S Carrese

F D'andreagiovanni
email: d.andreagiovanni@hds.utc.fr

T Giacchetti
email: tommaso.giacchetti@uniroma3.it

A Nardin

L Zamberlan
email: leonardo.zamberlan@uniroma3.it

Optimal rental and configuration of reserved parking for carsharing by Integer Linear Programming and Ant Colony Optimization

Keywords: smart mobility, carsharing, parking slot renting, mathematical optimization, Integer Linear Programming, Ant Colony Optimization

Carsharing services allow customers to carry out short rents of vehicles, classically paying a per-minute fee, and have known a wide success in major cities all around the world in recent years. They represent an important case of shared mobility and are considered a crucial service in modern smart cities. In this work, we highlight the relevant role that parking slots reserved to carsharing vehicles may have in favouring the success and diffusion of such services, also referring to remarkable regulations of some major cities. Given such relevance, we address the problem of a Local Government that intends to select locations to deploy sets of parking slots reserved to carsharing, also selecting the configuration of the set (e.g., the number and orientation of the slots). In order to mathematically represent the problem, we propose an Integer Linear Programming model that includes whether to rent or not to rent a cluster of parking slots to carsharing companies as central decisions, while also comprising constraints that models lower and upper bounds on the number and type of reserved slots (e.g., modeling the tolerance of the local residents with respect to losing slots for parking their private vehicles). Since the problem is hard to solve from a theoretical point of view, we propose a metaheuristic solution algorithm that combines an improved ant colony optimization algorithm, exploiting suitable linear relaxations of the integer model, with an exact large neighborhood search. On the basis of realistic data instances referring to the city of Rome, we report results of computational tests, highlighting that our optimization method can grant good quality solutions associated with a fair distribution of the reserved parking slots.

Introduction

Shared mobility systems, such as carsharing, ridesharing and bikesharing, provide transportation services to a set of users, granting access to a shared fleet of vehicles that can be rented on an as-needed basis, typically paying a per-minute fee. Shared mobility had a big impact on travel behaviour in major cities all around the world and has shown its potential in complementing and integrating public transportation based on trains, buses and taxi. It offered a wide range of innovative ways to move in urban and extra-urban environments, allowing people to depend much less on privately owned vehicles. Supporting low-impact new sustainable ways to move, shared mobility systems and services are considered a crucial component of future smart cities. We refer the reader to [START_REF] Angelakis | Designing, Developing, and Facilitating Smart Cities[END_REF] and [START_REF] Machado | An Overview of Shared Mobility[END_REF] for a thorough introduction to shared mobility and smart cities.

Many works in literature, such as those cited before, have pointed out the benefits that shared mobility may have not only for the users of services, but also for the collectivity in general, contributing to reduce the number of privately owned vehicles (e.g., in [START_REF] Shaheen | Carsharing Parking Policy -Review of North American Practices and San Francisco, California, Bay Area Study[END_REF] it is assessed that each carsharing vehicle has replaced from 9 to 12 private vehicles in Canada and the USA) and favouring the internalization of costs by realizing the mobility-as-a-service paradigm.

Among all shared mobility systems, carsharing is one of the most widely known and used: it canonically puts at disposal of the users a conspicuous fleet of (electric) car vehicles, which can be easily rented through a smartphone application and used for trips made around the city. In comparison to other vehicle sharing like bikes and scooters, it offers also the advantage of being usable in any kind of weather throughout the year (e.g. some scootersharing companies do not operate during non-ideal weather conditions during winter months in Northern European countries). We refer the reader to the recent work by [START_REF] Shaheen | Chapter Five -Carsharing's impact and future[END_REF] for a detailed introduction to features and benefits of carsharing.

Finding a parking slot to park and end the rental of the shared car represents a crucial phase of the carhsaring service experience: naturally, users want to spend as little time as possible in this phase, since cruising for searching a parking once reached the target destination clearly constitutes a waste of money and time [START_REF] Carrese | Relationship between parking location and traffic flows in urban areas[END_REF][START_REF] Pierce | Getting the Prices Right: An Evaluation of Pricing Parking by Demand in San Francisco[END_REF]. Because of this, several studies, such as [START_REF] Rivasplata | Residential On-Site Carsharing and O_-Street Parking in the San Francisco Bay Area, California[END_REF] recognize that introducing parking slots reserved to carsharing in cities represents a very important action for favouring the spread and use of carsharing among the population. Particularly interesting is the work by [START_REF] Shaheen | Carsharing Parking Policy -Review of North American Practices and San Francisco, California, Bay Area Study[END_REF], which has highlighted the presence of regulations made for favouring carsharing parking in more than 70 cities in North America, also reporting the results of a survey made in San Francisco, revealing that only 20% of surveyed people declared to be against reserved parking slots. It is also interesting to report the case of the regulation of the Canadian cities of Calgary and Vancouver (see [START_REF]Bill number TP017 (A Parking Policy Framework for Calgary[END_REF][START_REF]Bill number 11591[END_REF]), in which carsharing companies may get reserved parking slots but there is a maximum number of slots that they can obtain (at most 3% of the total in commercial areas) and the renting price varies depending on the level of attractiveness of the districts where the slots are located. Interestingly, the city regulation of Calgary imposes that a carsharing company must guarantee to use the reserved parking slot for a minimum number of hours, thus being obliged to relocate vehicles when needed. Last but not least, it is also worth of citing the case of the Australian city of Sidney (see [START_REF]Council Meeting Notice[END_REF]), where a carsharing company may rent reserved slots but has to first get a preliminary approval from the residents and retailers of the area and from local committees devoted to pedestrian and bicycle and mobility; moreover, the position and number of the reserved slots must be established taking into account the feature of the districts and assessing the potential demand for carsharing services.

