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Symmetric orbifold theories from little string residues
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IP2I Lyon, UMR 5822, F-69622 Villeurbanne, France
2How I Remember It, Inc., Brooklyn, New York 11221, USA

® (Received 17 October 2020; accepted 24 December 2020; published 2 March 2021)

We study a class of little string theories (LSTs) of A type, described by N parallel M5-branes spread out
on a circle and which in the low energy regime engineer supersymmetric gauge theories with U(N) gauge
group. The Bogomol’nyi-Prasad-Sommerfield (BPS) states in this setting correspond to M2-branes
stretched between the M5-branes. Generalizing an observation made by Ahmed et al. [Bound states of little
strings and symmetric orbifold conformal field theories, Phys. Rev. D 96, 081901 (2017).], we provide
evidence that the BPS counting functions of special subsectors of the latter exhibit a Hecke structure in the
Nekrasov-Shatashvili (NS) limit; i.e., the different orders in an instanton expansion of the supersymmetric
gauge theory are related through the action of Hecke operators. We extract N distinct such reduced BPS
counting functions from the full free energy of the LST with the help of contour integrals with respect to the
gauge parameters of the U(N) gauge group. Physically, the states captured by these functions correspond
to configurations where the same number of M2-branes is stretched between some of these neighboring
MS5-branes, while the remaining M5-branes are collapsed on top of each other and a particular singular
contribution is extracted. The Hecke structures suggest that these BPS states form the spectra of symmetric
orbifold conformal field theories. We show, furthermore, that to leading instanton order (in the NS limit)
the reduced BPS counting functions factorize into simpler building blocks. These building blocks are the
expansion coefficients of the free energy for N = 1 and the expansion of a particular function, which
governs the counting of BPS states of a single M5-brane with single M2-branes ending on it on either side.
To higher orders in the instanton expansion, we observe new elements appearing in this decomposition

whose coefficients are related through a holomorphic anomaly equation.

DOI: 10.1103/PhysRevD.103.066004

I. INTRODUCTION

Little string theories (LSTs) were first introduced in
[1-7]. They are a type of quantum theory in six dimensions
which behaves like an ordinary quantum field theory (with
pointlike degrees of freedom) in the low energy regime but
whose UV completion requires the inclusion of stringlike
degrees of freedom. On the one hand, LSTs serve in many
aspects as toy models of string theory, with the only
difference being that the gravitational sector is absent.
Indeed, in practice, many examples of LSTs are obtained
from (type II) string theory or M theory through a particular
decoupling limit which sends the string coupling to zero
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while leaving the string length finite. Thus studying
properties of LSTs gives us an important window into
string and M theories, which are intrinsically difficult to
study by more direct means. On the other hand, conversely,
a better understanding of LSTs also provides us with
more information about the (supersymmetric) gauge the-
ories that are engineered in the low energy sector: due to
their stringy origins, LSTs inherit numerous symmetries
and dualities from string and M theory, remnants of which
are still visible in the low energy gauge theories engineered
by the LSTs.

In the same spirit, there are many (geometric and
computational) tools that have been developed in the
framework of full-fledged string theory (or related appli-
cations), which allows us to perform many explicit com-
putations for LSTs. For example, geometrical methods
which have been used to classify conformal field theories in
six dimensions or fewer [8—19] have recently also been
deployed to attempt a classification of LSTs [15,20].
Indeed, while an ADE classification of LSTs has been
known for some time [1-7], recent efforts have focused on
sharpening the list of all possible such theories.

Published by the American Physical Society
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Furthermore, a specific class of theories which have
received a lot of attention recently are LSTs of type A.
Such theories, compactified on a circle, have been studied
using various dual approaches in string or M theory: on the
one hand, they can be described by configurations of N
parallel M5-branes that are separated along a circle S,l,

and compactified on a circle Sl.l Bogomol’nyi-Prasad-
Sommerfield (BPS) configurations in this setting corre-
spond to M2-branes that are stretched between neighboring
M5-branes and wrap S!. The partition function of LSTs
compactified on S!, Zy , can be calculated by analyzing
the theory on the intersection of the M2- and M5-branes
[21,25,26] using a two-dimensional sigma-model descrip-
tion. In order to render Zy ; well defined, the introduction
of two regularization parameters € , is required. From the
point of view of the low energy gauge theory description,
the latter correspond to the parameters of the Q back-
ground, which are needed to regularize the Nekrasov
partition function. A dual approach is given by F theory
compactified on a class of toric Calabi-Yau manifolds [27]
called X ;. The web diagram of the latter can directly be
read off from the brane-web diagram representing the
system of (M2-M5)-branes mentioned above [21,25,26].
Furthermore, Zy; in this approach is captured by the
topological string partition function on X ;, which in turn
can be very efficiently calculated with the help of the
topological vertex [28,29]. The regularization parameters
€1 in this approach are intrinsic to the refined topological
string [30-32] (see also [33-36]).

Recent studies have exploited this efficient way to
explicitly compute Zy ; (or the corresponding free energy
Fn1) to study symmetries and other properties of the
corresponding LSTs. In the process, numerous very inter-
esting and unexpected structures have been discovered
including, among others, the following:

(1) Dihedral and paramodular symmetries.—The
Calabi-Yau manifold Xy ; engineers a supersym-
metric gauge theory on R* x S' x §' with a U(N)
gauge group and matter in the adjoint representation.
The Kihler moduli space of X ; can be understood
as a subregion of a much larger so-called extended
moduli space. Depending on the value of N, there
are further regions in the latter which engineer
supersymmetric gauge theories with different gauge
structures and matter content. Many of these theories
are dual to each other in the sense that they share the
same partition function. The duality map, however,
is intrinsically nonperturbative. More concretely, it
was conjectured in [37] and proven in [38,39] that
the U(N) gauge theory above is dual to a circular
quiver gauge theory with a gauge group made up of

"We refer the reader to [21-24] for more details on the brane
setup.

M’ factors of U(N') and bifundamental matter,
for any pair (N’,M’) such that M'N' =N and
ged(M' . N') =12

It was shown in [42] that this web of dualities
implies additional symmetries for the partition
function Zy; (as well as the free energy Fy ;).
While it is clear (due to the structure of Xy ; as a
double-elliptic fibration) that the latter are symmet-
ric with respect to two modular groups called
SL(2,7Z), and SL(2, 7),, it was shown in [42]
that they also enjoy a dihedral symmetry which
(from the perspective of the gauge theories) acts in
an intrinsically nonperturbative fashion. Moreover,
it was argued in [43] that a particular subsector of
the BPS states [namely, the sector of states which
carry the same U(1) charges under all the generators
of the Cartan subalgebra of the U(N) gauge group],
is invariant under the level N paramodular group
Zy C Sp(4,Q).

(i1) Hecke structures.—In [43] evidence was presented
that in the Nekrasov-Shatashvili (NS) limit [44,45]
(which in our notation essentially corresponds to
the limit €, — 0), the paramodular group X that is
present in the above-mentioned subsector of BPS
states, is further extended to Xj. The latter is
obtained from X through the inclusion of a further
generator that exchanges the modular parameters p
and 7 of the two modular groups mentioned above
(see Appendix D for details). This result corrobo-
rates the observation made in [46] that the states of
the subsector of BPS states mentioned above (in the
NS limit) can be organized into a symmetric orbifold
conformal field theory (CFT). The latter in particular
implies that the expansion coefficients of the re-
duced free energy (which counts states only in this
BPS subsector) are related through the action of
Hecke operators. This relation was indeed observed
in [46] in numerous examples.

(iii) Factorization to leading instanton order and graph
functions.—In [47] nontrivial evidence was pro-
vided that the free energy Fy; in the so-called
unrefined limit (i.e., for e, = —e|) factorizes in a
very intriguing fashion: for the examples N =2, 3, 4,
it was shown that the free energy to leading instanton
order [from the perspective of the U(N) gauge

’In [37], a much stronger conjecture was put forth: that the
Calabi-Yau manifolds Xy »; and X, ,, are dual to each other if
NM =N'M' and gcd(N,M) = ged(N',M’). This implies a
duality between gauge theories with gauge groups U(N)M and
U(N)™'. Numerous examples were successfully tested in
[37.39,40]. Furthermore, the case gcd(N,M) =1 has been
proven in [39] for arbitrary values of €, ,, and a proof for generic
N, M for ¢;, — 0 was presented in [41].

