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We show that domain walls, or kinks, can be constructed in simple scalar theories where the scalar has no
potential. These theories belong to a class of k-essence where the Lagrangian vanishes identically when one
lets the derivatives of the scalar vanish. The domain walls we construct have positive energy and stable
quadratic perturbations. As particular cases, we find families of theories with domain walls and their
quadratic perturbations identical to the ones of the canonical Mexican hat or sine-Gordon scalar theories. We
show that canonical and noncanonical cases are nevertheless distinguishable via higher order perturbations or
a careful examination of the energies. In particular, in contrast to the usual case, our walls are local minima of
the energy among the field configuration having some fixed topological charge, but not global minima.

DOI: 10.1103/PhysRevD.103.036010

I. INTRODUCTION

Topological and nontopological solitons play an important
role in various domains of physics ranging from liquid
crystals, fluid mechanics to cosmology (see e.g., [1-5]).
The simplest and canonical example of such objects are
certainly domain walls, or kinks, which are known to exist
in particular in simple scalar theories where the vacuum
manifold possesses several connected components.
Considering such a theory, with a scalar ¢, and a potential
V(¢), domain walls can exist if the potential has more than
one minimum. The purpose of this work is to show that
similar domain wall solutions exist in scalar theories with no
potential; i.e., theories where the Lagrangian vanishes
identically when the derivatives of the scalar vanish.
Among such theories, we will concentrate here on Lorentz
invariant theories where the Lagrangian depends both on the
real scalar field ¢ and on its kinetic term X, defined by

1
X = _5 ﬂl/aﬂqﬁanS’ (l)

assuming space-time is endowed with a Lorentzian flat
metric 77, (we will not consider here gravitating solutions).
Hence we will consider Lagrangians £ of the form
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L= P(¢,X) (2)

where the dependence of P on X and ¢ is nontrivial and in
particular not given by a sum of a free kinetic energy X and
potential energy V(¢). Such theories have been considered in
many instances and are usually denoted as k-essence in the
context of cosmology and gravitation [6-9]. They have
second order equations of motion and can even be gener-
alized to Lagrangian including up to second derivatives of the
field, the so-called Horndeski theories [10,11]. Such theories
can be used in particular to mimic dark matter via the MOND
paradigm [6,12] or even possibly as dark matter itself [13], to
generate inflation without a potential [9,14,15] or get a late
time accelerated expansion [8,16].

In this context, the possibility of finding solitonic
configurations in theories with noncanonical kinetic terms
was considered in several works, in particular in the
Horndeski framework [17-34] and the corresponding field
configuration are sometimes dubbed ‘“k-defects” [17].
Similar solutions also arose in the past in other contexts
for example in the well known Skyrme model [35]. The k-
defects, in particular, were found to behave differently from
standard defects due to the different nature of the kinetic
terms [17,30], however, at least in the single field case, all
the existing k-defects, are, despite their name, supported by
a nontrivial potential in the action, just as the usual
topological defects are. L.e., in the solutions considered
so far, P(¢p, X = 0) has a nontrivial dependence in the field.

Here we show that defects field configurations, specifi-
cally kinks, can be obtained in theories with no potential,
i.e., theories where the Lagrangian vanishes identically if
the kinetic term X is set to zero. This might not come as a

Published by the American Physical Society
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surprise considering that one is allowed to freely choose the
function P to produce a given specified field profile,
however, we will also show that the quadratic perturbation
theory around these solutions can be made stable. In fact we
will further show that simple models can be considered
where both the kink solution and its perturbations are
identical to those of the canonical theories usually consid-
ered. We will not attempt here a full classification of the
theories allowing such kinks “without a potential” but will
only exhibit some simple models as an existence proof and
discuss some of the properties of these kinks in comparison
with the usual ones.

This work is organized as follows: in the next Sec. Il we
recall some properties of kinks of usual scalar theories. We
then introduce k-essence domain walls (Sec. III) and show
how one can obtain kinks which have a profile just identical
to the one of the canonical mexican hat model and discuss
their stability and topological properties in a nonperturba-
tive way. This is then generalized to other canonical profiles
including the one of the sine-Gordon model (Sec. V). In a
following section, we discuss the perturbation theory
around our wall solutions (Sec. V) before concluding
(Sec. VI). Two appendixes give technical details on some
results introduced in the body of the text.

II. CANONICAL DOMAIN WALLS REVISITED

A. Actions and field equations
for canonical domain walls

Canonical domain walls can be constructed in a fairly
standard theory for a scalar field ¢ with a Lagrangian of the
form

Ecan(¢’X) =X- V(¢) (3)

where the field is assumed to live in a D dimensional flat
space-time with metric 7, = diag(—1,1,...,1), and V(¢)
is the potential energy. In the canonical case, V is chosen so
that it has two or more minima (with the same values of the
potential V) at different values ¢*. of the field (where k
index the different minima). Domain walls' are then
obtained as static vacuum solutions ¢(z) of the field
equations which only depend on one space-like direction
z (to simplify the discussion, one also usually assumes that
the field live in D = 2 dimensions) and interpolate between
different adjacent minima ¢, at z = —co and ¢ at
7 = 4o0. For the canonical models (3), a given vacuum
profile ¢(z) obeys the vacuum field equation which has the

first integral

'Note that we will later specialize to D = 2 where one calls
usually domains wall, kinks. As our result can be easily extended
from “kinks” in 2 dimensions to “domain walls” in arbitrary D we
will use both terms interchangeably.

1
§¢/2—Vz\70, (4)

where J is a constant, and here and henceforth a prime
means a derivative with respect to z. Note further that, when
we want to stress that a given expression is valid only on
shell for the background domain wall solution, we will
replace there the straight symbols (e.g., “=") (designating
off-shell relations) by curly symbols (e.g., “~”). As a
consequence, the kink profile obeys

'~ £2(V+To) (5)

B. Some energy considerations

A standard trick due to Bogomol’nyi [36] (that we write
here in a slightly nonstandard way) allows then to discuss
easily the total energy” H of such a configuration. Indeed,
this energy (or the energy per unit transverse to the
direction z if D > 2) is given by the integral over z of
the Hamiltonian density H(z) given by

1

H(z) = 54%(2) + V(9), (6)

so that one has

H= /H(z)dz (7)

_/dzB(gb/i 2(V+jl))2¢\/2(v+71)¢’—~71
(8)

Z:[:/dz[\/Z(V-ﬁ—j])Qyijl} )

where 7 is an arbitrary constant. Choosing J; = J, we
see that the last bound is saturated for a solution of the field
equations obeying (4), as the square appearing in the right
hand side of (8) vanishes. Moreover, it is possible to make
this energy finite for such a solution representing a domain
wall. In this case, one takes 7, = 0 and the domain wall
energy Hy, is given by the simple expression

Do
My =+ / dz [\/2v¢'] — 4 / dpV2V - (10)
P
We will later enforce this finiteness as well as demand that

the energy density of the wall is locally finite. Thus we shall
require that

2Throughout this work, we use the same letter 7 to denote the
total energy and the energy density of the field configuration, the
difference between the two is just indicated by the dependence
on z of the energy density which is explicitly indicated when
necessary.
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/H(z)dz < foo (11)

vz,

H(z)| < +o0 (12)

C. Changing variables

The simple form of the first integral (4) can be used to
enlighten the nature of the canonical domain wall solutions
as well as ease the finding of the solutions to be discussed
thereafter. Indeed, for a generic ¢, we define y as obeying

49
Vv

Le., the ¢(y) solution of the above equation is given by the
same functional dependance as ¢(z) solution of the domain
wall profile equation (4) with 7, = 0. And using the new
variable y as field variable, the domain wall field equation
simply read y' = 1, and in the y variable, the solution is
then simply represented by3 y = z. Using the y variable,
we see that the Lagrangian (3) simply reads

dy =+ (13)

Lonldh X0 = 20000 (X, =3) = Lonltr ) (1)

=o(y)w(X,) (15)

where v(y) is defined simply by the relation v(y) =
V(¢(w)), X,, is defined as in (1) replacing there ¢ by v,
and the above equation also defines the function w(X,,).
Considering the above Lagrangian as a starting point, and
looking for a one dimensional profile y(z), we see that the
part of the field equations deriving from this Lagrangian
and not proportional to second derivatives of the field
simply reads

V' (y)(2X, W (X)) —w(X,)) =0 (16)

Hence, looking for a profile of the form y = Az, and using
that for such a profile one has obviously w” =0 and
X, ~ —A?/2, we see that we get a solution provided —4%/2
is a root of the function y defined by

V(X,) = 2X, W (X,) = w(X,). (17)

In the canonical case, one has w(X,,) = 2X,, — 1 and hence
y(X,) = 2X,, + 1. Obviously A = +£1 generates a solution
irrespectively of the form of v (say provided that v does not
vanish as y varies over the real line). To get a proper
domain wall, one should then check that the obtained

*Note that here and henceforth one can freely choose the
position of the domain wall. For simplicity, we will hence assume
it lays at the origin z = 0.

profile has localized energy and is stable. The previous
expression (10) yields the following form of the energy
density

Haw(z) = 20(y(2)) (18)

yielding the total energy

Hy =2 / ™ () dy. (19)

[Se]

Hence, a necessary condition to have a domain wall is that
the above integral converges.

