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Abstract

We use the Cayley transform to provide an explicit isomorphism at the level of cycles
from van Daele K-theory to KK-theory for graded C∗-algebras with a real structure.
Isomorphisms between KK-theory and complex or realK-theory for ungraded C∗-algebras
are a special case of this map. In all cases our map is compatible with the computational
techniques required in physical and geometrical applications, in particular index pairings
and Kasparov products. We provide applications to real K-theory and topological phases
of matter.

1 Introduction

This paper presents explicit isomorphisms between K-theory and (unbounded) KK-theory
for possibly graded C∗-algebras with or without a real structure. We use a K-theory due to
van Daele [12, 13] to accommodate graded real or complex algebras. They key ingredient of
our construction is the Cayley transform on Hilbert C∗-modules, which exchanges unbounded
self-adjoint regular operators with unitary operators.

The isomorphism DK(A) ∼= KKR(Cℓ1,0, A) is already known from work by Roe [42] and ex-
tended by Kubota [28, Theorem 5.11]. Roe shows that DK(A) is isomorphic to KK(Cℓ1, A)
and, for algebras with a real structure rA, DK(ArA) is isomorphic to KKO(Cℓ1, A

rA), emu-
lating the proof given in [4, Section 17.5] for standard K-theory. The resulting isomorphism
is, however, not given at the level of cycles.

The isomorphism we present is tailored to the needs of the applications, especially as they
involve index pairings, and their more sophisticated cousins, Kasparov products.

Our work relies, ultimately, on results of Wood [48], whose proof of Bott periodicity informed
van Daele and others. Wood’s proof is expressed in terms of odd operators with square −1 (a
trivial difference to the picture of van Daele that uses odd self-adjoint unitaries), and Wood’s
methods were flexible enough to be used widely. Our use of the Cayley transform is steeped in
long tradition, and in particular has been applied to graded K-theory by Trout [47]. Utilising
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the Cayley transform to obtain a converse of the functional calculus, Trout obtains a homotopy
theoretic definition of graded K-theory.

Our work is motivated by results of the second author (and more recently [1]), who showed that
homotopy classes of gapped Hamiltonians (with prescribed symmetries) are classified directly
in terms of van Daele K-theory, [1, 23]. The work in [1, 23] complements and extends links of
complex and real K-theory to topological states of matter, [17, 27, 29, 46].

Our isomorphism identifies a van Daele element with a concrete unbounded Kasparov cycle,
which can then be used to take pairings/products quite explicitly in terms of cycles. Such
computations are compatible with the bulk-edge correspondence as in [7, 29]. We present
some examples and show how our technique facilitates computations. The Appendix provides
sufficient conditions to be able to compute such products explicitly on the level of cycles.

We first give a review of van Daele K-theory, KK-theory and Kasparov’s stabilisation theorem
in Section 2. We use refinements of van Daele K-theory due to Roe [41, 42], describe the
relationship between these two approaches, and prove an excision isomorphism.

In Section 3, we review the Cayley transform for ungraded Hilbert C∗-modules, which we use
to construct an explicit isomorphism between odd K-theory and (unbounded) KK-theory for
trivially graded complex C∗-algebras. An isomorphism KK(C, A) → K0(A) is also given using
the graph projection of the (unbounded) operator of the KK-cycle.

In Section 4, we introduce a Cayley transform on graded C∗-modules, where the key difference
with the ungraded case is that the transform interchanges a pair of odd self-adjoint unitaries
with an unbounded, odd, self-adjoint and regular operator anti-commuting with an odd self-
adjoint unitary. We remark that some of our constructions are similar to the converse functional
calculus used by Trout [47] to study graded K-theory.

The graded Cayley transform is used to prove our main result in Section 4.2, where an explicit
isomorphism DK(A) → KKR(Cℓ1,0, A) and inverse is constructed. While our map from van
Daele K-theory to KK-theory and its inverse are explicit, the proof that we obtain isomor-
phisms is somewhat involved. This is because a generic countably generated C∗-module need
not be full, and so Morita equivalence relates the compact endomorphisms on the C∗-module to
an ideal of the coefficient algebra. To prove that our maps give isomorphisms, we demonstrate
the compatibility of the Cayley transform with Morita equivalence and non-full C∗-modules.

Some applications of our isomorphism are considered in Sections 5 and 6. In Section 5.1,
we consider the case that A = B ⊗ Cℓr,s for some trivially graded B with real structure rB

and so the image of our Cayley isomorphism is KO1+s−r(B
rB ) or K1−s−r(B) if we ignore the

real structure. We show how in these special cases we recover unitary descriptions of real
K-theory as studied in [6] and [23, Section 5.6]. In Section 5.2, we show how our Cayley
isomorphism interacts with the boundary map in van Daele K-theory. We can use this result

to explicitly write the boundary map in KK-theory, KKR(Cℓ1,0, A)
δ
−→ KKR(C, I) coming

from the semi-split short exact sequence

0 → I → E → A→ 0

such that each map respects the Z2-grading and real structure.

Finally in Section 6 we use our Cayley map to write down Kasparov modules representing bulk
and boundary invariants of topological insulators. We note that we do not specify our algebra
of observables and work with a generic complex C∗-algebra, possibly graded and possibly with
a real structure implementing the anti-linear symmetries of the system. Of particular note are
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the boundary invariants, where the Kasparov modules we construct are explicitly linked to a
lift of the Hamiltonian under the bulk-boundary short exact sequence. Such lifts are typically
related to half-space Hamiltonians and edge spectra. Hence our work complements recent
results [1, 44] that express the boundary K-theory class using the half-space Hamiltonian.
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2 Preliminaries

Our paper is concerned with operator K-theory, van Daele K-theory and KK-theory. The
Cayley transform gives us a method to pass between these theories.

Conventions: We assume that all C∗-algebras we encounter have a countable approximate
identity (σ-unital). Recall that a real C∗-algebra is a C∗-algebra over the field of real numbers.
In contrast, a Real C∗-algebra, written with large R, is a complex C∗-algebra A with a real
structure, that is, an anti-linear multiplicative map rA : A→ A which is of order 2. Elsewhere,
e.g. in [24], Real C∗-algebras are also called C∗,r-algebras. The subalgebra of elements fixed
under rA is a real C∗-algebra ArA . In specific situations where the context is clear, we will omit
the subscript and simply denote a real structure by r. All C∗-algebras are Z2-graded (possibly
trivially graded) unless otherwise stated, and we use Z2-graded tensor products ⊗̂.

The real Clifford algebra Clp,q is the algebra generated by p self-adjoint odd elements e1, . . . , ep
with square 1 and q skew-adjoint odd elements f1, . . . , fq with square −1 which all pairwise
anti-commute. We denote by Cℓp,q the Real C

∗-algebra generated by e1, . . . , ep and f1, . . . , fq.
That is, its elements are complex linear combinations of products of these generators, equipped
with the real structure r such that erj = ej , f

r
j = fj. It is immediate that Cℓp,q ∼= Cℓp+q as

complex algebras, and Cℓrp,q = Clp,q. We will make frequent use of the Pauli matrices, where
to establish notation we recall

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We will freely take advantage of the isomorphism Cℓ1,1 ∼= C∗(σ1,−iσ2) with real structure by
entrywise complex conjugation.

2.1 Van Daele K-theory

Definition 2.1. Let A be a real or complex C∗-algebra. We say that A has a balanced Z2-
grading if A contains an odd self-adjoint unitary1 (OSU). That is, there is an odd element e
satisfying e = e∗ = e−1. In particular A is unital. If A has a real structure rA, we also require
erA = e.

1Odd self-adjoint unitaries are called super-symmetries by Roe [41, 42].
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Let V (A) =
⊔

k π0(OSU(Mk(A))), the disjoint union of homotopy classes of OSUs in Mk(A),
the k × k matrices with entries in A, k ≥ 1. Here the grading and real structure on A are
extended to Mk(A) entrywise. The set V (A) is an abelian semigroup with direct sum as
operation, [x] + [y] = [x ⊕ y]. The Grothendieck group obtained from this semigroup will be
denoted GV (A). The semigroup homomorphism d : V (A) → N taking the value k on Mk(A)
induces a group homomorphism d : GV (A) → Z.

Definition 2.2. If A is unital and has a balanced Z2-grading, then the van Daele group of A
is DK(A) = Ker(d : GV (A) → Z).

If A is unital but is not balanced, then we set DK(A) = Ker(d : GV (A⊗̂Cℓ1,1) → Z). The
complex and real case is given by ignoring the real structure or passing to the real subalgebra
ArA⊗̂Cl1,1.

If A is not unital then we set DK(A) = Ker(q∗ : DK(A∼) → DK(C)) where q : A∼ → C

quotients the minimal unitisation A∼ by the ideal A, replace C by R if A is real, see (2.1).

Elements of DK(A) are formal differences of OSUs denoted by [x]− [y].

We elaborate on the non-unital case. Since C (or R) is trivially graded, the relevant exact
sequence needed to define q∗ is

0 → A⊗̂Cℓ1,1 → A∼⊗̂Cℓ1,1
q⊗̂Id
−−−→ C⊗ Cℓ1,1 → 0

so that DK(A) = {[x] − [y] ∈ DK(A∼⊗̂Cℓ1,1) : (q⊗̂Id)∗[x] = (q⊗̂1)∗[y]}. Adapting [12,
Proposition 3.7] to Roe’s formulation, one can find representatives x′ for [x] and y′ for [y] such
that q⊗̂Id(x′) = q⊗̂Id(y′). Thus, for non-unital A

DK(A) = {[x]− [y] : x, y ∈ OSU(Mn(A
∼⊗̂Cℓ1,1)), x− y ∈Mn(A⊗̂Cℓ1,1)}. (2.1)

This is Roe’s version of van Daele K-theory [41, 42]. As already mentioned, Roe shows that
van Daele’s K-groups are isomorphic to KK-groups from which we infer that they share all
the standard properties of K-theory, though often we can only exploit this easily for ungraded
algebras.

If A is complex with a real structure rA, then we sometimes denote the van Daele K-theory
group by DK(A, rA) to emphasise this. Clearly DK(A, rA) ∼= DK(ArA).

If A is balanced graded, one may ask if we could equivalently use A⊗̂Cℓ1,1 to define DK(A).
The following lemma shows that such a choice leads to consistent definitions of van Daele
K-theory.

Lemma 2.3 ([41]). Let A be balanced graded. The map

[x]− [y] 7→ [
x+ y

2
⊗̂12 +

x− y

2
⊗̂σ3]− [1⊗̂σ1] =

[(
x 0
0 y

)]
−

[(
0 1
1 0

)]
(2.2)

furnishes an isomorphism between DK(A) and DK(A⊗̂Cℓ1,1).

Roe refers to van Daele [12] for the proof. For the convenience of the reader we reproduce it
below after having introduced van Daele’s picture. We also note that for balanced graded A
the identification of M2(A) with entrywise grading with A⊗̂Cℓ1,1 depends on a choice of OSU
in A, cf. Equation (2.4).
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2.1.1 Base-points, and van Daele’s picture

Van Daele’s original definition of the version of K-theory which is named after him [12, 13]
requires a choice of base point. This is a choice of OSU e ∈ A if A is balanced graded, or
e ∈ A⊗̂Cℓ1,1 if not. This OSU is then used to embed Mk(A) into Mk+1(A) via x 7→ x ⊕ e.
The semigroup Ve(A) =

⋃
k π0(OSU(Mk(A))) is such that the union is no longer disjoint as

π0(OSU(Mk(A))) is identified with a subset of π0(OSU(Mk+1(A))) via the above embedding.

The semigroup Ve(A) depends on e up to homotopy. It has a unit element, the class of e. Van
Daele’s version of the K-group is thus given by the Grothendieck group DKe(A) = GVe(A),
where we include the chosen base point in our notation. If we denote for a moment the
corresponding homotopy classes in Ve(A) by [x]e then [x] 7→ [x]e induces a map αe : GV (A) →
GVe(A), αe([x]− [y]) = [x]e− [y]e between the corresponding Grothendieck groups. Restricted
to the kernel of d the map αe is a group isomorphism. We therefore arrive at two (isomorphic)
presentations of the van Daele K-theory group. In the sense that it uses the Grothendieck
completion of a semigroup, Roe’s formulation exhibits van Daele K-theory as a relative theory.
In contrast, van Daele’s formulation expresses the elements as relative to a chosen base point.

A particularly handy situation arises if the base point e is homotopic to −e (along a homotopy
of OSUs in A). Then Ve(A) is a group with inverse given by −[x]e = [−exe]e. If A is balanced
this can always be achieved: choose a base point e ∈ A. Then M2(A) contains the OSU e⊕−e

which is homotopic to its negative via the path

(
e cos(t) e sin(t)
e sin(t) −e cos(t)

)
for t ∈ [0, π]. The map

ϕe : GVe(A) → GVe⊕−e(M2(A)) given by

ϕe([x]e − [y]e) =

[(
x 0
0 −eye

)]

e⊕−e

(2.3)

is then an isomorphism of groups. If A is not balanced but unital, then we start with A⊗̂Cℓ1,1
and choose e = 1⊗̂σ1 as base point. The van Daele K-group of A is thus isomorphic to
GVσ1⊕−σ1

(M4(A)) (as it is originally defined in [12]).

If A is balanced graded, then M2(A) (with component-wise extension of the grading) is iso-
morphic to A⊗̂Cℓ1,1, though the isomorphism depends on the choice of base point e. Given
such an OSU, the isomorphism is given by ψe : A⊗̂Cℓ1,1 →M2(A)

ψe(x⊗̂1) =

(
x 0

0 (−1)|x|exe

)
, ψe(1⊗̂σ1) =

(
0 e
e 0

)
, ψe(1⊗̂iσ2) =

(
0 e
−e 0

)
. (2.4)

Note that ψ−1
e maps e⊕−e to e⊗̂1 which is homotopic to 1⊗̂σ1 via t 7→ cos(t)e⊗̂1+sin(t)1⊗̂σ1.

These facts imply that the isomorphism of Lemma 2.3 is given by the composition of four
isomorphisms α−1

1⊗̂σ1
◦ ψ−1

e ◦ ϕe ◦ αe.

2.1.2 Excision for van Daele K-theory

Excision for DK can be deduced from excision for ordinary K-theory when the algebra is
trivially graded, but seems not to have been addressed for graded algebras.

For a balanced graded algebra A with a (closed two-sided graded) ideal I we define the relative
van Daele group

DK(A,A/I) := {[x]− [y] : x, y ∈ OSU(Mn(A)), x− y ∈Mn(I)}.
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Here [·] denotes homotopy classes in OSU(Mn(A)). If A is not balanced, but only unital, then
we use again A⊗̂Cℓ1,1 in place of A in the above definition of the relative group; the ideal is
then I⊗̂Cℓ1,1. Again this is reasonable as the map from Lemma 2.3 provides an isomorphism
between DK(A,A/I) and DK(A⊗̂Cℓ1,1, A/I⊗̂Cℓ1,1) in the case that A is balanced. Indeed,
for any OSU y ∈ Mn(A), w = 1√

2
(1 − y⊗̂σ1) is an even unitary which is homotopic to 1 and

therefore x+y
2 ⊗̂12 +

x−y
2 ⊗̂σ3 is homotopic to w(x+y

2 ⊗̂12 +
x−y
2 ⊗̂σ3)w

∗. Finally, a computation
shows that w(x+y

2 ⊗̂12 +
x−y
2 ⊗̂σ3)w

∗ − 1⊗̂σ1 ∈ I⊗̂Cℓ1,1 provided x− y ∈ I.

Equation (2.1) can now be interpreted in the way that DK(A) = DK(A∼, A∼/A) for a non-
unital algebra A.

Proposition 2.4 (Excision for DK). Let I be a (closed two-sided graded) ideal in the unital
algebra A. Then DK(I) ∼= DK(A,A/I).

Proof. Since A is unital it contains I∼ and hence any element [x] − [y] ∈ DK(I∼, I∼/I) can
be understood as an element of DK(A,A/I). This defines a map DK(I) → DK(A,A/I).

We first show this map is surjective. Since I∼ need not be balanced we work with I∼⊗̂Cℓ1,1
and consequently also with A⊗̂Cℓ1,1. Recall that DK(A,A/I) is thus generated by elements of
the form [x+y

2 ⊗̂12+
x−y
2 ⊗̂σ3]− [1⊗̂σ1] such that x− y ∈Mn(I). Then with w = 1√

2
(1− y⊗̂σ1),

[x+y
2 ⊗̂12+

x−y
2 ⊗̂σ3] = [w(x+y

2 ⊗̂12+
x−y
2 ⊗̂σ3)w

∗] and w(x+y
2 ⊗̂12+

x−y
2 ⊗̂σ3)w

∗−1⊗̂σ1 ∈ I⊗̂Cℓ1,1.
Thus x+y

2 ⊗̂12 +
x−y
2 ⊗̂σ3 has a representative in Mn(I

∼)⊗̂Cℓ1,1.