The notation follows the Kihler parameters which act us
modular parameters for the two groups.
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theory] can be decomposed into sums of products of

the functions H](\f)zl and Wl(\g The former are the
expansion coefficients of the instanton expansion of
the free energy Fy_,;, while the latter are the
expansion coefficients of a function that governs
the counting of BPS states of an M5-brane with a
single M2-brane ending on either side.* Further-
more, it was observed in [47] that the coefficients
appearing in this expansion of Fy; resemble in
many respects so-called modular graph functions,
which have recently appeared in the study of
scattering amplitudes in string theory [48-57].
Higher terms in the instanton expansion are more
complicated: certain parts are still allowed to be
factorized into simpler building blocks; however, on
the one hand, the coefficient functions that appear in
this way are more complicated, while, on the other
hand, the inclusion of Hecke transformations of
H\), and W} is required. While primarily dealing
with the unrefined free energy, preliminary results in
[47] indicate similar decompositions (albeit more
complicated ones) to be valid in the NS limit.
This paper is a continuation of the analysis of the
symmetries and structures discovered in [43,46,47,58]:
focusing on the NS limit of the free energy, we analyze
the form of the free energy that was found in [43,47,58] and
which is implied by property (i) above. We observe new
subsectors of the BPS states that show a Hecke structure
similar to that discussed under (ii) above. Based on the
examples of N = 2 and N = 3 (as well as partial results for
N = 4), we observe, for a given N and at each order in
an expansion of €;, N distinct subsectors of the NS limit
of the BPS free energy F; that exhibit such structures.
We call the functions which count these BPS states at the

25()) N and s €N

indicates the order in an expansion in powers of €. The
latter can abstractly be defined for general N through
contour integrals of (an expansion in powers of ¢; of the NS
limit of) F ; with respect to the gauge parameters a;

of the ay_; gauge algebra (or their exponentials Qa,. =
e?"4 for j=1,...,N). These contours extract specific
coefficients in a Fourier expansion of F ; in O, and/or
particular poles in a limit where some of the [1 Vanish [see

Eq. (3.1) for the abstract definition of the C 2? 0 ]. From a

rth instanton order C where i =1, ...,

physical perspective the functions C receive contri-

2 o)
butions only from M5-brane configurations where the same
number of M2-branes is stretched between some of the
adjacent M5-branes (see Fig. 4 for a schematic representa-
tion). From these configurations, in turn, specific poles are
extracted in the limit where the remaining MS5-branes

Exphclt expressions for H ( )1 and Wf\])

information can be found in Appendix C.

as well as more

coincide. The

N.(r)
Ci.(2s.0)

X1 (which we call p and S). Finally, we can resum the

Citavo) (p.S.e1) in

powers of ¢;.

remaining functional dependence of

is made up of two (remaining) Kéhler moduli of
. . . Nﬁ(r)
into a Laurent series expansion C,

We observe that the functions Ci'\_,(égo) obtained in this

fashion show numerous interesting properties. First, they
are quasi-Jacobi forms of index rN and weight 2s — 2i.
Moreover, the functions for r > 1 can be obtained through
the action of the rth Hecke operator H [see (A10) in

Appendix A for a definition] on C 2‘ 0) (p, S):

Vr>1,

N.(r) _ N.(1)
Ci,(2s,0) (pv S) - H" {Ci.(2s.0) (’0’ S):| ’ Vi=1,...,.N

.(1.1)

Following the logic of [46], this suggests that the corre-
sponding BPS states can be organized into a symmetric
torus orbifold CFT. However, since the seed function

(i.e., the initial function C?,/(é;:o;)) is different in each

case, the corresponding target spaces are different for all
i =1,...,N. Indeed, the functions C""=")
ized in terms of H, (r 1) and W( Yina very simple fashion

[see Eq. (3.9)]. For r > 1, the C; M) can still mostly be

decomposed into HY—1'(p.S) and W5 (p.5) up to

remainder functions [see Eq. (3.11)]. The latter, however,
are not arbitrary but are connected by equations that
strongly resemble holomorphic anomaly equations [59].
These results generalize the properties of the free energy
discussed under (iii) above. Since the results in this paper
are obtained by studying the examples of N =2 and N =3
(as well as partially N = 4) their generalizations to higher
N have to be considered conjectures. However, the large
number of examples that all follow the same pattern
provides rather strong evidence in their favor.

This paper is organized as follows: In Sec. II we review
the LST partition function Zy ; and the associated free
energy J v 1, as well as some of their properties discovered
in recent publications. Owing to the technical nature of
some of the subsequent discussions, we provide a summary
of the results of this paper in Sec. III. Sections IV-VI
provide a detailed discussion of the LST free energies for
N =2, N =3, and N = 4, respectively. Finally, Sec. VII
contains our conclusions. Additional details on modular
objects, explicit discussions of properties of the free energy,
the discussion (and explicit expressions for some of their
expansion coefficients) of the fundamental building blocks

can be factor-

Hl(\f)zl and W&rg and the definition of paramodular groups,
which have been deemed too long for the body of this
paper, have been relegated to four appendixes.

066004-3
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II. LITTLE STRING FREE ENERGIES
AND THEIR PROPERTIES

The LSTs of A type that we are interested in can be
studied by exploiting various dual descriptions in string or
M theory. On the one hand, they can be described through
configurations of parallel M5-branes compactified on a
circle of circumference z and spread out on a circle with
circumference p, where the distances between the neigh-
boring M5-branes are denoted (¢, ..., fy) such that

p:l1+[2+"'+t1\7. (21)
BPS states in this setting are given by M2-branes. The latter
are stretched between the neighboring MS5-branes and
appear as strings in their worldvolumes, wrapping the
circle S} on which the M5-branes are wrapped [21]. In this
context, arbitrarily many M2-branes can be stretched
between any of the neighbouring MS5-branes (a schematic
example is shown in Fig. 1). The space transverse to the
M2-branes inside the M5-brane world volume is Rﬁ and

the M2-branes appear as point particles in this space. The
world-volume theory of M2-branes has N = (4,4) super-
symmetry which is broken down to N = (0,2) by a
U(1),, x U(1), x U(1),, action on Rf x RY [21],]

€]

(21,22, w1.w2) € Cf x CF

— (Zleiel , Zzeiez Wy ei(m+e+)’ W2€i(m_€+)).

(2.2)

The BPS degeneracies of the M2-branes is captured by the
elliptic genus of the world-volume theory which depends
on the parameters (7, f;__y.m, €1, ). This can be calculated
by studying the gauge and matter content of the (0,2)
world-volume theory and using the techniques developed
in [60-62]. A different approach is to calculate the (0,2)
elliptic genus of the sigma model to which the world-
volume theory flows in the infrared. The target space of the
sigma model in this case is the product of Hilbert schemes
of points on Cﬁ, and the equivariant elliptic genus can be
calculated using the details of the U(1),, x U(1),, action
on the target space [21,63,64]. The theory on the
world volume of the compactified M5-branes is the five-
dimensional N/ = 1* quiver gauge theory. The partition
function of this gauge theory captures the M2-brane BPS
states as well and is given by the generating function of
equivariant elliptic genera of the rank N charge K instanton
moduli spaces M(N, k) [21,26].

A dual approach to describing the same LST is through
F theory compactified on a toric Calabi-Yau threefold [27]

>We define ¢ = ¢/t and r = e~ so that the unrefined limit is
g=1

t 1

3 N

FIG. 1. N parallel M5-branes (orange) with (ny, ..., ny) M2-
branes (blue) stretched between them. The distances between the
MS5-branes are t; .

FIG. 2. Web diagram of Xy ;.

which in [22] was called Xy ;. The BPS string states are
given by D3-branes wrapping various rational curves in
the base of the Calabi-Yau threefold with Kahler param-
eters fq,...,ty. The web diagram of the latter can be
directly read off from the brane-web configuration dis-
cussed earlier and is shown in Fig. 2. This figure also
includes a definition (shown in blue) of a basis of the
Kéhler parameters of Xy ;: besides #1, ..., ty, these include
7 and m, which can be expressed in terms of the basis
(hy,...,hy,m,v). From the perspective of F theory
compactified on Xy, the little string partition function
Zy, is captured by the topological string partition
function on Xy ; [20,22]. The latter can be computed in
an efficient manner using the refined topological vertex
formalism [28,29].