D. Some canonical models

Among the most studied and well-known cases which
have these properties is the model with the mexican hat
potential

Vi =5 (1= ) (20)

The kink and antikink solutions are given by the profiles

$un(z) = = tanh(z) (21)

and interpolate between the vacua ¢=° = +1. This also

yields the following relation between ¢ and y as defined in
Eq. (13)

¢ = tanh(y) © y = tanh~' . (22)

Using the variable y, the Lagrangian reads

x -1
Lol X,) = 2 23)

the function v(y) is given here by

Vi (W) = (2cosh* y)~! (24)

and the energy of the solution is just found to be

40 dl// 4
S S 25
Honn /_(,o cosh(y)* 3 (25)

Another case of interest is the sine-Gordon potential
Vig =1-cos(¢) (26)

which obviously has the infinitely many minima V =0
at the fields values ¢f. = 2zk. The kink profile which
interpolate between the adjacent minima ¢*. and ¢*!! is
obtained to be

¢y(z) = 2wk + 4 arctan €°. (27)

036010-3
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Remarkably, the sine-Gordon theory looks very similar to
the mexican hat theory (23) when using the y variable.
Indeed, in that case, we get that the relation between y and

¢ is given by
tan (g) ’ (28)

and the function v is just obtained to be given by

¢(p) =2nk+4arctane” <y = (—1)*In

vy6(w) = 2cosh™2y. (29)
As a result, the sine-Gordon Lagrangian reads now
Loy X,) =—(x, -] (30)
G Ay) = cosh’(y) ' 2)°

Note that of course, the above changes of variables ¢(y)
are so-defined that its maps the real line (domain of
variation of y) to a finite interval (domain of variation
of ¢) which does not represent the full range of variation
of the ¢ field of the original model, and e.g., it does not
cover the large values of ¢ in the mexican hat potential.
Note also that the Lagrangians (23) and (30) are singular at
the end of the interval of definition of . We will come back
to this issue later.

Given the similarity between Lagrangians (23) and (30),
we can easily generalize these canonical models to a larger
set with Lagrangians of the forms

K 1
[’k.can(l//v XV/) = Wk(w) (Xy/ - 2), (31)

where K is some positive constant and k an integer (an even
larger family exists letting k be half integer). It is easy to see
that y’ = +1 provides a solution of the field equations
of the kink type. The energy of this solution is finite and
given by

H —K/“"L—/cz (32)
fean = | cosh?kz TR
where 7, can be computed as
too dz /7l (k) 1
Iy = = for k > —, 33
¢ /_oo cosh*(z) T(k+1/2) ort=3 (33)

where the above expression holds in particular for integers4
and half integers k. Consider now the change of variable of
the form

*Note that whenever k is a an integer, 7, can also be expressed
as 2 x 41 (k= 1)1)?%/(2k = 1)!

o =VE [ S (34)

When y varies over the whole real line, the interval of
variation of ¢ is just given by | — ‘/TEI & 41 : [ and because
cosh is a positive function, we see that the above defined
@|w] is invertible into a y[¢] on this interval. This change of
variable puts the Lagrangian (31) in the standard form (3)
with the specific potential

V(¢) =~ cosh > (y[4]). (35)

where, at this stage, V is defined for ¢ € | — ‘/TE 7 5 @Ig [

However, one can extend the domain of variation of ¢ to the
whole real line. Indeed, it is easy to see that dV/d¢
vanishes at the ends of this interval (where y diverges)
hence it is always possible to make V periodic with a period

then given by VKT, ¢ just by “folding” the potential along

the end of the above defined interval. Another possibility to
obtain such an extension is to use an analytic extension
which form can be obtained explicitly at least for some
specific values of k. This is the case e.g., for k = 2 which
corresponds to the canonical mexican hat model and yields
by the above procedure (34)—(35) the potential V(¢) of
Eq. (20) where the domain of variation of ¢ can be
extended to all the real ¢. The values k =6 or k= 10
also yield expressions for y[¢] (however not very enlight-
ening) which in turn result in potentials having a similar
shape to the mexican hat one. Notice that these potentials
are not periodic. In turn, the values k = 1 (corresponding to
the sine-Gordon model) and k = 1/2 yield periodic poten-
tials by such an analytic extension. We show these
potentials on Figs. 1 and 2. The stability analysis of those
models (and their natural generalisation to the k-essence
framework) is presented later, in Sec. IV E. It would be
interesting to classify in a more detailed way the theories,
depending on the nature of the extensions considered here.

-15 -1.0 -05 0.0 05 1.0 15

FIG. 1. Analytic extension of the potential V(¢) for k =2,
k = 6 and k = 10 respectively.
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V(g)

FIG. 2. Analytic extension of the potential V(¢) for k = 1 and
k = 1/2, yielding a periodic profile.

E. Stability and topology

The stability of the canonical domain walls can be
addressed in several ways. Before recalling in the next
subsection some standard results on perturbations of
canonical domain walls; we first discuss here their non-
perturbative stability appealing to some ‘“topological”
arguments. We feel that this discussion is often obscured
in the literature by an intrication of topological and non-
topological arguments and we would like to clarify this
below as it matters for the discussion of the stability of
nonstandard domain walls to be introduced later.

We recall first that the bound (9) on the total energy also
holds for time dependent solutions as the kinetic energy
only adds a positive contribution to the right hand side of
(6). More specifically, we can write the conserved total
energy H(t) of any field configuration ¢(z,z) as

H@/[¢waﬁww'w

where a dot means a time derivative. Separating the different
contributions, we have H () = Hyin (1) + Hgraa(t) + Hoo(2)
where the terms appearing on the right hand side are given by

M) = [ 3%z (37)
Honal1) = [ 50 & V2V)d: (38)
M (1) = / VAV dz (39)

Obviously, Hyj, and H,y,g are positive, so any field con-
figuration has a total energy larger than H, which in turn is
only depending on the values of the field at z = 00 and is
just given by H,,,, for a canonical domain wall configuration.

A standard statement is that the canonical domain walls
are stable due to the topology of the vacuum manifold.
More specifically, the idea is here that a given vacuum of a

canonical theory (3) is obeying X =0 and ¢ = ¢mm for
some specific k and then is indexed (classically) by the field
value d)mm In order to have a finite energy, a given domain
wall solution must lie in vacuum at z = =00, and the values
of the field at +co cannot change continuously while
conserving the finite energy of this solution. This is usually
related to the existence of a topological charge O defined
from the current

JH = Ce D, (40)

where C is a proper normalization constant, and ¢*” is the
fully antisymmetric Levi-Civita contravariant tensor. By
construction, this current is conserved irrespectively of the
field equations and for a generic field configuration ¢ (1, z)
one has J° = C¢/, The topological (conserved) charge is
then defined as

+o0
0= dzJ(z)

I=—00

= C(p(+00) = p(=e0)). (41)

The domain wall total energy is, as can be seen from (10),
related to Q. Note however that this argument on stability is
not so clear as it may seem and we would like to discuss it
below with some details.

