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Introduction

In the setting of non-singular Morse-Smale flows on compact n-dimensional manifolds, a natural question is to understand how the topology of the manifold M forces the number and indices of the hyperbolic closed periodic orbits of any possible non-singular Morse-Smale flow over M . Of course it is not reasonable to try to answer precisely this question in its whole generality. However, it is possible to answer the same question in a wider context and still get some interesting dynamical information, which is optimal in the new more relaxed setting.

Inspired by the Morse flows theory, we focus on compact manifolds with boundary and discuss what is the periodic orbits information carried by the Betti numbers of the boundary, and how to algorithmically compute it. It is known, in Morse theory, that any Morse flow on any manifold satisfying some homological boundary information must have at least h min singularities of some indices, that such a lower bound can be uniformly computed in terms of the Betti numbers of the boundary components, regardless of the topology of the underlying manifold, and that there exist a manifold and a flow for which this lower bound is optimal (see for instance [START_REF] Bertolim | Minimal Morse flows on compact manifolds[END_REF] and [START_REF] Bertolim | Isolating blocks for Morse flows[END_REF]). We take here the analogous general approach for periodic orbits of a non-singular Morse-Smale flows.

More precisely, our main result consists of an algorithm computing a lower bound p min of the number of periodic orbits of any non-singular Morse-Smale flow on any manifold with boundary satisfying some homological boundary conditions. Such a lower bound p min can be uniformly computed in terms of the Betti numbers of the boundary components, regardless of the topology of the underlying manifold, and there exists a manifold and a non-singular Morse-Smale flow for which this lower bound is optimal. However, despite the analogy of the statement, some relevant differences appears both in the techniques and in the nature of the result, especially in large dimension and for large initial homological information. See Subsection 1.2.3.

Before discussing the interest and the limits of our main theorem, let us state it precisely. We shall work with some partial abstract homological information, without any reference to a specific manifold or flow. We shall refer to this information as abstract homological data. This information consists of • an odd integer n, n ≥ 3;

• two positive integers e + and e -;

• n -1 2 integers, denoted by the expressions B + j -B - j , for j = 1, . . . n -1 2 .

For any odd n, let us denote by M any n-dimensional compact connected oriented manifold with boundary ∂M consisting of (e + + e -) connected components, endowed with a nonsingular Morse-Smale flow Φ transversally entering M through e + boundary components N + i , i = 1, . . . e + , and transversally exiting through the remaining e -boundary components N - i , i = 1, . . . e -. For all j = 1, . . . n -1 2 , if β j (N ) represents the j-th Betti number of N , output.tex Thursday 19 th October, 2023 then we denote by B + j -B - j the sum:

B + j -B - j = e + k=1 β j (N + k ) - e - k=1 β j (N - k )
Within this notation, we say that a manifold M and a non-singular Morse-Smale flow Φ on M as in our context satisfy the abstract homological data n, e + , e -, {B + j -B - j } n-1 2

j=1

.

Let us emphasize here that the flow Φ is non-singular Morse-Smale, that is, all of its recurrent sets are closed periodic orbits and lie in the interior of M . In the sequel, we shall simply call them periodic orbits because all the flows we shall consider are non-singular Morse-Smale.

We can prove the following theorem.

Theorem 1 Let us be given the following abstract homological data n, e + , e -, {B + j -B - j } n-1 2 j=1 satisfying (n odd and) e + -e --n-1 2

j=1 {B + j -B - j ) = 0. Then the following conclusions hold true.

1. Section 6 provides an explicit algorithm computing a number p min associated with the given homological data, such that any non-singular Morse-Smale flow on any manifold satisfying these given abstract homological data must have at least p min closed periodic orbits.

2. There exists a manifold M and a non-singular Morse-Smale flow Φ with exactly p min periodic orbits satisfying the given abstract homological data.

On the assumptions of Theorem 1

The assumption n odd will be discussed later (see Subsection 1.2.5).

The assumption e + -e --n-1 2

j=1 {B + j -B - j ) = 0 means that the Euler characteristic of any manifold admitting a non-singular Morse-Smale flow is necessarily zero. It is known that this is required for having non-singular Morse-Smale flows. Hence this assumption on the abstract homological data is natural because of their interpretation.

Moreover, this condition is crucial in one of the main ingredients of the proof: the use of attaching handles vs. attaching round handles. On the one hand, in Morse theory, where each singularity of index j corresponds to a handle of index j, we know the effect of attaching one handle of index j of the Betti numbers of the boundary. This tells us that the list h = (h 0 , . . . , h n ) of the number of singularities h j of index j compatible with the initial homological data are of the form ((see [START_REF] Bertolim | Isolating blocks for Morse flows[END_REF]) h = h min + h consecutive + h dual where the (integer) vector h min contains the minimal number of singularities that any Morse flow on any manifold compatible with the data must have and we have a finite number of choices for it which are explict ; output.tex Thursday 19 th October, 2023 the (integer) vector h consecutive is a sum of vectors of type {(a 0 , . . . , a n ) | ∃j, 0 ≤ j < n, a j = a j+1 = 1 and a i = 0 for all i ̸ = j, i ̸ = j + 1}; the (integer) vector h dual is a sum of vectors of type {(a 0 , . . . , a n ) | ∃j, 0 < j < n, a j = a n-j = 1 and a i = 0 for all i ̸ = j, i ̸ = n -j};

On the other hand, in non-singular Morse-Smale theory ( [START_REF] Asimov | Round handles and non-singular morse-smale flows[END_REF]), where each orbit of index j corresponds to a round handle of index j, replacing it by two handles of indices j and j + 1 (see [START_REF] Franks | Morse-smale flows and homotopy theory[END_REF]) implies that among all compatible vectors h as above, there must be some h ′ of the form h ′ = h ′ consecutive . Well, the assumption on the Euler characteristic, ensures that each vector h min can be completed with some h consecutive + h dual in order to obtain a vector h ′ of the form h ′ = h ′ consecutive which is also compatible with the given homological data.

1.2 On the conclusions of Theorem 1

1.2.1 The topology behind Item 1

Item 1 of the above theorem starts from the fact that some loose information on the homology of any compatible underlying manifold M together with the knowledge of the entry and exit boundary of the underlying flow Φ allow us to guarantee the existence of a lower bound for the number of the periodic orbits of Φ. However, if we wish to work with a restricted class of manifolds admitting non-singular Morse-Smale flows, such a bound may not be sharp. Consider for instance the data n = 3, e + = e -= 1, B + 1 -B - 1 = 0 . For these fixed data one has p min = 0. The manifold M = T 2 × I endowed with the trivial flow Φ M entering T 2 × {1} and exiting T 2 × {0} is an example of manifold and flow satisfying the homological data for which the computed p min coincides with its minimal number of periodic orbits, denoted by A min (M, ∂). If we consider M ′ obtained by attaching a round handle to M as in Fig 1 below, we can see that the boundary of M ′ is also made of two copies of T 2 . The respect of the homological data implies that the non-singular Morse-Smale flows we shall consider must enter through one torus component and exit through the other. The computation of the Conley index of the manifold and the way we constructed it show that A min (M ′ , ∂) = 1 which is strictly greater than p min .

The situation here is analogous to the one discussed in [START_REF] Bertolim | Minimal Morse flows on compact manifolds[END_REF] where the minimal number of singularities of Morse flows on manifolds satisfying some abstract homological data is output.tex Thursday 19 th October, 2023 discussed. In our present context we can also consider that the manifolds and flows for which p min is sharp (that is, A min (M, ∂) = p min ) are in some sense the "simplest", topologically speaking, among those admitting non-singular Morse-Smale flows and satisfying the given abstract homological information.

Let us also stress the fact that the abstract homological information only deals with the difference of the Betti numbers of the entry and exit boundary. For instance, in dimension 3, the couple (N

+ , N -) = (S 2 ⊔ S 2 , S 2 ⊔ S 2 ), the couple (N + , N -) = (S 2 ⊔ T 2 , S 2 ⊔ T 2 ) and the couple (N + , N -) = (S 2 ⊔ T 2 #T 2 , T 2 ⊔ T 2 ) all correspond to the same abstract homological data n = 3, e + = e -= 2, B + 1 -B - 1 = 0 1.2.

On the algorithm of Item 1

The description of the algorithm of Item 1 is very technical. Here are the guidelines. The conditions ensuring the existence of a solution starting from the abstract data are expressed in terms of a semi-algebraic system with integer coefficients. We are looking for the positive solutions of this system whose sum is minimal. We are therefore dealing with an optimization problem. The initial pairing problem is hence reformulated as a minimum cost flow (MCF) problem (see Theorem 12). Then the interpretation of the specific MCF problem as a transportation problem yields the wanted algorithm. Let us emphasize that, especially in large dimension1 and when the difference of the Betti numbers is also large and arbitrarily distributed, we cannot expect to compute the number p min by any naif strategy. Let us take for instance the homological data

n = 17, e + = 7, e -= 6, B + 1 -B - 1 = 3, B + 2 -B - 2 = -1, B + 3 -B - 3 = -2, B + 4 -B - 4 = -7, B + 5 -B - 5 = -6, B + 6 -B - 6 = 8, B + 7 -B - 7 = -4, B + 8 -B - 8 2 = -10
Our algorithm gives us (among other information) the solution

• p min = 32;

• the sequence h ′ = [h ′ 1 , . . . , h ′ 16 ] = [5, 5, 1, 1, 2, 2, 0, 0, 10, 10, 0, 6, 6, 2, 8, 6], which can be translated into the sequence [R 1 , . . . , R 15 ] = [5, 0, 1, 0, 2, 0, 0, 0, 10, 0, 0, 6, 0, 2, 6] where R j would correspond to the number of round handles (or equivalently, periodic orbits) of index j;

• the fact that h ′ has been obtained by completing h min = [5, 0, 0, 0, 1, 2, 0, 0, 10, 10, 0, [START_REF] Bertolim | On the variations of the betti numbers of regular levels of morse flows[END_REF][START_REF] Bertolim | On the variations of the betti numbers of regular levels of morse flows[END_REF][START_REF] Asimov | Round handles and non-singular morse-smale flows[END_REF][START_REF] Bertolim | Isolating blocks for Morse flows[END_REF][START_REF] Bertolim | On the variations of the betti numbers of regular levels of morse flows[END_REF] by h consecutive +h dual = [0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]+[0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0] Now, trying to complete h min in any other naif way (by adding couples of handles of consecutive indices from left to right, or from right to left, or by adding couples of handles of dual indices from the extremities of h min ) gives strict upper bounds of p min and makes one understand that a more sophisticated and complex strategy is unavoidable. This is a main difference with the Morse setting. There, the value h min can be computed by hand directly from the homological data. Moreover, all the possible sequences of the indices of the Morse singularities associated with h min can be listed explicitly. Here, in contrast, the computation of p min is intrinsically more laborious and our algorithm gives us just one way of realizing it as a sequence of round handles.

Let us underline that a Python program associated with this algorithm is freely available on the page https://github.com/MargaridaMello/OddMinimumPairingProblem/ At the end of Section 6 it is explained how to use it and how to extract the needed information.

Unexpected indices of periodic orbits

As a counterpart of the complexity of the algorithm discussed above, we discover that, in contrast with the Morse setting, here the indices of the appearing periodic orbits cannot be always foreseen. For instance, for the homological data

n = 15, e + = 1, e -= 1, B + 1 -B - 1 = B + 6 -B - 6 = 1, B + j -B - j = 0∀j = 1 . . . 7, j ̸ = 1, 6
we have (h min = 2 and) p min = 3. The algorithm outputs an abstract realization of p min with an orbit of index 3, an orbit of index 5 and an orbit of index 12 appearing from the combinatorics of the algorithm. The index 5 orbit is of course related to the fact that the 6-th (and the 8-th) Betti number vary; the index 12 orbit is related to the variation of the 1st (and 13-th) Betti number of the boundary. The index 3 orbit is somehow hidden in the data even though the difference B + j -B - j of the Betti numbers of indices 2, 3 and 4, as well as 10, 11 and 12, are zero). For the sake of completeness, let us mention that there are three other solutions (each with three orbits of indices respectively [START_REF] Ahuja | Network Flows: Theory, Applications and Algorithms[END_REF][START_REF] Bertolim | Duality and the poincaré-hopf inequalities[END_REF][START_REF] Bertolim | Bounds on the ogasa number for ordered continuations of lyapunov graphs[END_REF], [START_REF] Bertolim | Bounds on the ogasa number for ordered continuations of lyapunov graphs[END_REF][START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF][START_REF] Bertolim | Isolating blocks for periodic orbits[END_REF] and [START_REF] Bertolim | Dynamical and topological aspects of Lyapunov graphs[END_REF][START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF][START_REF] Bertolim | Isolating blocks for periodic orbits[END_REF] for which the analogous observations hold. Note that in this case only three of the four possible h min can be completed to a h ′ min combinatorially realizing p min = 3 and one can be completed in two different ways2 .

On the realizations

Item 2 is constructive and explicit once we have run the algorithm of Item 1. In fact, as a result, such an algorithm gives not only the value of p min but also a list of abstract round handles R 1 , . . . R p min , of given index and type, associated with p min . The type contains the information of the effect of the corresponding round handle on the Betti number of the boundary. Using the realizations described in [START_REF] Bertolim | Isolating blocks for periodic orbits[END_REF] one can easily conclude: for any R k given by the algorithm, let (U k , ϕ k ) be the isolating neighborhood of the corresponding index and type built as in [START_REF] Bertolim | Isolating blocks for periodic orbits[END_REF]. A connected sum along the boundary of these U k , k = 1, . . . p min is a manifold M endowed with a non-singular Morse-Smale flow Φ (conjugate to ϕ k on each U k ) such that (M, Φ) satisfies the given homological data. By construction, Φ has p min periodic orbits.

Perspectives

The proof of this result opens the way to the even dimension. Even though the guidelines for finding an algorithm are comparable, the combinatorics in the even setting is richer because of the existence of "invariant" handles 3 and must be treated independently. Moreover, handles of invariant type are difficult to realize in the non-singular Morse-Smale context, so that the realization of the general abstract solution by a non-singular Morse-Smale model remains an open question.

Application to Lyapunov graphs

We shall conclude by an application of the reasoning to the problem of the continuation of Lyapunov graphs into Lyapunov graphs of Smale type (Lyapunov graphs associated with non-singular Morse-Smale flows). More precisely, in works [START_REF] Bertolim | Lyapunov graph continuation[END_REF], [START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF], [START_REF] Bertolim | Dynamical and topological aspects of Lyapunov graphs[END_REF] the authors showed that a generalized Lyapunov graph can be continued to a Lyapunov graph of Morse type if and only if some inequalities, called the Poincaré-Hopf inequalities are satisfied. In the present setting where we are concerned by non-singular Morse-Smale flows instead of Morse flows, we can prove Theorem 2 A (generalized) vertex of a Lyapunov graph associated with the homological

n, e + , e -, {B + j -B - j } n-1 2 j=1
can be continued to a Lyapunov graph of Smale type if and only if a set of explicit inequalities (Poincaré-Hopf inequalities (1), ( 2), ( 5), ( 8) and (11) + coupling inequalities Lemma 4 (or Lemma 3)) are satisfied by such data.

