be decomposed in an union Aj =

n∑
j=0

hj

2
of disjoint

couples of the form (hℓ, hℓ+1) with ℓ ∈ {0, . . . , n} if and only if

(−1)k
k∑

j=0

(−1)jhj ≥ 0, k = 1, . . . , n− 1, (20)

n∑
j=0

(−1)jhj = 0. (21)

Proof: Trivial. In order to couple all singularities of index 0 with a singularity of index 1
it is necessary and sufficient that h1 ≥ h0. In order to couple all singularities of index 1 with
a singularity of index 2 it is necessary and sufficient that h2 ≥ h1 − h0 and so on until the
coupling of the singularities of index n − 2 with singularities of index n − 1. Finally, the
number of singularities of index n − 1 not yet coupled and the number of singularities of
index n must coincide for the coupling is complete. □

Conversely, the coupling conditions can also be expressed by the system of the following
lemma, whose proof is analogous to that of Lemma 3, the connection being made this time
with the middle index(indices).

Lemma 4 A collection (h0, . . . , hn) can be decomposed in an union Aj =

n∑
j=0

hj

2
of disjoint

pairs of the form (hℓ, hℓ+1) with ℓ ∈ {0, . . . , n} if and only if

(−1)k
k∑

j=0

(−1)jhj ≥ 0, k = 1, . . . ,

⌊
n− 1

2

⌋
, (22)

(−1)k
k∑

j=0

(−1)jhn−j ≥ 0, k = 1, . . . ,

⌊
n− 1

2

⌋
, (23)

n∑
j=0

(−1)jhj = 0. (24)

We observe that the last equation of each of the two previous systems is nothing other
than the condition χ =

∑n
i=0(−)jhj = 0, where χ denotes the Euler characteristic. It is

known that this condition is a necessary condition for the realization of a flow non-singular
of Morse-Smale type.
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4 Continuation of a Lyapunov graph to a Lyapunov

graph of Smale type

Notation:

1. hmin is the minimal number of singularities satisfying the Poincaré-Hopf inequali-
ties (1) − (5) (or equivalently, the system (110)–(115)). This minimal number was
presented in [7].

2. hminp is the minimal number of singularities satisfying the Poincaré-Hopf inequali-
ties (1)− (5) and Lemma 3 (or Lemma 4).

3. Amin is the minimal number of periodic orbits, i.e., Amin =
hminp

2
.

Theorem 5 A (generalized) vertex of a Lyapunov graph associated with the homological
data e+ = B+

0 , e− = B−
0 and {(B+

j − B−
j )}2j=0 can be continued to a Lyapunov graph of

Smale type if and only if its label (h0, . . . , hn) satisfies the Poincaré-Hopf inequalities of
Smale type (1), (2), (5), (8), (11) and the coupling inequalities of Lemma 3. Equivalently,
this same vertex can be continued to a Lyapunov graph of Smale type if and only if its label
(h0, . . . , hn) satisfies the Poincaré-Hopf inequalities of Smale type (1), (2), (5), (8), (11)
and the coupling inequalities of Lemma 4 (or Lemma 3).

5 Dimension 3 case

5.1 Lyapunov graphs of Smale type in dimension 3

u
?

?

β1 = 0

h0 = 1, h1 = 2, h2 = 1

β1 = 0

Figure 7: A Lyapunov graph in dimension 3
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Figure 8: Explosion of a Lyapunov graph of Smale type in dimension 3

5.2 Combinatorial results

Proposition 3 A (generalized) vertex of a Lyapunov graph associated with the homological
data e+ = B+

0 , e− = B−
0 and {(B+

j − B−
j )}2j=0 can be continued to a Lyapunov graph of

Smale type if and only if its labels (h0, h1, h2, h3) satisfies the following inequalities :

h0 ≥ 0
h1 ≥ 2h0 +B−

0 − 1
h2 ≥ 2h3 +B+

0 − 1
h3 ≥ 0

h0 − h1 + h2 − h3 = (B+
0 −B−

0 )−
(B+

1 −B−
1 )

2
h0 − h1 + h2 − h3 = 0

Moreover, by considering Aj the number of periodic orbits of index j, we have
A0 = h0

A1 = h1 − h0 (= h2 − h3)
A2 = h3

Proof: A (generalized) vertex of a Lyapunov graph can be continued to a Lyapunov graph
of Smale type if and only if it can be continued in a Lyapunov graph of Smale type with
singularities which can be paired two by two according to the criterion of consecutive indices.
This is equivalent to makes the label (h0, h1, h2, h3) of the vertex verify the Poincaré-Hopf
inequalities for the continuation in a Lyapunov graph of the Smale type and the coupling
inequalities. From the discussion of 2, Poincaré Hopf inequalities (PHS) for the continuation
to a Lyapunov graph of Smale-type in dimension 3 are :

h0 ≥ 0
h1 ≥ 2h0 +B−

0 − 1
h2 ≥ 2h3 +B+

0 − 1 (PHS)
h3 ≥ 0

h0 − h1 + h2 − h3 = (B+
0 −B−

0 )−
(B+

1 −B−
1 )

2
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and, in dimension 3, the coupling conditions are reduced to the equation

h0 − h1 + h2 − h3 = 0

since the inequalities h1 ≥ h0 and h2 ≥ h3 are already guaranteed by the previous inequalities
(PHS). □

Corollary 6 Let v be a vertex of a Lyapunov graph associated with the homological data
e+ = B+

0 , e− = B−
0 and {(B+

j − B−
j )}2j=0 which can be continued to a Lyapunov graph

of Smale type. Then its continuation contains at least B+
0 + B−

0 − 2 periodic orbits thus
distributed 

Amin
0 = 0

Amin
1 = max(B+

0 , B
−
0 )− 1

Amin
2 = 0

Among the A1 periodic orbits of index 1, there will be
A1− | B+

0 −B−
0 | of type (0− c, 2− d) ;

| B+
0 −B−

0 | of type (1− d, 2− d) si B+
0 ≥ B−

0 ,
of type (0− c, 1− c) if B+

0 < B−
0 .

Moreover, this minimal decomposition corresponds to the labeling of v given by

h1 = h2 = max(B+
0 , B

−
0 )− 1

Proof: □

Remark: In this case hminp = hmin and Amin =
hminp

2
=

hmin

2

Corollary 7 Let v be a vertex of a Lyapunov graph associated with a slice of a manifold
(M,∂−M) of dimension 3, whose homological boundary data are e+, e− and {(B+

j −B−
j )}2j=0.

Suppose that v is labeled by the ranks of the homological Conley index of (M,∂−M) and that
it can be continued in a Lyapunov graph of the Smale type. Then the periodic orbits of the
continuation of v are in number of rk H1(M,∂−M) = rk H2(M,∂−M) and distributed as

A0 = 0
A1 = rk H1(M,∂−M)
A2 = 0

Proof: □
The following formula is a necessary condition for the existence of a Smale flow on a slice

of a manifold (M,∂−M) of odd dimension [cf. [2]] :

0 = χ(M)− χ(∂−M) = χ(M,∂−M) =
n∑

j=0

rk Hi(M,∂−M)

Applied to the case of the dimension 3, since we only study connected slices, this gives :

rk H1(M,∂−M) = rk H2(M,∂−M)
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5.3 Realization of Lyapunov graphs of Smale type in dimension 3

5.3.1 Attachment of round handles of index 0 (and 2)

Gluing a round handle of index 0 simply means :

• for the manifold creating one more connected component which is a solid torus D2×S1;

• for the boundary adding one more connected component which is a 2-dimensional
torus, that is N+ = N− ⊔ T 2.

Taking the dual point of view tells us that the attachment of a round handle of index 2
makes a torus boundary component disappear, by filling it with a solid torus.

5.3.2 Attachment of round handles of index 1

We present here four elementary attachments of round handles of index 1 which realize each
possible homological variations of the boundary (relative to the Betti numbers).

1. Attachment of type (0− c, 2− d)

As one removes and one adds at the same time a boundary component, it is necessary
to start from a boundary N− having at least two connected components. We can
therefore restrict ourselves by considering the two components that we want modify
and assume N− = N1 ⊔ N2. After gluing (see Figure 9 and thinking Nj = Nj ♯ S2

pour j = 1, 2), the boundary changes to N+ = (N1 ♯ N2)⊔S2. In particular, the Betti
numbers of the edge remain unchanged.

Figure 9: Invariant (through β0)

Concerning the quotients before and after the attachment, we have that (N−×I)/(N−×
{0}) has the same homotopy type of a point while ((N−× I)∪Fig9R1)/(N

−×{0}) has
the same homotopy type of a pinched torus, so h1 = h2 = 1.

2. Attachment of type (1−d, 1−c) As we remove and add at the same time two generators
of the first homology group from the boundary, it is necessary to start from an edge
N− having a non-trivial H1. We can therefore assume N− = N1 ♯ T 2. After gluing
(see Figure 2), the boundary remains of the form N+ = N1 ♯ T 2. In particular, the
Betti numbers of the boundary remain unchanged.

Concerning the quotients before and after the attachment, we have that (N−×I)/(N−×
{0}) has the same type of homotopy of a point while ((N− × I)∪Fig2 R1)/(N

− × {0})
has the same homotopy type of S2 ∨ S1, donc h1 = h2 = 1.
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Figure 10: Invariant (through β1)

3. Attachment of type (1− d, 2− d) Since we add a connected component and two gener-
ators of the first homology group from the boundary, we assume any N−. After gluing
(see Figure 3 and thinking N−♯ S2), the boundary becomes N+ = (N− ♯ T 2) ⊔ S2. In
particular, the boundary β0 was increased by 1 and by 2 the β1.

Figure 11: Increasing β0 and β1

Concerning the quotients before and after the attachment, we have that (N−×I)/(N−×
{0}) has the same homotopy type of a point while ((N−× I)∪Fig3R1)/(N

−×{0}) has
the same homotopy type of a pinched torus, so h1 = h2 = 1.

4. Attachment of type (0− c, 1− c)

Since we remove two generators from the first homology group of the edge and also
a connected component, it is necessary to start from a boundary N− having at least
two connected components and a non-trivial H1. We can therefore assume N− =
N1 ⊔ (N2 ♯ T 2). After gluing (see Figure 4 and thinking N1 = N1 ♯ S2), the boundary
changes to N+ = N1 ♯ N2. In particular, we have reduced by 1 the β0 of the boundary
and by 2 the β1.

Concerning the quotients before and after the attachment, we have that (N−×I)/(N−×
{0}) has the same type of homotopy of a point while ((N− × I)∪Fig4 R1)/(N

− × {0})
has the same homotopy type of S2 ∨ S1, so h1 = h2 = 1.

[To calculate the ranks of the index of Conley from ((N− × I) ∪Fig4 R1)/(N
− × {0}),

instead of studying this same space, we can also observe that the quotient space Y
relative to the same neighborhood endowed with the opposite flow and defined by
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Figure 12: Decreasing β0 and β1

((N− × I) ∪Fig4 R1)/N
+ has the same type of homotopy of S3 prived of a ball and

a full torus, i.e. the same homotopy type of R3 \ S1, therefore, by McCord duality,
h1 = rk H2(Y ) = 1 and h2 = rk H1(Y ) = 1.]