First we note that there is some arbitrariness in the
definition of the topological charge. Indeed, the conserva-
tion of the current J* as it is defined above is just obviously
a trivial consequence of the antisymmetry of ¢, so that one
could have replaced ¢ in the right-hand side of (40) by any
function of ¢ and obtained a different conserved current
and a different associated charge. Given the form of the
decomposition (36) an interesting choice of current J* is
given

JE = ée/way< 4: \/Wdu) (42)

where C and ¢, are some constants, implying that JO =
C/2V(¢) &', so that the conserved charge is now

- +o0 ~
0= dzJ’(z)

I=—00

=F CHeo (43)

For a generic field configuration ¢(z, z) one has now a clear
identity between the topological charge O and H,, while
this was not true using the topological charge Q, given that
in general H,, does not depend only on the difference of
field values at z = +oc0. Note that the form of the charge O
is associated with a superpotential W(¢) defined by
Vig) =14 ¢) as observed by Bogomol’'nyi [36] (see also
€. [5])

Let us then consider the issue of the stability of a given
domain wall profile. To that end we consider a given field

036010-5
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configuration ¢ (¢, z) which only differ at time 7 = #, from
some given domain wall profile ¢,,(z) in a bounded
region. Obviously, because: (i) the static (and eternal)
domain wall solution (given by ¢y, (1,2) = ¢y, (z) Y1)
has vanishing contributions Hyi, and H,,g, (i) the field
profile ¢(ty, z) and ¢, (z) are assumed to differ only in a
bounded region and hence have the same energy contri-
bution H, which is conserved, and (iii) the contributions
Hiyin and Hyp,q are always positive, we see that the domain
wall is an absolute minimum of energy for field configu-
rations having the same conserved charge O, and that no
localized perturbation of it can change the topological
charge Q. This shows that the wall configuration is stable,
but we stress that this argument is unrelated to the topology
of the vacuum manifold, but only relies on the form of the
energy (36).

F. Kinks perturbations

The perturbative stability of the kinks can be checked by
deriving the action for the second order perturbations
around them, which is also the starting point for the
quantization of these perturbations, using the kinks as
vacua. By Fourier decomposing a given such perturbation
@ as @ = @i(z)e one sees that each mode then obeys

(Z%¢,) — (2% + M)y = 0, (44)
where Z%, 2% and M? are z- and model-dependent (i.e.,
depend on the wall profile). The above equation is in the
Strum-Liouville form® and the modes obey an orthogon-

ality relation with the measure dz(—Z%) of the form (see
e.g., [37])

/dz(—ZOO)(pk(pk/ =0 fork#Kk. (45)

One can show that a generic kink always possesses a zero
mode (i.e., a solution of the above (44) with w; = 0) ¢
¢’ associated with the translation of the defect along z. In
canonical cases discussed here with potentials (20) and
(26), this zero mode is the lowest lying mode of the
spectrum and belongs to a discrete part of the spectrum (in
the case of potential (20), there is another discrete mode)
and can be normalized with the above measure, and there is
a continuum above (see e.g., [2,3]). The conditions

—200zz 5 0, (46a)

0<2 / dzZ0X < oo, (46b)

*Note that it can be put in a Schrodinger form by redefining
@ — (=20z2%)1/4p and dz —» (—2%/2%)1/2dz, see e.g., [37].

are fulfilled, indicating stable pelrturbaltions.6 Indeed, the
first condition makes sure that the perturbations are free
from tachyonic instabilities, while together with the last
condition it implies that the perturbations have positive
energy and obey an hyperbolic equation. The last condition
is also implying that the zero mode ¢ has a finite norm (as

one has @3 o ¢*> = —2X). For the canonical models above,
we find
28 =20 — 1,
M? =2(3¢* — 1) ~ 6tanh?(z) — 2, (47)
for the mexican hat model (3)—(20) and
ZE— g0,
M? = cos(¢) ~ 2tanh?(z) — 1, (48)

for the sine-Gordon model (3)—(26). Once again the two
different models exhibit similar features. Both obey the
conditions (47). Note that we can have stable perturbations
even if the squared mass M?(z) is locally negative. Indeed,
this is what happens above around the origin z = 0.

III. K-ESSENCE DOMAIN WALLS

A. Generic features

Starting from a model with a Lagrangian of the form (2),
and restricting ourselves to a 1 + 1 dimensional space, with
metric 7, = diag[—1, 1], we look for a kink solution ¢(z)
with stable quadratic perturbations. For such a static
configuration, the field equations have the first integral’

jZZXPX_szo, (49)
where 7 is a constant. This relation is the equivalent of the
canonical (4), up to a sign, and it is related to the field
equations of the scalar reading

One has

J = —E¢ (51)
which is valid for an arbitrary number of dimensions D.
Note that in general (i.e., without assuming any special
field configuration, so in particular, without assuming that
¢ only depends on one coordinate z as for the domain wall
case) a Lagrangian (2) has to obey some conditions in order

®At the price of having noncanonical perturbations, we could
possibly have allowed Z* to vanish and still have stable
perturbations. We will not consider this possibility here.

Where here and henceforth, we denote with a subscript the
derivation with respect to ¢ or X: e.g., Py = OP(¢,X)/0X.

036010-6
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for the theory to be consistent for arbitrary field configu-
rations. These conditions read [9,38-42]

0 < Py (52)

The first condition above is necessary in order to have a
bounded from below Hamiltonian, while the two condi-
tions together lead to hyperbolic equations of motion. In
particular note that the second one enters as the coefficient
of the second derivative in the field in equation (50). We
will come back to these conditions later. A domain wall
being static, it energy density H(z) is simply given by the
on-shell value of its Lagrangian

H(z) ~ —P(¢(2)) (54)

and in order to have a proper domain wall solution, we shall
demand that the energy conditions (11) and (12) hold. We
will also look for kinks solutions where 7, vanishes, as is
the case for kinks of canonical models discussed in the
previous section.

The perturbations ¢(z,z) around a given background
configuration ¢(z) have a Lagrangian reading at quadratic
order

1
WL = =52 0,00, + M?¢7)], (55)

where the kinetic matrix is diagonal. Its nontrivial compo-
nents and the squared mass term are given by

20— _p,  Z%=Jy=2XPyy+Py and
M2 = —545 = j¢¢ - j¢x¢”. (56)

Following the same path as in the previous section, we
Fourier transform a perturbation as ¢(#,z) = > g (z)e™
so that every Fourier mode obeys Eq. (44). As in the
canonical case, we can show that there is always a zero-
mode. Indeed, differentiating the equation of motion (50) of
the background field with respect to z yields

& =(Tx") + (T pxd" = T p4)¢'
= (Z=¢") — M2 %0, (57)

so that the zero mode is given by ¢ (z) & ¢'(z). In order to
have stable perturbations (and hence a stable solution) we
shall demand that conditions (47) are fulfilled, as in the
canonical case. Note in particular that, as ¢g(z) « ¢'(z),
and as we will be looking for theories having the same
domain wall profiles as in the canonical theory (e.g., ¢ x
tanh(z) or ¢ o arctan e°) this implies that the zero mode
has no node, and hence, following a standard argument, is
the lowest lying one. In addition, as we have Z% = —Py,

the condition (46b), together with the hypothesis that 7,
vanishes, implies via equation (49) that the total energy of
the wall obtained via (11) (and (54) is finite and positive.
This also shows that whenever 7, vanishes, the norma-
lizability of the zero mode implied by condition (46b) is
just equivalent to having a wall with finite total energy. In
fact, as seen from the definitions (56), conditions (47) are
equivalent on the wall background to conditions (52)
and (53).

To summarize, in order to find a proper domain wall with
stable perturbations (and assuming J, = 0, as we shall
now do), it is enough to ask that conditions (47) hold,
which in turn implies (11) and the normalizability of the
zero mode. We will also check that (12) holds. We recall
also that we will look for walls in theories with no
potentials, i.e., in theories where the Lagrangian P (¢, X)
vanishes identically at X = 0.

B. Stability conditions

Let us apply the conditions (47) to a general potential-
free P(¢, X) case. We will assume that the function P can

be power expanded into /—X as in

P X) = S, () (=2X)""2, (58)

n>2

where we have set ¢ to zero in order to avoid having a
potential as well as set a; to zero as such a term would not
contribute to the field equations when the profile depends
only on one spatial direction z. Hereafter, we will denote
the background (i.e., the domain wall) value of |¢'| as f so
that one has X ~ —f2/2 and f is positive. We will further
consider that f is either a constant or a nontrivial function
of ¢, f(¢) (which is always the case at least implicity if
¢(z) is locally nonconstant). Note further that as we
consider here spatial profiles, X is negative, hence the
chosen minus sign inside the powers appearing on the right-
hand side of (58). In a more general situation, should we
want to keep fractional powers in (58), we would rather
introduce an absolute value of X for terms with odd 7 in this
expansion.