This theorem holds true in any dimension and constitutes the first step to tackle our main question in even dimension.

The paper is organized as follows. Section 2 contains background material. Section 3 is a first combinatorial translation of our problem into combinatorial terms. In Section 4 is given the explicit formulation and context of Theorem 2. Section 5 is devoted to the threedimensional case. Section 6 explains the proof of our main theorem. Numerical examples are also treated there. Section 7 provides partial results concerning the even dimensional case.

Poincaré-Hopf inequalities

In this section we present an adaptation of the Poincaré-Hopf inequalities described in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] for non-singular Morse-Smale flows on isolating blocks case.

A set

S ⊂ M is an invariant set of a flow ϕ t if ϕ t (S) = S for all t ∈ R. A compact set N ⊂ M is an isolating neighborhood if inv(N, ϕ) = {x ∈ N : ϕ t (x) ⊂ N, ∀ t ∈ R} ⊂ int N . A compact set N is an isolating block if N -= {x ∈ N : ϕ [0,t) (x) ̸ ⊂ N, ∀t > 0} is closed and inv(N, ϕ) ⊂ int N . An invariant set S is called an isolated invariant set if it is a maximal invariant set in some isolating neighborhood N , that is, S = inv(N, ϕ).
A component R of the chain recurrent set 4 , R, of the flow ϕ t , is an example of an invariant set. We will work under the hypothesis that R is the finite union of isolated invariant sets 3 Handles whose attaching produces no effect on the Betti numbers of the boundary. 4 A point x ∈ M is chain recurrent if given ε > 0 there exists an ε-chain from x to itself, i.e., there exists points x = x 1 , x 2 , . . . , , x n-1 , x n = x and t(i) ≥ 1 such that d(ϕ t(i) (x i ), x i+1 ) < ε ∀ 1 ≤ i < n. A set of such points will be denoted by R and is called a chain recurrent set.

output.tex

Thursday 19 th October, 2023 R i . If f is a Lyapunov function 5 associated with a flow and c = f (R) then for ε > 0, the component of

f -1 [c -ε, c + ε] that contains R is an isolating neighborhood for R. Take (N, N -) = (f -1 [c -ε, c + ε], f -1 (c -ε))
as an index pair for R. The Conley index is defined as the homotopy type of N/N -. Its homology is denoted by CH * (S) and its rank denoted by h * = rank CH * (S). For more details see [START_REF] Conley | Isolated invariant sets and the Morse index[END_REF].

Let N be any compact manifold of dimension n such that ∂N = ∂N + ∪ ∂N -, with ∂N + and ∂N -non-empty where ∂N + (∂N -) is the disjoint union of e + (e -) components of ∂N , and denote it by ∂N ± = e ± i=1 N ± i . Also, consider the sum of the Betti numbers, β j (N ± i ), of these components, i.e. B ± j = e ± i=1 β j (N ± i ) where j = 1, . . . , ⌊ n-1 2 ⌋. The Poincaré-Hopf inequalities for an isolated invariant set S in an isolating block N with entering set for the flow N + and exiting set for the flow N -, are obtained by analysis of long exact sequences of (N, N + ) and (N, N -). This analysis can be found in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] in a more detailed exposition.

Note that (N, N -) is an index pair for S and (N, N + ) is an index pair for the isolated invariant set of the reverse flow, S ′ .

Consider the long exact sequences for the pairs (N, N -) and (N, N + ), denoted by LESand LES+, respectively:

0 → H n (N -) in -→ H n (N ) pn -→ H n (N, N -) ∂n -→ H n-1 (N -) i n-1 --→ H n-1 (N ) p n-1 ---→ H n-1 (N, N -) ∂ n-1 ---→ • • • ∂ 2 -→ H 1 (N -) i 1 -→ H 1 (N ) p 1 -→ H 1 (N, N -) ∂ 1 -→ H 0 (N -) i 0 -→ H 0 (N ) p 0 -→ H 0 (N, N -) → 0 0 → H n (N + ) i ′ n -→ H n (N ) p ′ n -→ H n (N, N + ) ∂ ′ n -→ H n-1 (N + ) i ′ n-1 --→ H n-1 (N ) p ′ n-1 ---→ H n-1 (N, N + ) ∂ ′ n-1 ---→ • • • ∂ ′ 2 -→ H 1 (N + ) i ′ 1 -→ H 1 (N ) p ′ 1 -→ H 1 (N, N + ) ∂ ′ 1 -→ H 0 (N + ) i ′ 0 -→ H 0 (N ) p ′ 0 -→ H 0 (N, N + ) → 0
Throughout the analysis, the Conley duality condition on the indices is assumed. That is, the isolated invariant sets S and S ′ have the property that rank H j (N, N -) = h j and rank H j (N, N + ) = h j = h n-j . Denote rank H 0 (N -) = e -, rank H 0 (N + ) = e + and rank (H j (N ± )) = B ± j . By simultaneously analyzing the following pairs of maps

{[(p i , ∂ ′ i ) , (p ′ i , ∂ i )] , . . . [(p 2 , ∂ ′ 2 ) , (p ′ 2 , ∂ 2 )]}
and analyzing p 1 and p ′ 1 we obtain the Poincaré-Hopf inequalities in all its generality, where h j is the dimension of the homology Conley index and B - j = e - i=1 (β - j ) i , B + j = e + i=1 (β + j ) i , where j ∈ {1, . . . , n -2}. If n is odd, n = 2i + 1, i ≥ 1, then (1)-(5) need to be satisfied. 5 Given a continuous flow ϕ t : M → M , on a closed n-manifold M , results of Conley [START_REF] Conley | Isolated invariant sets and the Morse index[END_REF] imply the existence of a continuous Lyapunov function f : M → R associated with the flow with the property that it strictly decreases along the orbits outside the chain recurrent set R, that is, if x / ∈ R then f (ϕ t (x)) < f (ϕ s (x)) for t > s and is constant on the chain recurrent components R of R.
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h j ≥ j-1 k=1 (-1) k+j (B + k -B - k ) + j-1 k=0 (-1) k+j (h n-k -h k ) +(-1) j+1 (e --e + ), j = 2, . . . , n 2 (1) 
h n-j ≥ j-1 k=1 (-1) k+j+1 (B + k -B - k ) + j-1 k=0 (-1) k+j+1 (h n-k -h k ) +(-1) j (e --e + ), j = 2, . . . , n 2 (2) 
h 1 ≥ h 0 -1 + e - (3) 
h n-1 ≥ h n -1 + e + (4) 
i-1 k=1

(-1) k (B + k -B - k ) + (-1) i B + i -B - i 2 - n k=0 (-1) k h k -(e --e + ) = 0                                                            (5) 
Non-singular Morse-Smale flows on a smooth n-dimensional manifold M were considered together with a handle decomposition associated with a Lyapunov function in [START_REF] Cruz | Gradient-like flows on high-dimensional manifolds[END_REF]. Thus, after the attachment of a handle corresponding to a singularity (or a round handle corresponding to a periodic orbit) one can consider the effect on the new regular level set. The authors completely describe how the Betti numbers of the level set vary after attaching a (round) handle when the homology coefficients are taken in Z 2Z . These results were generalized in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] by considering continuous flows associated with Lyapunov functions on n-dimensional manifolds. More specifically, a flow in the isolating block N of an isolated invariant set S with possibly complicated dynamical behavior was considered. The effect on the Betti numbers of the regular level sets corresponding to the incoming N + and outgoing N -boundaries of the flow in N were determined in terms of the homology indices of S. The classification of singularities presented in [START_REF] Cruz | Gradient-like flows on high-dimensional manifolds[END_REF] was generalized in [START_REF] Bertolim | On the variations of the betti numbers of regular levels of morse flows[END_REF] when the homology coefficients are in Z, Q, R, or Z pZ with p prime. In other words, as for the boundary, attaching a handle of index j (j = 1 . . . n -1) to N -can produce one of the following effects if n is odd:

(H1) the j-th Betti number of the boundary N + is increased by 1 (or by 2, if n = 2j + 1), and the handle will be said of type j-d (d standing for disconnecting);

(H2) the (j-1)-th Betti number of the boundary N + is decreased by 1 (or by 2, if n = 2j+1), and the handle will be said of type (j -1)-c (c standing for connecting);

Using these two effects, the Poincaré-Hopf inequalities described above were used in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] in order to ensure that given an isolating neighborhood containing a singularity with possibly complicated dynamical behavior, this neighborhood can be replaced by a neighborhood related to a Morse flow, i.e., where the singularities of the flow are points. Being more precise, the Poincaré-Hopf inequalities ensure that given an isolating neighborhood N , with incoming N + and outgoing N -boundaries of the flow in N , containing a singularity whose dimensions of the homology indices are (h 0 , . . . , h n ), this neighborhood can be replaced by output.tex Thursday 19 th October, 2023 a neighborhood where the singularities of the flow are points, that is, h j = 1, where j is the dimension of the unstable manifold of this isolated singularity for all j = 0 . . . n.

Consider the example as in Figure 3. This example is illustrating by means of a graph for facilitating the understanding. First, observe that the two handle effects described above, (H1) et (H2), can be viewed in terms of graphs in the following way. A handle containing a singularity of index ℓ corresponds to a vertex on the graph L N labeled with h ℓ = 1, which can produce the two possible algebraic effects:

(G1) h ℓ = 1 is ℓ-d if it
has the algebraic effect of increasing the corresponding β ℓ label on the incoming edge.

(G2) h ℓ = 1 is (ℓ -1)-c if it has the algebraic effect of decreasing the corresponding β ℓ-1 label on the incoming edge.

See the corresponding graphs in Figure 2. Coming back to Figure 3, we start with a neighborhood in dimension 5 containing a singularity whose the dimension of the homology indices are given by (h 0 = 0, h 1 = 2, h 2 = 2, h 3 = 1, h 4 = 1, h 5 = 0), the components of the incoming and outgoing boundary components, N + and N -, are labeled with the Betti numbers (β 0 , β 1 , β 2 , β 3 , β 4 ) as illustrated in Figure 3. Note that since (β 0 , β 1 , β 2 , β 3 , β 4 ) satisfy the Poincaré duality and since β 0 and β 4 represent the number of boundary components, we have put only (β 1 , β 2 ) in Figure 3.

β ℓ-1 (N + ) = β -1 β ℓ-1 (N -) = β h ℓ = 1 (ℓ -1)-c ℓ-d h ℓ = 1 β ℓ (N + ) = β + 1 β ℓ (N -) = β
The procedure exemplified in Figure 3 is called a continuation of an abstract Lyapunov graph to an abstract Lyapunov graph of Morse type in [START_REF] Bertolim | Lyapunov graph continuation[END_REF], where the left side of Figure 3 represents the abstract Lyapunov graph while the right side represents the abstract Lyapunov graph of Morse type, in which any vertex v is labeled by h j = 1 if it corresponds to a singularity of index j. The graphs here are used only to better illustrate the example, but what is important to note is that, since the Poincaré-Hopf inequalities (1)-( 5) are satisfied, output.tex Thursday 19 th October, 2023 it is possible to replace the initial neighborhood by another connected neighborhood with the same data, but with a simplified dynamical behavior. The Poincaré-Hopf inequalities for non-singular Morse-Smale flows on isolating blocks are an adaptation of the Poincaré-Hopf inequalities above described. They differ only in inequalities (3) and ( 4). These adaptation should be done in order to ensure the continuation of an abstract Lyapunov graph L N to an abstract Lyapunov graph of Smale type, in which any vertex v is labeled by A j = 1 if it corresponds to a periodic orbit of index j.

0-c h 1 = 1 0-c h 1 = 1 1-c h 2 = 1 1-c h 2 = 1 2-c h 3 = 1 4-d h 4 = 1 β 1 = 5 β 2 = 4 β 1 = 4 β 2 = 4 β 1 = 3 β 2 = 4 β 1 = 3 β 2 = 2 β 1 = 1 β 2 = 2 β 1 = 2 β 2 = 2 β 1 = 2 β 2 = 0 β 1 = 2 β 2 = 0 β 1 = 1 β 2 = 2
The difference in inequalities ( 3) and ( 4) comes from the fact that in the case of the Poincaré-Hopf inequalities one treats h 0 by imposing, as necessary and sufficient condition, that h 1 ≥ h 0 + e --1, i.e., inequality (3). This inequality adjusts the problem of connectivity, that is, it ensures that the continued graph -as well as the corresponding isolating neighborhood -are connected. By this inequality we guarantee the possibility of having h 0 + e --1 singularities of index 1 of type 0-c, h c 1 , which means connecting. Hence,

h c 1 ≥ h 0 + e --1. (6) 
It is important to observe that the singularities h 1 of type 0-c are responsible for connecting the outgoing boundary components. For example, if we have three outgoing boundary components, representing by h 0 = 3 we need two h 1 of type 0-c for producing a connected neighborhood. In order to better understand, consider the example in three-dimension presented in Figure 4. In this example we have a vertex v k which is labeled by h 0 = 1 and h 1 = 1. Since these data satisfy inequality (3), we can replace the vertex as in the right side of Figure 4: by two vertices v k 1 and v k 2 respectively labeled with h 0 = 1 and h 1 = 1. It is important to note that the left and the right side of Figure 4 have the same number of incoming and outgoing edges and moreover they are both connected.

output.tex Thursday 19 th October, 2023 In the case of the Poincaré-Hopf inequalities for non-singular Morse-Smale flows, inequality (3) should be modified, because the presence of h 0 ̸ = 0 implies the existence of periodic orbits of index 0. Each one is obtained by joining a singularity of index 0 with a singularity of index 1 of type 1-d, h d 1 (observe that all singularities h 1 of type 0-c, h c 1 , were already used for solving the connectivity problem as explained above). Hence, we have that

u c c β 1 = 0 h 0 = 1, h 1 = 1 v k β 1 = 0 u c c d d d u d d d β 1 = 0 h 1 = 1 v k 1 v k 1 h 0 = 1 β 1 = 0
h d 1 ≥ h 0 . (7) 
For this reason, since 6) and ( 7) imply that we have the following inequality replacing ( 3)

h 1 = h c 1 + h d 1 inequalities (
h 1 ≥ 2h 0 -1 + e - (8) 
Each of the remaining singularities of index 1 is to be coupled with a singularity of index 2, thus creating a periodic orbit of index 1. Therefore, the left side of inequalities (1) remains the same for all j ̸ = 1.