6 Proof of results

6.1 Background

As described in Section 2, if n is odd, then (1)–(5) need to be satisfied.
In [9], it was proved that if an abstract Lyapunov semi-graph satisfies the Poincaré-Hopf

inequalities, then it can be continued to a Lyapunov semi-graph of Morse type. This means
that any vertex of the initial abstract Lyapunov semi-graph L can be replaced by a Lyapunov
semi-graph of Morse type LM , satisfying the same Betti numbers on the e+ and e− incoming
and outgoing (dangling) edges, and such that the k-th ranks of the Conley homology indices
in L are equal to the number of singularities of index k in LM . The continuation results
are presented by means of a constructive algorithm which produces a linear system hereby
called an hcd-system. More precisely, in [9] Proposition 1 was proved.

In the sequel we adopt the following notation: Bj = B+
j −B−

j , for j = 1, . . . , ⌊(n− 2)/2⌋,
and, if n is odd, Bj = (B+

j −B−
j )/2 for j = (n− 1)/2, B+

0 = e+ − 1 and B−
0 = e− − 1.

6.2 Minimal number of singularities for pairing: hminp

In this section we adress a natural development of the problem addressed in [5]. In that
work we presented a new proof for and extended results presented in [7] regarding the Ogasa
number for ordered continuations of an abstract Lyapunov semi-graph L.

Definition 1 Given positive integers e+ and e−, and n integers {Bj}n−2
j=1 such that Bj =

Bn−1−j for j = 1, . . . , n− 2, and Bi ≡ 0 mod 2 if n = 2i+ 1, we say that an n-dimensional
manifold M with boundary ∂M = N+ ∪ N− such that N+ ∩ N− = ∅ satisfies the given
(homological) boundary conditions if e+ is the number of connected components of N+, e− is
the number of connected components of N− and Bj = B+

j − B−
j is the difference of the j-th

Betti numbers of the boundary components, that is, Bj = rank(Hj(N
+))− rank(Hj(N

−)).

It is shown in [7, 5] that the loose information about the boundary suffices to deter-
mine the abstract minimal number of singularities hmin as well as their indices and types
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(connecting and disconnecting). In other words, hmin is the optimal value of the integer
linear problem below. In [5], explicit analytical optimal solutions are given to the following
problem, see Theorem 8 from [5] reproduced below for completeness.

Minimize
n−1∑
j=1

hj

subject to (110)–(115)
hc
j, h

d
j , hj, β ∈ Z+, j = 1, . . . , n− 1.

(25)

Recall that the positive part (resp., negative part) of a number x is [x]+ = x+ = max{x, 0}
(resp., [x]− = x− = max{−x, 0}). It follows that |x| = x++x− and x = x+−x−. We will use
both notations, preferring the shorter one when possible, with the warning not to mistake
the meaning of B+

j , B
−
j , B−

0 , B+
0 , e

+ and e−, defined independently. This inconsistency is
acceptable in view of the standardization and simplification of notation that it will make
possible.

Theorem 8 Let e+ and e− be positive integers. Let {Bj}n−2
j=1 be integers such that Bj =

Bn−1−j for all j = 1, . . . , n − 2. If n = 2i + 1, let Bi = 0 mod 2. Then any flow on any
n-dimensional manifold M satisfying the given homological boundary conditions must have
at least hmin singularities, where

hmin = B−
0 + B+

0 +
i∑

j=1

|Bj|, if n = 2i+ 1.

Let hd
j denote the number of singularities of index j and type j-d, and let hc

j denote the
number of singularities of index j and type (j− 1)-c. Then any nonnegative and integral hcd

satisfying

hc
1 = B−

0 ,

hd
n−1 = B+

0 ,

hd
j + hd

n−j−1 = B+
j , j = 1, . . . ,

⌊
n− 2

2

⌋
,

hc
j+1 + hc

n−j = B−
j , j = 1, . . . ,

⌊
n− 2

2

⌋
,

hd
i = B+

i , if n = 2i+ 1,

hc
i+1 = B−

i , if n = 2i+ 1,

constitutes a possible distribution of the hmin singularities.

Suppose n = 2i+ 1. Let h0 = hn = 0. In this work we are interested in the nonnegative
integral solutions of (110)–(115) that allow for the pairing of the h’s. In Lemma 4, it was
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shown that a necessary condition for this was the satisfaction of the following system of
inequalities:

(−1)k
k∑

j=1

(−1)jhj ≥ 0, k = 1, . . . ,

⌊
n− 1

2

⌋
, (26)

(−1)k
k∑

j=1

(−1)jhn−j ≥ 0, k = 1, . . . ,

⌊
n− 1

2

⌋
, (27)

n−1∑
j=1

(−1)jhj = 0. (28)

In addition, we are interested in the solutions that allow pairings while using the minimum
possible number of singularities. That is, we want to find, if they exist, optimal solutions to
the integer linear problem

Minimize
n−1∑
j=1

hj

subject to (110)–(115), (26)–(28)
hc
j, h

d
j , hj ∈ Z+, j = 1, . . . , n− 1.

(29)

Denote by hminp the optimal value of (29), if it exists. Then

hminp ≥ hmin,

since (29) is obtained from (25) by adding restrictions.

6.3 Minimum Pairing Problem

We consider the case where n is the odd number 2i+ 1, where i is the middle dimension.
It will be shown in section 6.3.3 that the integer linear problem (29) is feasible if and

only if the data B+
0 ,B−

0 ,Bj, for j = 1, . . . , (n− 1)/2 satisfy

B+
0 − B−

0 +

(n−1)/2∑
j=1

(−1)jBj = 0. (30)

As a preliminary step, we show that (30) is a necessary condition for feasibility.

Lemma 9 Given nonnegative integral B+
0 , B−

0 , and integral Bj, for j = 1, . . . , (n−1)/2, the
system of inequalities (110)–(115), (28) has a nonnegative integral solution (h, hcd) only if
(30) is satisfied.

Proof: It was shown in [9] that the system (110)–(115) may be interpreted as the system
of equations defining a network flow problem. In this problem, the constants associated with
the nodes are B+

0 ,−B−
0 , (−1)jBj, for j = 1, . . . , (n− 1)/2, and (−1)jhj, for j = 1, . . . , n− 1.
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It is well known that the necessary condition for such a problem to have a solution is to have
the sum of the values associated with the nodes be equal to zero:

−B−
0 + B+

0 +

(n−1)/2∑
j=1

(−1)jBj +
n−1∑
j=1

(−1)jhj = 0. (31)

Therefore, a necessary condition for (28) and (31) to be simultaneously satisfied is that (30)
holds. □

Since all entries of the integer problem (29) are integral and the objective function of this
problem has a trivial lower bound of zero, if feasible, (29) has an optimal value.

The instance i = 1 and n = 2i+1 = 3 leads to the straightforward integer linear problem
below.

Minimize h1 + h2

s.t. hc
1 =B−

0

hd
1 =B+

0

hc
1+hd

1 −h1 = 0
hc
2+hd

2 −h2 = 0
hd
1 −hc

2 = B1

hc
1, h

d
1, h

c
2, h

d
2, h1, h2 ≥ 0.

This is a consequence of the fact that, for n = 3, the constraints (26) and (27) reduce to
h1 ≥ 0 and h2 ≥ 0, constraints that were already present in (25). This problem has the
general solution

hc
1 = B−

0

hd
1 = B+

1 + α

h1 = B−
0 + B+

1 + α

hc
2 = B−

1 + α

hd
2 = B+

0

h2 = B+
0 + B−

1 + α,

where α ∈ Z+. The value of the general solution is B−
0 +B+

1 +α+B+
0 +B−

1 +α = 2α+B−
0 +

B+
0 + |B1|. Hence its optimal value, obtained when α = 0, is hminp = B−

0 +B+
0 + |B1| = hmin.

Thus for the instance n = 3, the pairing requirement doesn’t eliminate the optimal solution
to the minimum singularities problem.

In many discussions, the special case n = 3 needs special treatment, since some equations
and variables are not present. Since it is a trivial case from the optimization problem point of
view, we will simplify the presentation by assuming from now on that i ≥ 2 when analyzing
the odd case.

Henceforth we will assume that (30) holds. This implies constraint (28) is redundant and
may be dropped from (29).

6.3.1 1-arc and 2-arc flows equivalent network

The hcd-system of equations (110)–(115) may be shown, by multiplying (an appropriate) half
of the equations by −1, to correspond to the flow conservation equations in an appropriate
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network, see [9]. Figure 13 depicts the network corresponding to dimension n = 7, or i = 3.
The underlying directed graph upon which the network is defined was studied in [9, 8, 10, 11].
It has 3i− 1 nodes and 4i arcs. Ignoring the direction of arcs, we have a graph that contains
4+(i−1) biconnected components. The first four are simply the four arcs with their adjacent
nodes at the left of the graph (assuming the planar embedding of Figure 13) and the i − 1
remaining ones are the diamond shaped subgraphs that follow on the right, joined at their
sides by B nodes. Arcs in each lozenge are directed from top to bottom. One may imagine
the first four arcs on the left as a lozenge that was split along its left node. Attached to
each node there is a supply/demand value, whereas the number associated with an arc is
interpreted as flow along the arc. Flow conservation equations are associated with each node
and state that flow into it minus flow out of it must equal its supply (if the result is negative),
its demand (if positive) or zero, that is, the flow into a node must balanced the flow out of
it. In the last case the node is called a transshipment node.

B+
0

−h6

−B1

h1

−B−
0

−h2

h5

B2

−h4

h3

−B3

hd
6

hc
6

hd
1 hd

5

hc
1

hc
2 hd

2

hc
5 hc

3

hd
4

hc
4

hd
3

Figure 13: Network corresponding to hcd-system, for n = 7.

Let (h, hcd) be a nonnegative integral solution of (110)–(115). Then hcd is a flow in a
network whose nodes have supply/demands given by h and B−

0 , B+
0 , B1, . . . , Bi. The flow

into minus flow out of equations express the flow across a network in terms of flows along
its arcs. Alternatively, one could express the network flow as flows along paths and cycles.
The two are related by flow decomposition theorems. To this network we will apply the flow
decomposition theorem given in [1, p. 80], a more general version of the one in [15, p. 8].
Since it is of interest in the present work, we add an integrality assumption to the statement
of the theorem. That this results in the integrality of the elements in the decomposition
follows directly from the constructive proof given in [1].

Theorem 10 (Flow Decomposition Theorem) Let G be a network with ℓ nodes and m
arcs and integral supplies and demands. Every integral path and cycle flow has a unique
representation as nonnegative integral arc flows. Conversely, every nonnegative integral arc
flow can be represented as an integral path and cycle flow (though not necessarily uniquely)
with the following properties:
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(a) Every directed path with positive flow connects a supply node to demand node.

(b) At most ℓ+m paths and cycles have nonzero flow; out of these, at most m cycles have
nonzero flow.

The networks considered herein contain no cycles, so the decomposition will involve only
path flows. Furthermore, the paths either contain one or two arcs. Of course each arc is a
1-arc path. The arcs in the remaining paths fall into one of the possibilities: (1) hd

j and hc
j−1,

for j = 1, . . . , n − 2, (2) hc
j and hd

n−j, for j = 2, . . . , i, (3) hd
j and hc

n−j, for j = 1, . . . , i − 1.
Although in the general case the number of paths may potentially be exponential in the
number of nodes, in this case the 2-arc paths number 2n− 5 = 4i− 4. So the total number
of paths is less than double the number of arcs. The notation adopted for the 2-arc paths
is given in Table 1 below. The 1-arc paths are denoted by jc and jd, for j = 1, . . . , n − 1,
depending on whether they carry flow along arc hc

j or hd
j (as usual, there is an abuse of

notation, the same symbol representing both the arc/path and the value of flow along it).
Notice that the decomposition of flow also implies a decomposition of supplies and demands.

arcs in 2-arc path notation range
hd
j , h

c
j+1 dj j = 1 . . . , n− 2

hc
j, h

d
n−j lj j = 2, . . . , i

hd
j , h

c
n−j rj j = 1, . . . , i− 1

Table 1: Notation for 2-arc flows.