In [21,22,25,26,65,66] two different expansion of Zy
and their interpretations were studied,

066004-4
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Zyy = Y 0511 o m.€12),

= Y 0100 2y (Tom€r),  (23)

kyoky

where Q, = ¢?* and Q, = >,

As discussed in Appendix B, Z;(t; . y,m,€;1,) is the
equivariant (2,2) elliptic genus of M (N, k). This expansion
of the partition function is natural when considering the
theory on the M5-branes. The expansion on the second line
of Eq. (2.3) gives the functions Z ..., which capture the
degeneracy of configurations of M2-branes in which k;
M2-branes are stretched between the ith and (i + 1)th
M5-brane. The Z; ...k, is the equivariant (0,2) elliptic genus
with target space ®Y , Hilb%[C?] with right moving fer-
mions coupled to a bundle Vy .., , the details of which are
given in [21,26].

In [22,26] the following little string free energy F ﬁ}elt was
discussed:

N> m,t, €],2)7

(2.4)

where Plog denotes the plethystic logarithm6 of Zy . The
exact form of Zy ; is given in Appendix B. From a physical
perspective, f}'i}?’f counts only single-particle BPS excita-
tions of the LST projecting out multiparticle states. Similar
to the two equivalent expansions of the partition function in
Eq. (2.3), one can similarly consider two different ways of
. plet
expanding Fy 7,

W(z.m. e ,) =

O(r,m+e )0 (r,m—e.)—0(r,m+e_)0(r,m—¢_)

plet
‘7:N1(t1 ..... N?mvT,el,Z)

o k plet
- ZQTF]( ([1 ,,,,, N> ma€1.2)
k

= > 0N O FR Y (tmer,). (25)
ki ky

In previous work numerous properties of the free energy
F R}ef (or some of the coefficients appearing in these two
expansions) have been discovered. In the following we
shall discuss some of them which will turn out to be
important for our current work:

(a) Recursion relation.—In [23,24] the counting func-
tions of a particular class of single BPS states has been
discussed: these states correspond to M-brane con-
figurations of the type schematically shown in Fig. 1;
however, they are special in the sense that they have
one (or several neighboring) M5-brane(s) with only a
single M2-brane ending on them on either side. In the
notation of Fig. 1, these are characterized by the fact
that several adjacent n; are identical to 1, i.e.,

AN (2.6)

(ny, e ng, 1, oo L g,y -
——

m times

The BPS degeneracy of such states is captured by
Fhk) [defined in Eq. (2.5)] with (kj, ....ky) =

(nyyeooong, oo, Ling, -.oony). It was  observed

m times
that in this case

(nyseing 1,001
Fplet

e L ey n —
— F( 1 k k+m N)W(T,m,el.z)'" 1‘

plet (27)

The relative factor W appearing in this relation is a
quasimodular form and is given by

with e, = 6112’52. Further information on this function and

particular expansions that will be useful in the remainder of

this paper can be found in Appendix C 2.

(b) Self-similarity.—In [24] it was observed that in the NS
limit and in a certain region of the Kéhler moduli space
of Xy, the part of the free energy that counts only

®The plethystic logarithm of a function g(xy, X0, ..., xg) i
given by Plogg(xy,x,,...,xg) = ,‘j":]@logg(nx],nx%...,nxK)

where p(n) is the Mobius function.

0,(7,€1)0:(7, €3) ’

(2.8)

single-particle states, becomes directly related to the

BPS counting function for the LST with N = 1 (and

thus proportional to the free energy F ?\,le:tlyl ). With the

notation introduced above, the particular region in the
moduli space is defined as

=t = ... =ty = (2.9)

so that the M5-branes are all at an equal distance
from each other on the circle. In this region of the

066004-5
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moduli space the free energy is a function of (z, p, m)

only and
Ff\}it’NS <%,...,%,T,m,€1) ff\;ellle (%,T,m,q),
(2.10)
where the NS limit [44,45] is defined as
]:?\}?{’Ns(tl, ety T ML €))
_ elzil)noi—?ff\}e{(tl, tyenmer). (211

(c) Hecke structures and torus orbifold.—In [46] contri-
butions to the free energy coming from BPS states
which carry the same charges under all the generators
of the Cartan subalgebra of the gauge algebra ay_;
were studied. In the language of the M-brane descrip-
tion, these correspond to configurations in which an
equal number of M2-branes is stretched between any
of the adjacent M5-branes. The degeneracy of such
states is captured by

Fih(porm.e ) ZQ,, b me ). (212) @

Based on the study of numerous examples (and
supported by modular arguments), it was conjectured
in [46] that’ exp(.7-“Orb NS(p,7.m,€,)) is the partition
function of a two-dimensional torus orbifold theory
whose target space is the symmetric product of the
moduli space M, ...; of monopole strings with charge

(1.... 1),

exp(Fyy (p.7.m.€1))
= ZQp)(ell(SymkM1~~1)
k

= [[ - 050r0sgr)=<tntra (2.13)

k.ni.r

Here c(k,Z,r) are the coefficients in the Fourier
expansion of y.;(M,..;):

Xell Ml 1 ZC k f r Qk (214)

k.C.r

In this paper we shall discuss novel properties of the free
energy, which (in a certain sense) generalize some of the
points mentioned above. However, to render some of these

[y
~J

=
G
hl [
a

FIG. 3. Web diagram of X, , labeled by the parameters
(ay, ...,

ay.S.R).

Instead of the basis (7q,...,ty,m,7), which is
defined in Fig. 2 as certain Kéhler parameters of
Xn1, we work in a different basis given by the
parameters (dj, ..., ay, S, R): this basis was first in-
troduced in [38,40,42] and allows for a more stream-
lined definition of some of the symmetries of the free
energy. With respect to the web diagram of Xy ;, this
basis is shown in Fig. 3. Furthermore, as was discussed
in [42,43], it can be obtained from the basis
(t1,...,ty,m,7) through the following linear trans-
formation® (with v =7 —m):

R:T—sz+Np, S:_m+pa
a;=ty,, Yi=1,...N. (2.15)

This transformation is part of a symmetry group
Gy x Dihy, where Dihy is a subgroup of the Weyl
group of the U(N) gauge group and Gy, is a (dihedral)
symmetry group that is implied by a web of dualities
of the little string theory (see [42] for more details).
Since Gy x Dihy leaves the free energy invariant, the
results discussed above also hold when formulated
in the new basis (&, ...,day, S, R). For further con-
venience we also introduce

properties more clearly visible, we shall choose to slightly Qg = iR Oy = i
modify two important points: N
Q&j:ez’”“f Vi=1,...,N. (2.16)
"Here F30™ is the NS limit of F§% in Eq. (2.12), ie.,
forb NS(P,T m,€;) = 11m€7}—>06 f?\;bl (p,7.m, €12). *We implicitly use tyi1 =t
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(b) Instead of the .7-'%?{ in Eq. (2.4) (which only counts
single-particle BPS states), we work with the full free
energy

N> S, R €1 2)
(2.17)

.....

Fn.1 can be expanded in powers of Qg,

Fualdr. n.S Rier) ZQ%P%)( ..... N> Si€12),

(2.18)

where we can also expand the coefficients

~.S;€12) in powers of € 5,

.....

We will be interested mostly in the NS limit, i.e.,
s, =0 and sy € N.,. Finally, we can expand the

Px’)(sl.sz) in powers of Q, = o2
P1<\;)(s1 52)(&1 ,,,,, N> S)

o (s),

= D 0-0nP

(2.20)

For later convenience, we will also use the notation
n={ny,...,ny}. From the Px)(fll
following (a priori formal) object

5) We construct the

({1} R )ty ..y k)
H(Sl;sz)l (0-5) = ; Q”PN (51,52) ’ (S),

(2.21)
|

CN.(r)

i.(25.0) (p.S) =

. N
where Q, = 2 The P(r)(s ol
Eq. (2.20) are resummed as

,,,,

-] 3_..0}(/,, 5

+Z 3152 (l:Q&x
(2.22)

Here the summation is over all n = {n,,...,ny} €

(NU{0})" such that at least one of the n; =0.
Furthermore, we implicitly assume that ay =
p-Nla

In the remainder of this paper we identify a limit in which
the NS limit of the free energy diverges but the residue of
the second order pole counts BPS states of a symmetric
orbifold theory: For example, the partition function for
the case N = 2 is discussed in Appendix B. In this case the
partition function has a pole at a; = £2e,, while in the
NS limit the free energy Fy_,; has a pole at a; = *e;.
Terms of different order in Qy have different order poles at
a, = +e; with different residues. If we expand the NS free
energy in powers of ¢}, then the coefficients have different
order poles at a; = 0 with residues now shifted because of
the €, expansion. The lowest order pole is of order 2.