1. No domain-walls for P(X) theories

Let us first investigate the simplest P(X) case (i.e., we
assume that P, = 0). In this case, the on-shell conservation
equation (49) can easily be integrated to yield (a non-
vanishing 7, would just add below a trivial constant on the
right-hand side)

P(X) = PV =2X ~ Py|¢'|. (59)
Such a theory does not fall in the class (58), as it just has a

nonvanishing a, it does not yield domain walls of the kind
we are after here and hence will not be further considered.
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2. Separable theories

We then focus on “separable” theories, i.e., consider

$)> Bl

n>2

P(¢, X) = a( —2X)"/2, (60)

where {f,},s, is a collection of constant coefficients. In
this case, one has simply

¢)Zﬁn(" - 1)(_2X)n/2

n>2

= a(@)d pu(n=1)f

n>2

(61)

where the last equality holds for the sought for domain
wall, as we assumed 7, = 0. Hence, leaving aside the case
of a vanishing a which would make the theory trivial,
we must have f a constant f(, root of the polynomial
equation (61). In this case, the energy density is given by
H = —al(¢p) > p.fi, so we have to impose that a is regular
everywhere (or at least in the domain of variation of ¢ for
the domain wall profile). The kinetic matrix of the domain
wall perturbations is given by

2% = a($)) np,fi? and
n>2
2% = —a($) n(n—1)B.f52 (62)

n>2
thus the conditions (46a) and (46b) become respectively

0< (Znﬂn fg) (Zm

n>2 m>2

_<Z"ﬂnf6’> /a(d’(z))dz < +o0.

n>2

Dhff) (630

(63b)

Note that the case of separable theories (60) in fact also
covers canonical domain walls discussed in the previous
section, as the corresponding canonical Lagrangians can be
put in the separable form using the variable y [Egs. (23)
and (30)]. Using this variable, and not (we stress) ¢, one
finds indeed that the canonical domain walls are repre-
sented by f = |y/'| a constant equal to f, = 1. However,
obviously, theories which are separable in ¢ variable cannot
support domain wall profiles of the type ¢ = tanh(z), as the
corresponding f is not constant. This would not be true, if
one would relax the no-potential hypothesis. E.g., the
following separable theory

AV2X=A(1-¢?) B
P((ﬁ,X):Pom, (ﬂ,Po) E]O,I[XR*, (64)

which behaves as in the X — 0 limit as

Pye1=0%)
I=a(1-¢%)"

= tanh(z) profile
—Py).

P(¢.0) = (65)

admits a stable domain wall with a ¢
(with in this case a nonvanishing J, =

3. Nonseparable theories

Letus now focus on the more general case of nonseparable
theories in the class (58) and define ny > 2 as the smallest
integer n for which a,, is nonvanishing. We can extract a,,
from the first integral 7o = > (n — 1)a,f" = 0. We find

~1
T Dy

n>ng

n—ny

a, f"" and H:Z

n>ngy

a,f".  (66)

l’l()—l

where again, we imply here that f can be locally expressed as
a function of ¢. So the energy constraint (12) is satisfied as
long as f and a,(¢) do not blow up on the relevant range of
variation for ¢. The kinetic matrix of the perturbations around
the wall profile are given by

Zan ’11 f"2 and
n>ng

Z% = Z(no —n)(n—1)a,f" 2. (67)
n>nyg

So the conditions (46a) and (46b) become respectively

0= <—ZZ_”fanf"> <Z(m — o) (m 1)amfm>,

n>ng 0~ m>ny
(68a)

n—ngm
0< "ldz < . 68b
/(g;ono_lanf> 1<+, (68b)
In addition, one has of course to check that condition (12)
holds. To proceed further, we will be looking in the next
section for theories admitting walls with identical profiles to

the one of the canonical mexican hat theory and further show
how this can be generalized.

IV. MIMICKING CANONICAL DOMAIN
WALL PROFILES

A. Static profiles

We look for Lagrangians that can accommodate an
hyperbolic tangent domain-wall, ¢p = tanh(z) identical to
the one of the mexican-hat model (21). The interest of such
configuration is three-folded. First, it will make our wall
easy to compare with the usual ones, second the zero-mode
@o < ¢’ = cosh™%(z) is also the fundamental mode, as it
bears no node; and third, the background value of X is easily
expressed in terms of ¢. Indeed, f = |¢'| obeys the func-
tional relation for the domain wall profile (background)
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f@) ~1-¢%(). (69)

which can be used to simplifying the calculations. With this
in mind, we can further assume that we can power expand the
function «a,, as

ﬁn.p P — /Bn.p P
an:zz(n'_l)(l—fﬁz) *me (70)

PEZ peEZ

where 3, , are some constants (and the factor 2(n — 1) is
introduced to simplify formulas below). Note that this
expansion is even in z (and ¢) as f(z) is. We could have
added an odd part as well, however, this would drop out of
the crucial normalization condition (68b) and we will not
consider this possibility in this work, as we do not look for
exhaustivity here. The first step if to check the existence of a
domain wall solution in the equation of motion, or rather
here using the first integral (49) with 7, = 0. Let us first
further simplify the setting by considering the case where
only 3 coefficients 3, , do not vanish above, i.e., consider a
Lagrangian P of the form (we will later come back to a more
general form)

ﬂnp
P(¢.X) = X + "L (1 —¢*)P(=2X)"/2
(6.X) = X4 50,005 (1= 7 (-2X)
/qu
(1 — ¢p?)(=2X)"/? 71
where we have set in addition a, = —1/2, so that we also

have n, = 2. In order to get a finite energy, we must have
n+ p > 0andm + p > Osothattheintegrals | f"*7dzand
f f™Pdz converge in Eq. (66). Note that we have in
particular [see Eq. (33)]

+o0
/ ¥ (2)dz =T, (72)
Next, Eq. (66) imposes

Bup = L2777 = g f "I (73)

Assuming a nonvanishing f3, ,, we gethence that (as f is not
a constant here)

p=2—-n and g=2-m (74)
together with the relation
ﬂn,Z—n =1 _ﬂm.Z—m’ (75)

so that we are left with a family of theories parametrized by
one parameter K = f3,, »_,,,» with Lagrangians

1 - —2X)"/?
Pn,m((ﬁﬂ X) =X+ 2(1’1 _Kl) (i _ ¢2))n—2
K (=2x)m/?

Smena-gyp 79

The conditions (73) ensures that the energy of the solution is
finite. Indeed the energy density is found via (66) to be

n—2 (m—n)x

H<Z):5<n—1+(n—1)(m—1)

which integrates into a total energy
2(n=2 (m —n)x
== . 78
" 3 (n -1 + ) (78)

(n=1)(m-1)
Hence we get a strictly positive energy (density) provided
that

)cosh“‘(z) (77)

n—m
n—2

k<m-—1. (79)

Let us finally check the constraints (47)—(69). The coef-
ficients of the kinetic matrix are found via Eq. (67) to be
independent of z and given by

1/n-2
ZOOZ__
2<n—1+

(m—n)x

(n=1)(m-=1)

2—n+(n—mx

) _ —%H, (80)

Z% = (81)
As expected we see that the positivity and finiteness of the
energy is equivalent to the fulfillment of condition (46b), so
we just need to check that the other condition (46a) is
satisfied. As Z% is strictly negative, this just amount to
check that Z%* is strictly positive, which is implying that

n—m

1<
n—ZK

(82)

Hence, at this point, we have shown that the family of
Lagrangians (76) does accommodate a hyperbolic tangent
configuration ¢ = +tanh(z) with stable perturbations as
long as n and m are two distinct integers and together with
verify the bounds

n—m

> 2, 1<
" n—2

k<m-—1. (83)

Note in particular, that these bounds cannot be satisfied if
k = 0, hence we need at least two nontrivial terms of the
form (1 —¢?)>™(=2X)"/? in the Lagrangian P(¢,X).
However, more terms are allowed and we could have
considered a larger family with Lagrangians of the form
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P = an(l - ¢2>2—n(_zx)n/2 (84)

n>2

where «,, are more than three nonvanishing properly chosen
constants. We will later derive the conditions the x,, must
obey. We see here in particular that the mexican potential
appear in the explicit form of the functions a,,(¢). In fact the
family (84) can even be generalized to

P=3 ()| (-2x) = 2 (1= gy 2y

n>2 o —

(85)

where n; is an integer strictly greater than 1 (in principle,
Ky, (¢p) can vanish) and {«,(¢)} is a collection of functions
obeying

o< (R ia)

n#ng
X m—ngy)(m — M
(n;%( o) 1) (1- ¢2)2—m> (86)
0< / <Z Zo__n;) (1 —¢(Z)2)”Kn(¢(z))) dz <40 (87)

n#ng

In order to recover (84), it suffices to take ny =2 and
k() = (1 — ¢*)* "k, and the condition on the collection
of constants {k, } discussed below is automatically satisfied
provided the above conditions hold. If the family (84) is
quite simple, it is not the only one to exhibit such features,
and another one, inspired by the DBI action, is presented in
Appendix A.