In order to understand the relationship between arc flows and path flows, it is useful to
imagine the flow along an arc, say hd

2, either “vanishing” into node B2 or “passing through”
node B2 to disappear either at node h3 or hn−2. The part of the flow corresponding to the
first case is the 1-arc path flow along path 2d, whereas the second part may be split between
r2 and d2. Applying this interpretation is easy to obtain the following equations to express
the original hcd variables in terms 1-arc and 2-arc flows:

hc
1 = 1c (32)

hc
j = jc + lj + dj−1, j = 2, . . . , i (33)

hc
i+1 = (i+ 1)c + di (34)

hc
j = jc + rn−j + dj−1, j = i+ 2, . . . , n− 1 (35)

hd
j = jd + rj + dj, j = 1, . . . , i− 1 (36)

hd
i = id + di (37)

hd
j = jd + ln−j + dj, j = i+ 1, . . . , n− 2 (38)

hd
n−1 = (n− 1)d (39)

When arc flows are replaced with path flows, all paths in the resulting equivalent network
are of length one. In the dimension n = 7, the equivalent network is depicted in Figure 14.
The 1-arc flows travel between an h node and a B node. The 2-arc flows between h nodes.
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The flow conservation equations for the general case n = 2i+ 1 are

1c + 1d + r1 + d1 = h1

jc + jd + rj + lj + dj−1 + dj = hj, j = 2, . . . , i− 1

ic + id + li + di + di−1 = hi,

(i+ 1)c + (i+ 1)d + li + di + di+1 = hi+1,

jc + jd + rn−j + ln−j + dj−1 + dj = hj, j = i+ 2, . . . , n− 2

(n− 1)c + (n− 1)d + r1 + dn−2 = hn−1

1c = B−
0

(n− 1)d = B+
0

(n− j − 1)d + jd = B+
j , j = 1, . . . ,

⌊
n− 2

2

⌋
(j + 1)c + (n− j)c = B−

j , j = 1, . . . ,

⌊
n− 2

2

⌋
id = B+

i

(i+ 1)c = B−
i

Clearly, as predicted in Theorem 10, the relation between 1-arc and 2-arc flows and hcd is
not 1-to-1. Nevertheless, for any hcd there is a set of 1-arc and 2-arc flows that constitute a
decomposition thereof that is feasible for the new network and for any set of 1-arc and 2-arc
flows satisfying the flow conservation equations in the new network, expressions (32)–(39)
will result in a feasible hcd for the original network.

B+
0 −h6 B−

1 −h2 B+
2 −h4 B−

3

−B−
0 h1 −B+

1 h5 −B−
2 h3 −B+

3

6d 6c 2c 2d 4d 4c

1c 1d 5d 5c 3c 3d

d1d5 d4d2
l3 d3l2 r2r1

Figure 14: Network with 1-arc and 2-arc flows, case n = 7.

Arcs lj and rj in the equivalent network, for j = 2, . . . , i − 2, are parallel arcs, that is,
they share the same tail (node h2j if j is even, node hn−2j otherwise) and head (node hn−2j if
j is even, node h2j otherwise). Likewise, li and di correspond to parallel arcs. Since arc flows
have the same (zero) cost in problem (29), the same will be true for 1-arc and 2-arc flows.
Therefore, we may, without affecting the cost of the solution, concentrate all flow along a
pair of parallel arcs in one of said arcs, without affecting feasibility or cost of solution. This
means we may, without loss of generality, eliminate from the equivalent network one arc from
each pair, This further reduces the number of extra arcs added with the new formulation to
3i − 3. We choose to eliminate lj, for j = 2, . . . , i. The new flow conservation equations,
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minus the multiplication by −1, are:

1c + 1d + r1 + d1 = h1 (40)

jc + jd + rj + dj−1 + dj = hj, j = 2, . . . , i− 1 (41)

ic + id + di + di−1 = hi, (42)

(i+ 1)c + (i+ 1)d + di + di+1 = hi+1, (43)

jc + jd + rn−j + dj−1 + dj = hj, j = i+ 2, . . . , n− 2 (44)

(n− 1)c + (n− 1)d + r1 + dn−2 = hn−1 (45)

1c = B−
0 (46)

(n− 1)d = B+
0 (47)

(n− j − 1)d + jd = B+
j , j = 1, . . . ,

⌊
n− 2

2

⌋
(48)

(j + 1)c + (n− j)c = B−
j , j = 1, . . . ,

⌊
n− 2

2

⌋
(49)

id = B+
i (50)

(i+ 1)c = B−
i (51)

6.3.2 Eliminating h and introducing alternate sum variables s

In order to eliminate h from the problem altogether, we must rewrite the objective function
and the constraints involving the alternate sum inequalities. From Lemma 9, equation (28)
may be dropped, since the data B+

0 ,B−
0 ,Bj, for j = 1, . . . , ⌊(n− 1)/2⌋ are assumed to satisfy

(30).
We may use (40)–(45) to remove h from the problem. This will of course require a

rewriting of the objective function and of the constraints requiring the nonnegativity of the
alternate sums (26)–(27). The objective function of (29) is transformed as follows.

n−1∑
j=1

hj =
n−1∑
j=1

(jc + jd) +
i∑

j=2

(dj−1) + di +
n−1∑

j=i+2

(rn−j + dj−1)

+
i−1∑
j=1

(rj + dj) + di +
n−2∑

j=i+1

dj

=
n−1∑
j=1

(jc + jd) + 2

[
i−1∑
j=1

rj +
n−2∑
j=1

dj

]

= B−
0 + B+

0 +
i∑

j=1

|Bj|+ 2

[
i−1∑
j=1

rj +
n−2∑
j=1

dj

]

= hmin + 2

[
i−1∑
j=1

rj +
n−2∑
j=1

dj

]
, (52)

where the next-to-last equality is obtained by summing (46)–(51) and the last from Theo-
rem 8.
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Instead of working with full-blown definitions of the descending and ascending alternate
sums

sk = (−1)k
k∑

j=1

(−1)jhj, for k = 1, . . . ,

⌊
n− 1

2

⌋
, (53)

and

sn−k = (−1)n−k

k∑
j=1

(−1)jhn−j, for k = 1, . . . ,

⌊
n− 1

2

⌋
, (54)

it is preferable to adopt the following equivalent recursive definition. The descending alter-
nate sums are expressed as follows.

s1 = h1

= 1c + 1d + r1 + d1 (55)

sj = hj − sj−1

= jc + jd + rj + dj + dj−1 − sj−1, for j = 2, . . . , i− 1 (56)

si = hi − si−1

= ic + id + di + di−1 − si−1. (57)

The ascending alternate sums may be defined analogously:

sn−1=hn−1

=(n− 1)c + (n− 1)d + r1 + dn−2 (58)

sn−j =hn−j − sn−j+1

=(n− j)c + (n− j)d + rj + dn−j−1 + dn−j − sn−j+1, for j = 2, . . . , i− 1 (59)

si+1 =hi+1 − si+2

=(i+ 1)c + (i+ 1)d + di + di+1 − si+2. (60)

The inequalities (26) require the nonnegativity of the descending alternate partial sums
s1, s2, . . . , si, whereas (27) plays the same role for the ascending ones, sn−1, sn−2, . . . , si+1.

The symmetry present in the odd n case leads to the following lemma.

Lemma 11 Given B+
0 ,B−

0 ,Bj, j = 1, . . . , i, such that (30) holds, any solution (h, hcd) of
(110)–(115) will satisfy

si = si+1. (61)

Proof: The “middle” alternate sums given by (53) and (54) are

si = (−1)i
i∑

j=1

(−1)jhj

and

si+1 = (−1)i
i∑

j=1

(−1)jhn−j.
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Therefore,

si+1 − si = (−1)i
i∑

j=1

(−1)jhn−j − (−1)i
i∑

j=1

(−1)jhj (62)

= (−1)i+1

i∑
j=1

(−1)j[hj − hn−j] (63)

= (−1)i+1

i∑
j=1

(−1)j[hc
j + hd

j − hc
n−j − hd

n−j] (64)

= (−1)i+1

{
− hc

1 + hd
n−1 + (−1)i(hd

i − hc
i+1) (65)

+
i−1∑
j=1

(−1)j[−hc
j+1 + hd

j − hc
n−j + hd

n−j−1]

}
(66)

= (−1)i+1

{
−B−

0 + B+
0 + (−1)iBi +

i−1∑
j=1

(−1)jBj

}
(67)

= 0, (68)

where the last equality follows from (30). □
Lemma 11 allows us to rewrite (60) as

si = (i+ 1)c + (i+ 1)d + di + di+1 − si+2. (60′)

6.3.3 Formulation as a minimum cost flow (MCF) problem

With the replacement of arc flow by path flows, the elimination of h and the introduction of
the alternate sum variables, problem (29) is converted into the following equivalent integer
linear problem.

Minimize

[
n−2∑
j=1

dj +
i−1∑
j=1

rj

]
subject to (46)–(51), (55)–(60′)

jc, jdj , rj, dj, sj ∈ Z+, for all valid j.

(69)

The above problem is equivalent to (29) in the sense that hminp is equal to hmin plus twice
the optimal value of the above integer linear problem. The optimal value of (69) is denoted
by ρ Thus,

hminp = hmin + 2ρ. (70)

Theorem 12 The minimum pairing problem is equivalent to an uncapacitated minimum
cost flow problem.

Proof: We show that the matrix of coefficients of the linear constraints (46)–(51), (55)–
(60′) may be transformed into a node-arc incidence matrix of a digraph by multiplying
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appropriate subset of half the equations by −1. In order to explicit the selection of rows, we
must choose how equations (55)–(60′) are written to begin with, since there are variables in
both sides of equal sign in these expressions. We fix the following choice:

−s1 + 1c + 1d + r1 + d1 = 0 (71)

−sj + jc + jd + rj + dj + dj−1 − sj−1 = 0, for j = 2, . . . , i− 1 (72)

−si + ic + id + di + di−1 − si−1 = 0 (73)

−sn−1 + (n− 1)c + (n− 1)d + r1 + dn−2 = 0 (74)

−sn−j + (n− j)c + (n− j)d + rj + dn−j−1 + dn−j − sn−j+1 = 0, for j = 2, . . . , i− 1 (75)

−si + (i+ 1)c + (i+ 1)d + di + di+1 − si+2 = 0 (76)

This implies that the entries in the coefficient matrix of the constraints (46)–(51), (71)–(76)
are either 0 or 1 for the columns corresponding to the 1-arc flows and 0, ±1 for the 2-arc
flow columns. We will examine each variable at a time. We will also assign labels to the
equations to help drawing the network, since each equation will be the flow conservation
equation in the associated node.

The selected equations for the sign change are (46); every other equation of (48), starting
with the first one; every other equation of (49), starting with the second one; equation (50) if
i is odd; equation (51) if i is even; every other equation of (71)–(73), starting with the second
one; every other equation in (74)–(76), starting with the first one. We have to show that the
matrix obtained changing the signs of these rows has exactly two entries per column, one 1
and the other −1.