For injectivity, we let [x+y
2 ⊗̂12 +

x−y
2 ⊗̂σ3] − [x

′+y′

2 ⊗̂12 +
x′−y′

2 ⊗̂σ3] be trivial in DK(A,A/I).
There are then (perhaps after stabilisation) paths x(t) and y(t) of OSUs in Mn(A) such that
x(0) = x, y(0) = y, x(1) = x′, y(1) = y′ and, for all t ∈ [0, 1], x(t) − y(t) ∈ Mn(I). We

let w(t) = 1√
2
(1 − y(t)⊗̂σ1). Then w(t)(x(t)+y(t)

2 ⊗̂12 + x(t)−y(t)
2 ⊗̂σ3)w(t)

∗ is a homotopy in

Mn(I
∼)⊗̂Cℓ1,1 between two representatives of [x+y

2 ⊗̂12 +
x−y
2 ⊗̂σ3] and [x

′+y′

2 ⊗̂12 +
x′−y′

2 ⊗̂σ3]
in Mn(I

∼)⊗̂Cℓ1,1.

Let us also consider a description of van Daele K-theory using base points in the case that A is
not unital. We say that A is weakly balanced graded if its multiplier algebra contains an OSU
(the grading on A extends uniquely to the multiplier algebra of A). Importantly A⊗̂Cℓ1,1 is
always weakly balanced graded. Having fixed an OSU e in the multiplier algebra, we define
A∼e to be the subalgebra of the multiplier algebra generated by A and e. We use the notation
en = e⊕n.

Lemma 2.5. Let A be a non-unital and weakly balanced graded algebra with base point e in
the multiplier algebra. Then

DKe(A) :=
{
[x]− [y] ∈ DKe(A

∼e) : x− (ek ⊕−en−k), y− (ek ⊕−en−k) ∈Mn(A), some n, k
}

(2.5)
is isomorphic to DK(A) (Definition 2.2).

Proof. Since A is weakly balanced, A is an ideal in A∼e. Hence DK(A) ∼= DK(A∼e, A∼e/A),
that is, DK(A) is given by elements [x] − [y], x, y ∈ OSU(Mn(A

∼e)) with x − y ∈ Mn(A).
Hence α−1

e induces an injective map from DKe(A) into DK(A∼e, A∼e/A).

Let q : A∼e → A∼e/A ∼= Cℓ1,0 be the natural projection with ẽ = q(e) the generator of
Cℓ1,0. The only OSUs of Cℓ1,0 are ẽ and −ẽ and they are not homotopic. Therefore for
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a given OSU x ∈ Mn(A
∼e), q(x) is homotopic ẽk ⊕ (−ẽ)n−k for some k. Hence there is

an even unitary w̃ ∈ Mn(Cℓ1,0), homotopic to 1 along a path of even unitaries, such that
w̃q(x)w̃∗ = ẽk⊕(−ẽ)n−k. We lift w̃ to a unitary w ∈ A∼e (via ẽ 7→ e). Then wxw∗ is homotopic
to x along a path of OSUs. Now let y be an OSU in Mn(A

∼e) such that x− y ∈Mn(A). Then
q(y) is homotopic to ẽk ⊕ (−ẽ)n−k with k the same as q(x). Similarly, we can find an even
unitary v ∈ A∼e, homotopic to 1, such that q(vyv∗) = ẽk ⊕ (−ẽ)n−k. We thus have found
[wxw∗]− [vyv∗] ∈ DKe(A) which is a preimage of [x]− [y] ∈ DK(A∼e, A∼e/A). The excision
isomorphism of Proposition 2.4 completes the proof.

If we study homotopy classes of OSUs where there is a canonical or simple choice of base point,
then our picture simplifies. For example, if A is a unital and trivially graded algebra, then
OSUs of A⊗ Cℓ1,1 are of the form

U =

(
0 u∗

u 0

)

where u ∈ A is unitary. If we choose e = 1⊗σ1 as base point then we see that the map U 7→ u
identifies Ve(A⊗Cℓ1,1) with the homotopy classes of unitaries in (A⊗K)∼. Hence, we recover
the group K1(A) or KO1(A

rA).

2.2 C∗-modules and K-theory

Given a countably generated right-A C∗-module XA we denote by (· | ·)A the A-valued inner-
product, EndA(X) the adjointable endomorphisms of XA and End0A(X) ⊂ EndA(X) the ideal
of compact endomorphisms, see [32]. Any right-A C∗-module XA naturally gives rise to an
ideal JX = span(X|X)A (closure in the norm of A). The module XA is called full if JX = A.
In this section we work with Z2-graded C∗-modules over Z2-graded algebras. The ungraded
case is analogous but simpler. Endomorphism algebras will always have a Z2-grading inherited
from acting on a Z2-graded module. We say that XA is balanced graded if EndA(X) admits an
OSU.

Recall that the standard graded Hilbert module over A is given by ĤA := Ĥ⊗̂A where Ĥ is the
graded infinite dimensional separable Hilbert space ℓ2(N)⊕ ℓ2(N)

◦ ∼= ℓ2(N)⊗C
2 with grading

operator 1⊗ σ3. There is a standard OSU on ĤA
∼= (ℓ2(N)⊗ C

2⊗̂A)A given by

Z = Idℓ2(N) ⊗ σ1⊗̂1Mult(A) (2.6)

The Kasparov stabilisation theorem says that for any countably generated XA, (X⊕Ĥ)A ∼= ĤA

as graded Hilbert A-modules [21]. The compact endomorphisms on ĤA are End0A(ĤA) ∼= K̂⊗̂A
with K̂ being the graded algebra of compact operators on Ĥ. If A is balanced with an OSU e,
then we can apply the isomorphism from Equation (2.4) to obtain K̂⊗̂A ∼= K⊗A, where K is
the trivially graded compact operators in which we absorbed a copy of Cℓ1,1.

Lemma 2.6 (Morita invariance for DK). Let XA be a countably generated C∗-module over
the C∗-algebra A and define the ideal JX = span(X|X)A. Then X is full as a module over JX
and there is an isomorphism

ζX : DK(End0A(X))
≃
−→ DK(JX). (2.7)

Proof. The algebra End0A(X)∼⊗̂Cℓ1,1 is balanced graded, and by definition X is a full module
over JX . Recall that the group DK(End0A(X)) is made up of differences [U ] − [V ] with U, V
OSUs over End0A(X)∼⊗̂Cℓ1,1 such that U − V ∈ End0A(X)⊗̂Cℓ1,1.
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Let K be an odd self-adjoint finite rank endomorphism with U −V −K small enough in norm
so that V +K is invertible. This is possible since

U = V + U − V = V +K + (U − V −K).

Because the finite rank operators are stable under the holomorphic functional calculus [20,
Lemma 6.3], we can take Ũ = phase(V + K) such that Ũ − V is finite rank. The path
[0, 1] ∋ t 7→ phase(V + K + t(U − V − K)) gives a homotopy from Ũ to U , and so every
class [U ] − [V ] ∈ DK(End0A(X)) is represented by a class [Ũ ] − [V ] with Ũ − V finite rank.
Any two such representatives are homotopic (in DK(End0A(X))) by construction. Thus the

difference

(
Ũ 0
0 V

)
−

(
V 0
0 V

)
is finite rank and

(
V 0
0 V

)
is homotopic to

(
0 1
1 0

)
. Now let

W : (X ⊕ Ĥ)JX⊗̂Cℓ1,1
→ ĤJX⊗̂Cℓ1,1

be a stabilisation isomorphism, and W2 = W ⊕W two

copies of W . Then for any OSU Z on ĤJX⊗̂Cℓ1,1
,







Ũ 0 0 0
0 Z 0 0
0 0 V 0
0 0 0 Z





−







0 0 1 0
0 Z 0 0
1 0 0 0
0 0 0 Z





 =: [Ũ ⊕ Z ⊕ V ⊕ Z]− [Ẑ]

defines a class inDK(End0JX (X⊕Ĥ)) and (AdW )∗ : DK(End0JX (X⊕Ĥ)) → DK(End0
JX⊗̂Cℓ1,1

(Ĥ)).

Note that Ẑ is homotopic to V ⊕ Z ⊕ V ⊕ Z and the latter differs from Ũ ⊕ Z ⊕ V ⊕ Z by a
finite rank operator. ThereforeW2ẐW

∗
2 is homotopic to W2(V ⊕Z⊕V ⊕Z)W ∗

2 and the latter
differs from W2(Ũ ⊕Z ⊕ V ⊕Z)W ∗

2 by a finite rank operator, i.e. a matrix over JX⊗̂Cℓ1,1. It
follows that

[W2(Ũ ⊕ Z ⊕ V ⊕ Z)W ∗
2 ]− [W2ẐW

∗
2 ]

is a well-defined element in DK(JX). Thus we have a well-defined and clearly injective map

DK(End0A(X)) ∋ [U ]− [V ] 7→ ζX([U ]− [V ])

= [W2(Ũ ⊕ Z ⊕ V ⊕ Z)W ∗
2 ]− [W2ẐW

∗
2 ] ∈ DK(M2(JX)).

For surjectivity, suppose that R, S ∈ Mn(J
∼
X ⊗̂Cℓ1,1) are OSUs with R − S ∈ Mn(JX⊗̂Cℓ1,1).

We consider the corresponding class [12(R + S) ⊗ 1 + 1
2(R − S) ⊗ σ3] − [1⊗̂σ1] = [R ⊕ S] −

[1⊗̂σ1] via the isomorphism (2.2). As operators on ĤJX⊗̂Cℓ1,1
, we note that Z = Idℓ2(N) ⊗

σ1⊗̂1Mult(JX)⊗̂Cℓ1,1
and Id ⊗ 1⊗̂σ1 anti-commute and so are homotopic by a path of OSUs.

Therefore, using the stabilisation map W : (X ⊕ Ĥ)JX⊗̂Cℓ1,1
→ ĤJX⊗̂Cℓ1,1

, we can define a

class [W ∗(R⊕ S)W |XA
]− [W ∗ZW |XA

] ∈ DK(End0A(X)), whose representative OSUs may be
homotopied so that the difference is a finite rank operator.

We then apply ζX and obtain the class

W2




W ∗(R⊕ S)W |XA
0 0 0

0 Z 0 0
0 0 W ∗ZW |XA

0
0 0 0 Z


W ∗

2


− [W2ẐW

∗
2 ] = [R⊕ S]− [1⊗ σ1]

= [R]− [S],

where the last equality following from an application of the isomorphism (2.2).

8



Corollary 2.7. Let XA be a balanced graded countably generated C∗-module over the C∗-
algebra A and define the ideal JX = span(X|X)A. There is an isomorphism (abusively still

called ζX) ζX : DK(EndA(X),EndA(X)/End0A(X))
≃
−→ DK(JX) given by applying excision

and then
ζX([U ]− [V ]) =

[
W2(Ũ ⊕ Z ⊕ V ⊕ Z)W−1

2

]
−
[
W2ẐW

∗
2

]
. (2.8)

Proof. The excision map DK(EndA(X),EndA(X)/End0A(X)) → DK(End0A(X)) simply picks
representatives of each class which lie in End0A(X)∼⊗̂Cℓ1,1, as shown in Proposition 2.4. We
then apply the Morita isomorphism of Lemma 2.6.

Finally, we can take all spaces and unitaries to be Real, and carry through the same discussion
without issue. We observe that Exel’s elegant Fredholm index proof [16] of Equation (2.7) for
complex K-theory would require the development of Fredholm theory in our setting, and so
we have opted for this more direct route.

2.3 KK-theory with real structures

We now briefly review Real Kasparov theory or KKR-theory [22]. A complex Hilbert C∗-
module XB is a Real Hilbert C∗-module if there is an antilinear map rX : XB → XB , called
the real structure, such that (xrX )rX = x, xrX · brB = (x · b)rX and (xrX1 | xrX2 )B =

(
(x1 |

x2)B
)rB . The real structure on the C∗-module induces a real structure r on EndB(X) via

Srx =
(
S(xrX )

)rX . Representations of Real algebras π : A → EndB(X) should be compatible
with this real structure, π(arA) = π(a)r.

We will often work with unbounded operators on C∗-modules, see [32, Chapter 9]. We recall
that a densely defined closed self-adjoint operator D : Dom(D) ⊂ XB → XB is regular if the
operator 1 +D2 : Dom(D2) → XB has dense range. We write that Dr = D if (Dom(D))rX ⊂
Dom(D) and (DxrX )rX = Dx for all x ∈ Dom(D). We also recall the graded commutator,
where for endomorphisms S, T with homogenous parity [S, T ]± = ST − (−1)|S| |T |TS.

Definition 2.8. Let A and B be Z2-graded Real C∗-algebras. A Real unbounded Kasparov
module (A, πXB ,D) consists of

1. a Real and Z2-graded C
∗-module XB ,

2. a Real and graded ∗-homomorphism π : A→ EndB(X),

3. an unbounded self-adjoint, regular and odd operator D = Dr and a dense ∗-subalgebra
A ⊂ A such that for all a ∈ A ⊂ A, π(a)Dom(D) ⊂ Dom(D) and

[D,π(a)]± ∈ EndB(X) , π(a)(1 +D2)−1 ∈ End0B(X) . (2.9)

If both algebras and the module are trivially graded but the self-adjoint regular operator D
still satisfies the conditions (2.9), then we have an odd Kasparov module.

We will often omit the representation π : A→ EndB(X) if the context is clear. An unbounded
Kasparov modules represent a class [(A,XB ,D(1 + D2)−1/2)] ∈ KKR(A,B) [2], though we
remark that the group KKR(A,B) depends on the choice of real structures for A and B. If A
and B are ungraded and (A,XB ,D) is an odd unbounded Kasparov module, then we can turn
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it into a graded Kasparov module
(
A⊗̂Cℓ0,1, XB⊗̂C

2, D⊗̂σ1
)
, where the generator of the left

Cℓ0,1-action is represented by the matrix −iσ2 =

(
0 −1
1 0

)
.

If (A,XB ,D) is a Real unbounded Kasparov module, then we can ignore the real structures and
obtain a complex unbounded Kasparov module and class in KK(A,B). If we restrict the Real
C∗-module XB to the elements fixed under rX , we obtain a real C∗-module XrX

BrB
. Similarly,

the Real left action of A becomes a real left action π : ArA → EndBrB (XrX ). We do not
lose any information by restricting Real Kasparov modules to real C∗-modules and algebras.
Similarly, real Kasparov modules can be complexified to obtain Real Kasparov modules and
so KKR(A,B) ∼= KKO(ArA , BrB). If the algebra B is trivially graded, we can also consider
real K-theory, where KKR(Cℓr,s, B) ∼= KKO(Clr,s, B

rB ) ∼= KOr−s(B
rB).

Remark 2.9 (Normalisation of classes in KKR(Cℓ1,0, A)). The KK group we focus on in this
manuscript is KKR(Cℓ1,0, A). We review some basic simplifications of representatives of KK-
classes, cf. [4, Section 17.4]. To emphasise the generator e of the Clifford representation, we
will denote the Kasparov module (Cℓ1,0,XA, T ) (bounded or unbounded) by (e,XA, T ).

We can assume without loss of generality that e2 = 1X ∈ EndA(X). (If e2 acts as a projection
P , we can restrict the module to PXA, replacing T by PTP and the remaning part of the
Kasparov module will be degenerate.) This therefore allows us to assume that XA is a balanced
graded C∗-module. Lastly, we can guarantee that the generator e of the Cℓ1,0 action on XA

anti-commutes (graded-commutes) with the operator T . If Te+ eT 6= 0, then we can take the
perturbation T̃ = 1

2(T − eTe) which anti-commutes with e without changing the KKR-class.
⋄

3 A Cayley isomorphism of complex K-theory and KK-theory

In this section, we consider the more familiar complex ungraded K-theory and define an iso-
morphism to (odd) KK-theory using the Cayley transform. Our map provides an alternative
approach to the well-known isomorphism which the reader can find in [4, Section 17.5]. To
highlight its usefulness, we show that our map is well-suited for the constructive form of the
Kasparov product which is based on unbounded KK-cycles. The more general case of graded
algebras and real structures is more efficiently handled with van Daele K-theory and will be
studied in Section 4.

3.1 The Cayley transform on ungraded Hilbert modules

Here we briefly recall and expand on some results from [32, Chapter 9, 10].