Observe that the graph presented in Figure 4 cannot be replaced by a connected graph containing a periodic orbit of index 0: if it were the case we would use h 1 = 1 and h 0 = 1 to have a vertex labeled with A 0 = 1, with one incoming edge and no outgoing edges, and we would be in the situation of the right side of Figure 5, that is, a non connected graph. It is also important to observe that inequality (8) is not satisfied. Figure 6 gives an example in dimension three where inequality ( 8) is satisfied and hence we can replace the initial vertex to a connected one containing only periodic orbits. It is important to note that the left and the right side of Figure 6 have the same number of incoming and outgoing edges and moreover they are both connected.

Analogously, the necessary and sufficient condition when one treats h n is h n-1 ≥ h n + e + -1, i.e. inequality (4), which assures the existence of h n + e + -1 singularities of type (n -1)-d, which means disconnecting. Hence,

h d n-1 ≥ h n + e + -1. (9) 
In the case of the Poincaré-Hopf inequalities for non-singular Morse-Smale flows, the presence of h n ̸ = 0 implies the existence of periodic orbits of index n -1. Each one is obtained by output.tex Thursday 19 th October, 2023 joining a singularity of index n with a singularity of index n -1 of type (n -1)-c, h c n-1 . Hence, we have that

u c c β 1 = 0 h 0 = 1, h 1 = 1 β 1 = 0 c u β 1 = 0 A 0 = 1 β 1 = 0
h 0 = 1, h 1 = 2, h 2 = 1 β 1 = 0 c d d d u u c d d d β 1 = 0 A 1 = 1 A 0 = 1 β 1 = 0
h c n-1 ≥ h n . (10) 
For this reason, since 9) and ( 10) imply that we have the following inequality replacing (4)

h n-1 = h c n-1 + h d n-1 inequalities (
h n-1 ≥ 2h n -1 + e + (11) 
Each of the remaining singularities of index n -1 is to be coupled with a singularity of index n -2, thus creating a periodic orbit of index n -2. Therefore, the left side of inequalities (1) remains the same for all j ̸ = n -1.

In [START_REF] Bertolim | Lyapunov graph continuation[END_REF] it is shown that:

Proposition 1 The system (110)-(115) has nonnegative integral solutions (h, h c 1 , h d 1 , . . . , h c n-1 , h d n-1
) if and only if the Poincaré-Hopf inequalities (1)-( 5) are satisfied.
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h c 1 = e --1, (12) h d n-1 = e + -1, (13) 
h j = h c j + h d j , j = 1, . . . , n -1 and j ̸ = n 2 , (14) 
h d j -h c j+1 -h c n-j + h d n-j-1 = B + j -B - j , j = 1, . . . , n -2 2 , (15) 
                             h d i -h c i+1 = B + i -B - i 2 , if n = 2i + 1. ( 16 
)
Observe that, as described previously, the inequalities ( 1)-( 5) presented in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] coincides with the Poincaré-Hopf inequalities for non-singular Morse-Smale flows except to the inequalities:

h 1 ≥ 2h 0 -1 + e - h n-1 ≥ 2h n -1 + e +
which are replaced by:

h 1 ≥ h 0 -1 + e - h n-1 ≥ h n -1 + e +
But, under the hypothesis conditions imposed in the labels, as described previously, these two groups of conditions are equivalents. Therefore, Proposition 1 remains true for the Poincaré-Hopf inequalities for non-singular Morse-Smale flows, i.e.: 2), ( 5), ( 8) and (11) are satisfied.

3 Periodic orbits and coupling inequalities

Periodic orbits

Recall that in [START_REF] Franks | Homology and dynamical systems[END_REF] Franks proved that a hyperbolic periodic orbit of index j, can be viewed as the joining of two hyperbolic singularities p and q of adjacent indices j and j + 1 respectively. Given a nondegenerate singularity of index j, one can associate with it the dimensions of the Conley homology indices, h j = 1 and h k = 0 for all k ̸ = j. Let A j be the number of periodic orbits of index j and h j be the number of singularities of index j.

In this dimension (n odd), given the data (A 0 , A 1 , . . . , A n-1 ) we have (h 0 , h 1 , . . . , h n-1 , h n ) associated with it and vice versa. If one starts the procedure with data consisting of singularities (h 0 , h 1 , . . . , h n-1 , h n ) one can do a coupling procedure in order to construct our periodic orbits set (A 0 , A 1 , . . . , A n-1 ). The number h 1 together with h 0 will construct A 0 but together with h 2 will construct A 1 . Then the number of periodic orbits of index 0 depends on the number of h 0 and the number of periodic orbits of index 1 depends on the number of h 1 , output.tex Thursday 19 th October, 2023 although some part of h 1 was already used for creating the periodic orbits of index 0. And the procedure continues by considering h 2 , and so on. Therefore, coupling from the left to right produces

                     A 0 = h 0 A 1 = h 1 -h 0 A 2 = h 2 -(h 1 -h 0 ) . . . . . . A k = h k -h k-1 + . . . ± h 0 . . . . . . A n-1 = h n-1 -h n-2 + . . . ± h 0 or equivalently                      A 0 = h 0 A 1 = h 1 -A 0 A 2 = h 2 -A 1 . . . . . . A k = h k -A k-1 . . . . . . A n-1 = h n-1 -A n-2 (17) 
Coupling from the right to the left produces

                     A n-1 = h n A n-2 = h n-1 -h n A n-3 = h n-2 -(h n-1 -h n ) . . . . . . A n-k = h n-1-k -h n-1-(k-1) + . . . ± h n . . . . . . A 0 = h 1 -h 2 + . . . ± h n or equivalently                      A n-1 = h n A n-2 = h n-1 -A n-1 A n-3 = h n-2 -A n-2 . . . . . . A n-k = h n-1-k -A n-k-1 . . . . . . A 0 = h 1 -A 1 (18) 
We can also do the coupling procedure symmetrically. First observe that h k = rank (H k (N, N -)) = rank (H n-k (N, N + )) = h n-k (using Poincaré-Lefschetz duality). For details see [START_REF] Bertolim | Duality and the poincaré-hopf inequalities[END_REF] (Corollary 2.1) and [START_REF] Mccord | Poincaré-Lefschetz duality for the homology Conley index[END_REF]. The number h 1 together with h 0 will construct A 0 but together with h 2 will construct A 1 . Then the number of periodic orbits of index 0 depend on the number of h 0 and the number of periodic orbits of index 1 depend on the number of h 1 , but some part of h 1 was already used for creating the periodic orbits of index 0. And the procedure continues by considering h 2 , and so on. By duality of the indices, the number h n-1 together with h n will construct A n-1 but together with h n-2 will construct A n-2 . Then the number of periodic orbits of index n -1 depends on the number of h n and the number of periodic orbits of index n -2 depends on the number of h n-1 , but some part of h n-1 was already used for creating the periodic orbits of index n -1. And the procedure continues by considering h n-3 , and so on. Then we can define

                     A 0 = h 0 A 1 = h 1 -h 0 A 2 = h 2 -(h 1 -h 0 ) . . . . . . A k = h k -A k-1 . . . . . . A i = h i -A i-1 =                      A n-1 = h n A n-2 = h n-1 -h n A n-3 = h n-2 -(h n-1 -h n ) . . . . . . A n-1-k = h n-k -A n-k . . . . . . A n-i-1 = h n-i -A n-i (19) 
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Coupling inequalities

Lemma 3 A collection (h 0 , . . . , h n ) can be decomposed in an union

A j = n j=0 h j 2 of disjoint
couples of the form (h ℓ , h ℓ+1 ) with ℓ ∈ {0, . . . , n} if and only if

(-1) k k j=0 (-1) j h j ≥ 0, k = 1, . . . , n -1, (20) n j=0 
(-1) j h j = 0. (21)

Proof: Trivial. In order to couple all singularities of index 0 with a singularity of index 1 it is necessary and sufficient that h 1 ≥ h 0 . In order to couple all singularities of index 1 with a singularity of index 2 it is necessary and sufficient that h 2 ≥ h 1 -h 0 and so on until the coupling of the singularities of index n -2 with singularities of index n -1. Finally, the number of singularities of index n -1 not yet coupled and the number of singularities of index n must coincide for the coupling is complete. □ Conversely, the coupling conditions can also be expressed by the system of the following lemma, whose proof is analogous to that of Lemma 3, the connection being made this time with the middle index(indices). 

(-1) k k j=0 (-1) j h j ≥ 0, k = 1, . . . , n -1 2 , (22) 
(-1) k k j=0 (-1) j h n-j ≥ 0, k = 1, . . . , n -1 2 , ( 23 
) n j=0 (-1) j h j = 0. ( 24 
)
We observe that the last equation of each of the two previous systems is nothing other than the condition χ = n i=0 (-) j h j = 0, where χ denotes the Euler characteristic. It is known that this condition is a necessary condition for the realization of a flow non-singular of Morse-Smale type. 1. h min is the minimal number of singularities satisfying the Poincaré-Hopf inequalities (1) -(5) (or equivalently, the system (110)-( 115)). This minimal number was presented in [START_REF] Bertolim | Minimal Morse flows on compact manifolds[END_REF].

2. h minp is the minimal number of singularities satisfying the Poincaré-Hopf inequalities ( 1) -( 5) and Lemma 3 (or Lemma 4).

3.

A min is the minimal number of periodic orbits, i.e., A min = h minp 2 .

Theorem 5 A (generalized) vertex of a Lyapunov graph associated with the homological data e + = B + 0 , e -= B - 0 and {(B + j -B - j )} 2 j=0 can be continued to a Lyapunov graph of Smale type if and only if its label (h 0 , . . . , h n ) satisfies the Poincaré-Hopf inequalities of Smale type (1), ( 2), ( 5), ( 8), [START_REF] Bertolim | Poincaré-Hopf inequalities[END_REF] and the coupling inequalities of Lemma 3. Equivalently, this same vertex can be continued to a Lyapunov graph of Smale type if and only if its label (h 0 , . . . , h n ) satisfies the Poincaré-Hopf inequalities of Smale type (1), ( 2), ( 5), ( 8), [START_REF] Bertolim | Poincaré-Hopf inequalities[END_REF] and the coupling inequalities of Lemma 4 (or Lemma 3). 

h 0 = 1, h 1 = 2, h 2 = 1 β 1 = 0
β 1 = 0 A 1 = 1 β 1 = 0 u c c d d d u d d d β 1 = 0 β 1 = 0 A 1 = 1 A 0 = 1 β 1 = 0

Combinatorial results

Proposition 3 A (generalized) vertex of a Lyapunov graph associated with the homological data e + = B + 0 , e -= B - 0 and {(B + j -B - j )} 2 j=0 can be continued to a Lyapunov graph of Smale type if and only if its labels (h 0 , h 1 , h 2 , h 3 ) satisfies the following inequalities :

                   h 0 ≥ 0 h 1 ≥ 2h 0 + B - 0 -1 h 2 ≥ 2h 3 + B + 0 -1 h 3 ≥ 0 h 0 -h 1 + h 2 -h 3 = (B + 0 -B - 0 ) - (B + 1 -B - 1 ) 2 h 0 -h 1 + h 2 -h 3 = 0
Moreover, by considering A j the number of periodic orbits of index j, we have

   A 0 = h 0 A 1 = h 1 -h 0 (= h 2 -h 3 ) A 2 = h 3
Proof: A (generalized) vertex of a Lyapunov graph can be continued to a Lyapunov graph of Smale type if and only if it can be continued in a Lyapunov graph of Smale type with singularities which can be paired two by two according to the criterion of consecutive indices. This is equivalent to makes the label (h 0 , h 1 , h 2 , h 3 ) of the vertex verify the Poincaré-Hopf inequalities for the continuation in a Lyapunov graph of the Smale type and the coupling inequalities. From the discussion of 2, Poincaré Hopf inequalities (PHS) for the continuation to a Lyapunov graph of Smale-type in dimension 3 are :

             h 0 ≥ 0 h 1 ≥ 2h 0 + B - 0 -1 h 2 ≥ 2h 3 + B + 0 -1 (PHS) h 3 ≥ 0 h 0 -h 1 + h 2 -h 3 = (B + 0 -B - 0 ) - (B + 1 -B - 1 ) 2 output.tex
Thursday 19 th October, 2023 and, in dimension 3, the coupling conditions are reduced to the equation

h 0 -h 1 + h 2 -h 3 = 0
since the inequalities h 1 ≥ h 0 and h 2 ≥ h 3 are already guaranteed by the previous inequalities (PHS). □ Corollary 6 Let v be a vertex of a Lyapunov graph associated with the homological data e + = B + 0 , e -= B - 0 and {(B + j -B - j )} 2 j=0 which can be continued to a Lyapunov graph of Smale type. Then its continuation contains at least

B + 0 + B - 0 -2 periodic orbits thus distributed    A min 0 = 0 A min 1 = max(B + 0 , B - 0 ) -1 A min 2 = 0
Among the A 1 periodic orbits of index 1, there will be

A 1 -| B + 0 -B - 0 | of type (0 -c, 2 -d) ; | B + 0 -B - 0 | of type (1 -d, 2 -d) si B + 0 ≥ B - 0 , of type (0 -c, 1 -c) if B + 0 < B - 0 .
Moreover, this minimal decomposition corresponds to the labeling of v given by

h 1 = h 2 = max(B + 0 , B - 0 ) -1 Proof: □ Remark: In this case h minp = h min and A min = h minp 2 = h min 2 
Corollary 7 Let v be a vertex of a Lyapunov graph associated with a slice of a manifold (M, ∂ -M ) of dimension 3, whose homological boundary data are e + , e -and {(B + j -B - j )} 2 j=0 . Suppose that v is labeled by the ranks of the homological Conley index of (M, ∂ -M ) and that it can be continued in a Lyapunov graph of the Smale type. Then the periodic orbits of the continuation of v are in number of rk

H 1 (M, ∂ -M ) = rk H 2 (M, ∂ -M ) and distributed as    A 0 = 0 A 1 = rk H 1 (M, ∂ -M ) A 2 = 0 Proof:
□ The following formula is a necessary condition for the existence of a Smale flow on a slice of a manifold (M, ∂ -M ) of odd dimension [cf. [START_REF] Asimov | Round handles and non-singular morse-smale flows[END_REF]] :

0 = χ(M ) -χ(∂ -M ) = χ(M, ∂ -M ) = n j=0 rk H i (M, ∂ -M )
Applied to the case of the dimension 3, since we only study connected slices, this gives : Gluing a round handle of index 0 simply means :

rk H 1 (M, ∂ -M ) = rk H 2 (M, ∂ -M )
• for the manifold creating one more connected component which is a solid torus D 2 ×S 1 ;

• for the boundary adding one more connected component which is a 2-dimensional torus, that is

N + = N -⊔ T 2 .
Taking the dual point of view tells us that the attachment of a round handle of index 2 makes a torus boundary component disappear, by filling it with a solid torus.