In the rest of this section, we will mostly focus on the on
the family (76) and features of its domain wall solution
before discussing its perturbations in the next section.

B. Changing variables

In order to compare our walls to the canonical ones, and
better understand their existence, it is instructive to first use
the variable y presented in a previous section in Eq. (13)
where V is taken to be the mexican hat potential (20).
Namely we set i = tanh™! ¢ so that the wall solution reads
v ~ z and the Lagrangian (76) reads now

1-x
P X)=— | X, + ——(-2X,,)"/?
n,m(Vl l//) COSh4l,U < 174 2(n _ 1) ( l//)

+ ﬁ (—2XW)'"/2>. (88)

Comparing this form with (23) we see that the above family
of theories and the canonical scalar with a mexican hat
potential belong to the same family of theories with
Lagrangians of the form

(89)

L= (ZK,,(—2XW)”/2> cosh™y,

neN

where «,, are constants, and in order to avoid issues with
fractional powers of negative expressions, we can restrict
the discussion to even integers n. Note also that the more
general form (84), once rewritten using the y variable,
reads also as in the above (89). One difference between our
theories (84) an the canonical one (23) is of course the
presence in (23) of a pure potential encoded in a non-
vanishing x, above. A generic theory (89) falls in the class
of separable theories discussed in the previous section and
the expression of the first integral 7 reads then as in (61)

J = <an(n - 1)(—2xw)"/2> cosh™y.  (90)

neN

Hence we see that we can get a domain wall solution
v = Az (leaving for the time being the possibility that A
differs from 41) provided that 7 vanishes and that 4 is
a root of the polynomial (using that —2X,, ~ 4*) A+
> ken ki (k = 1)|4]* hence verifies

> kilk=1)[alk = 0.

keN

o1

This holds true with 4 = %1 both for the canonical theory
(3)-(20) which has kg =k, = —1/2 (and the other «;
vanish), and for the family (88) which has

1

ky = ) (92)

1 -«
- 1) (93)
Km = m (94)

One worrisome aspect of the family of theories (76) (or
(88) is of course the fact that their Lagrangian appear
singular at ¢p = +1, i.e., at the minima of the mexican hat
potential (20) which are reached at spatial infinity by the
domain wall solution ¢ ~ + tanh(z). Note first that, as will
be shown later, the quadratic Lagrangian for the perturba-
tions around this solution is nowhere singular (including at
z = +o00) allowing a well-defined perturbation theory
around the “vacuum” represented by the domain wall.
We also note that, once written with the y variable, both the
canonical model (3)—(20) and the models of the family (76)
appear singular at w = £oco which correspond to the
minima ¢ = +1. However, going back to the ¢ variable
for the canonical mexican hat model, one gets rid of this
singularity. We now show that, similarly, a change of
variable can be made in the models (76) [or (88)] in order
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to make the Lagrangian everywhere nonsingular and in
fact to extend elegantly the models “beyond” w = +o0
(or ¢p = =£1). To see this, it is convenient to define the
variable &, by

dep

dg,=——"—
e

for p—2e€N. (95)

This can be explicitly integrated to yield

1 23

fp(‘ﬁ):zFl{E’l—;;E;(ﬁz]gﬁ, (96)

where ,F (a, b; c; u) is the Gauss hypergeometric function
(which is well defined on the unit interval for its fourth
argument u, and whenever ¢ > a + b, see e.g., [43]). Some

special values of p however lead to more nice-looking
forms:

&H =4, &= arcsin(qﬁ),

£y = 2F (@ \/5) o =tanh™'$  (97)

where F is the elliptic integral of the first kind.® Note that
&, just equals the variable y defined in Eq. (22). The
minima ¢ = %1 of the mexican hat potential are mapped
respectively to the following values .f; given by

Val(3)

G+3)

=& =21 =+ (98)

where we recall that I'(0) = oo and I'(1/2) = /7. As a
consequence one sees in particular that for 2 < p < oo the
minima of the mexican hat potential are sent to finite values
of the &, variable. We also have £,(0) = 0, and one can
check that the mapping (96) is (monotonic and hence) one
to one between ¢ € [~1,1] and & € [£,.£;]. In addition,
noticing that d&;,/d¢ diverges in ¢p = +1, one see that the
inverse mapping ¢ = ¢(&,) can be naturally extended (for
finite p > 2) to a periodic everywhere smooth, nonsingular
function defined on entire real line and of period 4¢;. In
general, this inverse mapping, even though it exists, does
not correspond to simple functions, however, this is not true
for p =4 and p = 8, for which we have

¢ =sin(&;) and
¢ = sin (2am(&s/2))) = 2sn(&s/2) en(&s/2).  (99)

¥Note that we use here the definition of [43], i.e., F(¢,k) =
14 da : : . es .
I e which differs from the definition used e.g., in

Mathematica [44].

where am is the so-called amplitude of the elliptic integral
F, and sn and cn are the so-called sine-amplitude and
cosine-amplitude, and we allow now &, to vary over the
entire real line. Obviously the period of the first function
above is 2z = 2./7(1/2)/T'(1), while the period of the
second function is 2./zI'(1/4)/T'(3/4) ~ 10.5. Of course
this is not the only possibility to extend the inverse function
beyond the points f,f, however, choosing this way offers an
elegant extension of the family of models (which strictly
speaking differ from the ones (76) where the function
(1 —¢*)? is not periodic). It would be interesting to
investigate if this “periodic” extension would allow us to
find solutions with a nontrivial time dependence interpolat-
ing between nonadjacent minima similarly to what is
known to exist in the sine-Gordon model.

The interest of the change of variable (96) appears
considering a Lagrangian of the form (76) and choosing
p = m. Noting then & = ¢,,, as well as defining X as in (1)
replacing there ¢ by & we get that P now reads

Kk(=2X)m? 1 -«
 2(m=1) 2(n-1)
+ (1= @20 X,

(1 _ ¢2)2(1—%) (_2X§)n/2

(100)

where ¢ is now considered as a function of & (i.e., ¢ = ¢(&)
which we can—but do not have to—consider as periodic
in &). In this form the Lagrangian is no longer singular at the
finite values ¢ = £1 (corresponding to £%), even though
the purely “kinetic” term of & has the nonstandard form
o (=X;)™?2. For the family (100), if one notes w(¢) =
1 — ¢*(£), the first integral J is found to be (while
equations (49)—(51) hold, mutatis mutandis)

I-x j-z)

J :w2<1—%>xé+7w2< w(=2Xg)P+2(=2X,)2. (101)

K
2

Explicitly, we find the field equation operator £ given by

£— |:W2(1—%) _ ”(12_ K) w202 (&2 — ? (5/)m—2:| g
e e T

x P(&),
(102)

which in particular, as we have 2 <n < m, implying
m>n-+1> 3, is nowhere singular. The domain wall
profile, solution of the above, is obviously given by

1 23
&(z) = ,F, 3 1 —E,E,tanhz(z) tanh(z). (103)
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Em(2)/ém(0)
1.0+

05F[ «*

FIG. 3. Behavior of the domain wall profile £(z) (103)
normalized to its value at infinity for different values of m.

Those profiles are shown in Fig. 3 for the cases m = 2 (the
usual tanh), m = 6 and m = 8.