Proposition 3.1. Let A be a C∗-algebra, XA a Hilbert C∗-module and T a self-adjoint regular
(possibly unbounded) and right-A-linear operator on XA. Then

C(T ) := (T + i)(T − i)−1 ∈ EndA(X)

is a unitary operator. If T has compact resolvent then C(T ) − 1 ∈ End0A(X). Similarly, if
V ∈ EndA(X) is unitary, then

C
−1(V ) = i(V + 1)(V − 1)−1

is a (possibly unbounded) self-adjoint regular operator with domain (V − 1)XA. If V − 1 ∈
End0A(X), then C−1(V ) has compact resolvent.
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Proof. The proof of self-adjointness and regularity can be found in [32, Chapter 10]. If T has
compact resolvent, then

(T + i)(T − i)−1 − 1 = 2i(T − i)−1 ∈ End0A(X).

Similarly, if V − 1 ∈ End0A(X), then a short calculation yields

1 + C
−1(V )2 = 4

(
(V − 1)(V ∗ − 1)

)−1
,

whence (1 + C−1(V )2)−1 ∈ End0A(X) and so is compact as an endomorphism. Taking the
square root remains inside the compact operators.

Remark 3.2. Note that if T is invertible, then −1 is not in the spectrum of C(T ). If T is
bounded, then 1 is not in the spectrum of C(T ). ⋄

Despite the suggestive notation, C and C−1 are not complete inverses of each other. If U ∈
EndA(X) is unitary, then C ◦ C−1(U) is the restriction of U to the C∗-module (U − 1)XA, the
closure of Dom(C−1(U)) in XA, and may not recover all of XA in general. However, we can
recover the essential information of U at the level of K-theory classes.

Lemma 3.3. Let A be a unital C∗-algebra and U ∈ A unitary. Define the ideal JU =
A(U − 1)A. Then U defines a class in [U |] ∈ K1(JU ). With ιU : JU →֒ A the inclusion,
(ιU )∗([U |]) = [U ] ∈ K1(A).

Proof. That [U ] ∈ K1(A) defines [U |] ∈ K1(JU ) follows since U | = 1 mod JU . Let q : A →
A/JU be the quotient map, and observe that [q(U |)] = [1] = 0 ∈ K1(A/JU ). So q(U |) is stably
homotopic to 1, whence there exists w ∈ Mn+1(A/JU ) a unitary in the connected component
of the identity such that

w(q(U |) ⊕ 1n)w
−1 = 1n+1.

Now lift w to a unitary w̃ over A in the connected component of the identity. Then

w̃(U | ⊕ 1n)w̃
−1 = w̃(U ⊕ 1n)w̃

−1 = 1n+1 mod J

and so

ι∗([U |]) = ι∗([w̃(U | ⊕ 1n)w̃
−1]) = ι∗([w̃(U ⊕ 1n)w̃

−1]) = [w̃(U ⊕ 1n)w̃
−1] = [U ] ∈ K1(A).

3.2 The Cayley transform and odd K-theory

Let A be a C∗-algebra and consider a unitary element u ∈ MN (A) (or MN (A∼) if A is non-
unital). We consider the (inverse) Cayley transform C−1(u) of u as an unbounded self-adjoint
regular operator on a suitable A-module. Namely,

Dom(C−1(u)) = (u− 1)AN , C
−1(u)v = i(u+ 1)(u− 1)−1v, v ∈ (u− 1)AN .

Let (u− 1)AN
A be the closure of Dom(C−1(u)) in AN .

Proposition 3.4. The triple (C, (u− 1)AN
A ,C

−1(u)) is an unbounded odd Kasparov module.
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Proof. Most of the result immediately follows from Proposition 3.1. We compute that (1 +
C(u)2)−1 = 1

4(u − 1)(u∗ − 1) ∈ MN (A) (as opposed to MN (A∼)) and so is compact as an
endomorphism. As in the proof of Proposition 3.1, taking the square root remains inside the
compact operators.

Theorem 3.5. The map K1(A) → KK1(C, A) defined by sending a unitary to the class of its
Cayley transform,

K1(A) ∋ [u] 7→
[
(C, (u− 1)AN

A , C
−1(u))

]
∈ KK1(C, A),

is well-defined and an isomorphism. The inverse is provided by the Cayley transform on densely
defined self-adjoint and regular operators,

KK1(C, A) ∋ [(C, XA, T )] 7→ ι∗ ◦ ζX([C(T )])

where ζX : K1(End
0
A(X)) → K1(JX) is the Morita isomorphism for JX = span(X|X)A and

ι : JX → A is the inclusion.

Proof. Additivity is clear, and if u = 1A then the module XA is the zero module, and C−1(u) =
0. Hence the resulting class is zero in KK1(C, A).

Now suppose that {ut}t∈[0,1] is a norm continuous path of unitaries over A∼. Define a right
A⊗ C([0, 1])-module by

XA⊗C([0,1]) = {f : [0, 1] → AN : f(t) ∈ (ut − 1)AN
A for all t ∈ [0, 1]}

Similarly we define

Dom(C−1(u•)) = {f : [0, 1] → AN : f(t) ∈ Dom(C−1(ut)) for all t ∈ [0, 1]}

and (C−1(u•)f)(t) = C−1(ut)f(t). Then because u• is a unitary over A∼ ⊗ C([0, 1]), the
triple (C,XA⊗C([0,1]),C

−1(u•)) is an odd Kasparov C-A ⊗ C([0, 1])-module. Composing with
the evaluation map on C[0, 1], the Kasparov modules (C,XA,C

−1(u0)) and (C,XA,C
−1(u1))

define the same class in KK1(C, A), and our map is well-defined and injective.

For surjectivity we will display the inverse map. Given an odd unbounded Kasparov C-A-
module (C,XA, T ) with T self-adjoint and regular, we define u = C(T ) = (T + i)(T − i)−1.
Then u−1X = 2i(T−i)−1 is compact by Proposition 3.1, so that u ∈ (End0A(X))∼ ⊂ (K⊗A)∼.
Provided we obtain a well-defined map, additivity is obvious.

Suppose that (C,XA, T ) represents zero. Then (modulo degenerate Kasparov modules) the
bounded transform FT = T (1 + T 2)−1/2 of T is operator homotopic to an invertible, since the
only obstruction to triviality of the module is 1X − F 2

T . This means that we can suppose that
T is invertible, and then we see that (T + i)(T − i)−1 has an arc containing −1 in its resolvent
set by Remark 3.2. Thus the unitary (T + i)(T − i)−1 is homotopic to 1X , and so represents
zero in K1(A).

If (C,XA, Tt) is an operator homotopy, t ∈ [0, 1], then we obtain a norm continuous path of
unitaries C(Tt). This is done in the Real case in Lemma 4.14, see Equation (4.4), and the proof
carries over. Hence the unitaries C(T0) and C(T1) define the same class in K1(End

0
A(X)).

We define the inverse map to be

KK1(C, A) ∋ [(C,XA, T )] 7→ ι∗ ◦ ζX([C(T )])
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where ζX : K1(End
0
A(X)) → K1(JX) is the Morita isomorphism (defined analogously to

Lemma 2.6), JX = span(X|X)A and ι : JX → A is the inclusion.

The inverse map is well-defined and so we now check that the two maps are indeed mutual
inverses. For u ∈ MN (A) we find that our recipe gives C(C−1(u)) = u as an element of

End0A
(
(u− 1)AN

A

)∼
. Applying ζ

(u−1)AN to the class [u] ∈ K1

(
End0A((u− 1)AN )

)
gives [u]J ∈

K1(Ju) where Ju = AN (u− 1)AN . By Lemma 3.3, ι∗([u]J ) = [u] ∈ K1(A).

In the other direction, given an odd Kasparov module (C,XA, T ), we have that C
−1(C(T )) = T

as operators on X. To prove that we obtain an isomorphism of groups, we consider the two
homomorphisms C−1

A : K1(A) → KK1(C, A) and C
−1
JX

: K1(JX) → KK1(C, JX) defined by the
Cayley transform. These two homomorphisms are related by

C
−1
A ◦ ι∗ ◦ ζX([C(T )]) = ι∗ ◦ C

−1
JX

◦ ζX([C(T )]) = ι∗ ◦ ζ
KK
X ◦ C−1

End0A(X)
([C(T )]) (3.1)

where C−1
End0A(X)

: K1(End
0
A(X)) → KK1(C,End0A(X)) and ζKK

X = ·⊗̂End0
A(X)[(End

0
A(X),XJX , 0)]

is the product with the Morita equivalence bimodule. The first equality essentially follows from
Lemma 3.3, while the second comes from a direct calculation and simple homotopy. The details
in the Real case are presented in Lemmas 4.12 and 4.13.

Applying (3.1) to the class [(C,XA, T )] ∈ KK1(C, A), we have

C
−1
A ◦ ι∗ ◦ ζX([C(T )]) = ι∗ ◦ ζ

KK
X [(C, (T − i)−1 End0A(X)End0

A(X), C
−1 ◦ C(T ))]

= ι∗ ◦ ζ
KK
X [(C, End0A(X)End0

A(X), T )]

= ι∗[(C, XJX , T )] = [(C, XA, T )],

where we used that C(T )− 1 = 2i(T − i)−1 and the resolvent of T has dense range.

Corollary 3.6. The generator of KK1(C, C0(R)) = Z is represented by the unbounded Kas-
parov module (

Cℓ1,

(
C0(R)
C0(R)

)

C0(R)

,

(
0 x
x 0

))
,

where the odd generator of Cℓ1 acts by

(
0 −1
1 0

)
.

Proof. The generator of K1(C0(R)) is given by

u = e−2i tan−1(x)+iπ = −e−2i tan−1(x)

since under the isomorphism C0((−1, 1)) → C0(R) given by t 7→ tan(πt/2) the unitary u
is mapped onto the generator of K1(C0(−1, 1)) described in [18, Example 4.8.7]. We then
calculate the Cayley transform of u and find C−1(u) is the operator of multiplication by x.
Representing the odd Kasparov module as a class in KK1(C, A) gives the desired result.

3.3 The graph projection, even K-theory and index pairings

Theorem 3.5 is a special case of a more general result explicitly relating unbounded Kasparov
theory with van Daele K-theory studied in Section 4. Before going on to describe this relation

13



in general, we complete the picture for complex ungraded algebras by providing an isomorphism
KK(C, A) ∼= K0(A) which is compatible with both the Cayley transform and the Kasparov
product. The following example provides important motivation.

Example 3.7. The generator of K0(C0(R
2)) is well-known to be the external product of the

generator of K1(C0(R)) with itself [18, Example 4.8.7]. It is also known to be the class [pB]−[1]
where [1] denotes the class of the trivial line bundle and

pB(x, y) =
1

1 + x2 + y2

(
1 x− iy

x+ iy x2 + y2

)

is the Bott projector. Using the unbounded external Kasparov product (see [2]) we easily find
that the external product of two copies of the generator of KK1(C, C0(R)) from Corollary 3.6
to be represented by

(
C,

(
C0(R

2)
C0(R

2)

)

C0(R2)

, T =

(
0 x− iy

x+ iy 0

))
.

To relate these two representatives, we recall the general representation of K-theory classes
below. ⋄

Let A be a complex C∗-algebra. Any class in K0(A) can be represented by a difference
[p] − [q] where for some N ∈ N and unitisation Ab we have projections p, q ∈ MN (Ab) and
some W ∈ MN (Ab) such that WpW ∗ − q ∈ MN (A). Excision says that we can always take
Ab = A∼, the minimal unitisation, and W can be taken to be a lift of a partial isometry over
A∼/A.

More generally, Morita invariance ofK-theory says that if p, q ∈ Mult(A⊗K) are projections in
the multiplier algebra such that there existsW ∈ Mult(A⊗K) unitary withWpW ∗−q ∈ A⊗K,
then [p]− [q] ∈ K0(A⊗K) ∼= K0(A) and all classes are of this form.

Theorem 3.8. If T : Dom(T ) ⊂ XA → XA is an (unbounded regular) odd self-adjoint operator
on the graded C∗-module XA with compact resolvent, let PT+

∈ EndA(X) be the graph projection
of T+ : X+ → X− and PX−

the projection onto the negative part of XA. Then

[PT+
]− [PX−

]

defines a class in K0(A). The map

KK(C, A) ∋ [(C,XA, T )] 7→ [PT+
]− [PX−

] ∈ K0(End
0
A(X)) ∼= K0(A)

provides an inverse to the isomorphism K0(A) → KK(C, A)

[p]− [q] 7→
[(

C, p(A∼)NA ⊕ q(A∼)NA ,

(
0 W ∗

W 0

))]
, WpW ∗ − q ∈MN (A). (3.2)

Proof. That the groups K0(A) and KK(C, A) are isomorphic is [22, Theorem 3, Section 6] in
the unital case and [22, Corollary 2, Section 6] in general. The remainder of the proof is a
careful reiteration of [22, Corollary 2, Section 6]. By [2] every Kasparov class in KK(C, A)
with A σ-unital can be represented by an unbounded Kasparov module (C,XA, T ), where
unbounded means ‘not necessarily bounded’.
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Given (C,XA, T ), the graph projection of T+ is

PT+
=

(
(1 + T ∗

+T+)
−1 (1 + T ∗

+T+)
−1T ∗

+

T+(1 + T ∗
+T+)

−1 T+(1 + T ∗
+T+)

−1T ∗
+

)

=

(
(1 + T ∗

+T+)
−1 (1 + T ∗

+T+)
−1T ∗

+

T+(1 + T ∗
+T+)

−1 PX−
− (1 + T+T

∗
+)

−1

)
. (3.3)

Hence PT+
= PX−

mod End0A(X), and so [PT+
]− [PX−

] defines a K-theory class for End0A(X)
and so a class in K0(A). In addition there is an isomorphism

v+ =
(
(1 + T ∗

+T+)
−1/2, (1 + T ∗

+T+)
−1/2T ∗

+

)
:

(
X+

X−

)
→ X+

with v+v
∗
+ = 1X+

and v∗+v+ = PT+
. Thus provided that (1+T ∗

+T+)
−1/2T ∗

+ ∈ End0A(X) we have

[PT+
]− [PX−

] = [PX+
]− [PX−

]. (3.4)

To show that Equation (3.2) is an inverse to the graph projection map, we need to consider
classes in K0(A ⊗ K). The analogue of the map (3.2) for K0(A ⊗ K) → KK(C, A) can be
written (for a separable Hilbert space H) as

K0(A⊗K) ∋ [p]− [q] 7→
[(

C, p(H ⊗A∼)A ⊕ q(H ⊗A∼)A,

(
0 W ∗

W 0

))]
. (3.5)

We can consider the modules as being over A or A∼, as the difference lives in K0(A).

Now let (C,XA, T ) be an even Kasparov module over A and map it to [PT+
] − [PX−

] ∈
K0(End

0
A(X)) ∼= K0(A). The formula (3.3) for the graph projection shows that we obtain a

Kasparov module 
C,


PT+

(
X+

X−

)

X−




A

,



0 0 0
0 0 1
0 1 0




 .

One can now check directly that the map [(C,XA, T )] 7→ [PT+
] − [PX−

] is well-defined and
provides an inverse to the isomorphism in Equation (3.5).

Remark 3.9. In the next section we will consider a more general approach which is compatible
with real structures and gradings. We will compare the more general method with the graph
projection approach in Remark 4.17. ⋄

Returning to Example 3.7 and the Kasparov module

(
C,

(
C0(R

2)
C0(R

2)

)

C0(R2)

, T =

(
0 x− iy

x+ iy 0

))
,

we obtain precisely Px+iy = pB the Bott projection. Observe that with this representative
of the class [pB ] − [1], we can not take the formal difference of modules “[X+] − [X−]”, as
(x ± iy)(1 + x2 + y2)−1/2 is not in the minimal unitisation of C0(R

2). One way to think
about this issue is to observe that both X± are of the form X± = Y± ⊗C0(R)∼ C0(R), with Y±
finite projective C0(R)

∼ modules. The modules Y± can not both be trivial, as x ± iy would
not provide an operator between them: see [40]. The graph projection of the “intertwining
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operator” x+ iy provides the most direct way to access the K-theoretic difference of these two
(seemingly trivial) modules.

The graph projection approach has been exploited many times before in noncommutative
approaches to index theory, see for example [11, 15, 34, 35].

The Cayley transform can be conveniently used to express the index pairing between K1-theory
and K1-homology, as this pairing becomes a Kasparov product when the transform is applied
to the K1-class. We describe such pairings and products in the Appendix. Together with other
known properties of the index pairing, we obtain the following result.