Given the importance that reserved parking slots have in favouring the diffusion and effective penetration of carsharing service in a city, in this work we focus on developing a mathematical optimization model and algorithm that can be used by the Local Government of a city to optimally identify which parking slots can be rented to carsharing companies for reserved parking. More in detail, our original contributions are:

1. because of the important role attributed to parking policies in carsharing, we characterize the optimization problem of a Local Government, such as the council of a municipality, that faces the problem of optimally selecting which parking slots located in its territory to rent to carsharing companies, while guaranteeing a balance between the aims of the carsharing companies, pursuing a profit, and the collective interest of the population, which does not want to renounce to too many slots. In order to model this problem, we propose to use mathematical optimization techniques, in particular Integer Linear Programming, adopting binary variables to represent whether a set of parking slots is rented or not to carsharing companies. Specifically, the new Integer Linear Program that we propose not only allows to establish the location of the set of rented parking slots, but also its configuration (in terms of disposition and number of the slots).

A major aim of our model is to put at disposal of Local Governments a mathematical optimization tool that is easy and adapt. To the best of our knowledge, such parking rental optimization problem has never been addressed in literature by means of optimization techniques. We thus note that there are no related works to review and compare with; 2. we characterize the computational complexity of the considered parking rental problem, by proving its NP-Hard nature. Since this entails that the problem may result very difficult to solve, we propose a matheuristic for its solution, based on the combination of an improved ant colony optimization algorithm with an exact Integer Linear Programming-based large neighbourhood search; 3. we report computational results obtained from testing the model over realistic data instances based on the city of Rome, in which we took into account the regulations of the city and and our experience in E-Go Car Sharing [14], an electric carsharing service established at the University Roma Tre (see [START_REF] Carrese | Hybrid Choice Model to analyze electric car sharing demand in a university community[END_REF]) and the partnership with a major Italian carsharing company. The remainder of the paper is organized as follows. In Section 2, we discuss how to derive the optimization model. In Section 3, we present the ant colony-based matheuristic, whereas in Section 4, we report the computational results. As last step, in Section 5, we discuss conclusions and some potential future developments.

Deriving the optimization model

We address the problem faced by the Local Government of a city that intends to identify which parking slots located in its territory can be rented to carsharing companies in order to be reserved only to parking of carsharing vehicles.

The territory of the city administered by the Local Government is subdivided into a set of districts (denoted by 𝐷) and each district is in turn subdivided into a set of subdistricts (for each district 𝑑 ∈ 𝐷, we denote by 𝑆 𝑑 the set of its subdistricts). Inside each subdistrict 𝑠 ∈ 𝑆 𝑑 of each district 𝑑 ∈ 𝐷, the LG identifies a set of locations 𝐿 𝑑, 𝑠 where carsharing parking clusters (also shortly indicated as clusters, in what follows), i.e. groups of adjacent parking slots reserved to carsharing, can be positioned. The set of all subdistricts is denoted by 𝑆 and is obtained as union of all 𝑆 𝑑 , namely 𝑆 ⋃ 𝑆 𝑑 ∈ . For each location 𝑙 ∈ 𝐿 𝑑, 𝑠 , the LG can decide the configuration of the cluster, i.e. the orientation of the parking slots constituting the cluster (e.g, forming a 45-or 90-degree angle with respect to vehicular flow circulating on the road). We denote by 𝐶 𝑑, 𝑠, 𝑙 the set of configurations that can be deployed in a location 𝑙 ∈ 𝐿 𝑑, 𝑠 of subdistrict 𝑠 ∈ 𝑆 𝑑 of district 𝑑 ∈ 𝐷.

Every configuration 𝑐 of a cluster is associated with a number of parking slots 𝑛 and the slots of the cluster cannot be rented separately (i.e., the cluster is rented as a whole). Renting a cluster configuration 𝑐 generates a profit 𝑝 , which reflects and may consider various factors (e.g., the renting revenue, the maintenance costs of the cluster, the benefits of favouring the presence of carsharing in the subdistrict where the cluster is located). We provide a clarifying example of the notation introduced until now, by visualizing in Figure 1 the subdivision of a city into districts and subdistricts and related cluster locations and configurations. Furthermore, in Figure 2, we visualize three example configurations of the same cluster.