The label assignments for the equations in (46)–(51) is as follows. Equation (46) is
assigned the label f0, (47) is assigned the label g0, the jth equation in (48) receives the
labels fj if j is odd and gj otherwise, the jth equation in (49) receives the label gj if j is odd
and fj otherwise. Equation (50) is assigned the label gi if i is even, fi otherwise. Equation
(51) is assigned the label fi if i is even, gi otherwise. This means nodes f0, f1, . . . , fi,
associated with the equations in (46)–(51) that were multiplied by −1, will be supply nodes,
whereas g0, g1, . . . , gi are associated with demand nodes.

The nodes associated with equations (71)–(76) will be transshipment nodes, since the
constant in the right-hand-side of the flow conservation equation is zero. The jth equation
in (71)–(73) is assigned the label tj if j is odd and uj if j is even. So equation (73) is labeled
ui if i is even and ti otherwise. Similarly, the jth equation in (74)–(76) receives the label
uj if j is odd and tj otherwise, ending with ti is i is even and ui otherwise. Notice that the
labels u have been assigned to equations selected for the sign change, whereas the labels t
were assigned to the unchanged equations.

Notice that each 1-arc flow variables appear exactly once in the set of equations (46)–(51)
and once in the set of equations (55)–(60′). We just have to check that these entries will
have the appropriate signs after the multiplication.

Consider the 1-arc flow variable 1c and the associated column. This variable is present in
the first equation of (46), labeled f0, one of the selected ones. So its coefficient is −1 in the
corresponding row. It also appears in the first equation of (71)–(73), labeled t1. Since this
is not a selected equation, its coefficient in this equation is 1. So this column satisfies the
condition. The tail of the arc carrying flow 1c is f0 and its head is t1. A similar argument
applies to (n− 1)d. The corresponding arc has tail u1 and head g0.
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Now consider the variable jc, where j ∈ {2, . . . , i}. This variable is present with coefficient
1 in the (j − 1)th equation in (49). This equation will be selected only if j − 1 is even, or
j is odd. Thus if j is odd the variable is in an equation labeled fj−1, and if j is even, in an
equation labeled gj−1. It is also present in the jth equation of (71)–(73), with label tj if j
is odd and uj otherwise. Thus its coefficient will be −1 on this row in the modified matrix
only if this equation is selected, which happens only if j is even. So if j is odd, the arc
carrying flow jc has tail fj−1 and head tj. Otherwise, the arc has tail uj and head gj−1. In
either case, the nonzero entries in the column of the modified matrix corresponding to this
variable will be 1 and −1.

Next consider jd, for j ∈ {1, . . . , i − 1}. It has coefficient 1 in the jth equation of (48),
so it will have coefficient −1 on the corresponding row in the modified matrix only if j is
odd, with label fj, otherwise the coefficient remains 1 in the equation labeled gj. It is also
present with coefficient 1 in the jth equation of (71)–(73), so its coefficient in this row of
the modified matrix is −1 only if j is even. The equation has label tj if j is odd and uj

otherwise. The arc with flow jd thus has tail fj and head tj if j is odd and tail uj and head
gj otherwise. Therefore, the corresponding column in the modified matrix will have nonzero
entries 1 and −1.

Next consider id. The corresponding column has coefficient 1 in row corresponding to
equation (50). So the coefficient in this column and row will be −1 in the modified matrix
only if i is odd, receiving label fi in this case and gi otherwise. The second equation con-
taining this variable is the last, or ith, equation of (71)–(73). Thus the coefficient of this
variable in the modified matrix will be −1 in this row only if i is even. The label in case i is
odd (resp., even) is ti (resp., ui). The corresponding arc has tail fi and head ti if i is odd,
and tail ui and head gi, otherwise. So again the corresponding column contains 1 and −1 in
the modified matrix.

The analyses of columns corresponding to variables (n− j)c and (n− j)d, for j = 1, . . . , i
are analogous.

The variables corresponding to 2-arc flows are not present in equations (46)–(51), only in
(71)–(76). The variable rj is present with coefficient 1 in the jth equation in (71)–(73), so it
will have coefficient −1 on this in the modified matrix only if j is even. The associated label
is tj if j is odd and uj otherwise. It is also present with coefficient 1 in the jth equation of
(74)–(76), and this will change to −1 in the modified matrix only if j is odd. In this group
of equations, the label is uj if j is odd and tj otherwise. Thus, in either case, the arc with
flow rj has tail uj and head tj and the corresponding column in the modified will have the
appropriate configuration.

Now consider variable dj, for j ∈ {1, . . . , i−1}, It is present in two consecutive equations
in (71)–(73) and so will have entries of opposite signs on these rows in the modified matrix.
The tail (resp., head) of the arc carrying dj is uj+1 (resp., tj) if j is odd, and uj and tj+1

otherwise. The variable dn−j, for j ∈ {2, . . . , i − 1} is present in two consecutive equations
(j − 1th and jth) in (74)–(76), so the corresponding column in the modified matrix has the
appropriate pattern. The tail and head of the corresponding arc are uj−1 and tj if j is even,
and uj and tj−1 otherwise. Finally, consider variable di. It is present in the last and ith
equation of (71)–(73), and its coefficient will change to −1 in this row only if i is even. The
second equation containing this variable is the last and ith equation of (74)–(76), so it will
change to −1 in the modified matrix only if i is odd. So the corresponding arc will have tail
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ui and head ti. Consequently, the new column in the modified matrix satisfies the desired
conditions.

The last set of variables are the sj’s. Each sj, for j = 1, . . . , n− 1 is present in precisely
two equations of (71)–(73), with coefficient −1 in both. For j ̸= i, sj is present in two
consecutive equations either in (71)–(73) or in (74)–(76), so the corresponding column will
have the appropriate pattern in the modified matrix. In both cases, the equations involved
are the jth and (j + 1)th. In the first case, since the even equations have had the sign
changed, the arc corresponding to sj has tail tj and head uj+1 if j is odd, and tail tj+1 and
head uj otherwise. In the second case, since the odd numbered equations have had their sign
changed, arc sn−j has tail tj+1 and head uj, if j is odd, and tail tj and head uj+1 otherwise.
The exception is si. It is present in the last and ith equation of (71)–(73) and in the last
and ith equation of (74)–(76), as was the case for di. Thus the corresponding column in the
modified matrix will have precisely two nonzero elements, 1 and −1. Arc si’s tail and head
are ti and ui. □

Figure 15 depicts the network corresponding to the minimum cost flow (MCF) problem
of the minimum pairing problem when n = 7.

g0

B+
0

u1

0

g1

B−
1

u2

0

g2

B+
2

u3

0

g3

B−
3

f0

−B−
0

t1

0

f1

−B+
1

t2

0

f2

−B−
2

t3

0

f3

−B+
3

6d 6c 2c 2d 4d 4c

1c 1d 5d 5c 3c 3d

r2r1

d1

d5

d4

d2

d3

s6

s1

s2

s5
s3(= s4)

Figure 15: Minimum cost network flow for minimum pairing problem, case n = 7.

Theorem 12 allows us to tap into the abundant literature and results available for the
MCF problem in uncapacitated networks (i.e., flow along arcs is unbounded above). In-
tegrality constraints, for instance, may be dropped, since it is guaranteed that the linear
relaxation of the problem will have an integral optimal solution if the data of the problem
are integral, see, for instance, Theorem 9.10 of [1, p. 318]. A host of efficient algorithms
for its solution is available, e.g. [18, 20]. If the numerical solution to a specific instance is
desired, there are comercial and open source codes implemented for this class of problem.
We proceed to explore the special characteristics of this problem to obtain analytical upper
and lower bounds for the optimal value of (69).

The MCF network described by equations (46)–(51), (71)–(76), after the appropriate sign
changes, has i+1 supply nodes (nodes f0, . . . , fi, depicted at the bottom of Figure 15) and
i + 1 demand nodes (nodes g0, . . . , gi, depicted at the top). The constant associated with
each node is shown either above or below it. So the flow produced at the bottom needs to
be carried to the top. The bottom to top arcs are the arcs associated with the alternate sum
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variables. The 2-arc flows d and r are associated with the top to bottom arcs. The feasibility
of the MCF problem is straightforward to show.

Lemma 13 The MCF problem given by equations (46)–(51), (71)–(76), is feasible.

Proof: The proof is constructive. Equations (46), (47), (50) and (51) uniquely determine
flows 1c, (n − 1)d, id and (i + 1)c. Arbitrarily choose remaining 1-arc flows so as to satisfy
(48)–(49), as follows

jd = B+
j and (j + 1)c = B−

j , for j = 1, . . . ,

⌊
n− 2

2

⌋
,

and set remaining 1-arc flows to zero. This satisfies flow conservation constraints at all the
demand and supply nodes of the MCF network.

Let r = 0 and d = 0. Use the flow conservation equations for the transshipment nodes
(71)–(76) to calculate s. Flow s1 is given by (71) and then s2, s3, . . . , si may be calculated,
in this order, using (72)–(73). Similarly, flow sn−1 is given by (74) and sn−2, . . . , si+2 may
be calculated, in this order, using (75). Equation (76) is redundant, from Lemma 11.

s1 = 1c + 1d

= B−
0 + B+

1 (77)

s2 = −s1 + 2c + 2d

= −B−
0 − B+

1 + B−
1 + B+

2 (78)
...

sj =

j∑
k=1

(j − 1)k+j(B−
k−1 + B+

k ), for j = 2, . . . , i− 1 (79)

si = −
i−1∑
k=1

(−1)k+i−1(B−
k−1 + B+

k ) + B−
i−1 + B+

i

=
i∑

k=1

(−1)k+i(B−
k−1 + B+

k ) (80)

sn−1 = (n− 1)c + (n− 1)d

= B+
0 (81)

sn−2 = −sn−1 + (n− 2)c + (n− 2)d

= −B+
0

...

sn−j = −sn−j+1 + (n− j)c + (n− j)d

= (−1)j−1B+
0 , for j = 1, . . . , i− 1. (82)

This solution satisfies all flow conservation constraints. If s thus calculated is nonnegative,
we have obtained a feasible solution for the MCF and the lemma is proven. Suppose not.
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That is, there is some j ∈ {1, . . . , i} (resp., j ∈ {i+ 2, . . . , n− 1}) such that sj < 0. Arc dj
(resp., arc dj−1) forms a directed cycle with sj, since the corresponding variables are present
in the same pair of equations in (71)–(76) and they carry opposite signs in these equations.
So if we send the flow s−j along this cycle the new solution will have sj = 0 and dj = s−j
(resp., dj−1 = s−j ). Repeat this procedure for every negative component of s. Since the
addition of flow along a directed cycle doesn’t affect flow conservation constraints, the final
nonnegative solution also satisfies (46)–(51) and is therefore feasible. □

Since the MCF problem is a minimization problem, any feasible solution thereof gives an
upper bound ρ for the optimal value ρ. For the choice adopted in the proof of Lemma 13,
the cost is simply the sum of the 2-arc flows d. Using the formulas (77)–(82), we have

ρ1 =
i∑

j=1

s−j +
i+1∑
j=1

s−n−j

=
i∑

j=1

[
j∑

k=1

(−1)k+j(B−
k−1 + B+

k )

]−

+
i+1∑
j=1

[
(−1)j−1B+

0

]+
=

i∑
j=1

[
j∑

k=1

(−1)k+j(B−
k−1 + B+

k )

]−

+

⌊
i− 1

2

⌋
B+
0 . (83)

In this solution, all flow in the right-hand-side of (48)–(49) was concentrated in the 1-arc
flow variable with smallest index. If we do the opposite, that is, let

(n− j − 1)d = B+
j and (n− j)c = B−

j , for j = 1, . . . ,

⌊
n− 2

2

⌋
,

and repeat the procedure, we obtain the following alternative upper bound for ρ:

ρ2 =
i−1∑
j=1

[
j∑

k=1

(−1)k+j(B+
k−1 + B−

k )

]−

+

⌊
i

2

⌋
B−
0 . (84)

Since both ρ1 and ρ2 are possible upper bounds for ρ, we may obtain a tighter one with

ρ = min{ρ1, ρ2}. (85)

6.3.4 From an MCF problem to a transportation problem

Theoretically, one may solve an uncapacitated nonnegative costs MCF problem by calculat-
ing minimum cost paths (where the cost of a path is equal to sum of costs of arcs in path)
from each supply node to each demand node and then solving a transportation problem.
The set of supply and demand nodes of transportation problem are the same as in the MCF
problem, but there are only arcs from supply nodes to demand nodes, and the cost of the arc
from supply node ℓ to demand node j is equal to the cost of the minimum cost path from
ℓ to j in the MCF problem. For general networks this approach is not advisable, since the
number of paths may be prohibitive. But the special structure of our MCF network make
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this not only feasible, but also attractive. As usual, when talking about minimum cost paths,
we interpret costs as lengths. Notice that the arcs in the minimum pairing MCF problem
have length either zero (all the original 1-arc flows and the alternate sum variables) or one
(the 2-arc flows).