Proposition 3.10. Let (A,H,D) be an odd spectral triple with AH = H, and let u ∈MN (A∼)
be unitary with Cayley transform C−1(u). Suppose that we have an approximate unit vn ∈
C∗((u − 1), (u∗ − 1)) such that [D, vn](1 − u∗) → 0 ∗-strongly. Then with D̃ = D|(u−1)Dom(D),
the index pairing between K1(A) and the spectral triple is given by

〈[u], [D]〉 = sf(D, uDu∗) = Index(PuP − (1− P ))

= Index(C−1(u) + iD̃ : (u− 1)HN → (u− 1)HN ),

where sf(D, uDu∗) is the spectral flow, [36, 37, 10], and P = χ[0,∞)(D) is the non-negative
spectral projection.

Proof. We know from [36, 37, 10, 20] (for instance) that the index pairing of [u] and the class
of (A,H,D) is given by

〈[u], [D]〉 = sf(D, uDu∗) = Index(PuP − (1− P )).

Applying the Cayley transform to the unitary u, the index pairing becomes the Kasparov
product of the class introduced in Proposition 3.4 with the KK-class defined by the spectral
triple,

[(C, (u− 1)AN
A ,C

−1(u))]⊗A [(A,H,D)]

followed by the standard isomorphism KK(C,C) ∋ [(C,H, T )] 7→ Index(T+) ∈ Z. Observing
that (u− 1)AN ⊗A H = (u− 1)HN , a representative of this product is given by

(
C, (1− u)HN ⊗ C

2,

(
0 C−1(u)− iD̃

C−1(u) + iD̃ 0

))
,

see Theorem A.2. Taking the index,

Index(PuP ) = sf(D, uDu∗) = Index(C−1(u) + iD̃ : (u− 1)HN → (u− 1)HN ).

More general odd Kasparov products can be handled by Theorem A.2 in the appendix.

Example 3.11. Let A = C(S1) and take the usual spectral triple µ = (C∞(S1), L2(S1), 1i
d
dθ )

for the circle. For u = e−iθ, −π ≤ θ ≤ π, we can represent the Cayley transform on the domain
of functions vanishing (fast enough) at θ = 0 by C−1(u) = cot(θ/2). Example A.3 checks that
the product [e−i•]⊗C(S1) µ is represented by the spectral triple

(
C, L2(S1)⊗ C

2,

(
0 − d

dθ + cot(θ/2)
d
dθ + cot(θ/2) 0

))
.

The equation dy
dθ±cot(θ/2)y = 0 is satisfied for the function y = C(sin(θ/2))±2 with C constant,

and while (sin(θ/2))2 is square-summable, (sin(θ/2))−2 is not. Hence Ker( d
dθ + cot(θ/2)) =

span{(sin(θ/2))2} and Index
(

d
dθ +cot(θ/2)

)
= 1. We have therefore obtained the correct index,

giving a check of signs. ⋄
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4 A graded Cayley isomorphism between DK-theory and KK-theory

In this section we define a graded version of the Cayley transform on C∗-modules which allows
us to define an explicit map between van Daele K-theory and KK-theory. As in the complex
ungraded case, we show this map is an isomorphism and consider some applications of this
result in Sections 5 and 6.

4.1 The Cayley transform on graded Hilbert modules

Here we extend results on the Cayley transform to odd operators on graded Hilbert C∗-modules.
Throughout this section we assume that the Hilbert C∗-module XA is balanced graded, i.e.,
EndA(X) has at least one OSU.

Definition 4.1. Let XA be a countably generated and balanced graded C∗-module with OSU
e ∈ EndA(X). Suppose T is an odd self-adjoint regular (possibly unbounded) right-A-linear
operator that anti-commutes with e. Define

Ce(T ) := e(T + e)(T − e)−1

as the graded Cayley transform of T relative to e.

We first note that Ce(T ) is well-defined as (T ±e)2 = 1+T 2, so (T −e)−1 is bounded. Moreover
the range of (T − e)−1 is Dom(T ), and so Ce is everywhere defined and bounded.

Lemma 4.2. The operator Ce(T ) is an odd self-adjoint unitary on XA. Moreover, if (1+T 2)−1

is compact then Ce(T )− e is compact.

Proof. Clearly Ce(T ) is odd, and since eT = −Te we have T (T − e)−1 = (T + e)−1T and
e(T − e)−1 = (−T − e)−1e. Then we see that Ce(T ) is self-adjoint by computing

(e(T + e)(T − e)−1)∗ = (T − e)−1(T + e)e = T (T + e)−1e− e(T + e)−1e

= T (e(T + e))−1 − (e(T + e)e)−1 = (Te− 1)(−T + e)−1 = e(T + e)(T − e)−1.

Now we compute the square by

Ce(T )
2 = e(T + e)(T − e)−1e(T + e)(T − e)−1 = e(T + e)e(−T − e)−1(T + e)(T − e)−1

= −e(T + e)e(T − e)−1 = −e2(−T + e)(T − e)−1 = 1.

We have
Ce(T )− e = e((T + e)− (T − e))(T − e)−1 = 2(T − e)−1.

Since compact operators are closed under continuous functional calculus and an ideal, com-
pactness of (1 + T 2)−1 implies compactness of |T − e|−1 which then implies compactness of
(T − e)−1. As a consequence, if (1 + T 2)−1 is compact then Ce(T )− e is compact as well.

Remark 4.3. We can recover the ungraded Cayley transform as a special case of our graded
map. Namely, if YA is an ungraded C∗-module, we consider XA = YA ⊗ C

2 with the obvious
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grading. Then for S a self-adjoint regular operator on YA, we consider T = S ⊗ σ2 and

e = 1⊗ σ1. Using

(
0 a
b 0

)−1

=

(
0 b−1

a−1 0

)
we obtain

Ce(T ) =

(
0 1
1 0

)(
0 −iS + 1

+iS + 1 0

)(
0 (iS − 1)−1

(−iS − 1)−1 0

)
=

(
0 C(S)∗

C(S) 0

)
.

If (1 + S2)−1 ∈ End0A(Y ), then C(S)− 1 ∈ End0A(Y ) and Ce(T )− 1⊗ σ1 ∈ End0A(X). ⋄

For the inverse Cayley transform, we again consider self-adjoint odd unitaries relative to a base
point OSU e.

Definition 4.4. Let XA be a balanced graded C∗-module with U, e ∈ EndA(X) odd self-
adjoint unitaries. Define

C
−1
e (U) := e(U + e)(U − e)−1

with domain (U − e)XA.

We let (U − e)XA be the closure of Dom(C−1
e (U)) in XA where, by construction, C−1

e (U) is
densely defined.

Lemma 4.5. Let XA be a countably generated and balanced graded C∗-module with OSU
e ∈ EndA(X). If U ∈ EndA(X) is an odd self-adjoint unitary, the operator C−1

e (U) is an odd
self-adjoint regular (possibly unbounded) operator on (U − e)XA which anti-commutes with e.
Moreover, if U − e is compact, then (1 + C−1

e (U)2)−1/2 is a compact operator on (U − e)XA.

Proof. It is immediate that C−1
e (U) is odd. Since e and U are OSUs we have e(U±e) = (e±U)U .

Hence e(U−e)XA = (e−U)UXA = (U−e)XA showing that the domain (U−e)XA is preserved
by e. Furthermore, for any ψ ∈ (U − e)XA,

e(U ± e)−1ψ =
(
(U ± e)e−1

)−1
ψ =

(
U(e± U)

)−1
ψ = (e± U)−1Uψ.

Therefore e anti-commutes with (U +e)(U −e)−1 and hence also with C−1
e (U) (on the domain)

since

eC−1
e (U) = e2(U + e)(U − e)−1 = e(e+ U)U(U − e)−1 = e(e+ U)(e− U)−1e = −C

−1
e (U)e.

To show that C−1
e (U) is self-adjoint and regular, we employ [32, Theorem 10.4]. Consider the

operator F = 1
2Ce(U)(2−Ue− eU)1/2 = 1

2e(Ue+1)(Ue−1)−1(2−Ue− eU)1/2 . This operator
is self-adjoint by direct computation using the normality of Ue, has norm bounded above by
1, and also

F 2 =
1

4
(2 + eU + Ue) and so

1− F 2 =
1

2
−

1

4
(eU + Ue) =

1

4
(2− eU − Ue) =

1

4
(eU − 1)(Ue − 1)

which shows that 1− F 2 is positive. The operator C−1
e (U) is defined on the range of (U − e),

which by the unitarity of e is the same as the range of (Ue− 1). The operator (1− F 2)1/2 =
1
2 |(Ue− 1)| then has dense range equal to (U − e)XA.
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We can now apply [32, Theorem 10.4] which implies that the operator F (1 − F 2)−1/2 is a
densely defined, regular self-adjoint operator on (U − e)XA. This operator is

F (1− F 2)−1/2 =
1

2
e(Ue + 1)(Ue − 1)−1(2− Ue− eU)1/2

(1
4
(2− Ue− eU)

)−1/2

= e(Ue+ 1)(Ue − 1)−1 = e(U + e)(U − e)−1 = C
−1
e (U)

and so we find that C−1
e (U) is regular and self-adjoint.

Next we compute 1 + C−1
e (U)2 = 1 + C−1

e (U)∗C−1
e (U), where

1 + C
−1
e (U)∗C−1

e (U) = 1 + (U − e)−1(U + e)(U + e)(U − e)−1

= 1 + (2 + eU + Ue)(2 − eU − Ue)−1

= 4(2 − eU − Ue)−1 = 4(U − e)−2. (4.1)

Therefore (1 + C−1
e (U)2)−1/2 = 1

2 |U − e|, which is compact if U − e is compact.

Remark 4.6. We again show how to recover the ungraded case. Take YA ungraded and XA =

YA ⊗ C
2. Then odd self-adjoint unitaries U take the form U =

(
0 V ∗

V 0

)
with V ∈ EndA(Y )

unitary. We then compute for e = 1⊗ σ1,

C
−1
e (U) =

(
0 1
1 0

)(
0 (V ∗ + 1)

(V + 1) 0

)(
0 (V − 1)−1

(V ∗ − 1)−1 0

)

=

(
0 (V + 1)(V − 1)−1

(V ∗ + 1)(V ∗ − 1)−1 0

)

= C
−1(V )⊗ σ2

with C−1(V ) the ungraded Cayley transform of V . ⋄

Remark 4.7. If XA is a balanced Z2-graded module over the non-trivially Z2-graded algebra
A, then it is not necessarily the case that the even and odd halves XA = (X+ ⊕ X−)A are
isomorphic with XA = (X+ ⊕ UX+)A and the isomorphism U providing an OSU Ũ = ( 0 U∗

U 0 )

in EndA(X). The issue is that Ũ need not be adjointable. ⋄

In a sense which we will make precise, the maps Ce and C−1
e are mutual inverses.

Proposition 4.8. Let XA be a countably generated and balanced graded C∗-module with OSU
e ∈ EndA(X). If T is an odd self-adjoint regular operator which anti-commutes with e then
C−1
e ◦ Ce(T ) = T on XA. If U ∈ EndA(X) is an OSU, then Ce ◦ C

−1
e (U) is the restriction of U

to (U − e)XA.

Proof. Let x be a right-A-linear operator on XA and YA ⊂ XA be a submodule on which
(x−e)−1 is well-defined. Apart from their domains, both expressions C−1

e ◦Ce(x) and Ce◦C
−1
e (x)

are equal to e
(
e(x+e)(x−e)−1+e

)(
e(x+e)(x−e)−1−e

)−1
. As (x+e)(x−e)−1−1 = 2e(x−e)−1

the above expression is well-defined on YA and given by

e
(
e(x+ e)(x− e)−1 + e

)(
e(x+ e)(x− e)−1 − e

)−1
= x.

For the first statement we substitute x = T and YA = XA, which is possible as T anti-commutes
with e. For the second statement we take x = U and YA = (U − e)XA.
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As in the ungraded case, for U ∈ EndA(X) unitary, Ce ◦ C−1
e (U) is the restriction of U to

the C∗-module (U − e)XA, which need not recover all of XA in general. However, we have a
graded analogue of Lemma 3.3 describing the K-theory classes.

Lemma 4.9. Let A be a balanced graded unital C∗-algebra and U, V ∈ A odd self-adjoint
unitaries. Define the ideal J = A(U − V )A. Then U, V defines a class in [U ]J−[V ]J ∈ DK(J),
and with ι : J →֒ A the inclusion ι∗([U ]J − [V ]J) = [U ]− [V ] ∈ DK(A).

Proof. We see that U = V modulo J and so q∗([U ] − [V ]) ∈ DK(A/J) will be trivial for
q : A → A/J the quotient map. By [12, Proposition 2.3] there is an even unitary w over A/J
in the connected component of the identity such that

q

((
U 0
0 V

)
⊕ σ1 ⊕ · · · ⊕ σ1

)
= w

((
0 1
1 0

)
⊕ σ1 ⊕ · · · ⊕ σ1

)
w−1.

Since w is in the connected component of the identity, it lifts to an even unitary w̃ in A
connected to the identity and such that

W := w̃−1

((
U 0
0 V

)
⊕ σ⊕n

1

)
w̃ (4.2)

is equal to σ
⊕(n+1)
1 modulo J⊗̂Cℓ1,1. Hence the unitary W of (4.2) is a unitary over J∼⊗̂Cℓ1,1.

Now we have

[W ]− [σ
⊕(n+1)
1 ] =

[(
U 0
0 V

)]
− [σ1] ∈ DK(A)

because w̃ is an even unitary over A connected to the identity. Since W is a unitary over

J∼⊗̂Cℓ1,1, we may define a class in DK(J) by [W ]J − [σ
⊕(n+1)
1 ]J , where the J just indicates

that we regard these as unitaries over J∼⊗̂Cℓ1,1. Applying the inclusion map

ι∗([W ]J − [σ
⊕(n+1)
1 ]J) = [W ]− [σ

⊕(n+1)
1 ] =

[(
U 0
0 V

)]
− [1⊗ σ1] = [U ]− [V ] ∈ DK(A)

where we have applied the isomorphism from (2.2) in the last equality.

Lastly, we note that the graded Cayley transforms do not involve any complex structure and
therefore are valid also for operators on real Hilbert modules.

4.2 The isomorphism of DK and KK

Here we use our results on the graded Cayley transform to construct an explicit isomorphism
between the van Daele K-group DK(A) and KK-group KK(Cℓ1,0, A). To cover the complex
and real case simultaneously, we work with KKR-theory and real structures.

Using [2] and Remark 2.9, we represent any class inKKR(Cℓ1,0, A) by an unbounded Kasparov
module (e,XA, T ), where XA is a countably generated and balanced graded Real C∗-module,
e2 acts as the identity and e anti-commutes with T .

Let us first describe a map C : DK(A) → KKR(Cℓ1,0, A).
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Lemma 4.10. Let A be a unital and balanced graded algebra with V, W ∈Mn(A) OSUs. The
inverse Cayley transform induces a homomorphism C : DK(A, rA) → KKR(Cℓ1,0, A),

C([V ]− [W ]) =
[
(W, (V −W )An

A, C
−1
W (V ))

]
, C

−1
W (V ) =W (V +W )(V −W )−1.

If A is non-unital and weakly balanced graded, and B is any balanced graded unital algebra
containing A as a graded ideal, then we can use the Cayley transform to define a homomorphism
C : DK(B,B/A, rA) → KKR(Cℓ1,0, A)

C([V ]− [W ]) =
[
(W, (V −W )Bn

A, C
−1
W (V ))

]
=
[
(W, (V −W )An

A, C
−1
W (V ))

]
.

If A is not balanced nor weakly balanced, let ξCℓ1,1 = ·⊗̂[(Cℓ1,1,C
2
C, 0)] be the isomorphism

given by the external Kasparov product with the class of the Morita equivalence (Cℓ1,1,C
2
C
, 0).

Then given OSUs V,W ∈ Mn(A
∼⊗̂Cℓ1,1), the Cayley transform defines a homomorphism

C : DK(A, rA) → KKR(Cℓ1,0, A)

C([V ]− [W ]) = ξCℓ1,1
[
(W, (V −W )(A⊗̂Cℓ1,1)nA⊗̂Cℓ1,1

, C−1
W (V ))

]

=
[
(W, (V −W )(A⊗ C2)nA, C

−1
W (V ))

]
. (4.3)

Observe that the map (4.3) encompasses all cases stated in the proposition.

Proof. We deal with the unital and balanced case, as the other cases are only notationally
more complex.

As V and W are odd and Real, C−1
W (V ) is also odd and C

−1
W (V )r = C

−1
W (V ). We note that

W (V ± W ) = (W ± V )V , so (W − V )WAn
A = (V −W )An

A. Thus the action of both the
generator of Cℓ1,0 and V preserve the A-module and the domain of C−1

W (V ). Applying Lemma
4.5, C−1

W (V ) is self-adjoint, regular, anti-commutes with the Cℓ1,0-action and (1+C
−1
W (V )2)−1/2

is compact. Hence we obtain a Real (unbounded) Kasparov module so all that is left is to
make sure that the map C is well-defined.