In Figure 1, a territory is decomposed into a set of districts, each made up of subdistricts and containing a number of locations where parking slot clusters reserved to carsharing may be positioned. Specifically, thick lines separate districts, whereas thinner dotted lines indicate the borders of subdistricts included in a district. The large red circles represents location where clusters may be positioned. Finally, for one of the location we provide an example of cluster configuration as a separate magnifying lens. If we refer to the notation previously introduced, the territory of Figure 1 We can therefore remark that 2 subdistricts, namely 𝑠 and 𝑠 do not include potential location for clusters (in a real-world case, this could be due to the fact that the subdistrict is too small or offers a too low attractiveness for carsharing). For location 𝑙 , we visualize in detail the possible configurations in Figure 2: 𝑙 can host a cluster made up of 5 parking slots forming an angle of about 60 degrees with the vehicular flow, a cluster including 3 slots that are parallel to the flow or both the diagonal and parallel clustersnote that in the figure parking slots are depicted as small rectangles put side by side and every rectangle corresponds to one slot. The profit associated with a cluster does not take into account only the number of its slots, but may also consider the impact of the orientation on the space reserved for circulation of vehicles.

On the basis of remarkable policies and works that we have reviewed in Section 1, we consider extremely important that reserving parking clusters to carsharing is made taking into account the needs of district residents, who typically do not want that a too high number of parking slots is "stolen" to the parking their own private vehicles. To take into account this, we introduce both lower and upper bounds to express limits on the number of slots and on the number of clusters that can be rented in each subdistrict: the upper bounds are introduced for not creating discontent among local residents, imposing an upper limit to reserved parking; the lower bounds are instead introduced to encourage a minimum presence of carsharing in each subdistrict. In terms of notation, for every subdistrict 𝑠 ∈ 𝑆, we introduce: 1) 𝜂 and 𝜂 to respectively denote the Lower Bound (LB) and Upper Bound (UB) on the total number of parking slots that can be rented in 𝑠; 2) 𝛾 and 𝛾 to respectively denote the lower bound and upper bound on the total number of clusters that can be rented in 𝑠.

Finally, we introduce a classification of clusters in terms of types, defined on the basis of the number of slots that they contain. Indeed, basing on discussions with carsharing professionals, we expect that the Local Government and the carsharing companies want to rely on a good mix of small-, medium-and large-sized clusters in each district. We thus introduce a set 𝑇, denoting the types of clusters, and lower and upper bounds 𝜏 and 𝜏 on the number of clusters of each type that can be rented in every district 𝑑 ∈ 𝐷.

Using the notation introduced until this point, which is summarized in Table 1, we can finally provide a precise characterization of the optimization problem faced by the LG. We call such problem the Parking Slot Renting Problem and we denote it as OptiRent.

Definition 1: The Parking Slot Renting Problem (OptiRent): given the set of districts 𝐷, the set of subdistricts 𝑆 𝑑 for every district 𝑑 ∈ 𝐷, the set of locations 𝐿 𝑑, 𝑠 for every district 𝑑 ∈ 𝐷 and subdistrict 𝑠 ∈ 𝑆 𝑑 , the set of configurations 𝐶 𝑑, 𝑠, 𝑙 for every district 𝑑 ∈ 𝐷, subdistrict 𝑠 ∈ 𝑆 𝑑 and location 𝑙 ∈ 𝐿 𝑑, 𝑠 , the set of cluster types T, the profit 𝑝 and number of slots 𝑛 of every configuration c ∈ 𝐶 𝑑, 𝑠, 𝑙 , the lower and upper bounds 𝜂 , 𝜂 , 𝛾 , 𝛾 , 𝜏 , 𝜏 on the number of rentable slots, clusters and types, the problem OptiRent is to choose which configurations are made available for renting to carsharing companies, in order to maximize the total profit while satisfying all the lower and upper bounds on the number of rentable slots, clusters and types.

𝑥 0 otherwise.

The previous binary variables are used in the following constraints that define the feasible set of solutions of the optimization problem OptiRent.

In primis, we must model the fact that at most one among the configurations available in each location can be rented (one location 𝑙 can be either rented or not rented; in the case that it is rented only one parking slot configuration can be chosen). This is expressed by constraints:

𝑥 , , 1
∀ 𝑑 𝜖 𝐷, 𝑠 𝜖 𝑆 𝑑 , 𝑙 𝜖 𝐿 𝑑, 𝑠

Then we must define a set of constraints to express that in each subdistrict we must respect the lower and upper bounds on the total number of parking slots that we can rent, namely:

𝜂 𝑛 , ,
• 𝑥 , 𝜂 ∀ 𝑑 𝜖 𝐷, 𝑠 𝜖 𝑆 𝑑

Here, the total number of rented slots is obtained by multiplying each variables 𝑥 by the corresponding number of slots 𝑛 associated with the configuration 𝑐. A similar set of constraints must also be defined to model the lower and upper bounds imposed on the number of clusters rented in each subdistrict:

𝛾 𝑥 , , , 𝛾 ∀ 𝑑 𝜖 𝐷, 𝑠 𝜖 𝑆 𝑑 (4)
In the previous constraints, since we must limit the number of clusters, we only consider the summation of variables 𝑥 (without multiplying by the number of slots 𝑛). The last set of constraints that we introduce is needed to model the lower and upper bounds on the number of cluster types that can be rented in each district:

𝜏 𝑥 , , : , 𝜏 ∀ 𝑑 𝜖 𝐷, 𝑡 𝜖 𝑇 (5)
Here, for every district 𝑑 𝜖 𝐷 and type 𝑡 𝜖 𝑇, we use the three summations to count the number of clusters of type 𝑡 that are activated in district 𝑑; in the third summation, in particular, we denote by 𝑡 𝑐 the cluster type of a configuration 𝑐 𝜖 𝐶 𝑑, 𝑠, 𝑙 : if the type of 𝑐 is that for which the constraint is defined (i.e., if 𝑡 𝑐 𝑡) then we include the corresponding variable 𝑥 in the constraint.

After having introduced all the set of constraints, we define the objective function which models the maximization of the total profit obtained from renting clusters:

𝑀𝐴𝑋 𝑝 • 𝑥 , , , (6)
Resuming all the elements of the optimization model, we obtain the following Integer Linear Programming problem, which we denote by OptiRent-ILP:

𝑀𝐴𝑋 𝑝 • 𝑥 , , , (7)

𝑥

, ,

1

∀ 𝑑 𝜖 𝐷, 𝑠 𝜖 𝑆 𝑑 , 𝑙 𝜖 𝐿 𝑑, 𝑠

𝜂 𝑛

Discussing the complexity of OptiRent-ILP, we can prove the following result.

Proposition 1: Problem OptiRent is NP-Hard.

Proof. We can prove the proposition by noticing that the set of all constraints (8)-(11) included in OptiRent-ILP can be rewritten according to the following general form:

𝐿𝐵 𝑤 • 𝑥 𝑈𝐵 ∀ 𝑖 𝜖 𝐼
in which: 1) index 𝑗 concisely replaces the four indices 𝑑𝑠𝑐𝑙 of a variable 𝑥 and 𝐽 is the set of all variable indices 𝑗; 2) a set 𝐼 is introduced to denote the set of constraint indices and 𝑖 is the generic index of a constraint; 4) 𝑤 is the non-negative coefficient multiplying variable 𝑥 in constraint 𝑖 , which, depending upon the constraint of OptiRent-ILP, can be equal to 1 or to 𝑛 ; 4) 𝐿𝐵 and 𝑈𝐵 are non-negative lower and upper bounds on the summation appearing in a constraint 𝑖 (corresponding to 𝜂 , 𝜂 , 𝛾 , 𝛾 , 𝜏 , 𝜏 -note that in the case of constraint 8 an 𝐿𝐵 = 0 is implicitly present while 𝑈𝐵 = 1).

Using the previous notation, we can rewrite OptiRent-ILP as:

𝑀𝐴𝑋 𝑝 • 𝑥 𝐿𝐵 𝑤 • 𝑥 𝑈𝐵 ∀ 𝑖 𝜖 𝐼 𝑥 𝜖 0,1 ∀ 𝑗 𝜖 𝐽
This is actually a variant of a classical knapsack problem (a fundamental combinatorial optimization problem which, given a set of items, each associated with a weight and a profit value, asks to identify the subset of items that provides the highest total profit while respecting a weight limit, see e.g., [START_REF] Bertsimas | Introduction to Linear Optimization[END_REF]). Specifically, we face a multidimensional knapsack problem, which also includes so-called minimum filling constraints, i.e. the sum of weight of items included in the knapsack must not be less that a specified value, expressed by 𝐿𝐵 . Since the single knapsack problem with minimum filling constraints is NP-Hard (see [START_REF] Xu | The knapsack problem with a minimum filling constraint[END_REF])., also its multidimensional knapsack generalization is NP-Hard and thus, in turn, OptiRent is NP-Hard.

A hybrid exact-ACO algorithm for OptiRent

Given its NP-Hard computational complexity, OptiRent may prove hard to solve also for last generation optimization software, which may experience difficulties when trying to find high quality solution for real-sized instances. To tackle this, we define a modified Ant Colony Optimization (ACO) algorithm for its solution. ACO is a nature-inspired metaheuristic that draws inspiration from the behavior of swarms of ants looking for food. It was initially proposed for solving hard combinatorial optimization problems (see [START_REF] Dorigo | Ant System: Optimization by a colony of cooperating agents[END_REF]) and then generalized for also addressing integer and continuous problems [START_REF] Dorigo | Ant colony optimization theory: A survey[END_REF]) and, since its introduction, has proven to be very effective and efficient to solve a wide range of real-world optimization problems (see e.g., [START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF][START_REF] Chandra Mohan | A survey: Ant Colony Optimization based recent research and implementation on several engineering domain[END_REF]). Each ACO algorithm is typically based on the execution of a loop in which a number of feasible solutions are built in an iterative and parallel way, exploiting information about the quality of solutions built in previous loop executions. We can describe the general structure of an ACO as follows, detailing the steps in the next subsections:

UNTIL an arrest condition is not satisfied DO 1. Ant-based solution construction 2. Pheromone trail update 3. Daemon actions (typically, a local search)

-71 -

Ant-based solution construction

In the first step of the loop of the general ACO algorithm, there is a number m of computational agents that are called ants and each ant has the task of building a (possibly feasible) solution for the optimization problem. In every iteration an ant is in a state, which corresponds to a partial solution of the problem (i.e., a solution in which it is assigned a value only to a subset of decision variables). The ant can make a further step towards defining a complete solution (i.e., a solution in which it is assigned a value to all variables) by selecting a move among a set of available ones. A move actually corresponds to assigning a value to one or more decision variables (we note that in mathematical optimization, assigning a value to a decision variables is also refereed by the term fixing). A move is selected in a probabilistic way, using a measure that combines an a-priori and an a-posteriori measure of variable fixing attractiveness.

The a-priori measure is called pheromone trail and mimics the mechanisms of ant's pheromone: it is updated every time that a construction phase is ended, increasing the pheromone associated with moves that have led to good quality solutions and reducing the pheromone of moves that have led to solutions of bad quality. When an arrest condition, such as reaching a time limit, is satisfied, the loop is interrupted and so-called daemon actions, typically corresponding to a local search, are executed to try to improve the quality of feasible solutions generated during the ant construction phase.

In our algorithm we do not refer to a canonical ACO but to an improved version that follows principles illustrated initially in [START_REF] Maniezzo | Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem[END_REF] and then further developed in works like [START_REF] D'andreagiovanni | Integrating LP-guided variable fixing with MIP heuristics in the robust design of hybrid wired-wireless FTTx access networks[END_REF][START_REF] D'andreagiovanni | Towards the fast and robust optimal design of Wireless Body Area Networks[END_REF]. In particular, the improved ACO better exploits the valuable information derived from (tight) linear programming relaxations of the addressed integer optimization problem, also adopting a reduced number of parameters and mathematical operations that offer higher computational efficiency (e.g., multiplications instead of powers with real exponents).

Before illustrating the ACO algorithm that we propose for solving the renting problem, we can notice that the optimization model OptiRent-ILP includes only one set of binary decision variables and therefore, to get a complete solution, an ant has the task to assign either a value 0 or 1 to each variable 𝑥 . At the same time, we can remark that, if we assign a value 1 to a variable 𝑥 , then, due to the presence of constraint (8), we can assign 0 to all variables associated with other alternative configurations 𝑐 𝜖 𝐶 𝑑, 𝑠, 𝑙 that can be chosen in location l of subdistrict s of district d. In order to explain the procedure according to which we build a feasible solution, we introduce the concept of Parking Cluster state: Definition (Parking Cluster State -PCS): let 𝐷 𝑆 𝐿 𝐶 be the set of quadruples 𝑑, 𝑠, 𝑙, 𝑐 that represent the renting of a parking cluster configuration 𝑐 in location 𝑙 of subdistrict 𝑠 of district 𝑐. A Parking Cluster State (PCS) specifies which configurations are rented, excluding that multiple configurations in the same location are rented (thus respecting constraints (8)).

A given PCS corresponds with fixing the value of a subset of decision variables of OptiRent-ILP and thus we can compute the value of the summations included in constraints (9), (10) and [START_REF] D'andreagiovanni | Towards the fast and robust optimal design of Wireless Body Area Networks[END_REF], verifying whether the bounds 𝜂 , 𝜂 , 𝛾 , 𝛾 , 𝜏 , 𝜏 are respected. We say that a PCS is partial when the corresponding activation of variables does not respect the lower bounds 𝜂 , 𝛾 , 𝜏 , whereas we say that a PCS is complete when it respect such bounds.

When facing a partial PCS, we can make a further step towards obtaining a complete PCS by fixing to 1 the value of a not-yet-fixed decision variable corresponding to some quadruple 𝑑, 𝑠, 𝑙, 𝑐 . Specifically, if we denote by 𝑄 the set of all quadruples of 𝑑, 𝑠, 𝑙, 𝑐 associated with OptiRent-ILP and by 𝑄 the subset of quadruples associated with a PCS (clearly, 𝑄 ⊆ 𝑄), the probability that an ant fixes to 1 a quadruple 𝑞 𝜖 𝑄\𝑄 is given by:

𝑝 𝛼 • 𝑝𝑟𝑖𝑜𝑟 1 𝛼 • 𝑝𝑜𝑠𝑡 ∑ 𝛼 • 𝑝𝑟𝑖𝑜𝑟 1 𝛼 • 𝑝𝑜𝑠𝑡 \ (13)
which operates a convex combination of the a-priori fixing measure 𝑝𝑟𝑖𝑜𝑟 and of the aposteriori fixing measure 𝑝𝑜𝑠𝑡 by a coefficient 𝛼 𝜖 0,1 , in particular evaluating the ratio of the weight of fixing 𝑞 over the sum of the weights of all the other possible fixings. Following the principles of ANTS [START_REF] Maniezzo | Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem[END_REF] and the improvements proposed in [START_REF] D'andreagiovanni | Integrating LP-guided variable fixing with MIP heuristics in the robust design of hybrid wired-wireless FTTx access networks[END_REF][START_REF] D'andreagiovanni | Towards the fast and robust optimal design of Wireless Body Area Networks[END_REF], the a-priori measure is obtained from the solution of a strengthened linear relaxation of OptiRent-ILP, whereas the aposteriori measure is obtained from the solution of the linear relaxation of OptiRent-ILP including the fixing of variables associated with the current PCS.