Attachment of round handles of index 1

We present here four elementary attachments of round handles of index 1 which realize each possible homological variations of the boundary (relative to the Betti numbers).

1. Attachment of type (0 -c, 2 -d)
As one removes and one adds at the same time a boundary component, it is necessary to start from a boundary N -having at least two connected components. We can therefore restrict ourselves by considering the two components that we want modify and assume N -= N 1 ⊔ N 2 . After gluing (see Figure 9 and thinking N j = N j ♯ S 2 pour j = 1, 2), the boundary changes to

N + = (N 1 ♯ N 2 ) ⊔ S 2 .
In particular, the Betti numbers of the edge remain unchanged. Concerning the quotients before and after the attachment, we have that (N -×I)/(N -× {0}) has the same homotopy type of a point while ((N -× I) ∪ F ig9 R 1 )/(N -× {0}) has the same homotopy type of a pinched torus, so h 1 = h 2 = 1. (1-d, 1-c) As we remove and add at the same time two generators of the first homology group from the boundary, it is necessary to start from an edge N -having a non-trivial H 1 . We can therefore assume N -= N 1 ♯ T 2 . After gluing (see Figure 2), the boundary remains of the form N + = N 1 ♯ T 2 . In particular, the Betti numbers of the boundary remain unchanged.

Attachment of type

Concerning the quotients before and after the attachment, we have that (N -×I)/(N -× {0}) has the same type of homotopy of a point while ((N -× I)

∪ F ig2 R 1 )/(N -× {0}) has the same homotopy type of S 2 ∨ S 1 , donc h 1 = h 2 = 1.
output.tex Thursday 19 th October, 2023 Concerning the quotients before and after the attachment, we have that (N -×I)/(N -× {0}) has the same homotopy type of a point while ((N -× I) ∪ F ig3 R 1 )/(N -× {0}) has the same homotopy type of a pinched torus, so

h 1 = h 2 = 1. 4. Attachment of type (0 -c, 1 -c)
Since we remove two generators from the first homology group of the edge and also a connected component, it is necessary to start from a boundary N -having at least two connected components and a non-trivial H 1 . We can therefore assume

N -= N 1 ⊔ (N 2 ♯ T 2
). After gluing (see Figure 4 and thinking

N 1 = N 1 ♯ S 2
), the boundary changes to

N + = N 1 ♯ N 2 .
In particular, we have reduced by 1 the β 0 of the boundary and by 2 the β 1 .

Concerning the quotients before and after the attachment, we have that (N -×I)/(N -× {0}) has the same type of homotopy of a point while ((N -× I) ∪ F ig4 R 1 )/(N -× {0}) has the same homotopy type of S 2 ∨ S 1 , so

h 1 = h 2 = 1.
[To calculate the ranks of the index of Conley from ((N -× I) ∪ F ig4 R 1 )/(N -× {0}), instead of studying this same space, we can also observe that the quotient space Y relative to the same neighborhood endowed with the opposite flow and defined by output.tex Thursday 19 th October, 2023 6 Proof of results

Background

As described in Section 2, if n is odd, then (1)-( 5) need to be satisfied.

In [START_REF] Bertolim | Lyapunov graph continuation[END_REF], it was proved that if an abstract Lyapunov semi-graph satisfies the Poincaré-Hopf inequalities, then it can be continued to a Lyapunov semi-graph of Morse type. This means that any vertex of the initial abstract Lyapunov semi-graph L can be replaced by a Lyapunov semi-graph of Morse type L M , satisfying the same Betti numbers on the e + and e -incoming and outgoing (dangling) edges, and such that the k-th ranks of the Conley homology indices in L are equal to the number of singularities of index k in L M . The continuation results are presented by means of a constructive algorithm which produces a linear system hereby called an h cd -system. More precisely, in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] Proposition 1 was proved.

In the sequel we adopt the following notation: B j = B + j -B - j , for j = 1, . . . , ⌊(n -2)/2⌋, and, if n is odd, B j = (B + j -B - j )/2 for j = (n -1)/2, B + 0 = e + -1 and B - 0 = e --1.

Minimal number of singularities for pairing: h minp

In this section we adress a natural development of the problem addressed in [START_REF] Bertolim | Bounds on the ogasa number for ordered continuations of lyapunov graphs[END_REF]. In that work we presented a new proof for and extended results presented in [START_REF] Bertolim | Minimal Morse flows on compact manifolds[END_REF] regarding the Ogasa number for ordered continuations of an abstract Lyapunov semi-graph L.

Definition 1 Given positive integers e + and e -, and n integers {B j } n-2 j=1 such that B j = B n-1-j for j = 1, . . . , n -2, and B i ≡ 0 mod 2 if n = 2i + 1, we say that an n-dimensional manifold M with boundary ∂M = N + ∪ N -such that N + ∩ N -= ∅ satisfies the given (homological) boundary conditions if e + is the number of connected components of N + , e -is the number of connected components of N -and B j = B + j -B - j is the difference of the j-th Betti numbers of the boundary components, that is,

B j = rank(H j (N + )) -rank(H j (N -)).
It is shown in [START_REF] Bertolim | Minimal Morse flows on compact manifolds[END_REF][START_REF] Bertolim | Bounds on the ogasa number for ordered continuations of lyapunov graphs[END_REF] that the loose information about the boundary suffices to determine the abstract minimal number of singularities h min as well as their indices and types output.tex Thursday 19 th October, 2023

(connecting and disconnecting). In other words, h min is the optimal value of the integer linear problem below. In [START_REF] Bertolim | Bounds on the ogasa number for ordered continuations of lyapunov graphs[END_REF], explicit analytical optimal solutions are given to the following problem, see Theorem 8 from [START_REF] Bertolim | Bounds on the ogasa number for ordered continuations of lyapunov graphs[END_REF] reproduced below for completeness.

Minimize

n-1 j=1 h j subject to (110)-(115) h c j , h d j , h j , β ∈ Z + , j = 1, . . . , n -1. ( 25 
)
Recall that the positive part (resp., negative part) of a number

x is [x] + = x + = max{x, 0} (resp., [x] -= x -= max{-x, 0}
). It follows that |x| = x + +x -and x = x + -x -. We will use both notations, preferring the shorter one when possible, with the warning not to mistake the meaning of B + j , B - j , B - 0 , B + 0 , e + and e -, defined independently. This inconsistency is acceptable in view of the standardization and simplification of notation that it will make possible.

Theorem 8 Let e + and e -be positive integers. Let {B j } n-2 j=1 be integers such that B j = B n-1-j for all j = 1, . . . , n -2. If n = 2i + 1, let B i = 0 mod 2. Then any flow on any n-dimensional manifold M satisfying the given homological boundary conditions must have at least h min singularities, where

h min = B - 0 + B + 0 + i j=1 |B j |, if n = 2i + 1.
Let h d j denote the number of singularities of index j and type j-d, and let h c j denote the number of singularities of index j and type (j -1)-c. Then any nonnegative and integral h cd satisfying

h c 1 = B - 0 , h d n-1 = B + 0 , h d j + h d n-j-1 = B + j , j = 1, . . . , n -2 2 , h c j+1 + h c n-j = B - j , j = 1, . . . , n -2 2 , h d i = B + i , if n = 2i + 1, h c i+1 = B - i , if n = 2i + 1,
constitutes a possible distribution of the h min singularities.

Suppose n = 2i + 1. Let h 0 = h n = 0. In this work we are interested in the nonnegative integral solutions of (110)-(115) that allow for the pairing of the h's. In Lemma 4, it was output.tex Thursday 19 th October, 2023

shown that a necessary condition for this was the satisfaction of the following system of inequalities:

(-1) k k j=1 (-1) j h j ≥ 0, k = 1, . . . , n -1 2 , ( 26 
) (-1) k k j=1 (-1) j h n-j ≥ 0, k = 1, . . . , n -1 2 , ( 27 
) n-1 j=1 (-1) j h j = 0. ( 28 
)
In addition, we are interested in the solutions that allow pairings while using the minimum possible number of singularities. That is, we want to find, if they exist, optimal solutions to the integer linear problem Minimize n-1 j=1 h j subject to (110)-( 115), ( 26)-( 28)

h c j , h d j , h j ∈ Z + , j = 1, . . . , n -1. (29) 
Denote by h minp the optimal value of (29), if it exists. Then

h minp ≥ h min ,
since (29) is obtained from (25) by adding restrictions.

Minimum Pairing Problem

We consider the case where n is the odd number 2i + 1, where i is the middle dimension.

It will be shown in section 6.3.3 that the integer linear problem (29) is feasible if and only if the data B + 0 , B - 0 , B j , for j = 1, . . . , (n -1)/2 satisfy

B + 0 -B - 0 + (n-1)/2 j=1 (-1) j B j = 0. ( 30 
)
As a preliminary step, we show that (30) is a necessary condition for feasibility.

Lemma 9 Given nonnegative integral B + 0 , B - 0 , and integral B j , for j = 1, . . . , (n -1)/2, the system of inequalities (110)-( 115), (28) has a nonnegative integral solution (h, h cd ) only if (30) is satisfied.

Proof: It was shown in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] that the system (110)-(115) may be interpreted as the system of equations defining a network flow problem. In this problem, the constants associated with the nodes are B + 0 , -B - 0 , (-1) j B j , for j = 1, . . . , (n -1)/2, and (-1) j h j , for j = 1, . . . , n -1.

output.tex Thursday 19 th October, 2023

It is well known that the necessary condition for such a problem to have a solution is to have the sum of the values associated with the nodes be equal to zero:

-B - 0 + B + 0 + (n-1)/2 j=1 (-1) j B j + n-1 j=1 (-1) j h j = 0. (31) 
Therefore, a necessary condition for (28) and (31) to be simultaneously satisfied is that (30) holds. □ Since all entries of the integer problem (29) are integral and the objective function of this problem has a trivial lower bound of zero, if feasible, (29) has an optimal value.

The instance i = 1 and n = 2i + 1 = 3 leads to the straightforward integer linear problem below.

Minimize

h 1 + h 2 s.t. h c 1 = B - 0 h d 1 = B + 0 h c 1 + h d 1 -h 1 = 0 h c 2 + h d 2 -h 2 = 0 h d 1 -h c 2 = B 1 h c 1 , h d 1 , h c 2 , h d 2 , h 1 , h 2 ≥ 0.
This is a consequence of the fact that, for n = 3, the constraints (26) and ( 27) reduce to h 1 ≥ 0 and h 2 ≥ 0, constraints that were already present in (25). This problem has the general solution

h c 1 = B - 0 h d 1 = B + 1 + α h 1 = B - 0 + B + 1 + α h c 2 = B - 1 + α h d 2 = B + 0 h 2 = B + 0 + B - 1 + α,
where α ∈ Z + . The value of the general solution is

B - 0 + B + 1 + α + B + 0 + B - 1 + α = 2α + B - 0 + B + 0 + |B 1 |.
Hence its optimal value, obtained when α = 0, is h minp = B - 0 + B + 0 + |B 1 | = h min . Thus for the instance n = 3, the pairing requirement doesn't eliminate the optimal solution to the minimum singularities problem.

In many discussions, the special case n = 3 needs special treatment, since some equations and variables are not present. Since it is a trivial case from the optimization problem point of view, we will simplify the presentation by assuming from now on that i ≥ 2 when analyzing the odd case.

Henceforth we will assume that (30) holds. This implies constraint (28) is redundant and may be dropped from (29).

1-arc and 2-arc flows equivalent network

The h cd -system of equations ( 110)-(115) may be shown, by multiplying (an appropriate) half of the equations by -1, to correspond to the flow conservation equations in an appropriate output.tex Thursday 19 th October, 2023 network, see [START_REF] Bertolim | Lyapunov graph continuation[END_REF]. Figure 13 depicts the network corresponding to dimension n = 7, or i = 3. The underlying directed graph upon which the network is defined was studied in [START_REF] Bertolim | Lyapunov graph continuation[END_REF][START_REF] Bertolim | Dynamical and topological aspects of Lyapunov graphs[END_REF][START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF][START_REF] Bertolim | Poincaré-Hopf inequalities[END_REF]. It has 3i -1 nodes and 4i arcs. Ignoring the direction of arcs, we have a graph that contains 4+(i-1) biconnected components. The first four are simply the four arcs with their adjacent nodes at the left of the graph (assuming the planar embedding of Figure 13) and the i -1 remaining ones are the diamond shaped subgraphs that follow on the right, joined at their sides by B nodes. Arcs in each lozenge are directed from top to bottom. One may imagine the first four arcs on the left as a lozenge that was split along its left node. Attached to each node there is a supply/demand value, whereas the number associated with an arc is interpreted as flow along the arc. Flow conservation equations are associated with each node and state that flow into it minus flow out of it must equal its supply (if the result is negative), its demand (if positive) or zero, that is, the flow into a node must balanced the flow out of it. In the last case the node is called a transshipment node. Let (h, h cd ) be a nonnegative integral solution of (110)-(115). Then h cd is a flow in a network whose nodes have supply/demands given by h and B - 0 , B + 0 , B 1 , . . . , B i . The flow into minus flow out of equations express the flow across a network in terms of flows along its arcs. Alternatively, one could express the network flow as flows along paths and cycles. The two are related by flow decomposition theorems. To this network we will apply the flow decomposition theorem given in [1, p. 80], a more general version of the one in [15, p. 8]. Since it is of interest in the present work, we add an integrality assumption to the statement of the theorem. That this results in the integrality of the elements in the decomposition follows directly from the constructive proof given in [START_REF] Ahuja | Network Flows: Theory, Applications and Algorithms[END_REF].

B + 0 -h 6 -B 1 h 1 -B - 0 -h 2 h 5 B 2 -h 4 h 3 -B 3 h d 6 h c 6 h d 1 h d 5 h c 1 h c 2 h d 2 h c 5 h c 3 h d 4 h c
Theorem 10 (Flow Decomposition Theorem) Let G be a network with ℓ nodes and m arcs and integral supplies and demands. Every integral path and cycle flow has a unique representation as nonnegative integral arc flows. Conversely, every nonnegative integral arc flow can be represented as an integral path and cycle flow (though not necessarily uniquely) with the following properties: The networks considered herein contain no cycles, so the decomposition will involve only path flows. Furthermore, the paths either contain one or two arcs. Of course each arc is a 1-arc path. The arcs in the remaining paths fall into one of the possibilities: (1) h d j and h c j-1 , for j = 1, . . . , n -2, (2) h c j and h d n-j , for j = 2, . . . , i, (3) h d j and h c n-j , for j = 1, . . . , i -1. Although in the general case the number of paths may potentially be exponential in the number of nodes, in this case the 2-arc paths number 2n -5 = 4i -4. So the total number of paths is less than double the number of arcs. The notation adopted for the 2-arc paths is given in Table 1 below. The 1-arc paths are denoted by j c and j d , for j = 1, . . . , n -1, depending on whether they carry flow along arc h c j or h d j (as usual, there is an abuse of notation, the same symbol representing both the arc/path and the value of flow along it). Notice that the decomposition of flow also implies a decomposition of supplies and demands. arcs in 2-arc path notation range

h d j , h c j+1 d j j = 1 . . . , n -2 h c j , h d n-j l j j = 2, . . . , i h d j , h c n-j r j j = 1, . . . , i -1
Table 1: Notation for 2-arc flows.