Suppose that we have a continuous path of odd self-adjoint unitaries [0, 1] ∋ t 7→ Vt, with
[Vt] − [W ] ∈ Ker q∗ and V r

t = Vt for all t. The continuity of Vt ensures that the pointwise
C∗-module (Vt −W )An

A can be extended to a A ⊗ C([0, 1])-module, (V• −W )An
A⊗C([0,1]),

where the real structure on A⊗C([0, 1]) ∼= C([0, 1], A) is such that ar(t) = (a(t))rA . Recalling
Equation (4.1), the bounded transform of C−1

W (Vt) is given by

Ft =
1

2
W (Vt +W )(Vt −W )−1|Vt −W |

for all t. Once again the continuity of Vt ensures that {Ft}t∈[0,1] is a well-defined and self-adjoint

operator F• on (V• −W )An
A⊗C([0,1]). Assembling this information and using the pointwise

properties of Ft, we obtain a Kasparov module

(
W, (V• −W )An

A⊗C([0,1]), F•
)
.

We therefore obtain a homotopy in KKR and, hence, C is well-defined. It is easily seen that
C respects direct sums and so is a homomorphism.
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Remark 4.11. Let us briefly note that if WV +VW = 0, so W and V are homotopic as OSUs,
then the resulting Kasparov module (W, (V −W )An

A, C
−1
W (V )) is degenerate. We first observe

that if W and V anti-commute, (W − V )−1 = 1
2(W − V ) and so

C
−1
W (V ) =

1

2
W (W + V )(V −W ) =

1

2
(V −WVW ) = V.

Hence the Kasparov module simplifies to (W, (V −W )An
A, V ) which is clearly degenerate. ⋄

To define a map from KK to DK, we need to know that our construction is compatible with
Morita invariance. To work with explicit cycles, we also need to consider C∗-modules that
are not full. The first issue arises because for a Kasparov module (e,XA, T ), we most easily
construct OSUs in EndA(X) and need to get back to the coefficient algebra. This is the Morita
invariance requirement.

If X is not full, then the Cayley transformation will only have range in JX = span(X|X)A.
Hence we also need to understand the dependence of the Cayley transformation on the inclusion
JX →֒ A. The next two lemmas address these points.

Lemma 4.12. Let A be a unital and balanced graded algebra with V, W ∈Mn(A) OSUs, and
let J = An(V −W )An. Then we have classes [V ]J − [W ]J ∈ DK(J) and [V ]− [W ] ∈ DK(A)
related by ι∗([V ]J − [W ]J) = [V ]− [W ] where ι : J → A is the inclusion.

Letting C
A : DK(A, rA) → KKR(Cℓ1,0, A) and C

J : DK(A,A/J)) → KKR(Cℓ1,0, J) be the
homomorphisms of Lemma 4.10, we have

C
A ◦ ι∗([V ]J − [W ]J) = C

A([V ]− [W ]) = ι∗ ◦ C
J([V ]J − [W ]J).

Proof. The first statements are proved in Lemma 4.9. The subsequent equalities are true by
the construction of the Kasparov modules.

Lemma 4.13. Let XA be a balanced graded Real C∗-module with JX = span(X|X)A. The maps

CJX : DK(JX) → KKR(Cℓ1,0, JX ) and CEnd0A(X) : DK(End0A(X)) → KKR(Cℓ1,0,End
0
A(X))

are such that
C
JX ◦ ζX = ζKK

X ◦ CEnd0A(X)

where ζX : DK(End0A(X))
≃
−→ DK(JX) is the isomorphism of Equation (2.7) and ζKK

X =
·⊗̂End0

A(X)

[
(End0A(X),XJX , 0)

]
the Morita isomorphism in KK.

Proof. Let [U ] − [V ] ∈ DK(End0A(X)), so that U, V ∈ Mn(End
0
A(X)∼⊗̂Cℓ1,1) with U −

V ∈Mn(End
0
A(X)⊗̂Cℓ1,1). Because we deal with matrices over End0A(X)∼⊗̂Cℓ1,1, the Morita

isomorphism of Lemma 2.6 gives that

C
JX ◦ ζX([U ]− [V ]) = C

JX ([W2n(Ũ ⊕ Z⊕n ⊕ V ⊕ Z⊕n)W ∗
2n]− [W2nẐ

⊕nW ∗
2n])

=





Ẑ

⊕n,




Ũ 0 −1 0
0 0 0 0
−1 0 V 0
0 0 0 0



(
X ⊕ Ĥ

)⊕2n

JX
, C−1

Ẑ⊕n
(Ũ ⊕ Z⊕n ⊕ V ⊕ Z⊕n)





 ,
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where we have removed W2n using unitary invariance of KK-classes. Similarly, we have that

ζKK
X ◦ CEnd0A(X)([U ]− [V ]) = ζKK

X ([(V, (U − V ) End0A(X)nEnd0
A(X), C

−1
V (U))])

=
[
(V, (U − V )Xn

JX
, C−1

V (U))].

As in the proof of Lemma 4.10, the continuous homotopy from U to Ũ gives a homotopy of
Kasparov modules.

To complete the proof, we homotopy the Kasparov module representing C
JX ◦ ζX([U ] − [V ]).

First observe that 


sin(t)V 0 cos(t)1n 0
0 Z⊕n 0 0

cos(t)1n 0 sin(t)V 0
0 0 0 Z⊕n




is a homotopy of OSUs. This yields a homotopy of C∗-modules




Ũ − sin(t)V 0 − cos(t)1n 0
0 0 0 0

− cos(t)1n 0 V − sin(t)V 0
0 0 0 0



(
X ⊕ Ĥ

)⊕2n

JX

to (Ũ − V )Xn
JX

⊕ 0. Simultaneously, we obtain a homotopy of operators from C
−1

Ẑ⊕
(Ũ ⊕Z⊕n⊕

V ⊕Z⊕n) to C
−1
V (Ũ)⊕ 0 compatible with the obvious path of domains and the (constant) left

action of Cℓ1,0. Thus

C
JX ◦ ζX([U ]− [V ]) = [(V, (Ũ − V )Xn

JX
, C−1

V (Ũ))]

= ζKK
X ◦ CEnd0A(X)([U ]− [V ]).

We now consider the map KKR(Cℓ1,0, A) → DK(A).

Lemma 4.14. Let (e,XA, T ) be an unbounded Real Kasparov module with e2 = 1X and e

anti-commuting with T . Let JX = span(X|X)A, ζX : DK(EndA(X),EndA(X)/End0A(X))
≃
−→

DK(JX) the isomorphism of Corollary 2.7 and ι : JX →֒ A the inclusion. Then the Cayley
transform defines a homomorphism A : KKR(Cℓ1,0, A) → DK(A, rA),

KKR(Cℓ1,0, A) ∋ [(e,XA, T )]
A
7−→ ι∗ ◦ ζX

(
[Ce(T )]− [e]

)
∈ DK(A, rA).

Proof. Lemma 4.2 tells us that Ce(T ) = e(T + e)(T − e)−1 is odd, self-adjoint, unitary,
Ce(T ) − e ∈ End0A(X) and Ce(T )

r = Ce(T )
r. Hence we obtain a class [Ce(T )] − [e] ∈

DK(EndA(X), EndA(X)/End0A(X)). Thus ι∗ ◦ ζX
(
[Ce(T )] − [e]

)
is a well-defined element

in DK(A, rA) and we just need to check that the map respects the relevant equivalence rela-
tions. We use the equivalence relation on KKR generated by unitary equivalence, addition of
degenerate Kasparov modules and operator homotopy [4, Section 17].

Any (bounded) degenerate Kasparov module (e,XA, F ) has F invertible and anticommuting
with e. So suppose that the operator T of our unbounded Kasparov module (e, XA, T ) is
invertible, self-adjoint and graded commutes with the Cℓ1,0-action. The phase of T then
defines a degenerate bounded Kasparov module, whose class in KKR is zero. Consider the
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homotopy V (λ) = e(T + eλ)(T − eλ)−1 for λ ∈ [0, 1]. Using the normality of T , we compute
that for λ, ̺ ∈ [0, 1],

e(T + λe)(T − λe)−1 − e(T + ̺e)(T − ̺e)−1 = 2e(λ− ̺)T (T − ̺e)−1(T − λe)−1.

Hence the map λ 7→ V (λ) is norm continuous as T (T − ̺e)−1(T − λe)−1 is uniformly bounded
since T is invertible. The path is also invariant under the real structure as T r = T and er = e.
We obtain a homotopy of OSUs such that

V (λ)− e ∈ End0A(X), V (1) = e(T + e)(T − e)−1 ∼ V (0) = e

and [Ce(T )]− [e] = 0. Thus degenerate Kasparov classes map to zero.

Given an operator homotopy (e,XA, Ft) of bounded Kasparov modules with F0 = T (1 +
T 2)−1/2, we can define the class

(
Cℓ1,0, (X ⊗ C([0, 1]))A⊗C([0,1]), F•

)

as a bounded Kasparov module. As shown in [14, Proposition 2.8, Theorem 2.9], there is
some self-adjoint regular T• such that FT•

is F•, and we can moreover take T0 to be operator
homotopic to T . Averaging allows us to ensure that Tte+ eTt = 0 and T r

t = Tt for all t ∈ [0, 1].
Then we have a homotopy of unbounded operators Tt such that Tt(1 + T 2

t )
−1/2 is operator

norm continuous for all t. Then using (Tt − e)−2 = (1 + T 2)−1 we compute

e(Tt + e)(Tt − e)−1 = e(Tt + e)(1 + T 2
t )

−1/2(1 + T 2
t )

1/2(Tt − e)−1

= e(Tt + e)(1 + T 2
t )

−1/2(1 + T 2
t )

1/2(Tt − e)(Tt − e)−2

= e(Tt + e)(1 + T 2
t )

−1/2(Tt − e)(1 + T 2
t )

−1/2 (4.4)

which is a product of norm continuous paths by assumption. So we obtain a homotopy of
odd Real self-adjoint unitaries. Then the class [Ce(Tt)] − [e] is constant in the relative group
DK(EndA(X),EndA(X)/End0A(X)) for all t ∈ [0, 1] and so A is constant under operator
homotopies.

The invariance of the map under unitary equivalence is a simple check. Finally, because group
addition is induced by the direct sum, it follows that A is a homomorphism.

We combine Lemmas 4.10 and 4.14 to obtain our main result.

Theorem 4.15. The homomorphisms A : KKR(Cℓ1,0, A) → DK(A, rA) and C : DK(A, rA) →
KKR(Cℓ1,0, A) are mutually inverse isomorphisms.

Proof. We do not assume that the unitisation A∼ is balanced graded, so the homomorphism
C : DK(A, rA) → KKR(Cℓ1,0, A) is defined as in (4.3).

We have already shown that A : KKR(Cℓ1,0, A) → DK(A) and C
A : DK(A) → KKR(Cℓ1,0, A)

are well-defined. We just need to show they are mutual inverses.

We first consider C ◦ A. Take an element [(e,XA, T )] ∈ KKR(Cℓ1,0, A) with e2 = 1X and e
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anti-commuting with T . We set JX = span(X|X)A and compute using Lemmas 4.12 and 4.13,

[(e,XA, T )]
A
7−→ ι∗ ◦ ζX

(
[Ce(T )]− [e]

)

C
7−→ C

A ◦ ι∗ ◦ ζX
(
[Ce(T )]− [e]

)

= ι∗ ◦ C
JX ◦ ζX

(
[Ce(T )]− [e]

)

= ι∗ ◦ ζ
KK
X ◦ CEnd0A(X)

(
[Ce(T )]− [e]

)

= ι∗ ◦ ζ
KK
X

[
(e, (T − e)−1 End0A(X)End0A(X), C

−1
e ◦ Ce(T ))

]

= ι∗ ◦ ζ
KK
X

[
(e, End0A(X)End0

A(X), T )
]

= ι∗
[
(e, XJX , T )

]

=
[
(e, XA, T )

]
,

where we have used that Ce(T )−e = 2(T−e)−1, (T−e)−1 has dense range, and C−1
e ◦Ce(T ) = T

by Proposition 4.8.

We now consider A ◦ C. We do not assume A∼ is balanced graded and so consider OSUs
U, V ∈Mn(A

∼⊗̂Cℓ1,1) with U − V ∈Mn(A⊗̂Cℓ1,1). Our Cayley map then gives

C
(
[U ]− [V ]

)
=
[
(V, (U − V )(A⊗̂C2)nA, C

−1
V (U))

]
.

We let YA = (U − V )(A⊗̂C2)nA and recall from Proposition 4.8 that C−1
V ◦ CV (U) = U |Y . We

let JY = span(Y |Y )A and use Equation (2.7) and Lemma 4.12 to compute

A ◦ C
(
[U ]− [V ]

)
= ι∗ ◦ ζY

(
[U |YA

]End
0
A(Y ) − [V |Y ]

End0A(Y )
)

= ι∗
(
[W2(Ũ |YA

⊕ Z ⊕ V |YA
⊕ Z)W ∗

2 ]
JY − [W2ẐW

∗
2 ]

JY
)

= ι∗
(
[W2(U |YA

⊕ Z ⊕ V |YA
⊕ Z)W ∗

2 ]
JY − [W2ẐW

∗
2 ]

JY
)

= [W2(U ⊕ Z ⊕ V ⊕ Z)W ∗
2 ]− [W2ẐW

∗
2 ]

=

[(
U 0
0 V

)]
−

[(
0 1n
1n 0

)]
∈ DK(A⊗̂Cℓ1,1).

This completes the proof. If A is balanced graded, then we can apply (the inverse of) the
isomorphism (2.2) to recover [U ]− [V ] ∈ DK(A) explicitly.

For completeness, let us list a few immediate corollaries of our result.

Corollary 4.16. 1. Let A be a graded C∗-algebra. Then KK(Cℓ1, A) ∼= DK(A).

2. Let B be a real C∗-algebra, B = ArA for some Real C∗-algebra A. Then KKO(Cl1,0, B) ∼=
DK(B).

3. Recall the complex graded K-theory groups Kgr
j (A) := KK(C, A⊗̂Cℓj) from [31]. Then

DK(A) ∼= Kgr
1 (A).

4. Let KR′(A) = [C0(R), A⊗̂K] denote the group of Z2-graded and Real asymptotic mor-
phisms from [47], where C0(R) has grading α such that α(f)(x) = f(−x) and real struc-
ture by complex conjugation. Then KR′(A⊗̂Cℓ0,1) ∼= DK(A).
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Proof. The first two results come from either ignoring the real structure or passing to a real
subalgebra. For the third statement, we use that

DK(A) ∼= KK(Cℓ1, A) ∼= KK(Cℓ2, A⊗̂Cℓ1) ∼= KK(C, A⊗̂Cℓ1) = Kgr
1 (A),

where we take the external product by 1KK(Cℓ1,Cℓ1) and use the Morita equivalence between
Cℓ2 and C. Similarly, it is shown in [47, Theorem 4.7] that KR′(A) ∼= KKR(C, A). Hence

KR′(A⊗̂Cℓ0,1) ∼= KKR(C, A⊗̂Cℓ0,1) ∼= KKR(Cℓ1,0, A) ∼= DK(A).

Remark 4.17. Let us briefly consider the map A applied to a complex Kasparov module
(C,XA, T ) with A trivially graded. We first inflate this Kasparov module to a class in
KK(Cℓ1, A ⊗ Cℓ1) by taking the external product with the ring identity of KK(Cℓ1,Cℓ1).
Given the Kasparov module (e, (X⊗̂Cℓ1)A⊗̂Cℓ1

, T ⊗̂1), we choose the ‘ordered basis’

(X⊗̂Cℓ1)A⊗̂Cℓ1
=
[
(X+ ⊗Cℓ1,+)⊕ (X− ⊗ Cℓ1,−)⊕ (X+ ⊗ Cℓ1,−)⊕ (X− ⊗ Cℓ1,+)

]
A⊗̂Cℓ1

and then compute

Ce(T )− e = 2(T − e)−1 =

(
02 (T̃ − σ3)

−1

(T̃ − σ3)
−1 02

)
, T̃ =

(
0 T− ⊗ 1

T+ ⊗ 1 0

)

with T± : X± → X∓. Further expanding and supressing the tensor product notation

(T̃ − σ3)
−1 =

(
−(1 + T−T+)−1 T−(1 + T+T−)−1

T+(1 + T−T+)−1 (1 + T+T−)−1

)
= PT−

− PX+
.

Hence, as an operator on (X⊗̂Cℓ1)A⊗̂Cℓ1
∼=
(X+

X−

)⊕2

A⊗̂Cℓ1
, Ce(T ) − e acts as (PT−

− PX+
) ⊗ σ1.