To facilitate our dealings in this transition from MCF network to transportation network,
we will name the supply of node fj as −θj and the demand of node gj as δj. Table 2 gives
the correspondence between the original and new notation.

θ0=B−
0

θj = [(−1)j+1Bj]
+, for j = 1, . . . , i

δ0=B+
0

δj = [(−1)jBj]
+, for j = 1, . . . , i

Table 2: Relationship between θ, δ and B.

The structure of the MCF network is such that each supply node has outgoing arcs to
either one or two of the transshipment nodes with t labels, whereas each demand has incoming
arcs from either one or two of the u-labeled transshipment nodes. Thus it behooves us to
determine the minimum cost paths from the t-labeled nodes to the u-labeled nodes first.
Supply and demand nodes, as well as the arcs incident thereto may be ignored for this task.
In other words, we will first focus on the transshipment subnetwork of the MCF network,
the subnetwork constituted by the transshipment nodes and arcs incident thereto. In the
case n = 7, the subproblem is to compute the minimum cost paths in the network shown in
Figure 16.
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0

u3

0

t1

0

t2

0

t3

0

r2r1

d1

d5
d4

d2

d3

s6

s1

s2

s5
s3(= s4)

Figure 16: Transshipment subnetwork of the MCF network, case n = 7.

Minimum cost paths in the transshipment subnetwork for low values of n can be found
by inspection. Since the subnetwork contains no parallel arcs, paths are uniquely determined
by the sequence of nodes therein, so they will be described thus. Table 3 gives the corre-
spondence between arcs in the MCF network and flow variables. Table 4 gives the minimum
path distances and the respective minimum paths for n = 7.

In order to establish the minimum paths and distances for generic n, we will define two
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(tj, uj+1)

{
sj, if j is odd
sn−j, otherwise

}
, for j = 1, . . . , i− 1

(tj, uj−1)

{
sj−1, if j is odd
sn−j+1, otherwise

}
, for j = 2, . . . , i

(ti, ui) si(= si+1)
(uj, tj) rj, for j = 1, . . . , i− 1
(ui, ti) di

(uj, tj+1)

{
dj, if j is even
dn−j−1, otherwise

}
, for j = 1, . . . , i− 1

(uj, tj−1)

{
dj−1, if j is even
dn−j, otherwise

}
, for j = 1, . . . , i− 1

(fj, tj)

{
jd, if j is odd
(n− j)c, otherwise

}
, for j = 1, . . . , i

(fj, tj+1)

{
(j + 1)c, if j is even
(n−j−1)d, otherwise

}
, for j = 0, . . . , i− 1

(uj, gj)

{
jd, if j is even
(n− j)c, otherwise

}
, for j = 1, . . . , i

(uj, gj−1)

{
jc, if j is even
(n− j)d, otherwise

}
, for j = 1, . . . , i

Table 3: Correspondence between arcs in MCF network and flow variables.

u1 u2 u3

t1
1

t1, u2, t2, u1

0
t1, u2, t2, u1

1
t1, u2, t3, u3

t2
0

t2, u1

1
t2, u1, t1, u2

t2, u3, t3, u2

0
t2, u3

t3

1
t3, u2, t2, u1

t3, u3, t2, u1

0
t1, u2, t2, u1

0
t3, u3

Table 4: Minimum tℓ ⇝ uj paths and distances for the case n = 7.
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auxiliary functions γ and γ0, with Z+ as domain and image.

γ(k) =

{
1, if k = 0⌊
k
2

⌋
, if k ≥ 1

(86)

γ0(k) =

⌊
k

2

⌋
, for k ≥ 0. (87)

Their graphs are shown in Figure 17. Notice that, whereas γ0 is monotone increasing, γ has
a minimum at 1.
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Figure 17: Graphs of γ and γ0.

tj ⇝ uj

{
tj, uj−1, tj−1, uj

tj, uj+1, tj+1, uj

}
, if 1 < j < i

t1 ⇝ u1 t1, u2, t2, u1

ti ⇝ ui ti, ui

tℓ ⇝ uj (tℓ+α2k, uℓ+α(2k+1))
⌊|ℓ−j|/2⌋
k=0 , if |j − ℓ| is odd, where α = sgn(j − ℓ)

tℓ ⇝ uj

{
tℓ ⇝ uℓ+αk, tℓ+αk, tℓ+αk ⇝ uj | k odd, 1 ≤ k < |j − ℓ|

}
, if |j − ℓ| is even

Table 5: Shortest paths in transshipment subnetwork.

Lemma 14 Let D be the i× i matrix whose entry dℓj contains the minimum distance from
tℓ to uj in the transshipment subnetwork when n = 2i+ 1. Then

dℓj =

{
γ(|ℓ− j|), if ℓ < i
γ0(|ℓ− j|), if ℓ = i,

(88)

and the shortest paths are given in Table 5.

Proof: From the construction of the MCF network in the proof of Theorem 12, it follows
that there are no arcs between transshipment nodes, so the undirected version of the subnet-
work is bipartite with the t-labeled nodes in one subset of the partition, called the t-subset,
and the u-labeled nodes are in the other subset, called the u-subset. Therefore, paths from
a t-labeled node to a u-labeled node must contain an odd number of arcs, as they must start
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from one subset of nodes and end in the other, and the nodes in the path must alternate
between the two subsets. Arcs outgoing from t-labeled nodes have cost zero, arcs incoming
have cost 1. Furthermore, node tj, for 1 < j < i, has two outgoing arcs, to uj−1 and uj+1,
and three incoming arcs, from uj−1, uj and uj+1. Node t1 has only one outgoing arc, to u2,
and two incoming arcs, from u1 and u2. Node ti has two outgoing arcs, to ui and ui−1 and
two incoming arcs, from the same pair of nodes.

First consider the shortest path from node tj to uj, for j < i. Since the transshipment
subnetwork has no arc from tj to uj, a shortest path will have at least 3 arcs, with at least
one arc in the path going from the u-subset to the t-subset. Thus any path will have length
at least one. Since the paths tj, uj−1, tj−1, uj and tj, uj+1, tj+1, uj have length one and cover
the possibilities of outgoing arcs from tj, they are the shortest path from tj to uj. Therefore
djj = 1, a value consistent with (88) and the paths in Table 5.

Next we look for the shortest distance from tℓ to uj, for |ℓ−j| ≥ 1. If a path from tℓ to uj

has m+1 nodes, then it must have m arcs and it has length ⌊m/2⌋, since m is odd and every
other arc in the path, starting from the second one, goes from the u-subset to the t-subset.
Thus finding a shortest path with respect to the lengths of the arcs is equivalent to finding
a shortest path with respect to the number of arcs. Suppose tℓ = tℓ0 , uℓ1 , tℓ2 , uℓ3 , . . . , tℓm−1 ,
uℓm = uj is a path from tℓ to uj in the transshipment subnetwork. Since |ℓr − ℓr−1| ≤ 1, for
r = 1, . . . ,m, we have

m ≥
m∑
r=1

|ℓr − ℓr−1| ≥



m∑
r=1

(ℓr − ℓr−1) = ℓm − ℓ0 = j − ℓ,

m∑
r=1

(ℓr−1 − ℓr) = ℓ0 − ℓm = ℓ− j,

which implies
m ≥ |ℓ− j|.

The inequality above implies that any path tℓ ⇝ uj has at least |ℓ − j| arcs. Of course,
since paths must have an odd number of arcs, the lower bound is |ℓ− j| if |ℓ− j| is odd and
|ℓ − j| + 1 otherwise. A path that achieves this lower bound must be a shortest path. Let
α = sgn(j − ℓ) = |j − ℓ|/(j − ℓ) (recall that |j − ℓ| ≥ 1). If |ℓ− j| is odd, the shortest path

will be (tℓ+α2k, uℓ+α(2k+1))
⌊|ℓ−j|/2⌋
k=0 , with length ⌊|ℓ− j|/2⌋. If |ℓ− j| is even, then the number

of arcs in a shortest path must be m = |ℓ− j|+ 1, if at all achievable. A way to attain this
lower bound is to choose odd k such that 1 ≤ k < |j − ℓ|. Then the node uℓ+αk is between
uℓ+α and uj, in the sense of subindex value. Since |ℓ− j| is even and k is odd, it follows that
|j − (ℓ+ αk)| = |j − ℓ| − k is also odd. Consider the path constituted by the shortest path
tℓ ⇝ uℓ+αk, followed by tℓ+αk, followed by the shortest path tℓ+αk ⇝ uj. The first and last
parts of this path fall into the first case studied, since the absolute value of the difference
of the indices of the extremes of the path is an odd number. So the number of arcs of this
path is k + 1 + |j − ℓ| − k = |j − ℓ| + 1 and the length if ⌊(|j − ℓ| + 1)/2⌋ = ⌊|j − ℓ|/2⌋,
which makes it a shortest path from tℓ to uj. Since there are |j − ℓ| − 2 choices for k, there
are |j − ℓ| − 2 shortest paths in this case. Thus in both cases, the findings were compatible
with (88) and Table 5. □
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Table 6 gives the minimum distances dℓj for n = 19. The nature of the minimum distances
formulas in (88) is reflected in the symmetry of this distance matrix. Notice that, for ℓ ̸= j,
the minimum distance dℓj = γ(|ℓ − j|) = γ0(|ℓ − j|) depends on |ℓ − j| via the function γ.
The only exception is dii, but this entry lies on the diagonal of the distance matrix. Hence,
dℓj = djℓ, dℓ,ℓ+k = dℓ,ℓ−k, for valid values of ℓ, j and k. Therefore, we not only have that
D = DT , but also that the entries on each row and column are symmetric with respect to
the diagonal element, increasing in value as they get farther from the diagonal entry.