C. Energy, Bogomol’nyi and
topological considerations

Before writing out in the next section the explicit theory
of perturbations around our kinks, we would like here to
study their energy making the link with Bogomol’nyi’s and
Derrick’s arguments. To that hand we first consider the
theory written in the y variable, and start with the general
form (89) which encompasses the canonical mexican hat
model (allowing for a nonvanishing ;). The total energy
density H(z, z) of a given (arbitrary) field configuration is
easily found to be

H(t’ Z) =~ (ZKZn (llllz - WZ)n + 21’11(2”1/‘/2 (l///z - lpZ)n—l)

neN

x cosh™y (104)
where to simplify the discussion we assume here and
henceforth that only «; with even k are nonzero. In the case
of the canonical mexican hat model (recall that we just have
then x, = k, = —1/2) we find an energy density H(t,z) =
(1 + ' +1)/(2cosh*y). Using then the notation

x =y (105)

Y= (106)

We see that the Bogomol’nyi trick and decomposition
(37)—~(39) amounts here to just write the polynomial in
x and y appearing in the numerator of H=(1+x>+y?)/
(2cosh*y) as

L+x2+y2=y>+ (x+1)* F 2x, (107)
where the first term on the right-hand side yields the kinetic

energy (after the proper division by 2 cosh* i), the second
one vanishes for the wall profile x == 1 and the last one

give the equivalent of the topological charge (39), i.e., it
gives choosing here the lowest sign (as would be appro-
priate for the kink, as opposed to the antikink which would
correspond to the solution x = —1 and the choice of the
upper signs)

+00 / (+o0)
/ - / [ (108)
—w cosh*y w(-c0) COsh™u
1 u=y(+eo)
= [tanh u — = tanh? u} (109)
3 u=y(~c0)
| Ju—dre)
= |u—-u (110)
3 Ju=p(-o)
$(+00)
:/ (1 = 2)du (111)
$(—0)

where the last form indeed matches the expression (39)
with the mexican hat potential (20). For the domain wall
profile we find the above expression yield 4/3 [see
Eq. (33)]. We now show that a decomposition similar to
(107) exists in general for our theories. Indeed, considering
(104) we see that the polynomial equivalent to (107) reads
in full generality

My (1:9) = =2 Fn (02 =)+ 2?22 =57 )

neN

(112)

so that the Hamiltonian density is just ITy(x, y)/2 cosh* y,
while, in order to have a domain wall with profile y = +z,
the coefficient x, must obey [see Eq. (91)]

oo =2% (113)
where the Z, ; are defined by
Tek = Y Kkounk, (114)

neN

where we imply in particular that X o = >, o k2, (using
the convention that 0° = 1). At this stage, considering the
form of I, we can notice that the Hamiltonian cannot be
bounded below if the largest integer n for which k,, does
not vanish, call it n,,, is even. In contrast, if n,,, is odd
we see that at large x and y the dominant terms in ITy(x, y)
read (—2K2nmax)()€2 + (znmax - 1)y2)(x2 - yz)”'m_l) which
shows that the Hamiltonian is bounded below for negative
Kan,,. (and finite y). In fact it can further be shown (see
below) that it is possible to find, for specific odd n,,,, and
K>,, an everywhere positive Hamiltonian [the Hamiltonian
vanishing only at (x =0, y = 0)]. Let us now expand II,,
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around x = +1 and y = 0 corresponding to the domain
wall solution. We find after some simple manipulations

Ho(an’) = (421(,1 _ZZK,O) FaxZ, +H((x:|: 1)7)’2)7 (1 15)

where I1(a, b) is a polynomial in a and b which vanishes in
(a = 0, b = 0) and in addition start only at order a® and b
expanding around this point. We see that the first term on
the right hand side of (115) vanishes by virtue of (113).
Hence we can write the total energy of any field configu-
ration in a theory of the family (89) which has a domain
wall solution as

H(Z) = Hkin,grad(t) + Hoo(t)v

where the two contributions on the right-hand side read,
using (113)

(116)

((y' ¥ 1).y°
Hiin graa (1) = /((2Th41>;/)dz (117)
He (1) = :FZK,O/de (118)

where one sees that the last term is a topological conserved
charge just identical (up to a constant factor) to the one of
the canonical model (108) [see also (39)]. In the variable y
it is associated with the current

- - d
T = e, ( / _)
w, cosh®u

The above decomposition (116) generalizes the one of
Bogomol’nyi in our context, and one can check that with
the choice of nonvanishing «,, given by kg =k, = —1/2
we find back exactly the form (36). It also allows to check
for the stability of the wall configuration within a class of
field configuration sharing the same conserved charge H.,.
To that end we can look at the behavior of the contribution
Hiingraa(t) by expanding IT around (0,0). Specifically,
taking into account the constraint (113) we find the
following expansion of Ilj:

(119)

HO(-x’ y) = :szzx.o - ()C + 1)2(42%.2 - 2’K,O)

— g+ (120)
where the leftover terms are at least cubic in (x F 1) and y.
This shows that the domain wall solution represent a local
minimum of the energy in the class of all field configu-
ration having the same topological charge provided that the
quantities X, o and X, , (defined above) verify

4%, , <%0 <0 (121)
For the domain wall one has IT= 0 (i.e., I[1(%1,0) = 0)
which means that the energy is only containing a nonzero

topological contribution H,. Note however that in contrast
to the canonical mexican hat domain wall, the domain wall
“without a potential” (i.e., whenever k,, vanishes) can not be
global minimum of the energy within the class of configu-
ration with the same topological charge. Indeed, from the
above discussion we see that IT = Il & 2xZ, 5, but I,
vanishes in (x = 0, y = 0) where the dominant terms as x
and y approach zero are quadratic in x and y. This means
that IT has to change sign across (x = 0, y = 0) and must be
somewhere negative, preventing the local minimum of IT at
x = %1, y = 0 (where Il vanishes) to be a global minimum.
An interesting question is of course that of the existence of
such a global minimum and of its possible meaning for field
configurations. This is in fact a difficult question, as the
total energy (say in fields configurations with fixed
topological charges H,,) does not only depends on x
and y through IT but also on the value of the field y via
the denominator cosh™ . Hence, even if in some cases a
global minimum of IT can be found (e.g., for some models
in the class to be discussed below where the Hamiltonian is
bounded below), the discussion above shows that IT is
strictly negative there, and it is not enough to conclude for
what concerns the energy after the taking into account of
the coshy ™ factor (in contrast, the local minimum of IT
found for the wall configuration is a local minimum of the
energy because I vanishes there). We hope to be able to
investigate these issues, which are of course also related to
the nonperturbative decay of our walls, in a future work.

Conditions (121) are the ones x,, should obey in order to
get a stable wall configuration. Setting k,, k,, and «,, as in
Egs. (92), (93) and (94) for some specific even n and m, we
can check that above conditions (121) are equivalent to
conditions (83) for the set of models (88). To discuss a more
explicit case, let us consider the simple model in the class
(76) with there n = 4 and m = 6. Explicitly the Lagrangian
of this model reads in the y variable

1 1 -« K
— X ——(=2X,)* +—(=2Xx,)° ), (122
e (B R e S x ). a2

hence we have k, = —1/2, k, = (1 —k)/6, kg = k/10, so
that .o = —(5 +«)/15 and 4%, — X, o = 1 +«, hence
the constraint (121) is satisfied provided that

-S<k<-1. (123)
This range corresponds also to the allowed range for x

given in Eq. (83). Moreover, in the line of the discussion
following Eq. (113) one can show that restricting further

to be larger than —(17 +3+/21)/10 ~ =3.07 we get an
everywhere positive Hamiltonian H(z,z). As further
expected, we find in that case that Il vanishes at
x = %1, y = 0 which is a local minimum of II, but IT is
negative somewhere on the y = 0 line in the (x,y) plane
and hence x = +1, y = 0 is not a global minimum of II.
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This is shown in Fig. 4 for different values of x, while
figure 5 shows the shape of the polynomial IT along the
x =1 line.

It is also interesting to see how the usual scaling
argument due to Derrick [45] applies here. To that end,
consider a rescaling of the domain wall solution y(z) =
+z as in y,, = yo(wz). The total energy of the rescaled
field configuration ,, is easily obtained as

H, = —ngn_lkn.

neN

(124)

Restricting ourselves here to the case of even n we obtain
easily the first and second derivatives of H, evaluated at

(o]

w=1as
dH 4
@ =——02Z.1—-2Z.0),
da) ol 3 ( K,l K',O)
d*H,, 4
da? == g (4ZK.2 - 6ZK,1 =+ 321(,0)- (125)
w=1

The first derivative above vanishes by virtue of the relation
(113), thus confirming that the domain wall is indeed a
solution. The second derivative is positive if the condition

n(x-1,0)
020} :
!
¥
0.15} iy
.": K=_2
0.10f REIEIS . [ e k=-3
’.’ e ",\ '."" ----- - K=-4
0.05f P e LY B
. P ‘C\.‘ .
- /’. T o~ '
R = X
S~--027 04 0.6 0.8 1.0 1.2

-0.05F

FIG. 4. Behavior of TI(x — 1,y?) on the y = 0 line, for the
model (88) with (n,m) = (4,6) and different values of .

neo.y)
0.010

. -0.005 .