After that a solution phase ends, the a-priori fixing measure 𝑝𝑟𝑖𝑜𝑟 is updated mimicking the evaporation of pheromone on ants' trails over time. Specifically, we rely on an updating formula proposed in [START_REF] D'andreagiovanni | Integrating LP-guided variable fixing with MIP heuristics in the robust design of hybrid wired-wireless FTTx access networks[END_REF][START_REF] D'andreagiovanni | Towards the fast and robust optimal design of Wireless Body Area Networks[END_REF], as improvement with respect to the already refined formula of [START_REF] Maniezzo | Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem[END_REF]. The formula is based on the concept of Optimality Gap (OG): if we consider a maximization problem and we are given a feasible solution of value 𝑣 and an upper bound 𝑈 on the optimal value 𝑣 of the problem, then it holds 𝑣 𝑣 𝑈 and the OG is defined as follows:

𝑂𝐺 𝑈, 𝑣 𝑈 𝑣 𝑣

The OG evaluates the quality of a feasible solution comparing its value to that of a known bound on the optimal value and thus assessing how far the solution is from the optimum. The formula adopted to update 𝑝𝑟𝑖𝑜𝑟 is the following:

𝑝𝑟𝑖𝑜𝑟 ℎ 𝑝𝑟𝑖𝑜𝑟 ℎ 1 Δ𝑝𝑟𝑖𝑜𝑟 (15)
with

Δ𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑖𝑜𝑟 0 • 𝑂𝐺 𝑈, 𝑣 𝑂𝐺 𝑈, 𝑣 𝑂𝐺 𝑈, 𝑣 (16)
where 𝑝𝑟𝑖𝑜𝑟 ℎ is the a-priori fixing measure at an iteration ℎ, 𝑈 is an upper bound on the optimal value of the problem, 𝑣 is the value of the last solution built, 𝑣 is the average value of the last Σ feasible solutions built. Δ𝑝𝑟𝑖𝑜𝑟 is the reward/penalization value that is summed to 𝑝𝑟𝑖𝑜𝑟 ℎ 1 taking into account the initial value 𝑝𝑟𝑖𝑜𝑟 0 and the relative optimality gap variation that 𝑣 offers in comparison to 𝑣 , thus considering the average quality of multiple solutions built in the last Σ loop executions.

Since the described construction procedure of a complete PCS does not include the satisfaction of the upper bounds on the value of summations in constraints (9), (10) and [START_REF] D'andreagiovanni | Towards the fast and robust optimal design of Wireless Body Area Networks[END_REF], it may happen that the complete PCS is associated with an infeasible activation of variables 𝑥 (exceeding the upper bounds). Because of this risk, at the end of the construction phase, we must check the feasibility of built solutions and, in the case that infeasibilities occur, attempt at repairing them. To this end, we employ the Integer Linear Programming heuristic described in the next subsection, which executes a larger neighbourhood search and is also used for improving the best solution found during the ant construction phase.

-73 -

Reparation and improvement ILP heuristic

With the aim of repairing complete PCSs that are infeasible or improving the best solution found during the improved ant-based solution construction, we propose to adopt an Integer Linear Programming heuristic that executes a Large Neighbourhood Search (LNS) in an exact way: an exact search is modelled as an Integer Linear Program that is solved by means of a state-of-the-art optimization solver such as IBM ILOG CPLEX (see e.g., [START_REF]IBM ILOG CPLEX[END_REF]. The rationale at the basis of the procedure is that, while a solver may find extremely challenging to solve to optimality a hard large-scale optimization problem, it may instead effectively and efficiently solve subproblems obtained by fixing a consistent subset of decision variables, thus excluding them from the decision process.

In more detail, for a given (either infeasible or feasible) solution 𝑥̅ of OptiRent-ILP, the exact LNS provides for exploring a neighbourhood that contains the feasible solutions OptiRent-ILP that can be obtained by inverting the binary value of at most k > 0 variables of solution 𝑥. The search in the neighbourhood can be then modelled by adding to OptiRent-ILP the following single constraint that actually models a hamming distance between binary vectors: 𝑥 , , , : ̅ 1 𝑥 , , , : ̅ 𝑘 [START_REF] Maniezzo | Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem[END_REF] where the first summation counts the variables that changes value from 0 (in 𝑥̅) to 1, whereas the second summation counts the variables that changes from 1 to 0. The total number of variables that change value must then be less or equal than k.