Min distances tℓ ⇝ uj

u1 u2 u3 u4 u5 u6 u7 u8 u9

t1 1 1 1 2 2 3 3 4
t2 1 1 1 2 2 3 3
t3 1 1 1 1 2 2 3
t4 1 1 1 1 1 2 2
t5 2 1 1 1 1 1 2
t6 2 2 1 1 1 1 1
t7 3 2 2 1 1 1 1
t8 3 3 2 2 1 1 1
t9 4 3 3 2 2 1 1

Table 6: Minimum distances in the instance n = 19.

The shortest distances from fℓ to gj are now straightforward to obtain, since from fℓ there
are at most two choices of t-labeled nodes to go to, and at most two choices of u-labeled
nodes to reach gj. All arcs incident from (resp., incident to) supply nodes (resp., demand
nodes) have distance zero. The diagrams and corresponding expression for cℓj, the minimum
distance from fℓ to gj, for the various possible choices are depicted below. Some nodes may
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be absent from the diagram shown, for some values of j.

f0 t1

uj

uj+1

gj c0j =


d11, if j = 0
min{d1j, d1,j+1}, if 1 ≤ j < i
d1i, if j = i

(89)

fℓ

1 ≤ ℓ < i

tℓ

tℓ+1

uj

uj+1

gj cℓj =


min{dℓ1, dℓ+1,1}, if j = 0
min{dℓj, dℓ,j+1, dℓ+1,j, dℓ+1,j+1}, if 1 ≤ j < i
min{dℓi, dℓ+1,i}, if j = i

(90)

fi ti

uj

uj+1

gj cij =


di1, if j = 0
min{dij, di,j+1}, if 1 ≤ j < i
dii, if j = i.

(91)

(92)

The shortest distances in the MCF network will closely resemble the ones in the trans-
shipment subnetwork. The following function γ̃ : Z+ → Z+ will be convenient for expressing
these distances:

γ̃(k) =

{
0, if k = 0,
γ0(k − 1), if k ≥ 1.

(93)

We will show in Lemma 15 that the shortest source/sink paths in the MCF network are
the ones in Table 7. These paths involve subpaths in the transshipment subnetwork, which
are detailed in Table 5.

Lemma 15 Let C be the (i + 1) × (i + 1) matrix, with row and column index set I =
{0, 1, . . . , i}, whose entry cℓj contains the minimum distance from fℓ to gj in the MCF
network when n = 2i+ 1. Then

cℓj =

{
1, if ℓ = j = 0,
γ̃(|ℓ− j|), otherwise.

(94)

Proof: From (89),
c00 = d11 = 1,
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f0 ⇝ g0 f0, t1 ⇝ u1, g0
f0 ⇝ g1 f0, t1 ⇝ u2, g1
f0 ⇝ gj f0, t1 ⇝ uj, gj, for j = 2, . . . , i

fℓ ⇝ gℓ

{
fℓ, tℓ ⇝ uℓ+1, gℓ
fℓ, tℓ+1 ⇝ uℓ, gℓ

}
, for ℓ = 1, . . . , i− 1

f1 ⇝ g0 f1, t2 ⇝ u1, g0
fℓ ⇝ g0 fℓ, tℓ ⇝ u1, g0, if ℓ = 2, . . . , i− 1

fℓ ⇝ gℓ+1

{
fℓ, tℓ ⇝ uℓ+1, gℓ+1

fℓ, tℓ+1 ⇝ uℓ+2, gℓ+1

}
, if ℓ = 1, . . . , i− 1

fℓ ⇝ gℓ−1

{
fℓ, tℓ+1 ⇝ uℓ, gℓ−1

fℓ, tℓ ⇝ uℓ−1, gℓ−1

}
, if ℓ = 2, . . . , i− 1

fℓ ⇝ gℓ+2 fℓ, tℓ+1 ⇝ uℓ+2, gℓ+2, if ℓ = 1, . . . , i− 2
fℓ ⇝ gℓ−2 fℓ, tℓ ⇝ uℓ−1, gℓ−2, if ℓ = 2, . . . , i− 1

fℓ ⇝ gj

{
fℓ, tℓ+1 ⇝ uj, gj, if j > ℓ
fℓ, tℓ ⇝ uj+1, gj, otherwise

}
, if 1 ≤ ℓ < i, 1 ≤ j ≤ i, |ℓ− j| ≥ 3

fi ⇝ gi fi, ti ⇝ ui, gi

fi ⇝ gj

{
fi, ti ⇝ uj, gj
fi, ti ⇝ uj+1, gj

}
if i− j is odd, j ≤ i− 1

fi, ti ⇝ uj+1, gj, if i− j is even, j ≤ i− 1

Table 7: Shortest paths in MCF network.

achieved using the path t1 ⇝ u1, and so agrees with (94) and Table 7. Assume 1 ≤ j < i.
Then, from (89),

c0j = min{d1j, d1,j+1}
= min{γ(j − 1), γ(j)}

=

{
γ(1) = γ0(0), if j = 1
γ(j − 1) = γ0(j − 1), if 2 ≤ j < i.

= γ̃(j),

consistent with (94). When j = 1, then minimum is achieved at γ(1) = d12 corresponding
to path t1 ⇝ u2. When 2 ≤ j < i, the minimum corresponds to d1j, or path t1 ⇝ uj. As a
rule, the indices of the distance at which the minimum is achieved indicate the best subpath
in the transshipment subnetwork. Both cases agree with Table 7. Lastly, again from (89),
we have

c0i = d1i = γ(i− 1) = γ0(i− 1) = γ̃(i),

as prescribed by (94), where the second inequality uses the assumption i ≥ 2. Minimum is
achieved at d1i, also in accordance with Table 7.
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Now assume 1 ≤ ℓ < i. Let j = ℓ. Then, from (90), we have

cℓℓ = min{dℓℓ, dℓ,ℓ+1, dℓ+1,ℓ, dℓ+1,ℓ+1}
= min{γ(1), γ(0)}
= γ(1)

= γ0(0)

= γ̃(0),

as desired. The minimum is achieved at dℓ,ℓ+1 and dℓ+1,ℓ. Now let j = 0. Then

cℓ0 = min{dℓ1, dℓ+1,1}
= min{γ(ℓ− 1), γ(ℓ)}

=

{
γ(ℓ) = γ(1) = 0, if ℓ = 1
γ(ℓ− 1), if ℓ ≥ 2

=

{
γ0(0) = γ0(ℓ− 1), if ℓ = 1
γ0(ℓ− 1), if ℓ ≥ 2

= γ̃(ℓ).

When ℓ = 1 the minimum is achieved at dℓ+1,ℓ = d21, and when 2 ≤ ℓ < i, at dℓ1.
Still letting 1 ≤ ℓ < i, assume 1 ≤ k = |ℓ− j|, 0 ̸= j < i. Then,

cℓj = min{dℓj, dℓ,j+1, dℓ+1,j, dℓ+1,j+1}
= min{γ(k), γ(k + 1), γ(k − 1)}.

If k ≤ 2, then 1 ∈ {k − 1, k, k + 1}, which implies min{γ(k), γ(k + 1), γ(k − 1)} = γ(1) = 0.
If k = 1 and j = ℓ + 1, the minimum is achieved at dℓ,ℓ+1 and dℓ+1,ℓ+2. If k = 1 and
j = ℓ − 1, the minimum is achieved at dℓ,ℓ−1 and dℓ+1,ℓ. If k = 2 and j = ℓ + 2, the
minimum is dℓ+1,ℓ+2. If k = 2 and j = ℓ − 2, the minimum is dℓ,ℓ−1. If k > 2, then
min{γ(k), γ(k + 1), γ(k − 1)} = γ(k − 1). When j > ℓ, this minimum is achieved at dℓ+1,j,
and, when j < ℓ, at dℓ,j+1. The fℓ to gj distance may be expressed as follows

cℓj =

{
γ0(0) = γ0(1), if 1 ≤ k = |ℓ− j| ≤ 2
γ(k − 1) = γ0(k − 1), if 2 ≤ k = |ℓ− j|

= γ0(k − 1)

= γ̃(|ℓ− j|)

Now let 1 ≤ ℓ < i and j = i. Then,

cℓi = min{dℓi, dℓ+1,i}
= min{γ(i− ℓ), γ(i− ℓ− 1)}
= γ(i− ℓ− 1)

= γ0(i− ℓ− 1)

= γ̃(|ℓ− i|),
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achieved at dℓ+1,i, in accordance with (94) and Table 7.
Finally, let ℓ = i. If j = 0, using (91) and (88),

ci0 = di1 = γ0(i− 1) = γ̃(i).

Let 1 ≤ j < i. Then,

cij = min{dij, di,j+1}
= min{γ0(i− j), γ0(i− j − 1)}
= γ0(i− j − 1)

= γ̃(|j − i|),

achieved at di,j+1 if i − j is even, and at both dij and di,j+1 if i − j is odd, since γ0(2k) =
γ0(2k + 1). The last possibility is j = i. Using (91),

cii = dii = γ0(0) = 0 = γ̃(0),

as desired, which proves the lemma. □
Figure 18 contains the minimum distance tables for n = 5 (i = 2), n = 7 (i = 3), n = 9

(i = 4) and n = 19 (i = 9), showing only nonzero values. It is possible to confirm that
the table for smaller values of n are principal submatrices of the ones for higher values, in
accordance with the formulas for the minimum distances given in (94). We now have a
transportation problem that is equivalent to the MCF problem, namely

Minimize
i∑

j=0

i∑
ℓ=0

cℓjxℓj

s. t.
i∑

j=0

xℓj = θℓ, for ℓ = 0, . . . , i

i∑
ℓ=0

xℓj = δj, for j = 0, . . . , i

x ≥ 0.

(95)

The variable xℓj represents the flow from source fℓ to sink gj. The entry (ℓ, j) of matrix C
contains the cost of xℓj. The solution x may also be organized into a matrix. The supply
satisfaction constraints of (95) translate to equating the sum of flows on the ℓth row to the
ℓth supply θℓ (first set of equations), and the demand satisfaction constraints requires the
sum of flows along the jth column to be equal to the demand associated with that column, δj
(second set of constraints). The pattern of distances will allow us to construct lower bounds
for ρ, the optimal value of the MCF and of the transportation problem.

6.3.5 Lower bounds on ρ

We will construct two types of lower bounds on ρ: column lower bounds and row lower
bounds. The rules are the same, only the roles are exchanged, columns for rows, demands
for supplies.
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g0 g1 g2
f0 1
f1
f2

g0 g1 g2 g3
f0 1 1
f1
f2
f3 1

g0 g1 g2 g3 g4
f0 1 1 1
f1 1
f2
f3 1
f4 1 1

(a) n = 5 (b) n = 7 (c) n = 9

g0 g1 g2 g3 g4 g5 g6 g7 g8 g9
f0 1 1 1 2 2 3 3 4
f1 1 1 2 2 3 3
f2 1 1 2 2 3
f3 1 1 1 2 2
f4 1 1 1 1 2
f5 2 1 1 1 1
f6 2 2 1 1 1
f7 3 2 2 1 1
f8 3 3 2 2 1 1
f9 4 3 3 2 2 1 1

(d) n = 19

Figure 18: Minimum source/sink distances in MCF network.
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The rational for building a column lower bound is to calculate the minimum cost of
satisfying the demand required at that column, using all resources (the supplies) in the most
economical way for this column, without regard for the other requirements. The last is what
makes this a lower bound, since we are considering only the most advantageous situation
possible, irrespective of how this choice might impact others.