In order to understand the relationship between arc flows and path flows, it is useful to imagine the flow along an arc, say h d 2 , either "vanishing" into node B 2 or "passing through" node B 2 to disappear either at node h 3 or h n-2 . The part of the flow corresponding to the first case is the 1-arc path flow along path 2 d , whereas the second part may be split between r 2 and d 2 . Applying this interpretation is easy to obtain the following equations to express the original h cd variables in terms 1-arc and 2-arc flows:

h c 1 = 1 c (32) h c j = j c + l j + d j-1 , j = 2, . . . , i (33) h c i+1 = (i + 1) c + d i (34) h c j = j c + r n-j + d j-1 , j = i + 2, . . . , n -1 ( 35 
)
h d j = j d + r j + d j , j = 1, . . . , i -1 ( 36 
)
h d i = i d + d i (37) h d j = j d + l n-j + d j , j = i + 1, . . . , n -2 (38) h d n-1 = (n -1) d (39)
When arc flows are replaced with path flows, all paths in the resulting equivalent network are of length one. In the dimension n = 7, the equivalent network is depicted in Figure 14. The 1-arc flows travel between an h node and a B node. The 2-arc flows between h nodes.
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The flow conservation equations for the general case n = 2i + 1 are

1 c + 1 d + r 1 + d 1 = h 1 j c + j d + r j + l j + d j-1 + d j = h j , j = 2, . . . , i -1 i c + i d + l i + d i + d i-1 = h i , (i + 1) c + (i + 1) d + l i + d i + d i+1 = h i+1 , j c + j d + r n-j + l n-j + d j-1 + d j = h j , j = i + 2, . . . , n -2 (n -1) c + (n -1) d + r 1 + d n-2 = h n-1 1 c = B - 0 (n -1) d = B + 0 (n -j -1) d + j d = B + j , j = 1, . . . , n -2 2 (j + 1) c + (n -j) c = B - j , j = 1, . . . , n -2 2 i d = B + i (i + 1) c = B - i
Clearly, as predicted in Theorem 10, the relation between 1-arc and 2-arc flows and h cd is not 1-to-1. Nevertheless, for any h cd there is a set of 1-arc and 2-arc flows that constitute a decomposition thereof that is feasible for the new network and for any set of 1-arc and 2-arc flows satisfying the flow conservation equations in the new network, expressions (32)-(39) will result in a feasible h cd for the original network. Arcs l j and r j in the equivalent network, for j = 2, . . . , i -2, are parallel arcs, that is, they share the same tail (node h 2j if j is even, node h n-2j otherwise) and head (node h n-2j if j is even, node h 2j otherwise). Likewise, l i and d i correspond to parallel arcs. Since arc flows have the same (zero) cost in problem (29), the same will be true for 1-arc and 2-arc flows. Therefore, we may, without affecting the cost of the solution, concentrate all flow along a pair of parallel arcs in one of said arcs, without affecting feasibility or cost of solution. This means we may, without loss of generality, eliminate from the equivalent network one arc from each pair, This further reduces the number of extra arcs added with the new formulation to 3i -3. We choose to eliminate l j , for j = 2, . . . , i. The new flow conservation equations, output.tex Thursday 19 th October, 2023 minus the multiplication by -1, are:

B + 0 -h 6 B - 1 -h 2 B + 2 -h 4 B - 3 -B - 0 h 1 -B + 1 h 5 -B - 2 h 3 -B + 3 6 d 6 c 2 c 2 d 4 d 4 c 1 c 1 d 5 d 5 c 3 c 3 d d 1 d 5 d 4 d 2 l 3 d 3 l 2 r 2 r 1
1 c + 1 d + r 1 + d 1 = h 1 (40) j c + j d + r j + d j-1 + d j = h j , j = 2, . . . , i -1 (41) i c + i d + d i + d i-1 = h i , ( 42 
) (i + 1) c + (i + 1) d + d i + d i+1 = h i+1 , (43) j c + j d + r n-j + d j-1 + d j = h j , j = i + 2, . . . , n -2 (44) (n -1) c + (n -1) d + r 1 + d n-2 = h n-1 (45) 1 c = B - 0 (46) (n -1) d = B + 0 (47) (n -j -1) d + j d = B + j , j = 1, . . . , n -2 2 ( 48 
) (j + 1) c + (n -j) c = B - j , j = 1, . . . , n -2 2 ( 49 
)
i d = B + i ( 50 
) (i + 1) c = B - i (51)

Eliminating h and introducing alternate sum variables s

In order to eliminate h from the problem altogether, we must rewrite the objective function and the constraints involving the alternate sum inequalities. From Lemma 9, equation ( 28) may be dropped, since the data B + 0 , B - 0 , B j , for j = 1, . . . , ⌊(n -1)/2⌋ are assumed to satisfy (30).

We may use ( 40)-(45) to remove h from the problem. This will of course require a rewriting of the objective function and of the constraints requiring the nonnegativity of the alternate sums (26)-( 27). The objective function of (29) is transformed as follows.

n-1 j=1

h j = n-1 j=1 (j c + j d ) + i j=2 (d j-1 ) + d i + n-1 j=i+2 (r n-j + d j-1 ) + i-1 j=1 (r j + d j ) + d i + n-2 j=i+1 d j = n-1 j=1 (j c + j d ) + 2 i-1 j=1 r j + n-2 j=1 d j = B - 0 + B + 0 + i j=1 |B j | + 2 i-1 j=1 r j + n-2 j=1 d j = h min + 2 i-1 j=1 r j + n-2 j=1 d j , (52) 
where the next-to-last equality is obtained by summing ( 46)-( 51) and the last from Theorem 8.
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Instead of working with full-blown definitions of the descending and ascending alternate sums

s k = (-1) k k j=1 (-1) j h j , for k = 1, . . . , n -1 2 , ( 53 
)
and

s n-k = (-1) n-k k j=1 (-1) j h n-j , for k = 1, . . . , n -1 2 , ( 54 
)
it is preferable to adopt the following equivalent recursive definition. The descending alternate sums are expressed as follows.

s 1 = h 1 = 1 c + 1 d + r 1 + d 1 (55) s j = h j -s j-1 = j c + j d + r j + d j + d j-1 -s j-1 , for j = 2, . . . , i -1 (56) s i = h i -s i-1 = i c + i d + d i + d i-1 -s i-1 . (57) 
The ascending alternate sums may be defined analogously:

s n-1 = h n-1 = (n -1) c + (n -1) d + r 1 + d n-2 (58) s n-j = h n-j -s n-j+1 = (n -j) c + (n -j) d + r j + d n-j-1 + d n-j -s n-j+1 , for j = 2, . . . , i -1 (59) s i+1 = h i+1 -s i+2 = (i + 1) c + (i + 1) d + d i + d i+1 -s i+2 . ( 60 
)
The inequalities (26) require the nonnegativity of the descending alternate partial sums s 1 , s 2 , . . . , s i , whereas (27) plays the same role for the ascending ones, s n-1 , s n-2 , . . . , s i+1 .

The symmetry present in the odd n case leads to the following lemma.

Lemma 11 Given B + 0 , B - 0 , B j , j = 1, . . . , i, such that (30) holds, any solution (h, h cd ) of ( 110)-(115) will satisfy

s i = s i+1 . ( 61 
)
Proof: The "middle" alternate sums given by ( 53) and ( 54) are

s i = (-1) i i j=1
(-1) j h j and

s i+1 = (-1) i i j=1
(-1) j h n-j .
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Therefore,

s i+1 -s i = (-1) i i j=1 (-1) j h n-j -(-1) i i j=1 (-1) j h j (62) = (-1) i+1 i j=1 (-1) j [h j -h n-j ] (63) = (-1) i+1 i j=1 (-1) j [h c j + h d j -h c n-j -h d n-j ] (64) = (-1) i+1 -h c 1 + h d n-1 + (-1) i (h d i -h c i+1 ) (65) + i-1 j=1 (-1) j [-h c j+1 + h d j -h c n-j + h d n-j-1 ] (66) = (-1) i+1 -B - 0 + B + 0 + (-1) i B i + i-1 j=1 (-1) j B j (67) = 0, (68) 
where the last equality follows from (30). □ Lemma 11 allows us to rewrite (60) as

s i = (i + 1) c + (i + 1) d + d i + d i+1 -s i+2 .
(60 ′ )

Formulation as a minimum cost flow (MCF) problem

With the replacement of arc flow by path flows, the elimination of h and the introduction of the alternate sum variables, problem (29) is converted into the following equivalent integer linear problem.

Minimize

n-2 j=1 d j + i-1 j=1 r j
subject to ( 46)-( 51), ( 55)-(60 ′ ) j c , j d j , r j , d j , s j ∈ Z + , for all valid j.

(

) 69 
The above problem is equivalent to (29) in the sense that h minp is equal to h min plus twice the optimal value of the above integer linear problem. The optimal value of ( 69) is denoted by ρ Thus,

h minp = h min + 2ρ. ( 70 
)
Theorem 12 The minimum pairing problem is equivalent to an uncapacitated minimum cost flow problem.

Proof: We show that the matrix of coefficients of the linear constraints ( 46)-( 51), ( 55)-(60 ′ ) may be transformed into a node-arc incidence matrix of a digraph by multiplying output.tex Thursday 19 th October, 2023 appropriate subset of half the equations by -1. In order to explicit the selection of rows, we must choose how equations ( 55)-(60 ′ ) are written to begin with, since there are variables in both sides of equal sign in these expressions. We fix the following choice:

-s 1 + 1 c + 1 d + r 1 + d 1 = 0 (71) -s j + j c + j d + r j + d j + d j-1 -s j-1 = 0, for j = 2, . . . , i -1 (72) -s i + i c + i d + d i + d i-1 -s i-1 = 0 (73) -s n-1 + (n -1) c + (n -1) d + r 1 + d n-2 = 0 (74) -s n-j + (n -j) c + (n -j) d + r j + d n-j-1 + d n-j -s n-j+1 = 0, for j = 2, . . . , i -1 (75) -s i + (i + 1) c + (i + 1) d + d i + d i+1 -s i+2 = 0 (76)
This implies that the entries in the coefficient matrix of the constraints ( 46)-( 51), ( 71)-( 76) are either 0 or 1 for the columns corresponding to the 1-arc flows and 0, ±1 for the 2-arc flow columns. We will examine each variable at a time. We will also assign labels to the equations to help drawing the network, since each equation will be the flow conservation equation in the associated node. The selected equations for the sign change are (46); every other equation of (48), starting with the first one; every other equation of (49), starting with the second one; equation (50) if i is odd; equation (51) if i is even; every other equation of ( 71)-( 73), starting with the second one; every other equation in ( 74)-( 76), starting with the first one. We have to show that the matrix obtained changing the signs of these rows has exactly two entries per column, one 1 and the other -1.

The label assignments for the equations in ( 46)-( 51) is as follows. Equation ( 46) is assigned the label f 0 , (47) is assigned the label g 0 , the jth equation in (48) receives the labels f j if j is odd and g j otherwise, the jth equation in (49) receives the label g j if j is odd and f j otherwise. Equation (50) is assigned the label g i if i is even, f i otherwise. Equation (51) is assigned the label f i if i is even, g i otherwise. This means nodes f 0 , f 1 , . . . , f i , associated with the equations in (46)-(51) that were multiplied by -1, will be supply nodes, whereas g 0 , g 1 , . . . , g i are associated with demand nodes.

The nodes associated with equations ( 71)-(76) will be transshipment nodes, since the constant in the right-hand-side of the flow conservation equation is zero. The jth equation in (71)-( 73) is assigned the label t j if j is odd and u j if j is even. So equation ( 73) is labeled u i if i is even and t i otherwise. Similarly, the jth equation in ( 74)-(76) receives the label u j if j is odd and t j otherwise, ending with t i is i is even and u i otherwise. Notice that the labels u have been assigned to equations selected for the sign change, whereas the labels t were assigned to the unchanged equations.

Notice that each 1-arc flow variables appear exactly once in the set of equations ( 46)-(51) and once in the set of equations ( 55)-(60 ′ ). We just have to check that these entries will have the appropriate signs after the multiplication.

Consider the 1-arc flow variable 1 c and the associated column. This variable is present in the first equation of (46), labeled f 0 , one of the selected ones. So its coefficient is -1 in the corresponding row. It also appears in the first equation of (71)-(73), labeled t 1 . Since this is not a selected equation, its coefficient in this equation is 1. So this column satisfies the condition. The tail of the arc carrying flow 1 c is f 0 and its head is t 1 . A similar argument applies to (n -1) d . The corresponding arc has tail u 1 and head g 0 .
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Now consider the variable j c , where j ∈ {2, . . . , i}. This variable is present with coefficient 1 in the (j -1)th equation in (49). This equation will be selected only if j -1 is even, or j is odd. Thus if j is odd the variable is in an equation labeled f j-1 , and if j is even, in an equation labeled g j-1 . It is also present in the jth equation of ( 71)-( 73), with label t j if j is odd and u j otherwise. Thus its coefficient will be -1 on this row in the modified matrix only if this equation is selected, which happens only if j is even. So if j is odd, the arc carrying flow j c has tail f j-1 and head t j . Otherwise, the arc has tail u j and head g j-1 . In either case, the nonzero entries in the column of the modified matrix corresponding to this variable will be 1 and -1.

Next consider j d , for j ∈ {1, . . . , i -1}. It has coefficient 1 in the jth equation of (48), so it will have coefficient -1 on the corresponding row in the modified matrix only if j is odd, with label f j , otherwise the coefficient remains 1 in the equation labeled g j . It is also present with coefficient 1 in the jth equation of ( 71)-( 73), so its coefficient in this row of the modified matrix is -1 only if j is even. The equation has label t j if j is odd and u j otherwise. The arc with flow j d thus has tail f j and head t j if j is odd and tail u j and head g j otherwise. Therefore, the corresponding column in the modified matrix will have nonzero entries 1 and -1.