Therefore our general Cayley map A is precisely the negative of the graph projection map we
employed in Section 3.3. ⋄

5 Applications to real and complex K-theory

In this section we consider some special cases of Theorem 4.15 to study examples and problems
coming from real and complex K-theory.

5.1 Unitary descriptions of K-theory

Given a complex and ungraded C∗-algebra A with real structure rA, we know from [22, §5]
that there are isomorphisms KKR(Cℓr,s, A) ∼= KOr−s(A

rA), where this identification is shown
via a (generalised) Clifford-module index, see [43, Section 2.2].

Alternatively, descriptions of KO-theory using Real C∗-algebras and unitaries have appeared
in [6] and [23, Section 5.6]. In this section, we show in a few cases how these unitary descriptions
of KO-theory are compatible with our Cayley isomorphism. We note that many of these
descriptions will be of use to us for studying the bulk invariants of topological insulators in
Section 6.
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Example 5.1 (Trivially graded algebras and KO1). Let A be trivially graded and (e,XA, T ) an
unbounded Real Kasparov module representing an element inKKR(Cℓ1,0, A). As A is trivially
graded, without loss of generality we can write XA

∼= YA⊕YA with YA an ungraded C∗-module.
Because T anti-commutes with the generator Cℓ1,0 generator, our Kasparov module reduces
to the form

(
e, YA ⊗ C

2, T = T+ ⊗ f
)
, e =

(
0 1
1 0

)
, f =

(
0 −1
1 0

)
,

with T ∗
+ = −T+. The real structure on C

2 is pointwise complex conjugation, which ensures
that er = e, f r = f and T r

+ = T+.

Because T+ is skew-adjoint (T+ ± 1) is invertible and we compute

Ce(T ) = e(T + e)(T − e)−1 =

(
0 1
1 0

)(
0 −T+ + 1

T+ + 1 0

)(
0 −T+ − 1

T+ − 1 0

)−1

=

(
0 (T+ + 1)(T+ − 1)−1

(T+ − 1)(T+ + 1)−1 0

)
.

One finds that UT+
= (T+ + 1)(T+ − 1)−1 is unitary, (UT+

)r = UT+
and

1− (T+ + 1)(T+ − 1)−1 = −2(T+ − 1)−1 ∈ End0A(Y )

as we have an unbounded Kasparov module. Thus for JY = span(Y |Y )A we have a class
[UT+

] ∈ K1(End
0
A(Y )) ∼= K1(JY ) where we use an ungraded version of the isomorphism of

Equation (2.7) from Section 2.2. If we ignore real structures, then denoting ι : JY →֒ A and

ζY : K1(End
0
A(Y ))

≃
−→ K1(JY ), we obtain a map

KK(Cℓ1, A) ∋
[
(Cℓ1, YA ⊗ C

2, T+ ⊗ f)
]
7→ ι∗ ◦ ζY

[
(T+ + 1)(T+ − 1)−1

]
∈ K1(A)

which is a skew-adjoint analogue of (the inverse of) the isomorphism in Theorem 3.5. Similarly,
passing to real subalgebras ι∗ ◦ ζY rY

[
(T+ + 1)(T+ − 1)−1

]
∈ KO1(A

rA).

Let us also consider the inverse map. If U ∈ A∼ is a unitary and U rA = U , then (U+1)(U−1)−1

is an unbounded skew-adjoint operator and
(
σ1, (U − 1)AA ⊗ C

2, (U + 1)(U − 1)−1 ⊗ f
)

(5.1)

is an unbounded Kasparov module, where the real structure on (U − 1)AA comes from rA

and the real structure on C
2 is pointwise complex conjugation. A direct check or Theorem

4.15 (combined with the equivalence between van Daele and operator K-theory for ungraded
algebras) gives that the map KKO(Cl1,0, A

rA) → KO1(A
rA) or KK(Cℓ1, A) → K1(A) is an

isomorphism with the inverse given by the unbounded Kasparov module in Equation (5.1). ⋄

Example 5.2 (An isomorphism KKR(Cℓ0,1, A) → KO−1(A
rA)). Here we consider the Cayley

map for elements in KKR(Cℓ0,1, A) that reduces to our original ungraded complex Cayley
isomorphism from Theorem 3.5 if we ignore the real structure.

Let (Cℓ0,1,XA, T ) be a Real Kasparov module with A trivially graded and f ∈ Cℓ0,1 the
generator. Making analogous simplifications as Example 5.1, we write the Kasparov module
as (

Cℓ0,1, (Y ⊕ Y )A, T =

(
0 S
S 0

))
, f 7→

(
0 −1
1 0

)
, (y1, y2)

rY = (yrY1 , yrY2 ),
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which also implies that S = S∗ and Sr = S on the ungraded C∗-module YA. As S is self-adjoint,
unbounded and has compact resolvent, we can apply the ungraded Cayley transform

US = C(S) = (S + i)(S − i)−1,

which by Proposition 3.1 is unitary and US − 1 ∈ End0A(Y ). Applying the real structure
on EndA(Y ), U r

S = U∗
S . Hence, we obtain a map from cycles in KKR(Cℓ0,1, A) to unitaries

u ∈ End0A(Y )∼ such that ur = u∗.

The group KO−1(A
rA) can be characterised by equivalence classes of complex unitaries in

Mn(A
∼) such that ur = u∗ [23, Section 5.6]. We also compare our presentation of KO−1 to

that of Boersema and Loring, who characterise KO−1(A, ρ) as equivalence classes of unitaries
u ∈ Mn(A

∼) such that uρ = u for ρ an anti-multiplicative involution [6]. We can recover this
picture by defining ρ = ∗ ◦ r, so that ur = u∗ implies that uρ = u. Hence, our Cayley map
determines a class ι∗ ◦ ζY [US ] ∈ KO−1(A

r).

Now, suppose that A is a Real C∗-algebra and the real structure inMn(A) is applied entrywise.
Given u ∈Mn(A

∼) unitary and such that urA = u∗, by Proposition 3.1 there is a well-defined
self-adjoint operator C−1(u),

Dom(C−1(u)) = (u− 1)An, C
−1(u)v = i(u+ 1)(u − 1)−1v, v ∈ Dom(C−1(u)).

Using the obvious real structure on the C∗-module (u− 1)An
A, we check that

C
−1(u)r = −i(u∗ + 1)(u∗ − 1)−1 = −i(u∗ + 1)u((u∗ − 1)u)−1 = i(u+ 1)(u− 1)−1 = C

−1(u)

and so the argument in Proposition 3.4 extends to give that

(
Cℓ0,1, (u− 1)An

A ⊗ C
2,

(
0 C−1(u)

C−1(u) 0

))
, f 7→

(
0 −1
1 0

)
,

is an unbounded KKR-cycle with real structure on C
2 by complex conjugation. Following the

proof of Theorem 3.5, we obtain that the maps

KO−1(A
rA) ∋ [u] 7→

[(
Cℓ0,1, (u− 1)An

A ⊗ C
2, C−1(u)⊗ σ1

)]
∈ KKR(Cℓ0,1, A)

KKR(Cℓ0,1, A) ∋
[(
Cℓ0,1, YA ⊗ C

2, S ⊗ σ1
)]

7→ ι∗ ◦ ζY [C(S)] ∈ KO−1(A
rA)

are well-defined and mutual inverses. The main difference is that the identity element in
KO−1(A

r) is given by the class of i times the unit of A, [i1A] and we need to ensure that any
homotopy of unitaries respects the condition vrt = v∗t .

Clearly if we ignore the real structure, then we recover our original ungraded Cayley map
K1(A) → KK1(C, A) from Theorem 3.5. ⋄

Example 5.3 (Unitary and projective descriptions of K0). We consider A ⊗ Cℓ1,0 with A un-
graded and Real. In this case, any odd self-adjoint unitary is of the form x ⊗ e with e the
generator of Cℓ1,0 and x = x∗ = xrA and unitary. Suppose that we have two self-adjoint
Real unitaries x ∈ Mn(A

∼), y ∈ Mm(A∼) with x − y ∈ MN (A). Then we obtain an element
[x⊗ e]− [y ⊗ e] ∈ DK(A⊗ Cℓ1,0).

Applying our Cayley map, we first note that, because x− y is compact (over A),

(x⊗ e− y ⊗ e)(A⊗ Cℓ1,0)NA⊗Cℓ1,0
∼=

1

2
(x⊗ 1− y ⊗ 1)(A⊗ Cℓ1,0)NA⊗Cℓ1,0
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Furthermore, on its domain, the Cayley transform C
−1
y⊗e(x⊗e) acts as the zero-map and so our

map DK(A⊗ Cℓ1,0) → KKR(Cℓ1,0, A⊗ Cℓ1,0) reduces to

[x⊗ e]− [y ⊗ e] 7→
[
(Cℓ1,

1
2(x⊗ 1− y ⊗ 1)(A⊗ Cℓ1)

N
A⊗Cℓ1 , 0)

]

=
[
(C, 1

2(1− x)An
A ⊕ 1

2(1− y)Am
A , 0)

]
⊗̂C

[
(Cℓ1, Cℓ1Cℓ1 , 0)

]

=
[
(C, 1

2(1− x)An
A ⊕ 1

2(1− y)Am
A , 0)

]
⊗̂C 1KKR(Cℓ1,0,Cℓ1,0).

Hence, given projections p, q ∈ MN (A), with prA = p and qrA = q, we recover the usual map
KO0(A

rA) → KKR(C, A) via the self-adjoint unitaries x = 1 − 2p, y = 1 − 2q and our van
Daele map. If we ignore the real structure, then our Cayley map recovers the isomorphism
K0(A) → KK(C, A) from Section 3.3. ⋄

Example 5.4 (KKR(Cℓ1,0,M2(A) ⊗ Cℓ0,1) → KO2(A
rA)). Suppose that we have the algebra

M2(A)⊗Cℓ0,1 with A unital, trivially graded and the real structure on M2(A) given entrywise
by rA. Any C∗-module YM2(A) can be decomposed into an ungraded sum (X ⊕X)M2(A). We
use the presentation Cℓ0,1 ∼= C⊕ C with grading by the flip automorphism and real structure
(α, β)r0,1 = (β, α). Then if we take a class in KKR(Cℓ1,0,M2(A)⊗ Cℓ0,1), we can write

(
Cℓ1,0,

(
(X ⊕X)⊗ Cℓ0,1

)
M2(A)⊗Cℓ0,1

, T
)
, Cℓ1,0 = C∗(e), e =

(
0 −i
i 0

)
⊗ (1,−1)

where using the real structure
(
(x1, x2) ⊗ (α, β)

)r
= (xrX1 , xrX2 ) ⊗ (β, α) we see that er =

(−1)2e = e. Similarly the right-action of Cℓ0,1 is given by multiplication by 12 ⊗ (i,−i). The
decomposition of the Kasparov module means that we can write T in the form T = S⊗(1,−1),
where S is a self-adjoint unbounded operator on X ⊕X, Sσ2 + σ2S = 0 and Sr = S. We then
compute that

Ce(T ) = e(T + e)(T − e)−1 = σ2(S + σ2)(S − σ2)
−1 ⊗ (1,−1).

Letting US = σ2(S + σ2)(S − σ2)
−1 ∈ End0M2(A)(X ⊕X)∼, we see that U r

S = −US , U
∗
S = US

and

U2
S = σ2(S + σ2)(S − σ2)

−1σ2(S + σ2)(S − σ2)
−1

= σ2(S + σ2)(S − σ2)
−1(−S + σ2)σ2(S − σ2)

−1

= −σ2(S + σ2)σ2(S − σ2)
−1 = −σ22(−S + σ2)(S − σ2)

−1 = 1.

Hence, US is an (ungraded) self-adjoint and imaginary unitary.

Summarising our discussion, given a class in KKR(Cℓ1,0,M2(A) ⊗ Cℓ0,1), we can construct
a unitary operator V ∈ End0M2(A)(X ⊕ X)∼ such that V ∗ = V and V r = −V . Applying
the (ungraded) Morita invariance from Equation (2.7), we recover the unitary description of
KO2(A

rA) as homotopy classes of self-adjoint unitaries with ur = −u given in [6, 23]. Such
self-adjoint and imaginary unitaries can be abstractly characterised as spectrally flattened
Hamiltonians with a particle-hole symmetry. We will return to this point in Section 6. ⋄

Example 5.5 (KO3 and KKR). Using the Künneth formula for real K-theory [5], we can
express KO3(A

rA) ∼= KO−1(A
rA ⊗ H), where H is considered as a real ungraded C∗-algebra.

In particular, we use the presentation H ∼= M2(C)
Ad−iσ2

◦c with c complex conjugation. We
again note that this is an ungraded isomorphism (putting in a grading, the right hand side of
the isomorphism becomes Cl0,2).
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To note this equivalence concretely, we use the description of KO3 from [23, Section 5.6], which
characterises KO3(A

rA) as equivalence classes of unitaries u ∈ Mn(A
∼) such that urA = −u∗.

Given such a u ∈ A we consider the matrix v = u⊗σ1 ∈ A⊗M2(C), where one can check that
vAd−iσ2

◦rA = v∗ and as such we get a class [u ⊗ σ1] ∈ KO−1(M2(A)
Ad−iσ2

◦rA). Hence we can
apply the map from Example 5.2 to get a Real Kasparov module

(
Cℓ0,1 ((u⊗ σ1)− 12)M2(A)A⊗M2(C)

⊗ C
2, C−1(u⊗ σ1)⊗ σ1

)

with (a1, a2)
r = (a

Ad−iσ2
◦rA

1 , a
Ad−iσ2

◦rA
2 ) and the left Cℓ0,1-action generated by 1 ⊗ (−iσ2).

Passing to real subalgebras and applying the Künneth formula, we obtain an element in
KKO(Cl0,1, A

rA ⊗M2(C)
Ad−iσ2

◦c) ∼= KKO(Cl0,1, A
rA ⊗ Cl0,4). ⋄

5.2 Short exact sequences and boundary maps

Here we consider the compatibility of our Cayley isomorphism with the boundary map of van
Daele K-theory and KK-theory. Suppose that

0 → I → E
q
−→ A→ 0 (5.2)

is a short exact sequence of graded C∗-algebras with a completely positive linear splitting. If
the algebras possess a real structure, then we also assume that these maps are equivariant
with respect to this structure. By [45, Theorem 1.1] there are connecting homomorphisms

KKR(I,B)
δ
−→ KKR(A,B⊗̂Cℓ1,0) and KKR(B,A)

δ
−→ KKR(B, I⊗̂Cℓ1,0). We will consider

a special case of the latter of these boundary maps using van Daele K-theory and our Cayley
isomorphism. We note that boundary maps in van Daele K-theory and their compatibility with
Kasparov theory has already been extensively studied by Kubota [28, Section 5]. In particular,
the boundary maps in van Daele K-theory inherit many properties from KK-theory such as
naturality.

If the quotient algebra A is unital, we assume that it is balanced (it contains an OSU). If A is
non-unital, we assume that Mult(A) contains an OSU e and use the description of van Daele
that includes a base point DKe(A) ∼= DK(A∼e, A∼e/A) ∼= DK(A) from Lemma 2.5, where

DKe(A) =
{
[x]− [y] ∈ GVe(A

∼e) : x− (ek ⊕−en−k), y − (ek ⊕−en−k) ∈Mn(A), some n, k
}

and A∼e ⊂ Mult(A) the algebra generated by A and e. Let us recall the formula for the
boundary map in van Daele K-theory.

Lemma 5.6 ([13], Proposition 3.4). The boundary map of the short exact sequence (5.2),
δ : DK(A) → DK(I⊗̂Cℓ1,0), is given by

δ([x1]− [x2]) = [Y1]− [Y2], Yi = − exp(πx̃i⊗̂ρ)(1⊗̂ρ), (5.3)

where x̃i ∈ E is an odd self-adjoint lift of xi and ρ is the odd generator of Cℓ1,0. We may
assume that ‖x̃i‖ = 1.

If e is a choice of base point in A which lifts to an OSU in E (we may simply take the image
of a base point in E) then one easily finds δ([x] − [e]) = [Y ] − [1⊗̂ρ] and so we may simplify
the formulas (as does van Daele) by writing δ([x]) = [Y ]. We also remark that Equation (5.3)
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is simpler than the formula given in [13, Proposition 3.4]. This is because we have chosen 1⊗̂ρ
as a constant basepoint and noting that

−
(
sin(πx̃⊗̂1) + (1⊗̂ρ) cos(πx̃⊗̂1)

)
= − exp(πx̃⊗̂ρ)(1⊗̂ρ),

which can be shown by the Taylor series expansion.