On a technical level, just as in previous work, we rely on
studying series expansions of examples for small values
of N which reveal certain patterns. However, since the
corresponding computations are rather technical, we will
summarize our observations in the following section before
presenting the computations for N =2, N = 3,and N = 4,
respectively.

III. SUMMARY OF RESULTS

Because of the technical nature of some of the results of
this paper, we provide a short overview of our main
observations. For a given N, we start by extracting the
following N functions from the (expansion coefficients of

the) free energy P\ )(2s 0)(a1 ““““ ~»S) in Eq. (2.19)

1 = . A . A .
—(27” Nri_IZQ[{fdGICZ]%A da2(al +a2)...}£A R da,»_l(al +-~+a,~_l)
7—0 —a, —ay =ity

494, dQ“NP (ay, ...
Q1+f Q1+f N(2s0) Als-ees

ay.S). Vi=1,...,N. (3.1)

. . . . 9
The last can be resummed into a (formal) series expansion in €,

9Although a priori it is a formal expansion, the i = 1 case given in Eq. (3.5) and the i = 2 example discussed in Appendix B for
N =2 [see Eq. (B24)] shows that it is a Jacobi form involving 6, (p, z) and its derivatives.
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FIG. 4. Brane configuration for extracting C?]‘(r)

CN va €1

Ze%s 2ict, M (».S), (3.2)

which defines a Jacobi form of weight zero and index rN.
The contour integrals in Eq. (3.1) are understood to be
small circles centered around the specified points.lo From a
mathematical point of view, this extracts and combines
specific coefficients in a mixed Fourier-Taylor expansion of
Px): with respect to the variables a; for 1 < j <i—1 the
prescription computes successively the coefficient of the
second order pole at a; = —a; —--- —a;_;. For the var-
iables a; for i < j < N, the prescription sums (weighted by
Qﬁ ) the coefficients of the term Q‘) ol .

digy "
series expansion in terms of Q; = "4 From a physical

Qg in a Fourier
N

perspective, the latter prescription combines contributions
from M2-brane configurations (weighted by Q,‘f ), in which
an equal number of # M2-branes is stretched between the
M5-branes j and j+ 1 for i < j < N'' (see Fig. 4 for a
schematic picture of a generic configuration, as well as
Figs. 6, 8, and 10 for examples of the cases N = 2, 3, 4).
Concerning the remaining MS5-branes, we consider a
region in the moduli space in which they all form a stack
on top of each other: from the resulting divergent expres-
sion, the contour integrals for a; for 1 <j<i-1 in
Eq. (3.1) extract successively the poles of the form
(@ +ay+-+ai)? (@ Fay+Fa)
a7?. The total order of the divergence selected in this
fashion is 2i —2: from all the examples that we have
explicitly calculated, this seems to be the highest singu-
larity that appears in the prepotential at leading instanton
order. This matches the analysis of the singularities of the
partition function in Appendix B.

Owe implicitly assume here that we are in a generic point in
the moduli space, such that the free energy has isolated poles with
respect to the various variables. In this case, the precise form of
the contour is not crucial, and the prescription is simply designed
to extract their residues.

"In this notation it is understood that the M5 brane N -+ 1 is in
fact the M5-brane 1.

The brane configuration of parallel M5-branes labeled
1,...,i — 1 stacked on top of each other (which is used to

define the C?/-(r)) can also be understood geometrically: we
recall that the Calabi-Yau threefold X, ; dual to the generic
M5-brane configuration has a resolved Ay_; singularity.
The case in which i — 1 M5-branes are on top of each other
corresponds to a partial resolution of the Ay_; singularity
so that it becomes a A;_; singularity,

Ay > Ao XAyt (3.3)
——

resolved

The functions Cﬁi(lr) (p, S, €) were already studied in [46].
As already briefly discussed in the previous section, there
(based on the study of numerous explicit examples) the
following relation was observed (we are using the notation
introduced above):

cfiﬂ”(p,s,el):H,[cfiﬁ”(p,s,el)}, Vi1, (3.4)

where H, is the rth Hecke operator [see Eq. (A10) in
Appendix A for the definition] and

0.0_(60,0_ - 9_9;)1"‘1
W(P)SNel(Pvel)N ’

eV (p.S.er) = (3.5)

with 6, = 60,(p,—S+ p+5). In this paper, based on a

detailed study of C""(p., S, ;) for N = 2 and N = 3 (and
partially also for N =4), we provide evidence that
Eq. (3.4) can be generalized to all the functions defined
in Eq. (3.1):

Vr>1,

Ci 0. 8) =1, [l 09

Vi=1,...,N,s >0.

(3.6)

The CQ’(’;)O) are index N Jacobi forms of weight 2s — 2i and

are coefficients in the €; expansion of Cﬁv‘m(p, S,€1),
which is a Jacobi form in two complex variables (S,¢;)
[67]. The action of the Hecke operator H, extends to the
case of multiple complex variables as given in Eq. (Al1) in
Appendix A. From Eq. (3.6) it then follows that

Vr>1,
Vi=1,...,N
(3.7)

Cg\/,(r)(p’s’el) _ Hr |:Cfva(l>(p7 S, €1):| ’

Assuming that this relation indeed holds for a generic r, a
generating function can be formed capturing the degener-
acies BPS states in this subsector
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ZM(R.p.S.€1) = exp (Z oye(p.s, e1>). (3.8)
r=I1

Equation (3.7) together with the fact that the “seed

function” Cﬁv’m(p, S,er) is a weight zero (index N)

Jacobi form implies that ZI(M (R,p, S, €) can be interpreted
as the partition functions of symmetric orbifold conformal
field theories.'* These symmetric orbifold theories arise
from a special subsector of the full theory and are extracted
using the contour integrals involving a; _,_; in the NS
limit. The fact that in this special subsector the moduli
space of charge r instantons can be realized as a symmetric
product of r charge 1 instantons suggests that this special
subsector is getting contributions from well separated
instantons only [68,69].

Furthermore, the study of the above-mentioned examples
has brought to light numerous interesting patterns which
suggest additional interesting properties of the functions

Cﬁv’(r) (p, S, €;): it was already remarked in [47] that to order
O(Qg) (.e., for r = 1), the free energy can be decomposed
into simpler building blocks, which are given by the
expansion coefficients of the free energy for N =1 (see
Appendix C 1 for the definition) as well as the expansion of
the function W [see Eq. (C4) in Appendix C 2], which
governs the counting of BPS states of a single M5-brane
with single M2-branes ending on it on either side (see
Secs. IV B and V B for details about the cases N = 2 and
N = 3, respectively). This decomposition is also reflected

at the level of the functions C}" ril)(p S.er) [and accord-
ingly also for their expansion coefficients C 2;0 =1 (p, )1,
for which we find, order by order in €,

=D (p,8.e1) = X NHYL (0.5, €)))

x (Wl(p.S. eV, Vi=1,..N

(3.9)

where 11(113, is a numerical factor. From the study of the

examples N = 2, 3, 4 we conjecture that the factor J{l(r}z]
depends only on i and N. Modulo the factor }(EIA), the

functions Cf»v'(r:l)(p, S, €1) satisfy the recursive relation

U (p, S, e) ~ TV (p, S e )W (. S €).
(.S ) ~ TV (0.5 e HYL (p. S 1),

(3.10)

“The power Nr of Qp in the summation in Eq. (3.8) is chosen

such that ZSN) can be recognized more readily as a paramodular
form with respect to the group X (see Appendix D).

Starting from a configuration of (N + 1) M5-branes with i
of them collapsed to form a stack, the first recursion

relation suggests that the BPS states that contribute to

1,(r=1 -
the poles in CN+ =1 can be counted from a similar

configuration, where we remove one of the M5-branes that

is not part of the stack and it is related to Cfur:l)

multiplication with W#S)(p, S,e;). Similarly, the second

recursion relation suggests that the effect of removing an

MS5-brane from the stack of collapsed branes on the
N+1,(r=1)

through

counting function C, is described by multiplying
M= with the function Hl(\pzl(p, S.€,).