Next consider i d . The corresponding column has coefficient 1 in row corresponding to equation (50). So the coefficient in this column and row will be -1 in the modified matrix only if i is odd, receiving label f i in this case and g i otherwise. The second equation containing this variable is the last, or ith, equation of ( 71)-(73). Thus the coefficient of this variable in the modified matrix will be -1 in this row only if i is even. The label in case i is odd (resp., even) is t i (resp., u i ). The corresponding arc has tail f i and head t i if i is odd, and tail u i and head g i , otherwise. So again the corresponding column contains 1 and -1 in the modified matrix.

The analyses of columns corresponding to variables (n -j) c and (n -j) d , for j = 1, . . . , i are analogous.

The variables corresponding to 2-arc flows are not present in equations ( 46)-(51), only in (71)-(76). The variable r j is present with coefficient 1 in the jth equation in (71)-(73), so it will have coefficient -1 on this in the modified matrix only if j is even. The associated label is t j if j is odd and u j otherwise. It is also present with coefficient 1 in the jth equation of (74)-(76), and this will change to -1 in the modified matrix only if j is odd. In this group of equations, the label is u j if j is odd and t j otherwise. Thus, in either case, the arc with flow r j has tail u j and head t j and the corresponding column in the modified will have the appropriate configuration. Now consider variable d j , for j ∈ {1, . . . , i -1}, It is present in two consecutive equations in (71)-( 73) and so will have entries of opposite signs on these rows in the modified matrix. The tail (resp., head) of the arc carrying d j is u j+1 (resp., t j ) if j is odd, and u j and t j+1 otherwise. The variable d n-j , for j ∈ {2, . . . , i -1} is present in two consecutive equations (j -1th and jth) in (74)-(76), so the corresponding column in the modified matrix has the appropriate pattern. The tail and head of the corresponding arc are u j-1 and t j if j is even, and u j and t j-1 otherwise. Finally, consider variable d i . It is present in the last and ith equation of ( 71)-(73), and its coefficient will change to -1 in this row only if i is even. The second equation containing this variable is the last and ith equation of ( 74)-(76), so it will change to -1 in the modified matrix only if i is odd. So the corresponding arc will have tail output.tex Thursday 19 th October, 2023 u i and head t i . Consequently, the new column in the modified matrix satisfies the desired conditions. The last set of variables are the s j 's. Each s j , for j = 1, . . . , n -1 is present in precisely two equations of (71)-( 73), with coefficient -1 in both. For j ̸ = i, s j is present in two consecutive equations either in (71)-(73) or in (74)-(76), so the corresponding column will have the appropriate pattern in the modified matrix. In both cases, the equations involved are the jth and (j + 1)th. In the first case, since the even equations have had the sign changed, the arc corresponding to s j has tail t j and head u j+1 if j is odd, and tail t j+1 and head u j otherwise. In the second case, since the odd numbered equations have had their sign changed, arc s n-j has tail t j+1 and head u j , if j is odd, and tail t j and head u j+1 otherwise. The exception is s i . It is present in the last and ith equation of ( 71)-( 73) and in the last and ith equation of ( 74)-(76), as was the case for d i . Thus the corresponding column in the modified matrix will have precisely two nonzero elements, 1 and -1. Arc s i 's tail and head are t i and u i . □ Figure 15 depicts the network corresponding to the minimum cost flow (MCF) problem of the minimum pairing problem when n = 7.

g 0 B + 0 u 1 0 g 1 B - 1 u 2 0 g 2 B + 2 u 3 0 g 3 B - 3 f 0 -B - 0 t 1 0 f 1 -B + 1 t 2 0 f 2 -B - 2 t 3 0 f 3 -B + 3 6 d 6 c 2 c 2 d 4 d 4 c 1 c 1 d 5 d 5 c 3 c 3 d r 2 r 1 d 1 d 5 d 4 d 2 d 3 s 6 s 1 s 2 s 5 s 3 (= s 4 )
Figure 15: Minimum cost network flow for minimum pairing problem, case n = 7.

Theorem 12 allows us to tap into the abundant literature and results available for the MCF problem in uncapacitated networks (i.e., flow along arcs is unbounded above). Integrality constraints, for instance, may be dropped, since it is guaranteed that the linear relaxation of the problem will have an integral optimal solution if the data of the problem are integral, see, for instance, Theorem 9.10 of [1, p. 318]. A host of efficient algorithms for its solution is available, e.g. [START_REF] Goldberg | Finding minimum-cost circulations by canceling negative cycles[END_REF][START_REF] Orlin | A polynomial time primal network simplex algorithm for minimum cost flows[END_REF]. If the numerical solution to a specific instance is desired, there are comercial and open source codes implemented for this class of problem. We proceed to explore the special characteristics of this problem to obtain analytical upper and lower bounds for the optimal value of (69).

The MCF network described by equations ( 46)-( 51), ( 71)-(76), after the appropriate sign changes, has i + 1 supply nodes (nodes f 0 , . . . , f i , depicted at the bottom of Figure 15) and i + 1 demand nodes (nodes g 0 , . . . , g i , depicted at the top). The constant associated with each node is shown either above or below it. So the flow produced at the bottom needs to be carried to the top. The bottom to top arcs are the arcs associated with the alternate sum output.tex Thursday 19 th October, 2023 variables. The 2-arc flows d and r are associated with the top to bottom arcs. The feasibility of the MCF problem is straightforward to show.

Lemma 13

The MCF problem given by equations ( 46)-( 51), ( 71)-( 76), is feasible.

Proof: The proof is constructive. Equations ( 46), ( 47), ( 50) and (51) uniquely determine flows 1 c , (n -1) d , i d and (i + 1) c . Arbitrarily choose remaining 1-arc flows so as to satisfy (48)-( 49), as follows

j d = B + j and (j + 1) c = B - j , for j = 1, . . . , n -2 2 ,
and set remaining 1-arc flows to zero. This satisfies flow conservation constraints at all the demand and supply nodes of the MCF network. Let r = 0 and d = 0. Use the flow conservation equations for the transshipment nodes (71)-(76) to calculate s. Flow s 1 is given by (71) and then s 2 , s 3 , . . . , s i may be calculated, in this order, using (72)-(73). Similarly, flow s n-1 is given by (74) and s n-2 , . . . , s i+2 may be calculated, in this order, using (75). Equation ( 76) is redundant, from Lemma 11.

s 1 = 1 c + 1 d = B - 0 + B + 1 (77) s 2 = -s 1 + 2 c + 2 d = -B - 0 -B + 1 + B - 1 + B + 2
(78) . . .

s j = j k=1 (j -1) k+j (B - k-1 + B + k ), for j = 2, . . . , i -1 ( 79 
)
s i = - i-1 k=1 (-1) k+i-1 (B - k-1 + B + k ) + B - i-1 + B + i = i k=1 (-1) k+i (B - k-1 + B + k ) (80) s n-1 = (n -1) c + (n -1) d = B + 0 (81) s n-2 = -s n-1 + (n -2) c + (n -2) d = -B + 0 . . . s n-j = -s n-j+1 + (n -j) c + (n -j) d = (-1) j-1 B + 0 , for j = 1, . . . , i -1. ( 82 
)
This solution satisfies all flow conservation constraints. If s thus calculated is nonnegative, we have obtained a feasible solution for the MCF and the lemma is proven. Suppose not.
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That is, there is some j ∈ {1, . . . , i} (resp., j ∈ {i + 2, . . . , n -1}) such that s j < 0. Arc d j (resp., arc d j-1 ) forms a directed cycle with s j , since the corresponding variables are present in the same pair of equations in (71)-(76) and they carry opposite signs in these equations. So if we send the flow s - j along this cycle the new solution will have s j = 0 and d j = s - j (resp., d j-1 = s - j ). Repeat this procedure for every negative component of s. Since the addition of flow along a directed cycle doesn't affect flow conservation constraints, the final nonnegative solution also satisfies ( 46)-(51) and is therefore feasible. □ Since the MCF problem is a minimization problem, any feasible solution thereof gives an upper bound ρ for the optimal value ρ. For the choice adopted in the proof of Lemma 13, the cost is simply the sum of the 2-arc flows d. Using the formulas (77)-( 82), we have

ρ 1 = i j=1 s - j + i+1 j=1 s - n-j = i j=1 j k=1 (-1) k+j (B - k-1 + B + k ) - + i+1 j=1 (-1) j-1 B + 0 + = i j=1 j k=1 (-1) k+j (B - k-1 + B + k ) - + i -1 2 B + 0 . (83) 
In this solution, all flow in the right-hand-side of ( 48)-( 49) was concentrated in the 1-arc flow variable with smallest index. If we do the opposite, that is, let and repeat the procedure, we obtain the following alternative upper bound for ρ:

ρ 2 = i-1 j=1 j k=1 (-1) k+j (B + k-1 + B - k ) - + i 2 B - 0 . (84) 
Since both ρ 1 and ρ 2 are possible upper bounds for ρ, we may obtain a tighter one with ρ = min{ρ 1 , ρ 2 }.

(85)

From an MCF problem to a transportation problem

Theoretically, one may solve an uncapacitated nonnegative costs MCF problem by calculating minimum cost paths (where the cost of a path is equal to sum of costs of arcs in path) from each supply node to each demand node and then solving a transportation problem. The set of supply and demand nodes of transportation problem are the same as in the MCF problem, but there are only arcs from supply nodes to demand nodes, and the cost of the arc from supply node ℓ to demand node j is equal to the cost of the minimum cost path from ℓ to j in the MCF problem. For general networks this approach is not advisable, since the number of paths may be prohibitive. But the special structure of our MCF network make output.tex Thursday 19 th October, 2023

this not only feasible, but also attractive. As usual, when talking about minimum cost paths, we interpret costs as lengths. Notice that the arcs in the minimum pairing MCF problem have length either zero (all the original 1-arc flows and the alternate sum variables) or one (the 2-arc flows).

To facilitate our dealings in this transition from MCF network to transportation network, we will name the supply of node f j as -θ j and the demand of node g j as δ j . Table 2 gives the correspondence between the original and new notation.

θ 0 = B - 0 θ j = [(-1) j+1 B j ] + , for j = 1, . . . , i δ 0 = B + 0 δ j = [(-1) j B j ] + , for j = 1, . . . , i
Table 2: Relationship between θ, δ and B.

The structure of the MCF network is such that each supply node has outgoing arcs to either one or two of the transshipment nodes with t labels, whereas each demand has incoming arcs from either one or two of the u-labeled transshipment nodes. Thus it behooves us to determine the minimum cost paths from the t-labeled nodes to the u-labeled nodes first. Supply and demand nodes, as well as the arcs incident thereto may be ignored for this task. In other words, we will first focus on the transshipment subnetwork of the MCF network, the subnetwork constituted by the transshipment nodes and arcs incident thereto. In the case n = 7, the subproblem is to compute the minimum cost paths in the network shown in Figure 16.

u 1 0 u 2 0 u 3 0 t 1 0 t 2 0 t 3 0 r 2 r 1 d 1 d 5 d 4 d 2 d 3 s 6 s 1 s 2 s 5 s 3 (= s 4 )
Figure 16: Transshipment subnetwork of the MCF network, case n = 7.

Minimum cost paths in the transshipment subnetwork for low values of n can be found by inspection. Since the subnetwork contains no parallel arcs, paths are uniquely determined by the sequence of nodes therein, so they will be described thus. Table 3 gives the correspondence between arcs in the MCF network and flow variables. Table 4 gives the minimum path distances and the respective minimum paths for n = 7.

In order to establish the minimum paths and distances for generic n, we will define two output.tex Thursday 19 th October, 2023 auxiliary functions γ and γ 0 , with Z + as domain and image.

γ(k) = 1, if k = 0 k 2 , if k ≥ 1 (86) γ 0 (k) = k 2 , for k ≥ 0. ( 87 
)
Their graphs are shown in Figure 17. Notice that, whereas γ 0 is monotone increasing, γ has a minimum at 1. t j ⇝ u j t j , u j-1 , t j-1 , u j t j , u j+1 , t j+1 , u j , if 1 < j < i

• • • • • • • • • • (a) Graph of γ (b) Graph of γ 0
t 1 ⇝ u 1 t 1 , u 2 , t 2 , u 1 t i ⇝ u i t i , u i t ℓ ⇝ u j (t ℓ+α2k , u ℓ+α(2k+1) ) ⌊|ℓ-j|/2⌋ k=0
, if |j -ℓ| is odd, where α = sgn(j -ℓ) Lemma 14 Let D be the i × i matrix whose entry d ℓj contains the minimum distance from t ℓ to u j in the transshipment subnetwork when n = 2i + 1. Then

t ℓ ⇝ u j t ℓ ⇝ u ℓ+αk , t ℓ+αk , t ℓ+αk ⇝ u j | k odd, 1 ≤ k < |j -ℓ| , if |j -ℓ| is even
d ℓj = γ(|ℓ -j|), if ℓ < i γ 0 (|ℓ -j|), if ℓ = i, (88) 
and the shortest paths are given in Table 5.

Proof: From the construction of the MCF network in the proof of Theorem 12, it follows that there are no arcs between transshipment nodes, so the undirected version of the subnetwork is bipartite with the t-labeled nodes in one subset of the partition, called the t-subset, and the u-labeled nodes are in the other subset, called the u-subset. Therefore, paths from a t-labeled node to a u-labeled node must contain an odd number of arcs, as they must start output.tex Thursday 19 th October, 2023 from one subset of nodes and end in the other, and the nodes in the path must alternate between the two subsets. Arcs outgoing from t-labeled nodes have cost zero, arcs incoming have cost 1. Furthermore, node t j , for 1 < j < i, has two outgoing arcs, to u j-1 and u j+1 , and three incoming arcs, from u j-1 , u j and u j+1 . Node t 1 has only one outgoing arc, to u 2 , and two incoming arcs, from u 1 and u 2 . Node t i has two outgoing arcs, to u i and u i-1 and two incoming arcs, from the same pair of nodes. First consider the shortest path from node t j to u j , for j < i. Since the transshipment subnetwork has no arc from t j to u j , a shortest path will have at least 3 arcs, with at least one arc in the path going from the u-subset to the t-subset. Thus any path will have length at least one. Since the paths t j , u j-1 , t j-1 , u j and t j , u j+1 , t j+1 , u j have length one and cover the possibilities of outgoing arcs from t j , they are the shortest path from t j to u j . Therefore d jj = 1, a value consistent with (88) and the paths in Table 5.