The overall hybrid solution algorithm

We present in Algorithm 1 the overall pseudocode of the proposed hybrid exact-ACO algorithm, which we call ACOCAR to stress the fact that is based on ACO and is developed for tackling a problem related to CARsharing. The algorithm is based on executing a loop that is aimed at identifying Σ feasible solutions by iteratively building complete PCSs and using the ILP heuristic as reparation tool in case of infeasibilities.

Tab. 2 -Algorithm 1 (ACOCAR) Algorithm 1 (ACOCAR)

1:

Solve the linear relaxation of OptiRent-ILP and initialize the value 𝑝𝑟𝑖𝑜𝑟 0 of each quadruple 𝑞 𝑑, 𝑠, 𝑙, 𝑐 ∈ 𝑄 with the corresponding optimal value of the variables

2:

Let 𝑥 * be the best feasible solution identified 3:

WHILE the time limit is not reached DO

4:

FOR 𝜎 ≔ 1 TO Σ 5:

Build a complete PCS and let 𝑥 be the corresponding solution

6:

IF 𝑥 is infeasible, THEN run the ILP Heuristic for reparation

7:

IF p(𝑥) p(𝑥 *), THEN update the best solution found, i.e. 𝑥 * ≔ 𝑥

9:

END FOR

10:

Update the measures 𝑝𝑟𝑖𝑜𝑟 by means of formula [START_REF] Dorigo | Ant System: Optimization by a colony of cooperating agents[END_REF] 11:

END WHILE

12:

Run the ILP Heuristic for attempting at improving 𝑥 *

13:

Return 𝑥 * More specifically, the algorithm starts by initializing the values 𝑝𝑟𝑖𝑜𝑟 associated with quadruples 𝑞 𝑑, 𝑠, 𝑙, 𝑐 ∈ 𝑄 using the optimal solution of the linear relaxation of OptiRent-ILP. Then, after defining 𝑥 * to store the best solution found during the execution of the algorithm, a while-loop is executed until reaching a time limit. Each run of the loop provides for building a number Σ of complete PCSs, each corresponding to a solution 𝑥 ′ of OptiRent-ILP whose feasibility must be checked. If a solution 𝑥 ′ is infeasible, the ILP heuristic is run for reparation. In the case that the for-loop identifies a feasible solution 𝑥 ′ that grants an improvement with respect to the current best solution found (i.e., p(𝑥 ′) p(𝑥 *)), the best solution found is updated. At the end of each for-loop, the a-priori attractiveness measures 𝑝𝑟𝑖𝑜𝑟 are updated. Once that the time limit is reached, the ILP heuristic is applied to the best solution found 𝑥 * with the aim of trying to further improve it.

Computational results

We tested the performance of the model OptiRent-ILP and of the hybrid exact-ACO algorithm ACOCAR on a set of data instances defined on the basis of realistic data of the city of Rome (Italy), taking into account city regulations [START_REF]Deliberazione Giunta Comunale n[END_REF] and our experience in E-Go Car Sharing [START_REF] Carrese | Hybrid Choice Model to analyze electric car sharing demand in a university community[END_REF]14], an electric carsharing service provided at University Roma Tre and the partnership with a major Italian carsharing company. We defined admissible locations and configurations of parking slot clusters taking into account the features of the subdistricts of Rome (e.g., type and relevance of the subdistricts and locations in the overall mobility system of Rome).

We considered 10 instances associated with an increasing number of districts, subdistricts and locations: the number of cluster locations goes from 478 to 1122, whereas the number of associated slots goes from 1769 to 4825. The districts and subdistricts have been defined taking into account the administrative subdivision of the territory of Rome (see [START_REF]Deliberazione Giunta Comunale n[END_REF]). Depending on the location, the number of configurations available in a cluster may range from 1 to 6 (different configurations of a cluster are obtained considering different combinations of orientation of the parking slots composing the cluster). Five types of cluster configurations were considered, distinguished on the basis of the number of slots that a configuration contains (for example, clusters containing one or two parking slots belong to type t=1). The lower and upper bounds on the number of slots and clusters that can be rented in each subdistrict and the bounds on the number of types rentable for each type in each district were defined depending upon district and subdistrict features, such as type of resident population, presence of shopping and business activities, density of important public transporation nodes). The profit associated with a cluster configuration available in a location was defined taking into account revenues and costs of parking tariff fixed by Rome administration (e.g., [START_REF]Contratto di Servizio tra Roma Capitale[END_REF]).

The computational tests have been executed on a 2.70 GHz Windows machine with 8 GB of RAM, imposing a time limit of 3600 seconds. The parameters of ACOCAR has been set as follows: 𝛼 0.5 (so to balance the a-priori and a-posteriori attractiveness measures); Σ 5 (number of solutions considered in the moving average), k set as 5% of the number of decision variables in the problem (so to not define too large neighbourhoods).