1

To higher orders in Qp (i.e., for r > 1), the decom-
position is more complicated. While we did not manage to
identify all coefficients uniquely,13 the examples we have

studied suggest that

7 (p.S.e1) = K u(Hy (p. S. 1))

X (ng(p’ S’el))N_i + mév’(r)(p’sv €])9

(3.11)

where the remainder term ER ") itself can be decomposed

into combinations of H](\,L 1(p. S, €1), where the coefficients

are quasimodular forms that depend only on p and which
can be written as harmonic polynomials in the Eisenstein
series (E»(p), E4(p), Es(p)) (see Appendix A for the
definitions). Moreover, different such polynomials are
related through derivatives with respect to the Eisenstein
series E, in the style of holomorphic anomaly equations.
We refer the reader to Secs. IV D and V D for details about
the cases N = 2 and N = 3, respectively.

In the following sections we shall present detailed
computations for N =2 and N =3 (and partially also
N = 4), which support the observations just outlined. After
that we shall conclude in Sec. VIL

IV. LITTLE STRING THEORY WITH N =2

The simplest nontrivial example is to consider a model of
little strings, which is engineered by two M5-branes on a
circle that probe a flat R* transverse space.14

A. Decomposition of the free energy

As explained above, the partition function and free
energy of this LST is captured by the topological string
on the toric Calabi-Yau threefold, X, |, whose web diagram
is shown in Fig. 5. Here we use a basis of Kédhler parameters

13They are, however, implicitly given through the relation (3.6).
The partition function of the case in which the transverse
space is C%/Z,, is given in [25,26]. It would be interesting to see
whether the Hecke structure we study in this paper is also present
for M > 1.
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N

a
2
"
v
ha
v m
1 a
2
S L
FIG. 5. Web diagram of X ;.

(R, S,p,a;) where in addition to the parameters given in
the figure, we have

p=a, + ay, R-2S=v—m. (4.1)
Starting from the partition function Z, |, we define the free

energy

]:2,1(&1,2’5713761,2) = IOgZZI(&l,Z’SvR’el,Z)- (4-2)

We decompose the latter in terms of HE ){">0} (p,S) (for

n € NuU{0}) as described in Sec. II. Upon using the
symmetries of the former, the summation in Eq. (2.22)
becomes

szsl,sz) (&1»2’ S)

g" {00}

= {HO}
(‘132 +2HH‘

" Qﬁ)
(Qal le :

(4.3)

In the following we shall discuss only the so-called NS
limit [44,45], i.e., we consider s, = 0. Only for n =0
(which corresponds to the part of the free energy discussed

in [46]) are the H (5.0 {” 0} (quasi-)Jacobi forms. For n > 0,

the HE )E" 9 are no longer modular objects. However,
following [47,58], based on studying series expansions in
Q, (and exploiting certain patterns arising in the expansion
coefficients) we can conjecture the following generic
form'"”:

"We have verified that these expressions agree with an
expansion of P! EA 5) in Eq. (4.3) following from the general
definition in Eqgs. (2.17) and (2.18) in terms of the partition
function defined in Eqgs. (B1) and (B8), up to order O(Q;O) for

r=1,0(0)®) for r = 2,and O(Q}?) for r = 3and up to 2s = 8.

gn)-An0} (p.S)

(25,0)
f)ggs (p.S) for n =0
- (44
Q" er-H 2k— lbk (2s) (/7, S) forn >0

where h;:()zs) is a (quasi-)Jacobi form of index 2r and

weight 25 — 2 — 2k. Using the standard Jacobi forms ¢_, ;
and ¢ (see Appendix A for the definition), they can be
cast into the form

2r

By ) (2 S) = D WL oy (=21 (p. ) (o1 (0. )7,
a=0
(4.5)
where A" are (quasi)modular forms of weight

a,k,(2s)
2s =2 —=2k+2a and depth sr+ 6, which can be
expressed as homogeneous polynomials of the Eisenstein
series {E,4¢}. For later convenience, the coefficients

(r)
ha,k,(Zs)

Tables I-III, respectively.

for r=1, r=2, and r =3 are tabulated in

B. Factorization at order O(QR)
can be factorized in terms of H(s,0§ } and Wm)) (p, S), ie.,

As conjectured in [47], the coefficients H"= (25

the coefficients that appear in the expansion of the free

energy for N = 1 and the function WI(\}S> defined in Eq. (C8)
(as reviewed in Appendix C 1), concretely,

r=1),{0,0

HEg H } =2 Eb H (2b0)(,0, S),
r=1),{n,0 1 : 0

Hio) " (0.8) = Hiso) (p-)

-0 a.b=0
1).{0 E
x Hiy 0 (0. )M (), ¥ n> 1,

(4.6)
Here M) is a symmetric [(s + 1) x (s + 1)]-dimensional

matrix, that depends only on n, which in [47] was
conjectured to take the form

(_1)‘v+a+bn2s+l—2(a+h)
2 9
I'2s—2(a+b-1))

M((;b):— a,beA0,....s},

(4.7)

where it is understood that 1/I'(—m) = 0 form € N U {0}.
The first few instances of M) are
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(r=1)

TABLE I. Expansion coefficients h .
a.k,(2s)
(r=1) (r=1) (r=1)
s k hO‘k‘(Zs) hl,k,(lr) h2,k,(2s)
0 0 0 — % _ %
1 0 0 -2
1 0 1 0 E,—2E3
1152 285
1 0 L _E
24 12
1
2 0 0 3
2 0 E, SE2-TE, —10E3-3E, E,+4E
55296 69120 69120
1 1 E; 10E3+13E,
4608 57fi 72760
—_— =2
2 0 44 72
1
3 0 0 L
3 0 - 1E14840 35E3-21E,E,—29E —70E3—168E2E,—8E, Es+123E3
17418240 34836480
1 __bB E2+E, —70E3—273E,E,—92E;
110592 27648 2903040
2 ﬁ _E 10E3+13E,
7648 3]456 73451?0
— 2
3 0 2880 1440
1
4 0 0 2520
4 0 118E+105E, E,—70E3 175E3+210E3E,—130E, Eq—381E2 1682y —350E35—2030E3 E4—1000E2 Eg+177E, E2
13377208320 5573836800 16721510400
—10E2-7E, 10E3+30E, E4+11E; —350E4—2730E2E,—1840E, Eg—2283E>
2 2 2 2 4
53084160 19906560 1393459200
2 Ey —-E3-E, 70E3+273E,E4+92E¢
663552 165888 17418240
3 __ 1 E, —10E3—-13E,
552960 69120 691200
__1 £y
4 0 120960 604810
5 0 0 " 181440
. . =2
TABLE II. Expansion coefficients hi’k (gy) .
(r=2) (r=2) (r=2) (r=2) (r=2)
s k hO.k.(Zs) 1.k.(25) hz.k.m) h3.k.(2s) h4.k.(2s)
__1 _E E4 Es—E E,
0 0 0 4608 1152 1152 144
1 0 0 % 0 — %
2 0 0 0 - % 0
1
3 0 0 0 0 L
1 0 1 0 SE4—4E3 4E,E,—3E¢ —16E3E,—16E,Eg+37E}
442368 T 6912 T T E—
55296 27648
1 0 - —E Ey _ EEA42E
4608 11152 12E8 144
1 _E 53E,
2 0 0 128 14 1440
13 Ey
3 0 0 0 576 288
1
4 0 0 0 0 50
2 0 E, 10E2-21E, 87Eq—20E3—59E, E4 170E3E,+140E, E—251E2 E4(TA6Es—80E3)—240E3 Eq—351E, Eg
32.24* 13271040 6635520 3317760 3317760
1 —1 E, —20E2—109E, 9E,E4+13E¢ —80E3E,—320E, Eq—721E];
884736 55296 552060 13824 276430
2 0 — a2 £y —40E2-593E, 3T1EyE4+535E,
36864 15335;1 %;W 12)0960
3 0 0 _ 301 E, —20E3-901E,
184320 69172 13%240
_ 2
4 0 0 0 2880 1440
__73
5 0 0 0 0 120960
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TABLE III.  Expansion coefficients /., ) .
(r=3) (r=3) (r=3) (r=3) (r=3) (r=3) (r=3)
s k hO‘k‘(Zs) hl,k,(Zx) hZ k.(2s) h},k,(Z.v) h4‘k‘(2s) h5$k$(2s) h6,k,(23)
-1 E E 2E,-21E, E E¢~9E> E4(20Eg—=21E,E.
0 0 0 2985984 4971é64 ~ 24416 1686512242 : 8E§€232E“ . 33104; —
1 0 T 41472 0 576 216 —%
1 E 11
2 0 0 0 -5 0 -5t ng
3 0 0 0 0 - 0 _%
4 0 0 0 0 0 S 0
5 0 0 0 0 0 0 — =3
1 0 361245 0 13E,—6E3 9?1%;356 —36E3E,—96E,E+127E} 9E3Eg+42E,E3—53E,Eg —378EE3—1440E, E4 E+1233E}+544E2
24 23887872 1990636 186624 3478976
1 0 | Tk Ea —27E,E,—~94Eq 24E, Eg+139E?  E4(21E,E4+100E,)
1990656 3?31776 921‘:6 1234El6 . g1472 o1k 20736 s
2 0 0 248832 ~ 10368 25920 720 T 18144 'Lﬁ%fﬁ + ;2—53
3 0 0 0 5 B 287E, _TEE, _ 55E,
10368 3456 ST80 8640~ 13608
4 0 0 0 0 0 —%ﬁ 64%3
5 0 0 0 0 0 1083640 6?4280
6 0 0 0 0 0 34070
MO) = (—2n) M ( %3 —2n> To this end, we define the following contour integrals
= (—4n), = )
—2n 0 | © o
. ; N=2(r) . p a
—& 5 - Clizsty P5) = (g % fg 05
=0 ag
2) _ .
MO = 2 _op 0 (4.8) 0, A
on 0 5 Ol Pz (25, 0)( ar.a.5).  (4.9)