FIG. 5. Behavior of II(x — 1,y?) on the x = 1 line, for the
model (88) with (n,m) = (4,6) and different values of .

(121) holds, thus Derrick’s usual scaling no-go argument is
evaded and the domain wall is stable against dilatations.

D. Static and moving walls

In the canonical mexican hat model (3)—(20), Eq. (91)
has only the roots 4 = +-1. However, considering the more
general models (76) (or (88), it is possible that Eq. (91),
which now reads

2+ (k= 1)A" = xA™ =0, (126)
has some other roots /A different from 1. This would yield
a domain wall solution of profile

¢,(z) = +tanh (1z). (127)
Note however, that 4 = 41 is always a solution of
Eq. (126), so that the standard domain wall profile coexists
always with the profile (127). E.g., the Lagrangian (122)
admits, beyond the “canonical” wall ¢p = tanh(+z) another
wall solution of the kind (127) with A= +1/\/—«.
However, while properties of the solution (127) (with
A # *£1) are given in Appendix B, it is also shown there
that both solutions cannot be stable simultaneously: the
solution (127) can be made stable at the price of violating
the bounds (83) on x which are in turn necessary for
the stability of the solution with the canonical profile.
However, having more than three terms in the Lagrangian
(76) [or (88)] leads to the possibility to have more roots to
the Eq. (91) and hence possibly more than one stable wall
solution, this will be investigated elsewhere.

Another possibility to extend the solutions discussed
above is to let the walls move. In particular, using the y
variable and considering for simplicity the models (88), it is
easy to see that the part of the field equations that do not
contain any second derivatives, is in full generality propor-
tional (and as consequence of Lorentz invariance) to

1-«

X+ (2%, + 3 (-2%,)"*  (128)
which for a static wall is in turn proportional to the
expression of the first integral 7. This means that any
static wall profile (127) extends (including the “canonical”

case A = £1) to a moving solution of the form

7+ pt )
V1-p)
where f# < 1 is the dimensionless speed, and where one
has —2X,, =y —y? = 1.

¢ (t.x) = £ tanh </1 (129)

E. Sine-Gordon like and other walls

The above discussion and construction can easily be
extended to other kind of kink profiles such as the one of
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sine-Gordon or more generally the family of models (31).
Indeed, consider Lagrangians of the form

L= <ZK,1(—2X,,,)"/2) coshky,

neN

(130)

As the discussion of Secs. IV B and IV C applies whatever
the y-dependent factor in front of the Lagrangian, its
conclusions hold also for the family (130). In particular,
w = Az is a solution as long as 4 obeys (91) and moreover,
the solution with 4 = =+1 is stable provided conditions
(113) and (121) hold. Turning back to the original ¢
variable, the corresponding Lagrangians are simply given
by (84), where the powers of (1 — ¢?) are replaced by
powers of |¢/'|, considered and expressed in terms of ¢, and
it is easy to get the corresponding domain wall profiles for
the ¢ variable. In particular, for k = 1, we get stable domain
wall profiles identical to the one of sine-Gordon model
reading as in eq. (27) with the Lagrangians

P =" Ky, sin(¢p/2 - pr)> > (=2X)"

n>2

peZ. (131)

One feature of the sine-Gordon model is its integrability
leading in particular to nontrivial solutions such as breath-
ers or kink-antikink (see e.g., [4]). It would be interesting to
investigate if some remnant of such solutions still exist in
the kind of models considered here.

V. WALL PERTURBATIONS

We focus here on properties of perturbations around
the domain wall solutions discuss in the previous section.
To be specific, we will concentrate on the set of theories
(76)—(88)—(100).

A. Quadratic perturbations

We write a generic field configuration as ¢(z,z) =
¢(z) + ¢(t, z), where ¢(z) = =+ tanh z and the domain wall
perturbations ¢(z, z), once Fourier transformed with respect
to time, obey Eq. (44). We give in the Table I below the
relevant coefficients 2%, 2%, and M? appearing in this
equation, we also indicated there the value of the energy
density H(z) of the domain wall solution. These functions
are given both for the generic P, ,, Lagrangians of Eq. (76),
for the specific choice (n,m) = (4,6) corresponding to

TABLE 1.

the Lagrangian P,g, and for the canonical mexican hat
model (3)-(20) whose Lagrangian is denoted by P,,,. The
quantities relevant for this last model are henceforth
indicated with an index “_,”. We first note that the
perturbations of our “domain walls without a potential”
discussed here have an action very similar to the ones of
the canonical mexican hat wall. In particular, the kinetic
matrix is constant, thus the perturbations are well defined
everywhere in space. More precisely, we see that, as
M? = ZZM?2, and Z% is constant, a perturbation of
our wall obeys the same equation as a perturbation of the
canonical wall

(Z(Z:ezm(p;c)/ - ( ggnd)% + Mgﬂn)(pk =0, (132)

where the frequency of each mode is multiplied by an
universal factor obtained below

Y n=m=D (-,
Ko Q2-n+n-mr)(n-1)(m-1)~

(133)

In order to find stable perturbations, we recall that we have
to demand that conditions (47) are obeyed, which amounts
to just demand that Z% is negative and Z% positive.
In turn, this gives the bounds on x given in Eq. (83).

We can further note that our models allows to find walls
which have exactly the same profile and energy density as
the canonical walls by tuning to 1 the coefficient in front of
cosh™(z) in H(z) choosing k = n(m — 1)/(m — n). These
walls are thus perfect “Doppelginger” walls to use the
terminology of [30] (or “twinlike defects” see also [46,47]).
However, for such walls, the bounds (83) are violated so in
our cases these perfect Doppelgéinger walls are not stable.
However, choosing

n(m—1)(n-2)
(n=m)2-n+mn-1))°

K= (134)

which satisfies the bounds (83), we get @ = w? and so the
theory has exactly the same spectrum as the canonical one.
This correspond explicitly to the family of Lagrangians

Comparison of the energy density and the perturbative quantities for the generic P, ,, Lagrangians of Eq. (76), for the

specific choice (n,m) = (4, 6) corresponding to the Lagrangian P, ¢, and for the canonical mexican hat model.

Pn.m P4.6 Pcan
H(z) 3 (%f + %) cosh™(z) St cosh™(z) cosh™(z)
00 _ _ _ 54« -1
2% _% (ZT% + (n(—nlz)(nm>fl)) 15
Z2 (Z) 2—n+(2n—m))< _(1 + K') 1
M3 (2) (2—n+(n—m)k)(3¢*(z) = 1) —2(1 +x)(3¢*(z) = 1) 2(3¢%(z) = 1)
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1
2m—n)2—n+m(n—-1)
m(m —2)(=2X)"*  n(n—2)(=2X)"/?
== (-7 |
(135)

P(p,X)=X+

X

which have stable domain walls with profile identical to the
one of the canonical mexican hat, and an energy density,
and kinetic matrix just rescaled by a (physically irrelevant)
common factor given by

(n=2)(m=2) mn

22 —ntmn=1)) ' 2mn—(mLn)+2)

(136)

In this class of models, that we will call here and henceforth
a mimicker, the simplest ones are possibly obtained by
choosing (n, m) = (4,6) and k = —5/4 yielding the simple
Lagrangian

3x2 X3
(=g =)

P(.X) =X+ (137)

which has a domain wall solution ¢ = +tanh(z), a
Hamiltonian everywhere positive as seen in the previous
section, and energy density and kinetic matrix just rescaled
by a global factor 1/4 with respect to the canonical ones.
Note that for this particular model, we can compute

Py(1 —¢?)* = ((1 — ¢?)? +%X)2 +%X2 (138)

4
(139)

Xy + 21 - = (1= 5x) =2

so that we see that condition (52) is always fulfilled in
agreement with having an everywhere positive Hamiltonian,
while condition (53) can be violated somewhere in the field
space. However, the later condition is verified on the wall
background and in its vicinity in agreement with the found
local stability.

TABLE II
models, and for the specific choice (n,m) = (4,6).