Proposition 5.7. Let x ∈Mn(A
∼e) be an OSU. Under the isomorphism of Theorem 4.15 and

the identification KKR(Cℓ1,0, I⊗̂Cℓ1,0) ∼= KKR(C, I), the class δ([x]) ∈ DK(I⊗̂Cℓ1,0) can be
identified with the class of the unbounded Kasparov module

(
C, cos(π2 x̃)I

n
I , tan(

π
2 x̃)
)
,

with x̃ ∈Mn(E) an odd self-adjoint lift of x.

Proof. We use Lemma 5.6 and calculate the inverse Cayley transform, where

C
−1
1⊗̂ρ

(Y ) =(1⊗̂ρ)
(
− exp(πx̃ ⊗̂ ρ)(1⊗̂ρ) + (1⊗̂ρ)

)(
− exp(πx̃ ⊗̂ ρ)(1⊗̂ρ)− (1⊗̂ρ)

)−1

= (1⊗̂ρ)
(
− exp(πx̃ ⊗̂ ρ) + 1

)(
− exp(πx̃ ⊗̂ ρ)− 1

)−1

= −(1⊗̂ρ) tanh(π2 x̃ ⊗̂ ρ)

with domain sinh(π2 x̃ ⊗̂ ρ)(In⊗̂Cℓ1,0). Using that x̃ and ρ are odd, (x̃⊗̂ρ)2j+1 = (−1)j x̃2j+1⊗̂ρ.
Therefore,

−(1⊗̂ρ)(−1)j(x̃⊗̂ρ)2j+1 = −(1⊗̂ρ)(−1)j(−1)j(x̃2j+1⊗̂ρ) = x̃2j+1⊗̂1

and so by the Taylor series expansion, −(1⊗̂ρ) tanh(π2 x̃ ⊗̂ ρ) = tan(π2 x̃) ⊗̂ 1 on the domain
cos(π2 x̃)I

n
I ⊗̂Cℓ1. Hence our Kasparov module can be factorised

(
Cℓ1,0, cos(

π
2 x̃)I

n
I ⊗̂Cℓ1,0Cℓ1,0 , tan(

π
2 x̃) ⊗̂ 1

)
=
(
C, cos(π2 x̃)I

n
I , tan(

π
2 x̃)
)
⊗̂C(Cℓ1,0,Cℓ1,0Cℓ1,0 , 0),

and removing the element 1KKR(Cℓ1,0,Cℓ1,0) gives the identification KKR(Cℓ1,0, I⊗̂Cℓ1,0) ∼=
KKR(C, I).

Corollary 5.8. Let (Cℓ1,0,XA, T ) be an (unbounded) Kasparov module such that the operator
T anti-commutes with the left Clifford generator e. The image of this Kasparov module under

the composition KKR(Cℓ1,0, A)
δKK−−−→ KKR(Cℓ1,0, I⊗̂Cℓ1,0)

≃
−→ KKR(C, I) can be represented

by the Kasparov module (
C, cos(π2 C̃e(T ))II , tan(

π
2 C̃e(T ))

)

with C̃e(T ) ∈ E a lift of Ce(T ).

Proof. By [28, Proposition 5.13], the diagram

KKR(Cℓ1,0, A)

≃
��

δKK // KKR(Cℓ1,0, I⊗̂Cℓ1,0)

DK(A)
δDK

// DK(I⊗̂Cℓ1,0)

≃
OO

is commutative. The result then immediately follows from Proposition 5.7.
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A representative of the boundary map considered in Corollary 5.8 is guaranteed to exist by [45,
Theorem 1.1]. The advantage of the corollary is that it gives an explicit representative that is
constructed from the given unbounded Kasparov module. To finish this section, we also give
a simple representative of the boundary map in van Daele as a bounded Kasparov module.

Proposition 5.9. Let x ∈Mn(A
∼e) be an OSU. The class δ([x]) ∈ DK(I⊗̂Cℓ1,0) ∼= KKR(C, I)

can be identified with the element

[
(C, InI , x̃)

]
∈ KKR(C, I)

with x̃ ∈Mn(E) an odd self-adjoint lift of x.

Proof. Applying the the bounded transform to the Kasparov module from Proposition 5.7,
we get the bounded operator sin(π2 x̃) ∈ EndI(I

n). We can then take a straight-line operator
homotopy from sin(π2 x̃) to x̃.

Proposition 5.9 implies that the non-triviality of the class δ([x]) as an element of KKR(C, I)
is entirely contained in the failure of the lift x̃ to be invertible. For the case of x related to
a bulk Hamiltonian, such a condition can be linked to the presence of topological boundary
spectrum.

6 Applications to topological phases

Van Daele K-theory has recently been employed by the second author and others to provide
a classification of topological phases of materials with respect to an algebra of observables
A [23, 24, 1]. We now use our Cayley isomorphism to consider the corresponding class in
KK-theory.

One reason for representing our bulk invariant as a Kasparov module is that we are then free
to apply the full machinery of Kasparov theory to conduct further study on the invariants of
interest. For example, if the algebra A is a crossed product or groupoid algebra typically studied
in the C∗-algebraic approach to condensed matter theory [3], then we immediately obtain a
bulk-boundary correspondence for pairings of our bulk invariant with a ‘Dirac element’ that
extracts the strong numerical phase of the system [7, 8, 9, 25, 26, 29, 39].

6.1 Bulk invariants for topological insulators

For simplicity we will assume that A is unital, which is roughly equivalent to working under a
tight-binding approximation. We first briefly review some physical terms.

Definition 6.1 (Abstract insulators and symmetries). We say a self-adjoint element h ∈ A is
an insulator if h has a spectral gap. Taking a constant shift if necessary, we assume that an
insulator h is such that 0 /∈ σ(h).

We say that an insulator h has a chiral symmetry if A is graded and h is an odd element under
this grading.

Let A be a C∗-algebra with real structure rA.

1. An insulator h has a time-reversal symmetry (TRS) if hrA = h.
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2. An insulator h has a particle-hole symmetry (PHS) if hrA = −h.

Because we take insulators h to be self-adjoint invertible operators, the spectrally flattened
operator h := h|h|−1 is a self-adjoint unitary. Therefore, if h has a chiral symmetry, then h
gives an element in V (A). Provided we have another odd self-adjoint unitary for comparison,
we obtain an element in DK(A). We call this van Daele element the bulk invariant of the
topological phase. If there is no chiral symmetry we take the tensor product A ⊗ Cℓ1 and
consider h⊗ ρ instead, which is an OSU.

6.1.1 With chiral symmetry

We consider a chiral symmetry which is inner in the sense that the grading of A is given by
AdΓ for some Γ = Γ∗ ∈ A.

Example 6.2 (Chiral symmetry, no real structure). If we do not make any reference to real
structures on the graded algebra A, then taking the projection Π+ = 1

2(1+Γ), A is isomorphic
to A++ ⊗ Cℓ2 with A++ = Π+AΠ+ a trivially graded algebra [23, Proposition 3.5]. This
isomorphism depends on a choice of OSU e ∈ A. Using this isomorphism, the operator of
interest is uh = Π+ehΠ+, which is unitary and gives a class [uh] ∈ K1(A++). Hence we can
apply our complex ungraded Cayley map (Theorem 3.5) to obtain the KK1-class of the bulk
invariant,

[
(Cℓ1, (uh − 1)A++A++

⊗C
2, C−1(uh)⊗ σ1)

]
, uh = Π+ehΠ+, C

−1(uh) = i(uh + 1)(uh − 1)−1.

⋄

The above expressions are for insulators with complex symmetries. We now consider symme-
tries involving a real structure like TRS or PHS.

Example 6.3 (Real grading). If we have an inner chiral symmetry with real grading operator
Γ = ΓrA then ArA

++ = A++, A
rA ∼= ArA

++ ⊗ Cl1,1. If (eh)rA = eh, then urAh = uh is a unitary in
ArA

++ and we are in the same situation as Example 5.1. Hence the Kasparov module of interest
is
[(
Cℓ1,0, (uh − 1)A++A++

⊗ C
2, (uh + 1)(uh − 1)−1 ⊗ f

)]
∈ KKR(Cℓ1,0, A++) ∼= KO1(A

rA
++).

If (eh)rA = −eh, then iuh is unitary and (iuh)
rA = iuh ∈ ArA

++. Our Cayley map then gives
the Kasparov module

(
Cℓ1,0, (uh + i)A++A++

⊗ C
2, (uh − i)(uh + i)−1 ⊗ f

)
.

⋄

Example 6.4 (Imaginary grading). If the grading operator Γ is imaginary, ΓrA = −Γ, then for
a++ ∈ A++, a

rA
++ ∈ A−− = Π−AΠ− with Π− = 1

2(1− Γ). In this situation the real subalgebra

ArA ∼= AAde◦rA
++ ⊗Cl2,0 [23, Theorem 3.10]. If (eh)rA = eh, we check that

(Π+ehΠ+)
Ade◦rA = eΠ−ehΠ−e = Π+heΠ+ = (Π+ehΠ+)

∗.

That is, uAde◦rA
h = u∗h and we are in the case of Example 5.2. Therefore, for C−1(uh) =

i(uh + 1)(uh − 1),
(
Cℓ0,1, (uh − 1)A++A++

⊗ C
2,

(
0 C−1(uh)

C−1(uh) 0

))
, (v1, v2)

r = (vAde◦rA
1 , vAde◦rA

2 )
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is the Real Kasparov module of interest and determines a class in KKR(Cℓ0,1, A++) ∼=

KO−1(A
Ade◦rA
++ ).

Suppose now that (eh)rA = −eh. Then uAde◦rA
h = −u∗h and we are in the setting of Example

5.5. Hence we can consider the ungraded unitary

vh =

(
0 uh
uh 0

)
∈M2(A), v

Ad−iσ2
◦Ade◦rA

h = v∗h,

so vh ∈ KO−1(M2(A++)
Ad−iσ2

◦Ade◦rA) ∼= KO−1(A
Ade◦rA
++ ⊗H) ∼= KO3(A

Ade◦rA
++ ). Applying the

Cayley transformation,
(
Cℓ0,1, (vh − 12)M2(A)A⊗M2(C)

⊗̂C
2, C−1(vh)⊗ σ1

)

is an unbounded KKR-cycle with real structure Ad−iσ2
◦ Ade ◦ rA applied pointwise on the

direct sum. The unbounded cycle represents an element in KKO(Cl0,1, A
Ade◦rA
++ ⊗ Cl0,4). ⋄

6.1.2 Without chiral symmetry

If there is no chiral symmetry, then the relevant algebra is A ⊗ Cℓ1 (potentially with a real
structure), where we have the odd self-adjoint unitary h⊗ ρ.

Example 6.5 (No symmetry or TRS only). We consider the two OSUs h⊗ ρ and 1⊗ ρ (where
1⊗ ρ plays the role of a base point) and the element [h⊗ ρ]− [1⊗ ρ] ∈ DK(A⊗Cℓ1) encodes
the obstruction of a homotopy of h to a trivial Hamiltonian. We are in the setting of Example
5.3, where there is a map

[h⊗ ρ]− [1⊗ ρ] 7→
[
(C,

1

2
(h− 1)AA, 0)

]
⊗̂C1KK(Cℓ1,Cℓ1).

More simply still, we recover the class of the Fermi projection [12(h−1)] = [χ(−∞,0](h)] ∈ K0(A).

If in addition A has a real structure with hrA = h, then the same argument applies and we
get the KKR-class

[
(C, 12(h− 1)AA, 0)

]
or the class of the projection [12 (h− 1)] ∈ KO0(A

rA).
Note that in many cases of interest, ArA ∼= Ar̃A ⊗H for some other real structure r̃A. In such
a situation, by the Künneth formula [12 (h− 1)] ∈ KO0(A

r̃A ⊗H) ∼= KO4(A
r̃A). ⋄

Example 6.6 (Particle-hole symmetric Hamiltonians). Let A be a trivially graded and complex
C∗-algebra and suppose there is a real structure rA on A with h

rA = −h for some insulator
h ∈ A. That is, h has a particle-hole symmetry.

The algbera A is ungraded so we consider the element h ⊗ (1,−1) ∈ Cℓ1, where we use the
real structure on Cℓ1 ∼= C⊕C given by (α, β)r0,1 = (β, α). One then checks that h⊗ (1,−1) is
self-adjoint, square one and

(h⊗ (1,−1))rA⊗r0,1 = h
rA ⊗ (1,−1)r0,1 = −h⊗ (−1, 1) = h⊗ (1,−1).

Let us consider the bulk phase of the odd self-adjoint unitary h ⊗ (1,−1) relative to a fixed
base point. Namely, suppose that A has a real skew-adjoint unitary J , J∗ = −J , J2 = −1 and
J rA = J . Then iJ ⊗ (1,−1) ∈ A⊗Cℓ1 is an odd self-adjoint unitary invariant under rA ⊗ r0,1.
We therefore obtain a class

[h⊗ (1,−1)] − [iJ ⊗ (1,−1)] ∈ DK(A⊗ Cℓ1, rA ⊗ r0,1).
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Applying our Cayley map, we note that C−1
iJ⊗(1,−1)(h) = iJ(h+ iJ)(h− iJ)−1 ⊗ (1,−1) and so

our Kasparov module is
(
Cℓ1,0, (h− iJ)⊗ (1,−1)(A ⊗ Cℓ1)A⊗Cℓ0,1

, iJ(h+ iJ)(h − iJ)−1 ⊗ (1,−1)
)
,

where the left Clifford action is multiplication by iJ ⊗ (1,−1). The class of this Kasparov
module gives an element in KKR(Cℓ1,0, A⊗ Cℓ0,1) ∼= KO2(A

rA). ⋄

6.2 Boundary invariants for topological insulators

We now consider the boundary map of the bulk invariant from a (Real, graded) short exact
sequence with positive linear splitting

0 → I → E → A→ 0

and the corresponding image in DK-theory and KK-theory. Our work complements recent
descriptions of the boundary K-theory class of topological phases via the Cayley transform
by Schulz-Baldes and Toniolo [44]. Similarly, Alldridge, Max and Zirnbauer use the van Daele
boundary map and Roe’s isomorphism DK(I⊗̂Cℓ1,0) → KKR(C, I) to write down a bounded
representative of the boundary invariant [1]. Our work has different motivations and construc-
tions to [1] though there are clear similarities.

Let A be unital and h ∈ A an insulator with spectral gap ∆ at 0; we may suppose that
∆ = (−δ, δ). We set t∆ = 2π

|∆| =
π
δ , a characteristic time. Let h̃ be a lift of h in E. Then

ã =
h̃

δ
P∆(h̃) + P≥δ(h̃)− P≤−δ(h̃) (6.1)

is a lift of the spectrally flattened h.

As we will show, our explicit lift ã combined with our general results about the boundary map
from Section 5.2 will allow us to write down the boundary invariants of topological insulators
explicitly in terms of the lift h̃.

6.2.1 Without chiral symmetry

If A is trivially graded then x = h⊗e is an OSU of A⊗Cℓ1 where e is the square one generator
of Cl1. It follows that x̃ = ã ⊗ e is a lift of x. We recall Lemma 5.6, which gives the element
δ([h ⊗ e]) ∈ DK(I ⊗ Cℓ1⊗̂Cℓ1). Using the identification I ⊗ Cℓ1⊗̂Cℓ1 ∼= I ⊗ Cℓ2, the class
δ([h ⊗ e]) is represented by the element [Y ]− [1⊗ ρ] with ρ a generator of Cℓ2 and

Y = exp(πã⊗ eρ)(1 ⊗ ρ)

= − exp
(
− iπ(ã⊗ Γ)

)
(1⊗ ρ)

=
(
P∆(h̃)

⊥ ⊗ 1− (P∆(h̃)⊗ 1) exp(−it∆(h̃⊗ Γ))
)
(1⊗ ρ),

where Γ = ieρ is the grading operator on I ⊗ Cℓ2.

Example 6.7 (Boundary KK-class, No symmetries). Let us consider the Kasparov module
representing the boundary invariant without reference to a real structure. By Proposition 5.7,
the boundary class δ([x]) ∈ DK(I ⊗ Cℓ2) is represented by the unbounded Kasparov module

(
C, cos(π2 ã⊗ e)(I ⊗ Cℓ1)I⊗Cℓ1

, tan(π2 ã⊗ e)
)
.
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We note that because h ∈ A and is not a matrix, we do not have to take a direct sum of
the module II . We can simplify this Kasparov module by noting that cos(π2 ã⊗ e)(I ⊗ Cℓ1) ∼=

cos(π2 ã)I ⊗ Cℓ1 and tan(π2 ã⊗ e) = tan(π2 ã)⊗ e. Recalling our definition of ã, Equation (6.1),

and writing P∆ := P∆(h̃), we further reduce our boundary Kasparov module to
(
C, cos(12t∆h̃)P∆II ⊗ Cℓ1, tan(

1
2 t∆h̃)⊗ e

)
,

where we denote by Cℓ1 the C∗-module Cℓ1Cℓ1 .