In [24] it was shown that the NS limit of the partition
functions Zj ; have a self-similar behavior'® in a certain
region of the Kihler moduli space, ie., for a; =
a, = --- = ay = &. Relations such as Eq. (2.10) allow
one to infer nontrivial information about the free energy
for generic N based only on the knowledge of the (much
simpler) free energy for the configuration N =1, albeit
only at a specific point in the moduli space. From this
perspective, Eq. (4.6) is similar in spirit to this self-
similarity: they allow one to obtain nontrivial information
about the N = 2 free energy at leading instanton order just
from the configuration N = 1. We shall see that relations of
this type also exist for N > 2 and (to some extent) also
generalize to higher orders in Qp.

C. Hecke structures

The coefficients H Eg)s’.‘({)’)l’o} (p,S) for r > 1 do not seem to

exhibit simple factorizations of the type (4.6). We shall,
however, in the following identify particular subsectors of
the free energy [as introduced in Eq. (3.1) for generic N]
that, in fact, do again factorize.

"*The precise relation that was shown in [24] is Eq. (2.10).

a,

N=2,(r) _ L1 ") .
Ceso (P5) = r]{ a8, P; 5., (P, 1. ).

(4.10)

where all contours are small circles around the origin'’ and
in Eq. (4.10) we have implicitly used a, = p — a,. With
these coefficient functions, we define the (a priori formal)
series in €y,

(.8, e)) Va=1,2.

Zeh o) (:5):
(4.11)

From the perspective of the M-brane web, the functions
(4.9) and (4.10) count certain BPS configurations of M2-
branes stretched between two MbS5-branes on a circle.
Because of the contour prescriptions, however, only certain
configurations contnbute and they are depicted in Fig. 6:

(a) Combination C —Upon writing P< ") s0) @

2,(2
[similar to HEZ)S‘({;)! ..... )

2s 0)
Fourier expansion in 0 ,

Eq. (2.20)]

"The integrals are in fact designed to precisely extract the
residues in a Laurent series expansion.
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ay
e
14
~———.
ay
(@

-1 b ~
e Y

W

~

(b)

FIG. 6. Brane web configurations made up of N = 2 MS5-branes (drawn in orange) spaced out on a circle, with various M2-branes
(drawn in red and blue) stretched between them. (a) An equal number # of M2-branes is stretched between the M5-branes on either side

of the circle. Configurations of this type are relevant for the computation of C]lv:2

circle and n, (# ny) on the other side of the circle. Configurations of this type are relevant for the contributions C,

(b)

[Se]

> oyarPhi(s),

ny,n,=0

Pg()z,o)(&l,z,S,el,z) =
(4.12)

the contour prescriptions in Eq. (4.9) extract all terms

N=2.(r)
Cl ,(25,0))

only from those brane configurations, where an
equal number of M2-branes is stretched between
the two M5-branes on either side of the circle, as
shown in Fig. 6(a). In fact, C

written as

with n; = n,. thus receives contributions

2& 0 ) can equivalently be

0,0
HY 5 (p.5),

CYorg) (0 S) = (4.13)
and C

energy studied in [46]. Explicit expansions of C

(p, S, €) is in fact exactly the reduced free

2s 0
for r=1, r=2, and r =3 can be recovered from
Tables I-III, respectively, from the coefficients with
k=0.

Combination C2 (s, 0)) —The function C2 (25 0)) in
Eq. (4.10) receives contributions from conﬁguratrons
in which n; M2-branes are stretched between the M5-
branes on one side of the circle and n, (with n, # n;)
on the other side, as schematically shown in Fig. 6(b).
Furthermore, from each of these contributions, the
contour integral extracts the pole of the type aj?

(where it is important to write a, = p — a,).
In terms of the functions H E - {')' O in Eq. (4.4), the
contour prescription in fact extracts the contributions

(r)
of hk:l,(2s)’

- 1
CN—Z,(I‘) (p’ S) —

(r)
2,(25,0) r hk:l,(Zs)‘ (4-14)

To intuitively understand this result, we introduce [58]

066004-13

), (b) n; M2-branes are stretched on one side of the
N=2,(r)

Ia(p7 &1>

DT, _D2a21 o (Q QQ”>
14 &]

0

with D, = Q4 77— 30,

(4.15)

As argued in [58], Z, can be written in terms of
Weierstrass’s elliptic function ¢ and the second
Eisenstein series (see Appendix A for the definitions)

5 [20(2)E (4.16)

2(p) + plagp)].

Since Weierstrass’s elliptic function affords the fol-
lowing series expansion:

1 [Se]
:_22

C(2k +2)(2k + 1) Ex 2 (p)22,

(4.17)

we have for the contour integral

fd&lfllza(p,&l) :27Ti6a0, (418)

such that with Egs. (4.3) and (4.4) we have Eq. (4.14).
The factor 1/r in the latter relation is simply a
convenient normalization factor, as will become ap-
parent later on.

A more direct way to arrive at Eq. (4.14) 1s to
start from the decomposition (4.3) and exchange the
summations over k and n

Pl o) (@12.9)

0,0 r A~
H(zs i)) }(P, S) + Z f)]({ﬁgzs) (P, S)Xk(al,z),
k=1

(4.19)

18mnp « - . . . .
This is possible since the sum over k is finite.
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where we introduce the shorthand notation

[s+] n ;
; -Qon (@
>

n=1

+03)

=

MSH

n?lQub(Qn + Q). (4.20)

i
o

We can express X; in terms of the g-polygamma

function w!" (),

dInT(z)
va(d) ==
S qn+z
= —In(1 - gq) +In(q Zl prt
d"y,(z)
(m) Yq
= , 4.21
) = (@21)
where I'; is the g-gamma function
0o 1— qn+l
Fq(Z) = (1 - q)l_znm. (422)
n=0

To this end, we intcrchange19 the sums in the last
expression in Eq. (4.20) and find with Eq. (4.21)

. 1 2U-1) /1
Xi(p,ar,) = In(Q, )< (‘I’(Qp )(al/ﬂ)
(2k=1)
+yl (az/p)) for k> 1. (4.23)

The ¢- gamma function I'j(z) satisfies the identity

T,(z+1)= _‘2 I',(z) and, therefore, for z — 0 we
obtain
r,(z) = _1—_q+0(zo) (4.24)
‘ zIn(q) ' '

"This is possible for [Q,| < 1 and |Q; ,| < 1. To see this, we
consider, for example,

<D0 0,00 1"

o
ank 1|Qp nb|Qal

[]s

n=1 b=0 n=1 b=0
= ( n*11Q, | ) (Z\Q,ﬁ)
n=1 b=0
_ L11—2k(|Qa] i)
I lQpi '

where Li;_,, denotes the polylogarithm. Thus, Eq. (4.20) is
absolutely convergent, and therefore the summations can be
interchanged.

Thus, the function X, (p, @, ») diverges for a; + 0 and
in fact has a pole of order k + 1

. 2k—1)!
Xi(p,ay,) ~ —%
ay

+0(a?). (4.25)

Therefore, the only contribution to the contour integral
in Eq. (4.10) (which extracts the pole of order 2) stems
from X (p, a,,), thus yielding Eq. (4.14).