The results of the tests are reported in Table 3, in which 'ID' identifies the instance, 'Tot Cl' and 'Tot Sl' represent the number of clusters and the number of parking slots that are available in the instance, respectively. Moreover, for the best solution found by ACOCAR for each instance, we report the corresponding total number of rented parking clusters (denoted by 'Activ Cl') and the total profit granted by the rented parking clusters (denoted by 'Profit'). Given the presence of an objective function that pursues profit maximization, for all the instances the model attempts at activating as many as possible of the largest and most profitable cluster configurations in valuable locations, which are associated with higher profit per single slot. At the same time, in less attractive subdistricts associated with lower profit, the objective function pushes towards the activation of a contained number of parking slots, just to satisfy the lower bounds. This indicates that the inclusion of the lower bounds is fundamental for guaranteeing a fair distribution of the reserved parking clusters over the territory: if only the upper bounds were present, the model would just activate the most profitable and largest clusters, possibly located in central zones of the districts, neglecting the activation of less profitable and smaller clusters in less profitable and more peripherical zones; of course, this should be avoided for favouring and pursuing an even distribution of the clusters along all subdistricts.

Tab. 3 -Computational results

ID

Conclusions and future work

We have addressed the optimization problem faced by a local government that, with the aim of improving urban mobility, wants to select the most profitable subset of parking slots to reserve for parking the vehicle fleet of carsharing companies operating in its territory. We proposed a new Integer Linear Programming model to represent the problem, which also includes constraints to guarantee a minimum and maximum number of reserved slots in each zone of the territory. Due to the NP-Hard nature of the problem, we proposed to solve it by a metaheuristic solution algorithm that combines an improved ant colony optimization algorithm, exploiting suitable linear relaxations of the integer model, with an exact large neighborhood search. We tested the performance of our new optimization approach on realistic instances referring to the Italian city of Rome, obtaining results showing that our method can grant good quality solutions associated with a fair distribution of the reserved parking slots. As future work, we plan to develop a new version of the problem considering the rental problem over a (long) time horizon, so to take into account the likely expansion of the carsharing services. Morever, we intend to study strengthened versions of the model and refine the algorithmic approach.

Fig. 1 -Fig. 2 -

 12 Fig. 1 -Example of city subdivision into districts and subdistricts with highlighted a potential cluster configuration available for location 𝑙

 is made up of 3 districts (i.e., 𝐷 𝑑 , 𝑑 , 𝑑) and the subdistricts included in every district are 𝑆 𝑑 𝑠 , 𝑠 , 𝑠 , 𝑆 𝑑 𝑠) and 𝑆 𝑑 𝑠 , 𝑠 . The locations included in each subdistrict are 𝐿 𝑑 , 𝑠

			𝑙 ,	𝐿 𝑑 , 𝑠	∅,	𝐿 𝑑 , 𝑠	𝑙 , 𝑙 ,	𝐿 𝑑 , 𝑠	𝑙 ,
	𝐿 𝑑 , 𝑠	∅ ,	𝐿 𝑑 , 𝑠	𝑙 , 𝑙 , 𝑙 .		

 Set of locations of subdistrict 𝑠 ∈ 𝑆 𝑑 of district 𝑑 ∈ 𝐷 𝐶 𝑑, 𝑠, 𝑙 Set of configurations of location 𝑙 ∈ 𝐿 𝑑, 𝑠 of subdistrict 𝑠 ∈ 𝑆 𝑑 of district 𝑑 ∈ 𝐷 T Lower bound on the number of parking slots that can be rented in subdistrict 𝑠 ∈ 𝑆 𝑑 𝜂 Upper bound on the number of parking slots that can be rented in subdistrict 𝑠 ∈ 𝑆 𝑑 𝛾 Lower bound on the number of clusters that can be rented in subdistrict 𝑠 ∈ 𝑆 𝑑 𝛾 Upper bound on the number of clusters that can be rented in subdistrict 𝑠 ∈ 𝑆 𝑑 𝜏 Lower bound on the number of clusters of type 𝑡 ∈ 𝑇 that can be rented in district 𝑑 ∈ 𝐷 𝜏 Upper bound on the number of clusters of type 𝑡 ∈ 𝑇 that can be rented in district 𝑑 ∈ 𝐷The OptiRent problem can be modelled as an Integer Linear Programming problem based on binary decision variables. The central decision to be taken is whether renting a cluster configuration or not and this can be modelled by introducing a binary decision variable:

		Tab 1 -Notation
	Symbol	Description		
	𝐷	Set of districts		
	𝑆 𝑑	Set of subdistricts of district 𝑑 ∈ 𝐷
	𝑆	Set of all subdistricts, 𝑆 ⋃	∈	𝑆 𝑑
	𝐿 𝑑, 𝑠			
		Set of cluster types		
	𝑝	Profit of a cluster configuration 𝑐 ∈ 𝐶 𝑑, 𝑠, 𝑙
	𝑛	Number of parking slots available in a cluster configuration 𝑐 ∈ 𝐶 𝑑, 𝑠, 𝑙
	𝜂			

𝑥

𝜖 0,1 ∀ 𝑑 𝜖 𝐷, 𝑠 𝜖 𝑆 𝑑 , 𝑙 𝜖 𝐿 𝑑, 𝑠 , 𝑐 𝜖 𝐶 𝑑, 𝑠, 𝑙 such that 𝑥 1 if configuration c in location l of subdistrict s of district d is rented;