If we consider bounded representatives of the KK-class, then by Proposition 5.9, the boundary
invariant is represented by the Kasparov module

[(
C, II ⊗ Cℓ1, ã⊗ e

)]
=
[(
C, P∆II ⊗ Cℓ1, h̃⊗ e

)]
∈ KK(C, I ⊗ Cℓ1).

In many cases of interest, the lift h̃ is the restriction of h to a system with boundary and P∆

the projection onto edge spectrum. Hence our boundary Kasparov module closely lines up
with the physical intuition of a boundary topological invariant. ⋄

Example 6.8 (Boundary KK-class, TRS and PHS Hamiltonians). If h has a TRS, hrA = h,
then ã is real and self-adjoint, so e must be real and self-adjoint. Hence Y ∈ IrI ⊗ Cl2,0 and
we have the real Kasparov module

(
C, cos(12t∆h̃)P∆II ⊗ Cℓ1,0, tan(

1
2t∆h̃)⊗ e

)

which gives a class in KKR(C, I ⊗ Cℓ1,0) ∼= KO−1(I
rI ), where the last isomorphism is given

by considering the ungraded Cayley transform C
(
tan(12 t∆h̃)

)
. The bounded representative of

this KKR-class is
(
C, P∆II ⊗ Cℓ1,0, h̃⊗ e

)
.

If h has a PHS, hrA = −h, then h̃ is imaginary and self-adjoint. Hence e must be imaginary
and self-adjoint for Y to be real and self-adjoint. Therefore Y ∈ IrI ⊗Cl1,1 and our boundary
invariant is represented by the Kasparov module

(
R, cos(12 t∆h̃)P∆I

rI

IrI ⊗ Cl0,1, tan(
1
2t∆h̃)⊗ (1,−1)

)

and corresponding class in KKO(R, IrI ⊗ Cl0,1) ∼= KO1(I
rI ). The bounded representative is

given by the Kasparov module
(
R, P∆I

rI

IrI ⊗ Cl0,1, h̃⊗ (1,−1)
)
. ⋄

6.2.2 With chiral symmetry

We first note a general result on graded algebras that will be of use to us. Suppose B is
Z2-graded and the grading is implemented by a self-adjoint unitary Γ ∈ Mult(B). Then the
map

η(b⊗̂ρk) := bΓk ⊗ ρk+|b| (6.2)

defines a graded isomorphism between the graded tensor product B⊗̂Cℓ1 with grading AdΓ on
B and the ungraded tensor product B ⊗ Cℓ1 with trivial grading on B.

If an insulator h ∈ A has a chiral symmetry, then the lift ã is an odd self-adjoint lift of h.
Therefore, by Lemma 5.6, the class of [h] under the boundary map in van Daele K-theory is
represented by

Y = − exp(πã⊗̂ρ)(1⊗̂ρ) =
(
P∆(h̃)

⊥ − P∆(h̃) exp(t∆h̃⊗̂ρ)
)
(1⊗̂ρ).
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Example 6.9 (Chiral symmetry only). We can again apply Proposition 5.7 and obtain a rep-
resentative of δ([h]) in KK(C, I) as the class of the Kasparov module

(
C, cos(π2 ã)II , tan(

π
2 ã)
)
.

Because we have used the specific lift ã, we write P∆ = P∆(h̃) and simplify this Kasparov
module to (

C, cos(12t∆h̃)P∆II , tan(
1
2t∆h̃)

)
.

Taking the bounded transform, we use Propositon 5.9 and obtain the boundary invariant

[(
C, II , ã

)]
=
[(
C, P∆II , h̃

)]
∈ KK(C, I). (6.3)

Suppose now that I is inner-graded, e.g. the grading is implemented by an inner chiral sym-
metry on the boundary. Then using the isomorphism from Equation (6.2), we know that
δ([h]) ∈ DK(I⊗̂Cℓ1) ∼= DK(I ⊗ Cℓ1) ∼= K0(I). Equation (6.3) gives a representative of this
class, but not a canonical one as the Kasparov module in (6.3) uses the grading on I. ⋄

Example 6.10 (TRS with chiral symmetry). Let us now consider the boundary map of chiral
symmetric Hamiltonians with a real structure. If h has a TRS, hrA = h, then h̃ is real and
Y ∈ IrI ⊗ Cl1,0. Our Kasparov module of interest is

(
C, cos(12t∆h̃)P∆II , tan(

1
2 t∆h̃)

)

Taking the bounded transform, the boundary invariant is also represented by the Kasparov
module [(

C, P∆II , h̃
)]

∈ KKR(C, I).

If I is inner-graded by the element Γ ∈ Mult(I) and is such that Γr = Γ, then the map η from
Equation (6.2) gives an isomorphism IrI ⊗̂Cl1,0 to IrI ⊗ Cl1,0, where I

rI has trivial grading
on the right-hand side. Hence our boundary invariant can also be regarded as an element in
KO0(I

rI ). ⋄

Example 6.11 (PHS with chiral symmetry). Suppose that h has a PHS so h̃ and the lift ã ∈ E
are imaginary. In order to apply the van Daele boundary map, we first need to construct a real
OSU. We consider the algebra A⊗̂Cℓ0,2, where one can check that h ⊗̂ if1f2 is an odd Real self-
adjoint unitary. Therefore, for e the self-adjoint odd generator in Cℓ1,2 and ω = e1f1f2 ∈ Cℓ1,2
the orientation element, Lemma 5.6 gives that

Y = − exp
(
πã ⊗̂ iω

)
(1⊗̂e) =

(
P∆(h̃)

⊥ − P∆(h̃) exp(t∆h̃ ⊗̂ iω)
)
(1⊗̂e)

represents the class δ([h ⊗̂ if1f2]) ∈ DK(I⊗̂Cℓ1,2).

We can now apply Proposition 5.7 to obtain the unbounded Kasparov module
(
C, cos(π2 ã ⊗̂ if1f2)I⊗̂Cℓ0,2I⊗̂Cℓ0,2

, tan(π2 ã ⊗̂ if1f2)
)

representing the boundary. We can simplify this Kasparov module to
(
C, cos(π2 ã)II ⊗̂Cℓ0,2, tan(

π
2 ã) ⊗̂ if1f2

)
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and using the explicit lift ã from Equation (6.1), the boundary Kasparov module becomes

(
C, cos(12t∆h̃)P∆II ⊗̂Cℓ0,2, tan(

1
2t∆h̃) ⊗̂ if1f2

)
.

We also take the bounded transform, where by a straight-line homotopy, the boundary class
is represented by the Kasparov module

[(
C, P∆II ⊗̂Cℓ0,2, h̃ ⊗̂ if1f2

)]
∈ KKR(C, I⊗̂Cℓ0,2).

If the grading on I is inner and the grading operator imaginary, Γr = −Γ, then the isomorphism
η from Equation (6.2) is such that IrI ⊗̂Cl0,2 ∼= IrI ⊗Cl0,2 with I

rI trivially graded on the right-
hand side. Therefore, for inner and imaginary chiral symmetries, the boundary invariant gives
a class in KO2(I

rI ). ⋄

A Kasparov products with the Cayley transform

In this appendix we outline how our Cayley map on K-theory is compatible with the construc-
tive form of the Kasparov product. We will address the complex case. The real case can be
adapted from the complex one, for while the algebraic details change, the analytic details are
the same.

We will typically be interested in products of odd (ungraded) Kasparov modules (A,XB ,D),
but note that our results also hold when A = A and B are Z2-graded. In the graded case, the
triple (A,XB ,D) should be interpreted as the Kasparov module (A⊗̂Cℓ1,X

⊕2
B , D⊗̂σ1), where

D : Dom(D) → XB is even and the left Clifford action is generated by −iσ2.

Given an unbounded Kasparov module (A,XB ,D) and an even unitary u ∈ A ⊂ A we are
interested in representatives of the product

[(C, (u− 1)AA,C
−1(u))] ⊗A [(A,XB ,D)] ∈ KK(C, B), C

−1(u) = i(u+ 1)(u− 1)−1.

To construct a representative, we need to work on the module (u− 1)XB
∼= (u− 1)A ⊗A XB

(or rather two copies of this module) and consider the operators

C
−1(u)± iD̃ : (u− 1)Dom(D) ⊂ (u− 1)XB → (u− 1)XB ,

where we need to make sense of the restriction D̃ = D|(u−1)Dom(D) in spite of the possible lack

of complementability of (u− 1)XB in XB .

Lemma A.1. Let (A,XB ,D) be an unbounded Kasparov module and u ∈ A∼ unitary. Suppose
that there exists an approximate unit (vn) ⊂ C∗((u − 1), (u∗ − 1)) such that for all n the
commutator [D, vn] is defined and bounded, vnXB ⊂ (u − 1)XB = (u∗ − 1)XB , and finally
[D, vn](u

∗ − 1) → 0 ∗-strongly.

Then with D̃ = s-lim vnD|(u−1)X we find that (C−1(u)± iD̃)∗ = C−1(u)∓ iD̃.

Proof. We prove the lemma for C−1(u) + iD̃ since the other case is proved identically. Let
y ∈ Dom((C−1(u) + iD̃)∗). That is, there exists z ∈ (u− 1)XB such that for all elements
x ∈ Dom(C−1(u) + iD̃) = (u− 1)Dom(D) we have

((C−1(u) + iD̃)x | y)B = (x | z)B .
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Write x = (u− 1)ξ with ξ ∈ Dom(D). We observe that vn[D, u] = [D, vn(u− 1)]− [D, vn](u−
1) → [D, u] strongly. Then

((C−1(u) + iD̃)x | y)B = ((C−1(u) + iD̃)(u− 1)ξ | y)B

= (i(u+ 1)ξ | y)B + (i lim vn[D,u]ξ | y)B + (lim vn(u− 1)iDξ | y)B

= (i(u+ 1)ξ | y)B + (i[D,u]ξ | y)B + ((u− 1)iDξ | y)B

= (ξ | −i(1 + u∗)y)B + (ξ | i[D,u∗]y)B + (Dξ | −i(u∗ − 1)y)B

= (ξ | (u∗ − 1)z)B .

Rearranging the last equality shows that

(Dξ | −i(u∗ − 1)y)B = (ξ | (u∗ − 1)z)B + (ξ | i(u∗ + 1)y)B − (ξ | i[D,u∗]y)B (A.1)

and as this holds for all ξ ∈ Dom(D), we see that (u∗−1)y ∈ Dom(D∗) = Dom(D). Moreover,
since z = (C−1(u) + iD̃)∗y we learn that

−iD(u∗ − 1)y = (u∗ − 1)(C−1(u) + iD̃)∗y + i(u∗ + 1)y − i[D,u∗]y

or
(u∗ − 1)(C−1(u) + iD̃)∗y = −iD(u∗ − 1)y + i[D,u∗]y − i(u∗ + 1)y. (A.2)

If y ∈ Dom(D) then
−iD(u∗ − 1)y + i[D,u∗]y = −i(u∗ − 1)Dy

and in this case we see from Equation (A.2) that (u∗+1)y is in (u∗−1)Dom(D) ⊂ (u∗−1)XB =
Dom(C−1(u)). Thus we can multiply through by (u∗ − 1)−1 and find that

(C−1(u) + iD̃)∗y = −iDy + C
−1(u)y.

Hence
Dom((C−1(u) + iD̃)∗) ∩Dom(D) = Dom(C−1(u)− iD̃),

and we need only show that y ∈ Dom(D). So let (vn) ⊂ C∗((u − 1), (u∗ − 1)) be as in the
statement of the Lemma. Then we find that

−iD(u∗ − 1)y+i[D,u∗]y = lim
n
vn(−iD(u∗ − 1)y + i[D,u∗]y)

= lim
n

(
− i[vn,D](u∗ − 1)y − iD(u∗ − 1)vny + i[vn, [D,u

∗]]y + i[D,u∗]vny
)

= lim
n

(
− i[vn,D](u∗ − 1)y − i(u∗ − 1)Dvny + i[vn, [D,u

∗]]y
)

= lim
n

(
− i[vn,D](u∗ − 1)y − i(u∗ − 1)Dvny

)

where the last equality follows since [vn, [D,u
∗]] → 0 strongly. Now vny ∈ (1 − u)X and

vny ∈ Dom(D) by Equation (A.1). Thus if [vn,D](u∗ − 1) → 0 strongly we deduce that y is in
the closure of (u− 1)Dom(D) in the graph norm of D, and so in Dom(D).

Theorem A.2. Let (A,XB ,D) be an odd unbounded Kasparov module and u ∈ A∼ an even
unitary. Suppose C∗((u − 1), (u∗ − 1)) has an approximate unit (vn) as in Lemma A.1 and
‖[D,u]‖ < 2. Then

(
C, (u− 1)XB ⊕ (u− 1)XB , C

−1(u)+̂D̃
)
, C

−1(u)+̂D̃ :=

(
0 C−1(u)− iD̃

C−1(u) + iD̃ 0

)

is an unbounded Kasparov module representing the Kasparov product of the class of the Cayley
transform

[
(C, (u− 1)AA,C

−1(u))
]
∈ KK1(C, A) with

[
(A,XB ,D)

]
∈ KK1(A,B).
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Remark If [D,u] is bounded we can ensure that ‖[D,u]‖ < 2 is satisfied by rescaling D. ⋄

Proof. We employ the main result of [30]. First, if we make the identification (u− 1)A⊗AXB
∼=

(u− 1)XB by left multiplication, then the map

XB ∋ x 7→ (u− 1)aDx−D|(u−1)X(u− 1)ax = −[D, (u− 1)a]x

is bounded. This proves that Kucerovsky’s connection condition is satisfied [30].

Since Dom(C−1(u)) ⊂ Dom(C−1(u)± iD̃), the domain condition is satisfied, and we need only
check Kucerovsky’s positivity condition and that we have a Kasparov module.

The assumption that [D, vn](u
∗ − 1) → 0 strongly and Lemma A.1 tells us that C−1(u)+̂D̃

is self-adjoint. For regularity, let φ : B → C be a state, and form the Hilbert space X ⊗B

L2(B,φ). The sequence vn ⊗ 1 satisfies the same domain mapping properties with respect to
(C−1(u)+̂D̃)⊗1 as vn did for C−1(u)+̂D̃, and so the above arguments show that (C−1(u)+̂D̃)⊗1
is self-adjoint. As φ was an arbitrary state, the local global-principle [19, 38] implies the
regularity of C−1(u)+̂D̃.

To check the positivity condition we first compute the anti-commutator. So
(

0 C−1(u)
C−1(u) 0

)(
0 C−1(u)− iD̃

C−1(u) + iD̃ 0

)

+

(
0 C−1(u)− iD̃

C−1(u) + iD̃ 0

)(
0 C−1(u)

C−1(u) 0

)

= 2

(
C−1(u)2 0

0 C−1(u)2

)
+

(
i[C−1(u),D] 0

0 −i[C−1(u),D]

)

= 2

(
4(u− 1)−1(u∗ − 1)−1 − 1 0

0 4(u− 1)−1(u∗ − 1)−1 − 1

)

+

(
2(u− 1)−1[u,D](u∗ − 1)−1 0

0 −2(u− 1)−1[u,D](u∗ − 1)−1

)

= 2

(
(u− 1)−1

(
4− [u,D]u∗

)
(u∗ − 1)−1 − 1 0

0 (u− 1)−1
(
4 + [u,D]u∗

)
(u∗ − 1)−1 − 1

)

Recasting this computation in terms of quadratic forms shows that the required positivity
holds when [D,u]u∗ ≤ 4, which is satisfied since we assume ‖[D,u]‖ < 2.

Because the left-action is by the complex numbers, commutators of the left action with
C−1(u)+̂D̃ are trivially bounded. Thus all that remains is to check the compact resolvent
condition. The self-adjointness of C−1(u)+̂D̃ on (u− 1)Dom(D) tells us that

(i± C
−1(u)+̂D̃)−1(u− 1)XB

⊕2
= (u− 1)Dom(D)⊕2 = (u− 1)(i ±D)−1X⊕2

B →֒ X⊕2
B

where the last inclusion is compact since u− 1 ∈ A and D has locally compact resolvent.

Example A.3. For z ∈ S1 we let ρ(z) = 2 − z − z and define vn = ρ(ρ + 1/n)−1. Elementary
trigonometry shows that

[1
i

d

dθ
, vn

]
(1−z) = 2(1−vn)

( sin(θ)

1− cos(θ) + 1/2n
−cot(θ/2)

)
eiθ/2 sin(θ/2)+2(1−vn)e

iθ/2 cos(θ/2)

which does indeed go to zero strongly on L2(S1) = (z − 1)L2(S1). ⋄
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