By comparing the explicit expressions for the contribu-

and C
they satlsfy the followmg recursion relation:

tions C ) to the free energy, we find that

N=2.(r) - N=2.(1)
Ci,(zs,o) (p.S) =H, [Ci,(zs,o) (/”S)}’

N=2,(r N=2,(1
Aop.s) =M, [CZ,QS}))) (p, S)} . (4.26)
The normalization factor 1/r appearing in the definition

(4.10) was chosen to normalize the right-hand side of the
second equation above.

D. Decomposition of C;v;f(();) and szv (=2§(();)

In Sec. IV B we have seen that the free energy in the NS
limit factorizes to order O(Qg) as in Eq. (4.6) with the
basic building blocks given by the expansion coefficients
of the free energy in the case N = 1. While the complete
free energy at higher orders O(Q%) (for r > 1) does not

exhibit such a behavior, the particular contributions C (2 0)>

and C ) defined in Eq. (4.10) lend themselves to a
generahza‘uon of Eq. (4.6).

1. Factorization at order Q%

=1)
25 0)

and C 2S07 ), which are in fact induced by Eq. (4.6).

Indeed, using Eq. (4.13) as well as Eq. (4.14), we have
immediately

The first step is to establish the factorization of C

N=2,(
G, (2s0 = 2Z5s i+ H 2 0 P’S)W(zj.o)(ﬂys),
(4.27)
N:2.(r . (1)’{0}
Cz,(zs,o) =-2 Z O, jH ,S)H(zj’()) (p.S).

(4.28)

Combining these expansion coefficients (in a series of €),
we can equivalently write the following relations for the
(a priori formal) series expansions:

066004-14
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TABLE IV. Coefficients appearing in the expansion of the correction term ?1(12).

@) (2) ) (2) )
s ¥10.025.0) T 1.250) Y2250 ¥13.250) Y1 4.(250)
0 0 0 0 0 %
1 0 0 0 E23€{'5_6E6 Eg(—E4)l—71;*§E6+ZE§
2 0 0 E¢—EyE, E3E,+E,Eq—2E? —20E3 E4—60E3 Eq—69E, E3+149E, E¢
221184 T 41472 829440
TABLE V. Coefficients appearing in the expansion of the correction term 9{22).
2) 2) 2 @) )
s L50.(25,0) L) 1,250 T} 2,(25.0) 53,250 ¥)4,25.0)
0 0 0 0 0 _%
1 0 0 0 L — B Ei42Es
576 288
2 0 0 __Es EyE +2Eq 20E3E4+80E, Eq+149E3
36864 6912 -0
3 0 E, —EyE,—2E¢ 8E2ZE,+32E,Eq+59E% —140E3 E,—8AOE3 Eg—3129E, E3—5056E4 Eq
5308416 442368 1327104 34836480
N=2,(r=1) —2ph =
¢ (p.S.e1) = 2HY (p. S. e ) Wi (p. S.€1). R (p.S.e) =D 2R, (p.S). Va=12.
N=2, — T
& (p, S e1) = =2lHYL (p. S, 1)), (4.29)
(4.31)
. 1 1 . .
where the coefficients Hg\,)zl and Wl(\IS) are defined in  where the iR(az 250) (p,S) in turn can be decomposed as

Egs. (C3) and (CS8), respectively.

2. Factorization at order Q%
Based on Egs. (4.27) and (4.28), the first attempt to

=2 0 order O(Q3) would be

to use a similar decomposition, except to replace H ;}): , and

WSS) with their order O(Q%) counterparts Hl(\?): , and WI(\@
respectively. However, this does not fully reproduce the
correct answer; instead we have®

factorize the function C[lvz= 2(

=2.(r= 4
Y (.S er) = SHYL (0. S, ) W3 (p. . e)
)(pasvel)’

410 2
=< [HyL (p. S, €1)]

3
+ R (p.S.€1).

2
+ R
A (p.S.ey) =

(4.30)

The additional contributions 2)132; are formal expansions in
powers of ¢,

“The relation (4.30) as well as the remaining equations in this
subsection are understood to hold order by order in an expansion
in powers of €, and we have checked it up to order €. To save
writing, however, in the following we state our results in terms of
the formal series expansions.

4
R0 (P 8) = Y ¥l 0.0/ (P) D21 (0. 5)) o1 (0. 5))

(4.32)

and the t )(2 0) (p) are (quasi)modular forms of weight

2s —2 + 2i — 2a and the first few expressions are tabulated
for a = 1 in Table IV, and for a = 2 in Table V.
The functions 9122) can themselves again be factorized

where the basic building blocks are HZ(\})ZI,

4
R (p,S.e1) = 84 (p.e)[HYL, (p. S, €)', (4.33)

The only novel feature is the appearance of the functions

@fﬂ which are S-independent (quasi)Jacobi forms that are
characterized through

dep)
dE,

© s+1
oo AT =1)(25 + 1)
©24 p,€1 Z . 3. 4s”2(s+1)

&2
‘1

(p.c1) = ¢ @54(p.ea).

X {(25 +2)Eag5(p)- (4.34)

While we cannot write a closed form expression for the
holomorphic anomaly in ER@, we have

066004-15
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2) e @T =125+ 1)
@é /dE2@1 4 + Z 356 18 .4s7[2(5+l C(zs + 2)e25+4(p) (435)

where e, 4 is a polynomial in E44 of weight 2s + 4, normalized such that e, ,4(p) = 1 + (’)(Qp).21

3. Factorization at order Q% for r > 2

Following the decomposition (4.30) at order Q%, we can consider similar expressions to higher orders. From the explicit
examples we find to order Q%

N=2,(r=2 3 1 r=3
Y. 5.e)) = EHVIWI%+<H5v’:1>6@§,(6,3><p’e1>
1
+ (HYL ) HL @V (0 ) + (HAL)AHRL )PV (p.01),
N=2,(r=3 3 r—3
&) ( )(p’S’el):_EHj(V)leZ(V)zl+(H5v)=1)6©g,(6,(;)(p’€1)

1 2 r=3
+ (HL ) HEL @YY (0. er) + (HYL P (HGL @Y 5D (o), (4.36)

and to order Q%

¢ (p, S e) = §H§3;W§‘§ + (HYL 3@ 500 (0 €1) + (HYL)CHEL, @ (per)
+ (Hz(\})=1)4(H1(3)—1)2@(r:132> 0) (p.€1) + (Hg\}):l)z(Hg\%)zl)3@Y(:22,0)(pv€1)
+ (VL2 (HRL )@Y oy (0 e),
cﬁzz"’:‘”ms,el)=—§H§?L1H§vg+<H}J ng@“‘ (prer) + (L ) HL @5 (0. 1)
+ (HYL )M HL P@Y D g (poe1) + <HSL>2<H§3L1>3@§1§?§,0> (p.1)
+ (HNL P (HRL )@Y o) (0 €)- (4.37)

Here @Srk) f(p, €;) are independent of S and we find the following ¢; expansions for r = 3:

E,(Es — EyE;)  €3(E:Z—3E,E Eq+ 2E3)  €}(43E3Es — 28E,E5 — 15E,E})

s® _ O(e?).
el0 1(60) 2592 15552 622080 +0le)
le®  _ E3 —EsEg 5€IE,(E2Ey—Eg)  €}(—196E,E Eq + 123E3 + T3E2) o)
S LD T 6 1944 233280 ‘v
1 (3) o 2(E6 — E2E4) 261 €?E4 6
5@1’(2‘2) _T+E(E E2E6) +R(E6 —E2E4) =+ 0(61),
l@@ B _E_%;_E4E6€1 _61(28E§1 + 15E2) 0(ef)
e 7200 648 1296 155520 1
1 _q —2Es S5Eiel 49E,Eq€] 1 _q —8E; 8elEs 4Elet
—© = - - 0(), =G = - -~ 0(e%),
&S0 =T~ ae ~ iasso O @®ea TR ~an a0 O

and for r = 4

“mplicitly e,,,4(p) is, of course, fixed uniquely through the relation (4.26).