Let I = {0, . . . , i}. Take a column j ∈ I. The flows arriving at node gj travel along arcs
of costs 0, 1, . . . , max{c0j, cij} = max{γ̃(j), γ̃(i− j)} = max{⌊(j − 1)/2⌋, ⌊(i− j − 1)/2⌋} =
cmax(j). Let

Θj
k =

∑
ℓ∈I : |ℓ−j|≤2k+2

θℓ

be the supply available to node gj at cost at most k, for k = 1, . . . , cmax(j). Then the
part of the demand at node gj that must be satisfied at cost greater than or equal to k+1 is[

δj −Θj
k

]+
.

Therefore the part of the demand of node gj that must be satisfied at cost k in this most
favorable scenario is [

δj −
[
δj −Θj

k

]+︸ ︷︷ ︸
demand that must be
supplied at cost ≥ k+1

− Θj
k−1︸ ︷︷ ︸

available supply
at cost ≤k − 1

]+
.

Therefore, summing the contributions of all columns, we obtain the following column
lower bound for ρ:

ρ
1
=

i∑
j=0

cmax(j)∑
k=1

k
[
δj −

[
δj −Θj

k

]+ −Θj
k−1

]+
. (96)

The construction of the row lower bound is analogous, but instead of supply available at
cost at most k, we need the concept of at cost at most k. For each supply node fℓ we define

∆ℓ
k =

∑
j∈I : |ℓ−j|≤2k+2

δj.

The expression of the row lower bound is then

ρ
2
=

i∑
ℓ=0

cmax(ℓ)∑
k=1

k
[
θℓ −

[
θℓ −∆ℓ

k

]+ −∆ℓ
k−1

]+
. (97)

Taking the maximum of the bounds we obtain the better lower bound

ρ = max{ρ
1
, ρ

2
}. (98)
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n ρ∗

5 [B−
0 − (B−

1 + B+
2 )]

+ = [B+
0 − (B+

1 + B−
2 )]

+

7 [B−
0 − (B−

1 + B+
2 )]

+ + [B+
3 − ([−B−

0 + B−
1 + B+

2 ]
+ + B−

3 )]
+

= [B+
0 − (B+

1 + B−
2 )]

+ + [B−
3 − ([−B+

0 + B+
1 + B−

2 ]
+ + B+

3 )]
+

Table 8: Analytical expressions for ρ∗, the optimal value of (69), for n = 5 and 7.

6.3.6 Analytical solutions for n = 5 and 7

In this section we show that the formulas for the optimal value of ρ∗ of (69) given in Table 8
for n = 5 and n = 7 are correct. This will follow from considerations about the special
transportation problem considered here. In each case, we give two alternative expressions
for ρ∗. Notice that it is enough to prove the formula for n = 7. Case n = 5 may be
transformed into case n = 7 by letting B3 = 0.

Firs we establish the equality of the alternate expressions furnished for ρ∗ in the case
n = 7. Equation (30) implies that

B−
0 + B+

1 + B−
2 + B+

3 = B+
0 + B−

1 + B+
2 + B−

3 . (99)

If B3 = 0, (99) implies

B−
0 − B−

1 − B+
2 = B+

0 − B+
1 − B−

2 ,

and thus

B−
0 − B−

1 − B+
2 = B+

0 − B+
1 − B−

2 ⇒ [B−
0 − B−

1 − B+
2 ]

+ = [B+
0 − B+

1 − B−
2 ]

+.

Furthermore,

[B+
3 −([−B−

0 +B−
1 +B+

2 ]
++B−

3 )]
+ = [−([−B−

0 +B−
1 +B+

2 ]
+)]+ = 0 = [−([−B+

0 +B+
1 +B−

2 ]
+)]+,

and the alternate expressions for the optimal value of ρ∗ in Table 8, for each n, are equal.
If B3 < 0, the first expression for ρ∗ when n = 7 simplifies as follows.

[B−
0 − (B−

1 + B+
2 )]

+ + [B+
3 − ([−B−

0 + B−
1 + B+

2 ]
+ + B−

3 )]
+ = [B−

0 − (B−
1 + B+

2 )]
+

= [B+
0 − (B+

1 + B−
2 ) + B−

3 ]
+

The second expression can be rewritten thus.

[B+
0 −(B+

1 +B−
2 )]

++[B−
3 −([−B+

0 +B+
1 +B−

2 ]
++B+

3 )]
+ =

= [B+
0 − (B+

1 + B−
2 )]

+ + [B−
3 − [−B+

0 + B+
1 + B−

2 ]
+]+

=

{
[B+

0 − (B+
1 + B−

2 )]
+ + [B−

3 ]
+, if B+

0 − (B+
1 + B−

2 ) ≥ 0
[B−

3 − ([−B+
0 + B+

1 + B−
2 ]

+]+, otherwise.

= [B+
0 − (B+

1 + B−
2 ) + B−

3 ]
+,

therefore both expressions coincide. The case B3 > 0 is analogous.
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Now we show that the expressions in Table 8 provide lower bounds for ρ∗. To do that,
we build the dual of (95) for the case n = 7. The ℓth supply satisfaction equation is
associated with the dual variable uℓ, the jth demand equation with vj. The dual is the linear
optimization problem given below. It is known that the value of any feasible dual solution
provides a lower bound for the primal optimal value. The dual optimal value coincides with
the primal optimal value if both problems are feasible.

Minimize z(u, v) =
3∑

ℓ=0

θℓuℓ +
3∑

j=0

δjvj

s.t. uℓ + vj ≤
{
1, if (ℓ, j) = (0, 0), (0, 3) or (3, 0)
0, otherwise

u, v ≷ 0.

(100)

The bound will be obtained with three dual feasible solutions. Solution (u0, v0) = 0 is
trivially feasible. The feasibility of (u1, v1) and (u2, v2) may be verified in the matrices in
Table 9, along with their values. For the first two matrices, the (ℓ, j) entry contains the
sum uℓ + vj for the (u, v) vector given along the right and bottom sides of the matrix. The
entry on the top left corner of the (ℓ, j) cell contains the right-hand-side of the corresponding
restraint in (100), when different from zero. The third matrix lists the original notation for
supplies and demands, to facilitate checking the dual solution values.

u1

1 1 0 0 1 0 1
0 −1 −1 −1 0
0 −1 −1 −1 0

1 1 0 0 0 1
v1 0 −1 −1 −1

u2

1 1 0 0 1 1 1
0 −1 −1 0 0
0 −1 −1 0 0

1 1 0 0 0 0
v2 0 −1 −1 0

(u1, v1) = (u2, v2) =

(1, 0, 0, 1, 0,−1,−1,−1) (1, 0, 0, 0, 0,−1,−1, 0)

g0 g1 g2 g3
f0 1 1 B−

0

f1 B+
1

f2 B−
2

f3 1 B+
3

B+
0 B−

1 B+
2 B−

3

Table 9: Dual feasible solutions and original notation for supplies and demands.

If B3 ≥ 0 and B−
0 ≥ B−

1 + B+
2 , then

[B−
0 −(B−

1 +B+
2 )]

++[B+
3 −([−B−

0 +B−
1 +B+

2 ]
++B−

3 )]
+ =

= B−
0 − (B−

1 + B+
2 ) + [B+

3 ]
+

= B−
0 − B−

1 − B+
2 + B+

3

= z(u1, v1).

If B3 ≥ 0 and B−
1 + B+

2 − B+
3 ≤ B−

0 < B−
1 + B+

2 , then

[B−
0 −(B−

1 +B+
2 )]

++[B+
3 −([−B−

0 +B−
1 +B+

2 ]
++B−

3 )]
+ =

= [B+
3 − (−B−

0 + B−
1 + B+

2 )]
+

= B−
0 − B−

1 − B+
2 + B+

3

= z(u1, v1).
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If B3 ≥ 0 and B−
0 < B−

1 + B+
2 − B+

3 , then

[B−
0 −(B−

1 +B+
2 )]

++[B+
3 −([−B−

0 +B−
1 +B+

2 ]
++B−

3 )]
+ =

= [B+
3 − (−B−

0 + B−
1 + B+

2 )]
+

= 0

= z(u0, v0).

If B3 < 0 and B−
0 ≥ B−

1 + B+
2 , then

[B−
0 −(B−

1 +B+
2 )]

++[B+
3 −([−B−

0 +B−
1 +B+

2 ]
++B−

3 )]
+ =

= [B−
0 − (B−

1 + B+
2 )]

+

= B−
0 − B−

1 − B+
2

= z(u2, v2).

If B3 < 0 and B−
0 < B−

1 + B+
2 , then

[B−
0 − (B−

1 + B+
2 )]

+ + [B+
3 − ([−B−

0 + B−
1 + B+

2 ]
+ + B−

3 )]
+ = 0 = z(u0, v0).

Therefore [B−
0 − (B−

1 +B+
2 )]

++[B+
3 − ([−B−

0 +B−
1 +B+

2 ]
++B−

3 )]
+ is a lower bound for ρ∗.

We show that it is indeed the actual optimal value by constructing a primal feasible solution
that achieves this bound.

We will use the θ, δ notation. In this notation, the bound is

ρ∗ = [θ0 − (δ1 + δ2]
+ + [θ3 − ([−θ0 + δ1 + δ2]

+ + δ3)]
+.

Since we can’t have both θ3 = B+
3 and δ3 = B−

3 positive, we will consider the case θ3 ≥ 0,
so that δ3 = 0. To solve the remaining case, δ3 ≥ 0, simply transpose the problem, that is,
switch supplies and demands, and reduce to the first case.

Let xℓj be the flow from fℓ to gj. Let

x00 = [θ0 − δ1 − δ2]
+ (101)

and
x30 = [θ3 − ([−θ0 + δ1 + δ2]

+ + δ3)]
+ = [θ3 − [−θ0 + δ1 + δ2]

+]+. (102)

Notice that δ3 = 0 implies that xℓ3 = 0, for all ℓ. Since x03 is the only variable, besides x00

and x30, with unit cost, if we can assign values to the remaining entries of x so as to obtain
a feasible vector, this feasible vector will have cost ρ∗, and therefore be an optimal solution.

First we have to show that the assignments are valid, that is, x00 and x30 are nonnegative
integers (trivial) and don’t introduce an obstacle to the completion of the solution. So they
must satisfy

x00 ≤ θ0 (103)

x30 ≤ θ3 (104)

x00 + x30 ≤ δ0. (105)
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Inequalities (103) and (104) are direct consequences of (101) and (102). To show (105), we
consider two possibilities.

The first possibility is θ0 − δ1 − δ2 ≥ 0. Then

x00 + x30 = θ0 − δ1 − δ2 + [θ3 − 0]+ = δ0 − θ1 − θ2 − θ3 + θ3 ≤ δ0,

where the last equality follows from (99).
The second possibility is θ0 − δ1 − δ2 < 0. Then

x00 + x30 = 0 + [θ3 − (−θ0 + δ1 + δ2)]
+ = [δ0 − θ1 − θ2]

+ ≤ δ0.

Thus we conclude (105) is satisfied.
Now we proceed to complete the solution. Let

x01 = min{δ1, θ0 − x00} and x02 = min{δ2, θ0 − x01 − x00}.