Next we look for the shortest distance from t ℓ to u j , for |ℓ -j| ≥ 1. If a path from t ℓ to u j has m + 1 nodes, then it must have m arcs and it has length ⌊m/2⌋, since m is odd and every other arc in the path, starting from the second one, goes from the u-subset to the t-subset. Thus finding a shortest path with respect to the lengths of the arcs is equivalent to finding a shortest path with respect to the number of arcs. Suppose

t ℓ = t ℓ 0 , u ℓ 1 , t ℓ 2 , u ℓ 3 , . . . , t ℓ m-1 , u ℓm = u j is a path from t ℓ to u j in the transshipment subnetwork. Since |ℓ r -ℓ r-1 | ≤ 1, for r = 1, . . . , m, we have m ≥ m r=1 |ℓ r -ℓ r-1 | ≥            m r=1 (ℓ r -ℓ r-1 ) = ℓ m -ℓ 0 = j -ℓ, m r=1 (ℓ r-1 -ℓ r ) = ℓ 0 -ℓ m = ℓ -j, which implies m ≥ |ℓ -j|.
The inequality above implies that any path t ℓ ⇝ u j has at least |ℓ -j| arcs. Of course, since paths must have an odd number of arcs, the lower bound is |ℓ -j| if |ℓ -j| is odd and |ℓ -j| + 1 otherwise. A path that achieves this lower bound must be a shortest path. Let α = sgn(j -ℓ) = |j -ℓ|/(j -ℓ) (recall that |j -ℓ| ≥ 1). If |ℓ -j| is odd, the shortest path will be (t ℓ+α2k , u ℓ+α(2k+1) )

⌊|ℓ-j|/2⌋ k=0

, with length ⌊|ℓ -j|/2⌋. If |ℓ -j| is even, then the number of arcs in a shortest path must be m = |ℓ -j| + 1, if at all achievable. A way to attain this lower bound is to choose odd k such that 1 ≤ k < |j -ℓ|. Then the node u ℓ+αk is between u ℓ+α and u j , in the sense of subindex value. Since |ℓ -j| is even and k is odd, it follows that |j -(ℓ + αk)| = |j -ℓ| -k is also odd. Consider the path constituted by the shortest path t ℓ ⇝ u ℓ+αk , followed by t ℓ+αk , followed by the shortest path t ℓ+αk ⇝ u j . The first and last parts of this path fall into the first case studied, since the absolute value of the difference of the indices of the extremes of the path is an odd number. So the number of arcs of this path is k + 1 + |j -ℓ| -k = |j -ℓ| + 1 and the length if ⌊(|j -ℓ| + 1)/2⌋ = ⌊|j -ℓ|/2⌋, which makes it a shortest path from t ℓ to u j . Since there are |j -ℓ| -2 choices for k, there are |j -ℓ| -2 shortest paths in this case. Thus in both cases, the findings were compatible with (88) and Table 5. □ output.tex Thursday 19 th October, 2023

Table 6 gives the minimum distances d ℓj for n = 19. The nature of the minimum distances formulas in (88) is reflected in the symmetry of this distance matrix. Notice that, for ℓ ̸ = j, the minimum distance d ℓj = γ(|ℓ -j|) = γ 0 (|ℓ -j|) depends on |ℓ -j| via the function γ. The only exception is d ii , but this entry lies on the diagonal of the distance matrix. Hence, d ℓj = d jℓ , d ℓ,ℓ+k = d ℓ,ℓ-k , for valid values of ℓ, j and k. Therefore, we not only have that D = D T , but also that the entries on each row and column are symmetric with respect to the diagonal element, increasing in value as they get farther from the diagonal entry.

Min distances t ℓ ⇝ u j u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 t 1 1 1 1 2 2 3 3 4 t 2 1 1 1 2 2 3 3 t 3 1 1 1 1 2 2 3 t 4 1 1 1 1 1 2 2 t 5 2 1 1 1 1 1 2 t 6 2 2 1 1 1 1 1 t 7 3 2 2 1 1 1 1 t 8 3 3 2 2 1 1 1 t 9 4 3 3 2 2 1 1 Table 6: Minimum distances in the instance n = 19.
The shortest distances from f ℓ to g j are now straightforward to obtain, since from f ℓ there are at most two choices of t-labeled nodes to go to, and at most two choices of u-labeled nodes to reach g j . All arcs incident from (resp., incident to) supply nodes (resp., demand nodes) have distance zero. The diagrams and corresponding expression for c ℓj , the minimum distance from f ℓ to g j , for the various possible choices are depicted below. Some nodes may output.tex Thursday 19 th October, 2023

f 0 ⇝ g 0 f 0 , t 1 ⇝ u 1 , g 0 f 0 ⇝ g 1 f 0 , t 1 ⇝ u 2 , g 1 f 0 ⇝ g j f 0 , t 1 ⇝ u j , g j , for j = 2, . . . , i f ℓ ⇝ g ℓ f ℓ , t ℓ ⇝ u ℓ+1 , g ℓ f ℓ , t ℓ+1 ⇝ u ℓ , g ℓ , for ℓ = 1, . . . , i -1 f 1 ⇝ g 0 f 1 , t 2 ⇝ u 1 , g 0 f ℓ ⇝ g 0 f ℓ , t ℓ ⇝ u 1 , g 0 , if ℓ = 2, . . . , i -1 f ℓ ⇝ g ℓ+1 f ℓ , t ℓ ⇝ u ℓ+1 , g ℓ+1 f ℓ , t ℓ+1 ⇝ u ℓ+2 , g ℓ+1 , if ℓ = 1, . . . , i -1 f ℓ ⇝ g ℓ-1 f ℓ , t ℓ+1 ⇝ u ℓ , g ℓ-1 f ℓ , t ℓ ⇝ u ℓ-1 , g ℓ-1 , if ℓ = 2, . . . , i -1 f ℓ ⇝ g ℓ+2 f ℓ , t ℓ+1 ⇝ u ℓ+2 , g ℓ+2 , if ℓ = 1, . . . , i -2 f ℓ ⇝ g ℓ-2 f ℓ , t ℓ ⇝ u ℓ-1 , g ℓ-2 , if ℓ = 2, . . . , i -1 f ℓ ⇝ g j f ℓ , t ℓ+1 ⇝ u j , g j , if j > ℓ f ℓ , t ℓ ⇝ u j+1 , g j , otherwise , if 1 ≤ ℓ < i, 1 ≤ j ≤ i, |ℓ -j| ≥ 3 f i ⇝ g i f i , t i ⇝ u i , g i f i ⇝ g j f i , t i ⇝ u j , g j f i , t i ⇝ u j+1 , g j if i -j is odd, j ≤ i -1 f i , t i ⇝ u j+1 , g j , if i -j is even, j ≤ i -1
Table 7: Shortest paths in MCF network.

achieved using the path t 1 ⇝ u 1 , and so agrees with (94) and Table 7. Assume 1 ≤ j < i.

Then, from (89),

c 0j = min{d 1j , d 1,j+1 } = min{γ(j -1), γ(j)} = γ(1) = γ 0 (0), if j = 1 γ(j -1) = γ 0 (j -1), if 2 ≤ j < i. = γ(j),
consistent with (94). When j = 1, then minimum is achieved at γ(1) = d 12 corresponding to path t 1 ⇝ u 2 . When 2 ≤ j < i, the minimum corresponds to d 1j , or path t 1 ⇝ u j . As a rule, the indices of the distance at which the minimum is achieved indicate the best subpath in the transshipment subnetwork. Both cases agree with Table 7. Lastly, again from (89), we have

c 0i = d 1i = γ(i -1) = γ 0 (i -1) = γ(i),
as prescribed by (94), where the second inequality uses the assumption i ≥ 2. Minimum is achieved at d 1i , also in accordance with Table 7.

output.tex Thursday 19 th October, 2023 achieved at d ℓ+1,i , in accordance with (94) and Table 7. Finally, let ℓ = i. If j = 0, using (91) and (88),

c i0 = d i1 = γ 0 (i -1) = γ(i). Let 1 ≤ j < i. Then, c ij = min{d ij , d i,j+1 } = min{γ 0 (i -j), γ 0 (i -j -1)} = γ 0 (i -j -1) = γ(|j -i|),
achieved at d i,j+1 if i -j is even, and at both d ij and d i,j+1 if i -j is odd, since γ 0 (2k) = γ 0 (2k + 1). The last possibility is j = i. Using (91),

c ii = d ii = γ 0 (0) = 0 = γ(0),
as desired, which proves the lemma. □ Figure 18 contains the minimum distance tables for n = 5 (i = 2), n = 7 (i = 3), n = 9 (i = 4) and n = 19 (i = 9), showing only nonzero values. It is possible to confirm that the table for smaller values of n are principal submatrices of the ones for higher values, in accordance with the formulas for the minimum distances given in (94). We now have a transportation problem that is equivalent to the MCF problem, namely x ℓj = θ ℓ , for ℓ = 0, . . . , i i ℓ=0

x ℓj = δ j , for j = 0, . . . , i x ≥ 0.

(95)

The variable x ℓj represents the flow from source f ℓ to sink g j . The entry (ℓ, j) of matrix C contains the cost of x ℓj . The solution x may also be organized into a matrix. The supply satisfaction constraints of (95) translate to equating the sum of flows on the ℓth row to the ℓth supply θ ℓ (first set of equations), and the demand satisfaction constraints requires the sum of flows along the jth column to be equal to the demand associated with that column, δ j (second set of constraints). The pattern of distances will allow us to construct lower bounds for ρ, the optimal value of the MCF and of the transportation problem.

Lower bounds on ρ

We will construct two types of lower bounds on ρ: column lower bounds and row lower bounds. The rules are the same, only the roles are exchanged, columns for rows, demands for supplies.
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Thursday 19 th October, 2023 The rational for building a column lower bound is to calculate the minimum cost of satisfying the demand required at that column, using all resources (the supplies) in the most economical way for this column, without regard for the other requirements. The last is what makes this a lower bound, since we are considering only the most advantageous situation possible, irrespective of how this choice might impact others.

g 0 g 1 g 2 f 0 1 f 1 f 2 g 0 g 1 g 2 g 3 f 0 1 1 f 1 f 2 f 3 1 g 0 g 1 g 2 g 3 g 4 f 0 1 1 1 f 1 1 f 2 f 3 1 f 4 1 1
Let I = {0, . . . , i}. Take a column j ∈ I. The flows arriving at node g j travel along arcs of costs 0, 1, . . . , max{c 0j , c ij } = max{γ(j), γ(i -j)} = max{⌊(j -1)/2⌋, ⌊(i -j -1)/2⌋} = c max (j). Let Θ j k = ℓ∈I : |ℓ-j|≤2k+2 θ ℓ be the supply available to node g j at cost at most k, for k = 1, . . . , c max (j). Then the part of the demand at node g j that must be satisfied at cost greater than or equal to k + 1 is

δ j -Θ j k + .
Therefore the part of the demand of node g j that must be satisfied at cost k in this most favorable scenario is (96)

The construction of the row lower bound is analogous, but instead of supply available at cost at most k, we need the concept of at cost at most k. For each supply node f ℓ we define

∆ ℓ k = j∈I : |ℓ-j|≤2k+2 δ j .
The expression of the row lower bound is then

ρ 2 = i ℓ=0 cmax(ℓ) k=1 k θ ℓ -θ ℓ -∆ ℓ k + -∆ ℓ k-1 + . ( 97 
)
Taking the maximum of the bounds we obtain the better lower bound

ρ = max{ρ 1 , ρ 2 }. (98) 
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Since we can't have both θ 3 = B + 3 and δ 3 = B - 3 positive, we will consider the case θ 3 ≥ 0, so that δ 3 = 0. To solve the remaining case, δ 3 ≥ 0, simply transpose the problem, that is, switch supplies and demands, and reduce to the first case.

Let x ℓj be the flow from f ℓ to g j . Let

x 00 = [θ 0 -δ 1 -δ 2 ] + (101) 
and

x 30 = [θ 3 -([-θ 0 + δ 1 + δ 2 ] + + δ 3 )] + = [θ 3 -[-θ 0 + δ 1 + δ 2 ] + ] + . ( 102 
)
Notice that δ 3 = 0 implies that x ℓ3 = 0, for all ℓ. Since x 03 is the only variable, besides x 00 and x 30 , with unit cost, if we can assign values to the remaining entries of x so as to obtain a feasible vector, this feasible vector will have cost ρ * , and therefore be an optimal solution. First we have to show that the assignments are valid, that is, x 00 and x 30 are nonnegative integers (trivial) and don't introduce an obstacle to the completion of the solution. So they must satisfy

x 00 ≤ θ 0 (103) x 30 ≤ θ 3 (104) x 00 + x 30 ≤ δ 0 .

(105) output.tex Thursday 19 th October, 2023

Inequalities (103) and (104) are direct consequences of (101) and (102). To show (105), we consider two possibilities. The first possibility is θ 0 -δ 1 -δ 2 ≥ 0. Then

x 00 + x 30 = θ 0 -δ 1 -δ 2 + [θ 3 -0] + = δ 0 -θ 1 -θ 2 -θ 3 + θ 3 ≤ δ 0 ,
where the last equality follows from (99).

The second possibility is θ 0 -δ 1 -δ 2 < 0. Then

x 00 + x 30 = 0 + [θ 3 -(-θ 0 + δ 1 + δ 2 )] + = [δ 0 -θ 1 -θ 2 ] + ≤ δ 0 .
Thus we conclude (105) is satisfied. Now we proceed to complete the solution. Let

x 01 = min{δ 1 , θ 0 -x 00 } and x 02 = min{δ 2 , θ 0 -x 01 -x 00 }.

Clearly, x 01 and x 02 are nonnegative integers. We claim that θ 0 = x 00 + x 01 + x 02 . It is easy to see that δ 1 + δ 2 ≥ θ 0 -[θ 0 -δ 1 -δ 2 ] + = θ 0 -x 00 . If δ 1 ≥ θ 0 -x 00 , then x 01 = θ 0 -x 00 , x 02 = 0 and the claim is true in this case. If δ < θ 0 -x 00 , then x 01 = δ 1 and since δ 2 ≥ θ 0 -x 00 -δ 1 = θ 0 -x 00 -x 01 , we conclude that x 02 = θ 0 -x 01 -x 02 , which confirms the claim. With these assignments, the remaining demands at g 1 and g 2 are δ ′ 1 = δ -x 01 and δ ′ 2 = δ 2 -x 02 . Now we consider the constraint x 30 + x 31 + x 32 = [θ 3 -[-θ 0 + δ 1 + δ 2 ] + + x 31 + x 32 = θ 3 .