B. Cubic perturbations and strong coupling

As we saw in the previous section, the walls considered
here are local minima of the energy in the class of field
configuration with fixed boundary conditions at z = +oo0.
This contrasts with canonical domain walls which are
global minima. As a consequence, one should be able to
distinguish the two looking at higher order perturbations as
we now show. Up to surface terms, for a generic theory of
the kind (2), the third-order perturbed Lagrangian reads

1
s¥L =~ 3 [V28,00,00 ¢ — 3V" 90,90, + V).,
(140)

where the different coefficients appearing above are
given by

VP = Pxxx 0" 0" 0P — 3Pxxn" 0P ¢, (141a)
Y = Pxxy0$pd"$p — Pyyn', (141b)
V= =Pysp = 0,(Pxpp0"p). (141c¢)

For the canonical model (3)—(20), only Y = V 55, = 12¢ is
non-vanishing. For the P, ,, models (76), as well as their
subset mimickers (135), one finds non-vanishing J**/ and
W for the background given by the wall of canonical
profile ¢p = +tanh(z), in particular some relevant coeffi-
cients are gathered in the following Table II. One can notice
that for all P,, models, Y% = -2¢/3)% and
Y* = =2¢)**. Moreover, for the mimickers, all contri-
butions containing time derivatives of the perturbations
vanish at cubic order. However, the cubic interactions are
found diverging at large z, for which, for the domain wall
profile, 1/(1 — ¢?) as well as ¢/(1 — ¢?) diverge. Hence
the perturbation theory in the ¢ variable diverges at large z
off the wall. Note however, that as we have shown that the
wall is a local minimum of the energy in the class of field
configurations with fixed boundary conditions, one expects
that there is a range of localized perturbations of the wall
which are absolutely stable. To end, we also notice that one
cannot mimic our models with a P(¢,X) of the form
f(X) = V(¢) as Y* would be vanishing. Note also that the

Some relevant coefficients of the cubic vertices for the generic P, ,, Lagrangians of Eq. (76), for the subset of mimicker

Generic P, ,

Mimicker P, , Mimicker P, 4

yOOz _% (n(nfnZ_)(lel) _ m(mm:IZ)K) 1_14)2
ez n(n=2)(k=1)-m(m-2)x 1
2 1-¢?
00 (n=2)(k=1) _ m(m=2)
y (n n ,,_IK _ m::_l K) 1:/;¢2
Y= —(n(n—=2)(k=1) = m(m —2)x) 1_4’4)2

0 0
mn(n=2)(m-2) | _6
2(2-n+m(n-1)) 1-¢? 1-¢?

0 0

mn(n=2)(m=2) ¢ _ 129
— Conem(n=1)) 147 -
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generic properties of the perturbations found in this section
using the ¢ variable: sound quadratic perturbations, off-the-
wall strong coupling at cubic order, persists e.g., if one
trades the ¢ variable to £ (once the quadratic perturbations
properly normalized).

VI. CONCLUSION

In this work we have studied domain walls in some
k-essence theories. We have shown in particular that
domain walls can be supported by non-canonical kinetic
terms only, without the help of a potential. If pure P(X)
theories cannot accommodate these unidimensional soli-
tons, the class of Lagrangians (76) is an example of
potential-free theories that can, and we have obtained an
even larger set of theories sharing the same property.
Moreover, we showed that theories can be found having
domain wall profiles just identical to the ones of canonical
field theories such as a canonical scalar field with a
mexican hat potential or sine-Gordon theories. We have
also showed that our walls are local minima of the energy in
the set of field configurations with some fixed topological
charge, however, in contrast with the usual case, they are
not global minima. We also studied the quadratic pertur-
bations of these walls, showing in particular that these
perturbations can be stable and even identical to the
perturbations of the domain walls of canonical models.
Canonical walls can however be distinguished from
the one discovered here looking at cubic vertices of the
perturbations, which in our case become strong off the wall
surface.

This work raises various questions beyond the ones
already mentioned in the main text above. First, as it is
clear that our walls are only stable when subjected to small
enough and localized perturbations (hence “perturbatively
stable”), it would be interesting to study their classical or
quantum decay. One could also imagine constructing similar
objects in a more general setup such as Horndeski theories or
studying the possibility to get solitons with different
topologies (such as strings or monopoles) and higher
dimensions along the line considered here. On a more
phenomenological account, it is known that k-essence can
have interesting application in the early Universe, e.g.,
during inflation (see e.g., [9,14,15,41,48,49]), an interesting
question would hence to look there at the possibility of the
formation and decay of the kind of domain walls considered
here in the early times, and a related question would be to
study the effects of turning on gravity.
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APPENDIX A: DBI-INSPIRED MODEL

In this appendix, we construct another potential-free
theory admitting stable hyperbolic tangent solutions,

inspired by the DBI Lagrangian c(¢)+/1+ 2X/c(¢).

Let us consider the theory

P, X) = PO\/I L2 a,(¢)(=2X)"2, (A1)

c(9)

with a constant P, and an integer n > 2. Then

n—2

J =-P, (1 - an(—2X)"/2>

2X -1/2
x [1 +=+ a,,(—zx)"ﬂ] ~0 (A2)
&

is solved by @, (¢) = -2; (1 — ¢*)™" and the energy density

reads
n_ (1-¢°)
_PO\/n -2 c(p) ’

which is defined as long as (1 — ¢?)?/c(¢p) < n/(n—2).
The coefficients of the kinetic matrix are given by

00 __ PO n _(1_¢2)2
z _(1—452)2\/"—2 c(¢) -

P no 1=\
z “(1—«%2('1—2‘ @) ) - (ad)

so that the condition (46a) is automatically satisfied and the
condition (46b) is again equivalent to the finiteness of the
total energy. In order to fulfill it, it is easy to see that P, has
to be negative, and that we have to choose carefully c¢(¢).
For example, the Lagrangian

2 22_ 2
P:PO\/IJrn_nde1<_¢j;2)X+

(A3)

2 (=2x)?
n—2 (1 _ ¢2)n

(AS)

with P a strictly negative constant, and » an integer strictly
greater than 2, admits stable domain wall configurations.

APPENDIX B: 4 # 1 BRANCH
In this appendix, we investigate the 4 # 1 branch that

was discovered in (126). Let us recall that, in addition to the
usual ¢, = =+ tanh z solution, the model (76) also accom-
modates different solutions, given by

¢,(z) = £ tanh (1z), where

2+ (k= 1)A" =«[a|™ = 0.

(B1)
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For example, in the simplest (n, m) = (4, 6) case, this other
solutions is given by 146 = 1/y/—k.

When 4 # 1, we can express « in terms of 1 as k =
(JA]" = 2%)/(]A|" = |A|™) i.e., viewing this condition as a
tuning on the Lagrangian to accommodate a given A. In this
view, the configurations 4 =1 and A # 1 are simultane-
ously stable iff the x that accommodates the stable 1 # 1
solution lies within the bounds (83).

The energy, kinetic matrix and effective mass are then
given by

H = AH a0 Z0 = 324,
Z#==)72B and M?=BM2Z,, (B2)
where
1/m=2 n—-2 n—m
I yi m+2 _ yi n+2 yi n+m
A 2<m—1|| n—1|| +(n—l)(m—l)|| >
1
X (B3a)
A" —14

g Lm =" = (n=2)A""2 + (n —m)2]"""
2 A" = [a]" '

(B3b)

Let us note that, as in the A =1 case, the spectrum of
the perturbations is simply shifted with respect to the
canonical one

(OB

w?. (B4)

S
ESW)
Il

In order to have a stable configuration, we have to impose
that A and B are simultaneously positive. B is positive for
|4] > 1, whatever the values of n and m. A stays positive
for |A| lying within 0 and some value, say 4, greater than 1

(indeed A(A=1) = % > 0). Thus there exists

always arange |1, 4] in which the configuration ¢, is stable.

However the two configurations with A =1 and 1 # 1
cannot be simultaneously stable. In fact 2=5x — 1 stays
negative for |4 > 1,” and thus the lower bound of the
condition (83) is violated when the A # 1 configuration is
stable. For example in the (n,m) = (4,6) case, the A = 1
configuration is stable for —5 <k < —1 and the 1=

1/+/—x one, is stable for —1 < k < —1/5.

’Notably around 4 = 1 it comes =2k [ =2 (1~ 1)+ -
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