Clearly, x01 and x02 are nonnegative integers. We claim that θ0 = x00 + x01 + x02. It is easy
to see that δ1 + δ2 ≥ θ0 − [θ0 − δ1 − δ2]

+ = θ0 − x00. If δ1 ≥ θ0 − x00, then x01 = θ0 − x00,
x02 = 0 and the claim is true in this case. If δ < θ0 − x00, then x01 = δ1 and since
δ2 ≥ θ0 − x00 − δ1 = θ0 − x00 − x01, we conclude that x02 = θ0 − x01 − x02, which confirms
the claim. With these assignments, the remaining demands at g1 and g2 are δ′1 = δ − x01

and δ′2 = δ2 − x02.
Now we consider the constraint

x30 + x31 + x32 = [θ3 − [−θ0 + δ1 + δ2]
+ + x31 + x32 = θ3. (106)

We claim that
x30 + δ′1 + δ′2 ≥ θ3, (107)

so that we may assign values to x31 and x32, as done above to x01 and x02, that will satisfy
(106). Using the expressions for x30, δ

′
1 and δ′2, we have

x30 + δ′1 + δ′2 = x03 + δ1 − x01 + δ2 − x02

= δ1 + δ2 + x30 − (θ0 − x00).

Using the above identity, the inequality (107)may be rewritten as

δ1 + δ2 ≥ θ3 − x30 + θ0 − x00

= θ0 + θ3 − [θ0 − δ1 − δ2]
+ − [θ3 − [−θ0 + δ1 + δ2]

+]+.

If θ0 ≥ δ1 + δ2, the right-hand-side of the inequality above reduces to

θ3 − [θ3 − 0]+ + θ0 − θ0 + δ1 + δ2 = δ1 + δ2,

so the inequality is satisfied. Otherwise, the right-hand-side is

θ0 + θ3 − [θ0 + θ3 − (δ1 + δ2)]
+,
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so the inequality (107) is equivalent to the inequality

[θ0 + θ3 − (δ1 + δ2)]
+ ≥ θ0 + θ3 − (δ1 + δ2),

which is clearly true.
So if we let

x31 = min{δ′1, θ3 − x30} and x32 = min{δ′2, θ3 − x30 − x31},

the partial solution is nonnegative integral and satisfies the conservation of flow equations
for nodes f0 and f3. Basically the flows assigned to the arcs incident out of f0 and f3 are
nonnegative integrals that dispatch the supplies available at those nodes. There might be
untapped supplies at f1 and f2, and unsatisfied demand δ′′0 = δ0−(x00+x30), δ

′′
1 = δ1−x01−x31

and δ′′2 = δ2 − x02 − x32 at nodes g1 and g2 (recall δ3 = 0). Since

δ′′0 + δ′′1 + δ′′2 = δ0 + δ1 + δ2 − (x00 + x01 + x02 + x30 + x31 + x32)

= δ0 + δ1 + δ2 − θ0 − θ3

= θ1 + θ2.

Thus the remaining variables and constraints constitute a transportation problem where all
supply nodes are connected to all demand nodes and all flow costs are zero. This problem is
trivially feasible and any solution to this problem combined with the values already assigned
constitutes a feasible solution to the original transportation problem with cost ρ∗. Therefore
ρ∗ is an optimal solution to the transportation problem.

6.3.7 Numerical examples

A computer code was built to construct and solve the odd dimensional minimum pair-
ing problem (29). It was written in Python 3.7.6 and accepts as inputs the parame-
ter i (the instance to be solved is of dimension n = 2i + 1) and, optionally, the data
(B−

0 ,B+
0 ,B1, . . . ,Bi). If the latter are not supplied, random values are assigned to these

constants, satisfying (30). The optimal value of ρ and various bounds are calculated, as well
as a solution. The output is supplied as formatted latex code and a sample is provided be-
low. This program is freely available on the page https://github.com/MargaridaMello/

OddMinimumPairingProblem/. The relevant file is ValueAndSolutionTN.py. Once this code
is executed, we may generate and solve a problem of dimension n = 5 by entering the com-
mand ValueSolutionMinPairingProblem(2) at the console window. Alternatively, if we
want to solve the specific instance with n = 5 and (B−

0 ,B+
0 ,B1,B2) = (6, 6, 5, 5), the com-

mand would be ValueSolutionMinPairingProblem(2, [6,6,5,5]).

i = 2 n = 5

(B−
0 ,B+

0 ,B) = (6, 6, 5, 5)
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In this case we obtain the following answer :

g0 g1 g2 θ
f0

1 1 5 6
f1 5 5
f2
δ 6 5

Optimal value . . . . . . . . 1

Column lower bound . . . . 0
Row lower bound . . . . . . . . 0
First upper bound . . . . . . . 6
Second upper bound . . . . . 7

jcd 1c 6 2d 5 3d 5 4d 6
r
d 2 1
s 1 6 4 6

hcd hc
1 6 hd

2 6 hc
3 1 hd

3 5 hd
4 6

h h1 6 h2 6 h3 6 h4 6

If we are only interested in the minimal number of periodic orbits, we just need to read
the last line labelled by “h”. In our example, it is the line

h h16 h26 h36 h46 .

From it, we obtain the following information :

• the minimal6 number of periodic orbits, pmin, is just the sum of the elements of the

line “h” divided by 2. Here pmin =
6 + 6 + 6 + 6

2
= 12.

• the indices of the periodic orbits associated with this line, since each orbit of index j
combinatorially corresponds to a couple of consecutive (hj, hj+1) (see Section 3). Here,
the line “h” is uniquely partitioned into 6 couples (h1, h2) and 6 couples (h3, h4), so
that six of the twelve periodic orbits are of index 1 and the other six are of index 3.

If we are interested in realizing these abstract data by attaching round handles, we need
further information about the compatible types “c” and “d” of such round handles (see [12]).
Here, we obtain this information by the penultimate line :

hcd hc
16 hd

26 hc
31 hd

35 hd
46 ,

that is, a realization can be obtained by attaching to a suitable boundary six round handles
of index 1 and type (c, d), one round handle of index 3 and type (c, d) and five round handles
of index 3 and type (d, d) according to the pattern given in [12].

The other information created by the algorithm is useful whenever one wishes to follow
step by step the algorithm presented in this paper. In this case we refer the reader particularly
to Subsection 6.3.3 for the first table and Subsection 6.3.1 for the second one.

6in the sense of Theorem 1.
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Let us emphasizing that the output is given in LaTeX format.

Coming back to the example in dimension 17 developed in the introduction, after entering
ValueSolutionMinPairingProblem(8,[5,6,3,-1,-2,-7,-6,8,-4,-10]) the output is :

i = 8 n = 17

g0 g1 g2 g3 g4 g5 g6 g7 g8 θ
f0

1 4 1 1 2 2 1 3 3 5
f1 2 1 1 1 2 2 3 3
f2 1 1 1 2 2 1
f3

1 1 1 2

f4
1 1 6 1 1 1 7

f5
2 1 1 1

f6
2 2 1 1

f7
3 2 2 1 1

f8
3 3 2 2 1 1 6 4 10

δ 6 2 6 8 4

Optimal value . . . . . . . . 6

Column lower bound . . . . 0
Row lower bound . . . . . . . . 0
First upper bound . . . . . . 33
Second upper bound . . . .30

jcd 1c 5 5c 1 6d 2 9c 10 10c 4 10d 6 12c 6 13c 6 14c 2 15c 1 15d 3 16d 6
r 2 4
d 2 1 4 1
s 1 5 3 1 5 2 10 10 13 6 15 2 16 6

hcd hc
1 5 hd

2 5 hc
3 1 hd

4 1 hc
5 2 hd

6 2 hc
9 10 hc

10 4 hd
10 6 hc

12 6 hc
13 6 hc

14 2 hc
15 5 hd

15 3 hd
16 6

h h1 5 h2 5 h3 1 h4 1 h5 2 h6 2 h9 10 h10 10 h12 6 h13 6 h14 2 h15 8 h16 6

Hence, for these data pmin = 32.

7 Future work

The proof of this result opens the way to the even dimension. Even though the guidelines for
finding an algorithm are comparable, the combinatorics in the even setting is richer because of
the existence of “invariant” handles7 and must be treated independently. Moreover, handles
of invariant type are difficult to realize in the non-singular Morse-Smale context, so that the
realization of the general abstract solution by a non-singular Morse-Smale model remains an
open question.
Research is underway regarding the even case. Partial results have already been obtained.
We list here some partial results.

We start by remarking that the Poincaré-Hopf inequalities described in Section 2 are the

7Handles whose attaching produces no effect on the Betti numbers of the boundary
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same except to equality (5), which is replaced by :

n = 2i, i odd, i ≥ 3, hi −
i−1∑
k=1

(−1)k(B+
k −B−

k )−
i−1∑
k=0

(−1)k(hn−k − hk) + (e− − e+)≡0 mod2.(108)

If n = 2i = 0 mod 4 besides the handle effects (H1) and (H2) described in Section 2, we
have also to consider

(H3) if n = 4k and j = 2k all the Betti numbers are kept unchanged in N+, and the handle
will be said of type β-i (i standing for invariant)

and of course we should also add a third algebraic effect to (G1) and (G2) concerning a
graph:

(G3) In the case n = 2i = 0 mod 4, a vertex labeled with hi = 1 is β-i, if all βℓ label on the
incoming edge are kept constant

in this case.

Once again we follow Franks’s idea in [17] and we consider a hyperbolic periodic orbit of
index j as the joining of two hyperbolic singularities p and q of adjacent indices j and j + 1
respectively. Given a nondegenerate singularity of index j, one can associate with it the
dimensions of the Conley homology indices, hj = 1 and hk = 0 for all k ̸= j. Let Aj be the
number of periodic orbits of index j and hj be the number of singularities of index j.

Also, as in the previous case, given data (A0, A1, . . . , An−1) we have associated with it
(h0, h1, . . . , hn−1, hn) and vice versa. The coupling procedure performed with singularity data
(h0, h1, . . . , hn−1, hn) in order to construct a periodic orbit set (A0, A1, . . . , An−1) is similar
to the odd case except in the middle dimension. In this case, we have the presence of β in
hi which does not have a dual. Coupling symmetrically produces

A0 = h0

A1 = h1 − h0

A2 = h2 − (h1 − h0)
...

...
Ak = hk − Ak−1
...

...
Ai−1 = hi−1 − Ai−2

(= hi − An−i)

=



An−1 = hn

An−2 = hn−1 − hn

An−3 = hn−2 − (hn−1 − hn)
...

...
An−1−k = hn−k − An−k
...

...
An−i = hn−(i−1) − An−(i−1)

(= hi − Ai−1)

(109)

In this dimension Proposition 1 remains true and it can be reformulated as follow :

Proposition 4 The system (110)–(115) has nonnegative integral solutions (h, hc
1, h

d
1, . . . ,

hc
n−1, h

d
n−1, β) if and only if the Poincaré-Hopf inequalities (1)–(4) and equality (108) are

satisfied.
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hc
1 = e− − 1, (110)

hd
n−1 = e+ − 1, (111)

hj = hc
j + hd

j , j = 1, . . . , n− 1 and j ̸=
⌊n
2

⌋
, (112)

h⌊n
2
⌋ = hc

⌊n
2
⌋ + hd

⌊n
2
⌋ + β, with β = 0 if n ̸≡ 0 mod 4, (113)

hd
j − hc

j+1 − hc
n−j + hd

n−j−1 = B+
j −B−

j , j = 1, . . . ,

⌊
n− 2

2

⌋
, (114)

 hd
i − hc

i+1 =
B+

i −B−
i

2
, if n = 2i+ 1. (115)
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