(106)

We claim that

x 30 + δ ′ 1 + δ ′ 2 ≥ θ 3 , (107) 
so that we may assign values to x 31 and x 32 , as done above to x 01 and x 02 , that will satisfy (106). Using the expressions for x 30 , δ ′ 1 and δ ′ 2 , we have

x 30 + δ ′ 1 + δ ′ 2 = x 03 + δ 1 -x 01 + δ 2 -x 02 = δ 1 + δ 2 + x 30 -(θ 0 -x 00 ).
Using the above identity, the inequality (107)may be rewritten as

δ 1 + δ 2 ≥ θ 3 -x 30 + θ 0 -x 00 = θ 0 + θ 3 -[θ 0 -δ 1 -δ 2 ] + -[θ 3 -[-θ 0 + δ 1 + δ 2 ] + ] + .
If θ 0 ≥ δ 1 + δ 2 , the right-hand-side of the inequality above reduces to x 31 = min{δ ′ 1 , θ 3 -x 30 } and x 32 = min{δ ′ 2 , θ 3 -x 30 -x 31 }, the partial solution is nonnegative integral and satisfies the conservation of flow equations for nodes f 0 and f 3 . Basically the flows assigned to the arcs incident out of f 0 and f 3 are nonnegative integrals that dispatch the supplies available at those nodes. There might be untapped supplies at f 1 and f 2 , and unsatisfied demand δ ′′ 0 = δ 0 -(x 00 +x 30 ), δ ′′ 1 = δ 1 -x 01 -x 31 and δ ′′ 2 = δ 2 -x 02 -x 32 at nodes g 1 and g 2 (recall δ 3 = 0). Since

δ ′′ 0 + δ ′′ 1 + δ ′′ 2 = δ 0 + δ 1 + δ 2 -(x 00 + x 01 + x 02 + x 30 + x 31 + x 32 ) = δ 0 + δ 1 + δ 2 -θ 0 -θ 3 = θ 1 + θ 2 .
Thus the remaining variables and constraints constitute a transportation problem where all supply nodes are connected to all demand nodes and all flow costs are zero. This problem is trivially feasible and any solution to this problem combined with the values already assigned constitutes a feasible solution to the original transportation problem with cost ρ * . Therefore ρ * is an optimal solution to the transportation problem.

Numerical examples

A computer code was built to construct and solve the odd dimensional minimum pairing problem (29). It was written in Python 3.7.6 and accepts as inputs the parameter i (the instance to be solved is of dimension n = 2i + 1) and, optionally, the data (B - 0 , B + 0 , B 1 , . . . , B i ). If the latter are not supplied, random values are assigned to these constants, satisfying (30). The optimal value of ρ and various bounds are calculated, as well as a solution. The output is supplied as formatted latex code and a sample is provided below. This program is freely available on the page https://github.com/MargaridaMello/ OddMinimumPairingProblem/. The relevant file is ValueAndSolutionTN.py. Once this code is executed, we may generate and solve a problem of dimension n = 5 by entering the command ValueSolutionMinPairingProblem(2) at the console window. Alternatively, if we want to solve the specific instance with n = 5 and (B - 0 , B + 0 , B 1 , B 2 ) = (6, 6, 5, 5), the command would be ValueSolutionMinPairingProblem (2, [6,6,5,5]). 
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 4 Figure 4: Connectivity of the outgoing edges.
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 5 Figure 5: Impossibility of continuation to a connected graph containing a periodic orbit of index 0.
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 6 Figure 6: Continuation to a connected graph containing only periodic orbits.
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 2 The system (110)-(115) has nonnegative integral solutions (h c 1 h d 1 , . . . , h c n-1 h d n-1 ) if and only if the Poincaré-Hopf inequalities for non-singular Morse-Smale flows (1), (
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 4 collection (h 0 , . . . , h n ) can be decomposed in an union A j = of the form (h ℓ , h ℓ+1 ) with ℓ ∈ {0, . . . , n} if and only if
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 7 Figure 7: A Lyapunov graph in dimension 3
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 1013 Figure 10: Invariant (through β 1 )

Figure 11 :

 11 Figure 11: Increasing β 0 and β 1
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 14 Figure 14: Network with 1-arc and 2-arc flows, case n = 7.
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 18 Figure 18: Minimum source/sink distances in MCF network.

≤ k - 1 +.

 1 Therefore, summing the contributions of all columns, we obtain the following column lower bound for ρ:

θ 3 -

 3 [θ 3 -0] + + θ 0 -θ 0 + δ 1 + δ 2 = δ 1 + δ 2 ,so the inequality is satisfied. Otherwise, the right-hand-side isθ 0 + θ 3 -[θ 0 + θ 3 -(δ 1 + δ 2 )] + ,output.texThursday 19 th October, 2023 so the inequality (107) is equivalent to the inequality[θ 0 + θ 3 -(δ 1 + δ 2 )] + ≥ θ 0 + θ 3 -(δ 1 + δ 2 ),which is clearly true. So if we let
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Table 5 :

 5 Shortest paths in transshipment subnetwork.

For n = 3, the computation is straightforward, see Section 5.

h min such that h 1 = 1, h 6 = 1 yields the(1, 

[START_REF] Bertolim | Duality and the poincaré-hopf inequalities[END_REF][START_REF] Bertolim | Bounds on the ogasa number for ordered continuations of lyapunov graphs[END_REF] triple; h min such that h 6 = 1, h 13 = 1 yield the[START_REF] Bertolim | Duality and the poincaré-hopf inequalities[END_REF][START_REF] Bertolim | Bounds on the ogasa number for ordered continuations of lyapunov graphs[END_REF][START_REF] Bertolim | Isolating blocks for periodic orbits[END_REF] and the[START_REF] Bertolim | Bounds on the ogasa number for ordered continuations of lyapunov graphs[END_REF][START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF][START_REF] Bertolim | Isolating blocks for periodic orbits[END_REF] triples; h min such that h 8 = 1, h 13 = 1 yields the[START_REF] Bertolim | Dynamical and topological aspects of Lyapunov graphs[END_REF][START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF][START_REF] Bertolim | Isolating blocks for periodic orbits[END_REF] triple and h min such that h 1 = 1, h 8 = 1 cannot be completed in order to realize p min = 3.output.texThursday 19 th October, 2023

in the sense of Theorem 1.
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• h

(t j , u j+1 ) s j , if j is odd s n-j , otherwise , for j = 1, . . . , i -1 (t j , u j-1 ) s j-1 , if j is odd s n-j+1 , otherwise , for j = 2, . . . , i

otherwise , for j = 1, . . . , i -1 (u j , t j-1 ) d j-1 , if j is even d n-j , otherwise , for j = 1, . . . , i -1 (f j , t j ) j d , if j is odd (n -j) c , otherwise , for j = 1, . . . , i (f j , t j+1 ) (j + 1) c , if j is even (n-j -1) d , otherwise

, for j = 0, . . . , i -1 (u j , g j ) j d , if j is even (n -j) c , otherwise , for j = 1, . . . , i (u j , g j-1 ) j c , if j is even (n -j) d , otherwise , for j = 1, . . . , i Table 3: Correspondence between arcs in MCF network and flow variables.

Table 4: Minimum t ℓ ⇝ u j paths and distances for the case n = 7.

output.tex

Thursday 19 th October, 2023 be absent from the diagram shown, for some values of j.

The shortest distances in the MCF network will closely resemble the ones in the transshipment subnetwork. The following function γ : Z + → Z + will be convenient for expressing these distances:

We will show in Lemma 15 that the shortest source/sink paths in the MCF network are the ones in Table 7. These paths involve subpaths in the transshipment subnetwork, which are detailed in Table 5.

Lemma 15 Let C be the (i + 1) × (i + 1) matrix, with row and column index set I = {0, 1, . . . , i}, whose entry c ℓj contains the minimum distance from f ℓ to g j in the MCF network when n = 2i + 1. Then

Proof: From (89), c 00 = d 11 = 1, output.tex Thursday 19 th October, 2023

Now assume 1 ≤ ℓ < i. Let j = ℓ. Then, from (90), we have

as desired. The minimum is achieved at d ℓ,ℓ+1 and d ℓ+1,ℓ . Now let j = 0. Then

When ℓ = 1 the minimum is achieved at d ℓ+1,ℓ = d 21 , and when 2 ≤ ℓ < i, at d ℓ1 .

Still letting 1 ≤ ℓ < i, assume 1 ≤ k = |ℓ -j|, 0 ̸ = j < i. Then,

If k ≤ 2, then 1 ∈ {k -1, k, k + 1}, which implies min{γ(k), γ(k + 1), γ(k -1)} = γ(1) = 0. If k = 1 and j = ℓ + 1, the minimum is achieved at d ℓ,ℓ+1 and d ℓ+1,ℓ+2 . If k = 1 and j = ℓ -1, the minimum is achieved at d ℓ,ℓ-1 and d ℓ+1,ℓ . If k = 2 and j = ℓ + 2, the minimum is d ℓ+1,ℓ+2 . If k = 2 and j = ℓ -2, the minimum is d ℓ,ℓ-1 . If k > 2, then min{γ(k), γ(k + 1), γ(k -1)} = γ(k -1). When j > ℓ, this minimum is achieved at d ℓ+1,j , and, when j < ℓ, at d ℓ,j+1 . The f ℓ to g j distance may be expressed as follows

Now let 1 ≤ ℓ < i and j = i. Then,

output.tex Thursday 19 th October, 2023

Table 8: Analytical expressions for ρ * , the optimal value of (69), for n = 5 and 7.

6.3.6 Analytical solutions for n = 5 and 7

In this section we show that the formulas for the optimal value of ρ * of (69) given in Table 8 for n = 5 and n = 7 are correct. This will follow from considerations about the special transportation problem considered here. In each case, we give two alternative expressions for ρ * . Notice that it is enough to prove the formula for n = 7. Case n = 5 may be transformed into case n = 7 by letting B 3 = 0. Firs we establish the equality of the alternate expressions furnished for ρ * in the case n = 7. Equation (30) implies that

If B 3 = 0, (99) implies

and thus

Furthermore,

and the alternate expressions for the optimal value of ρ * in Table 8, for each n, are equal. If B 3 < 0, the first expression for ρ * when n = 7 simplifies as follows.

[

The second expression can be rewritten thus.

therefore both expressions coincide. The case B 3 > 0 is analogous.
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Now we show that the expressions in Table 8 provide lower bounds for ρ * . To do that, we build the dual of (95) for the case n = 7. The ℓth supply satisfaction equation is associated with the dual variable u ℓ , the jth demand equation with v j . The dual is the linear optimization problem given below. It is known that the value of any feasible dual solution provides a lower bound for the primal optimal value. The dual optimal value coincides with the primal optimal value if both problems are feasible.

The bound will be obtained with three dual feasible solutions. Solution (u 0 , v 0 ) = 0 is trivially feasible. The feasibility of (u 1 , v 1 ) and (u 2 , v 2 ) may be verified in the matrices in Table 9, along with their values. For the first two matrices, the (ℓ, j) entry contains the sum u ℓ + v j for the (u, v) vector given along the right and bottom sides of the matrix. The entry on the top left corner of the (ℓ, j) cell contains the right-hand-side of the corresponding restraint in (100), when different from zero. The third matrix lists the original notation for supplies and demands, to facilitate checking the dual solution values.

(1, 0, 0, 0, 0, -1, -1, 0)

Table 9: Dual feasible solutions and original notation for supplies and demands.

If

output.tex Thursday 19 th October, 2023

] + is a lower bound for ρ * . We show that it is indeed the actual optimal value by constructing a primal feasible solution that achieves this bound.

We will use the θ, δ notation. In this notation, the bound is

In this case we obtain the following answer : 

If we are only interested in the minimal number of periodic orbits, we just need to read the last line labelled by "h". In our example, it is the line

From it, we obtain the following information :

• the minimal 6 number of periodic orbits, p min , is just the sum of the elements of the line "h" divided by 2. Here p min = 6 + 6 + 6 + 6 2 = 12.

• the indices of the periodic orbits associated with this line, since each orbit of index j combinatorially corresponds to a couple of consecutive (h j , h j+1 ) (see Section 3). Here, the line "h" is uniquely partitioned into 6 couples (h 1 , h 2 ) and 6 couples (h 3 , h 4 ), so that six of the twelve periodic orbits are of index 1 and the other six are of index 3.

If we are interested in realizing these abstract data by attaching round handles, we need further information about the compatible types "c" and "d" of such round handles (see [START_REF] Bertolim | Isolating blocks for periodic orbits[END_REF]).

Here, we obtain this information by the penultimate line :

that is, a realization can be obtained by attaching to a suitable boundary six round handles of index 1 and type (c, d), one round handle of index 3 and type (c, d) and five round handles of index 3 and type (d, d) according to the pattern given in [START_REF] Bertolim | Isolating blocks for periodic orbits[END_REF]. The other information created by the algorithm is useful whenever one wishes to follow step by step the algorithm presented in this paper. In this case we refer the reader particularly to Subsection 6.3.3 for the first table and Subsection 6.3.1 for the second one.

Let us emphasizing that the output is given in LaTeX format. Coming back to the example in dimension 17 developed in the introduction, after entering ValueSolutionMinPairingProblem(8,[5,6,3,-1,-2,-7,-6,8,-4,-10]) the output is : Hence, for these data p min = 32.

Future work

The proof of this result opens the way to the even dimension. Even though the guidelines for finding an algorithm are comparable, the combinatorics in the even setting is richer because of the existence of "invariant" handles 7 and must be treated independently. Moreover, handles of invariant type are difficult to realize in the non-singular Morse-Smale context, so that the realization of the general abstract solution by a non-singular Morse-Smale model remains an open question. Research is underway regarding the even case. Partial results have already been obtained. We list here some partial results.

We start by remarking that the Poincaré-Hopf inequalities described in Section 2 are the 7 Handles whose attaching produces no effect on the Betti numbers of the boundary output.tex Thursday 19 th October, 2023 same except to equality [START_REF] Bertolim | Bounds on the ogasa number for ordered continuations of lyapunov graphs[END_REF], which is replaced by :

If n = 2i = 0 mod 4 besides the handle effects (H1) and (H2) described in Section 2, we have also to consider (H3) if n = 4k and j = 2k all the Betti numbers are kept unchanged in N + , and the handle will be said of type β-i (i standing for invariant)

and of course we should also add a third algebraic effect to (G1) and (G2) concerning a graph:

(G3) In the case n = 2i = 0 mod 4, a vertex labeled with h i = 1 is β-i, if all β ℓ label on the incoming edge are kept constant in this case.

Once again we follow Franks's idea in [START_REF] Franks | Homology and dynamical systems[END_REF] and we consider a hyperbolic periodic orbit of index j as the joining of two hyperbolic singularities p and q of adjacent indices j and j + 1 respectively. Given a nondegenerate singularity of index j, one can associate with it the dimensions of the Conley homology indices, h j = 1 and h k = 0 for all k ̸ = j. Let A j be the number of periodic orbits of index j and h j be the number of singularities of index j. Also, as in the previous case, given data (A 0 , A 1 , . . . , A n-1 ) we have associated with it (h 0 , h 1 , . . . , h n-1 , h n ) and vice versa. The coupling procedure performed with singularity data (h 0 , h 1 , . . . , h n-1 , h n ) in order to construct a periodic orbit set (A 0 , A 1 , . . . , A n-1 ) is similar to the odd case except in the middle dimension. In this case, we have the presence of β in h i which does not have a dual. Coupling symmetrically produces

In this dimension Proposition 1 remains true and it can be reformulated as follow :