066004-16
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lew (=21E,E} = 31E,Eq + 52E3Ee)  13¢7(E4Eq(E,E4 — E))
elt T1800) 1741824 497664
€}(—2E,(654E; + 4129E4E%) + 6179E3Eq + 3387E;) 0
€ ’
627056640 !
1 s (—=181E,E,Eq + 129E3 + 52E%) N €}(—651E,E; — 313E,E% + 964E3Ey)
2 CL(6.10) 108864 653184
4 3 2
€1E4(—12075E,E,E¢ + 5269E3 + 6806E2) .
0 ’
* 13063680 +OE)
1 _@ 5 €2(-919E,E,Eq + 540E3 + 379E%)
— &Y = = (Ey(E,E, —E 1 A 6
elo 1,(4.2.0) 756( 4(E2Ey 6)) + 163296
N €H(—=2118E,E; — 1303E,E2 + 3421E3Ey) o)
979776 7
legw _ 7(Ej — EsEg)  103¢1(E4(E2E4 — E))
ef  1(230) 243 5103
N €}(5386E2 — 13887E,E E¢ + 8501E3) L0,
1224720
1 (4) 15(E2E4 - Eé) 176% 151 16411(E4<E2E4 - Eﬁ))
—© =- E% — EyEg) — 0(e?),
€8 1202 8 256 Fam EEe) 43008 0
g __(21E; +31Ef) 13E3Eqe] _€](654E} + 4129E,Ee) 0(ef)
el2 ~2(800) 580608 165888 104509440 v
L @ I81E,Eq  €](651E5 + 313E2)  115E3Eq€] o)
I = — — — €
el0 T2(6.10) 36288 217728 41472 v
) 5E3 919E,Eqe?  €f(2118E3 + 1303E2) o)
- T _ €5).
8 ~2(420) 252 54432 326592 :
1 _@ TEs 103E2e?  1543E,Eg¢et
S =0 _ — 0(€9),
€¢ 2230 = 781 T 1701 360 O
1 _w 45E, S51€lEs 1511E%¢t
lc —_ - - 0(e?).
00 =g 236 1azse O
Comparing these expressions suggests the following form:
N=2.(r) (r) (r) _
“ Sl EW (e 2 s fora =1
CIZV:Z,(r) i () - a(r) (—I)Hx)le;\f)zl for a = 2.
Here the prime on the summation denotes the following conditions on (iy, ..., i,_):

r
E ]l] = 27’, i] S Neven, il > 0,
J=1

are quasimodular forms depending on p and e; which, in particular, satisfy

(r)
3@2,(1\,4...1’,)

) :Oa @(r> : ) — T T A~ 7 N
oE(p) Y 20000V =3 o)

066004-17
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This generalizes the first relation in Eq. (4.34) and also

implies that @ggil i) is a holomorphic Jacobi form.

»»»»»»

Notice also that, for all examples we have computed thus

far, @)}, =0 for i, >0,

V. HECKE STRUCTURE FOR N=3

After discussing the free energy of the N = 2 LST, we
continue with N = 3.

A. Decomposition of the free energy

The starting point is to compute the decomposition of the
free energy. The web diagram representing X3 ;, which is
relevant for the N = 3 free energy, is shown in Fig. 7. In
addition to the Kéhler parameters shown in the figure, we
also have

p:&1+&2+£l3, R—3S=m—21} (51)
From the partition function Z;; we can compute the free
energy
F31(d123, SR, €15) =log Z3,(a1,3,5, R, €1 2).
As in the case of N = 2, we focus exclusively on the NS
limit. In this case, following Eq. (2.22), we can decompose

: a 000 . n,0,0
o =05 S
n=1
c {nnO} o
+ ZH 25,0) p.S) <Q&1Qa2

n

=1
0

b3 HGmal, ) <QZ}+"2 on +

ny,ny=1

Comparing this with an explicit expansion of the free energy (2.18), we observe that the coefficients H (25

the form

rs+1
(r).{n.0,0} _ 2k—1g(r)
Hoco (0 8) =g 2 m Ty
rs+1

(r),{n,n,0}
H ,S) =
(25.0) (p-5) 1 -0) e~

H(r).{nlJrng,nl.O}(p’ S) I’l2 n2 + an

23)(pv S) +

(25,0)

( _”2)

FIG. 7.

Web diagram of X3 .

the free energy in terms of H , na 5.0) where n can be either of

o

the following triples:

{0,0,0}, {n,0,0},

with  n,n;,n, €N.

{n,n,0}, {n; +ny,ny,0},

(5.2)

More concretely, we can write the following (a priori
formal) decomposition:

p.S) (Qz, Lo

o Q,,)
o "o

0 )
oron

n n +

00y oy
ny ni+n n
Q&Z Q@i ZQaz

+(a, < az)). (5.3)

(r).n ) can be written in

Qn rs+1 ( )
p r
(1-02)? =1 nzkgkv(%)(p’s)’

rs+1

2k—1¢(r) 1 2k (1)
n fkﬁ(zs)(p’ S) + (1- Q/,)l)z Z n gk.(z.s)(p’ S),

rs+1

T- 1—Q32>ZZ’” (1, ~n

1~ nz)iﬂ.m) (p.S)

rs+1

(5.4)

Ta-ona-

o ST 0Y g (11123 o) (2 S).
k=1 ¢
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(r)

K (25) AT€ (quasi-)Jacobi forms of index 3r and

where fi(:gzs) are (quasi-)Jacobi forms of index 3r and weight 25 —2 — 2k, g

weight 2s — 4 — 2k, and jir’/)(’(zs) are (quasi-)Jacobi forms of index 3r and weight 25 — 4 — 2k. They can be written in the

following fashion:

i) ( quk 2y (0)(@2.1(p. ) (1 (. 8))" .

g,(: Zgak 25 (P) (D21 (p. 5))* (0.1 (p. S))3a,

1oy (0 ZJ[,M )21 (0, S))* (o1 (0, S))>,

where f (s) gEZr,)(( , and ]El; K (25) are quasimodular forms of weight 2s —2 — 2k 4+ 2a, 2s —4 —2k 4+ 2a and

2s —4 — 2k + 2a, respectlvely Similarly, we can expand

3r

r).{0,0,0 r a 3r—a
HEY 5% (p.8) = =" d"}, () (. (0. ) (b2 (p. 8)) . (5.5)
a=0
where dE:EZS) are quasi-Jacobi forms of weight 2s 4 2k. Furthermore, p(ffl’<2s)(nl,n2) in Eq. (5.4) are homogeneous

polynomials in n;, of order 2(k — 1), that are symmetric in the exchange of n; <> n,. Explicit expressions for dflr;(.as),
(r)

fa,k,(Zs) gi I)C (25)" and ]( ) o (2s) 3 well as p](:ZzS)(n, ,n,) for low values of s are tabulated for r = 1 in Tables VI-IX and r = 2
in Tables X—XIII, respectively.

TABLE VL. Expansion coefficients ./ ,.).

2s)
(r=1) (r=1) (r=1) (r=1)
N d() (25) d],(Zs) d2.(2x) d3,(2s)
1 E, B
0 0 192 8 T
1 1 E, 2E,—3E3 2E,E,—3E3
18432 9216 T4608 72304
2 £, 45E3-43E, 8Ec—21E,E, —45E3421E3E4+16E, Eg—10E;
884736 4423680 1105920 1105920
3 17E,~5E2 315E}—63E, E,—248E¢ 315ES-819E3E,~208E, Eg+463E2 152E2 Eg—315E5—189E} E4+300E, E3—112E, Eg
424673280 1486356480 743178240 371589120

TABLE VII. Expansion coefficients f((fk:(lz)q

(r=1) (r=1) (rzl) (r=1)
s k fO,k,(Zs) fl.k.(2s) 2.k.(2) J 3.k, 25)
1 E,
0 1 0 0 5 L
1 1 0 L 0 E,—3E2
576
288
1 E,
2 0 0 = 2
2 1 I _E, 15E2-17E, —45E3-9E, E4+8E
110592 18412 92160 138240
2 0 — 0 3E-E,
N S _ L2
3 0 0 1440 720
3 1 _ % 44125%68 315E3—189E,E4—136E; _ 16EGE,~255E;+504E3 E4+315E]
2 7 _ L 14;6;:8;16;1 gg 8E, fg}f;f%ﬂs B
663552 110592 552960 - 829440
3 _1 0 E4—3E3
69120 1 W
J S =2
4 0 60480 30240
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TABLE VIII. Expansion coefficients ggr:(lgv)

(=1) (=1) (=1)

‘
I

(r=1)
s k 90.k.(25) 91.k.(25) 92.k.(25) 93 k.(25)
0 1 0 0 0 1
1 E
1 1 0 0 35 -2
1
2 0 0 0 iz
1 E — 2_
2 1 0 - 307 L 15%8 013154
1 E
2 0 0 — 38 &
1
3 0 0 -3
1 E. 2 43 3
: ' 884736 ~ 52 LBt 152;16?2 - W
2 0 1 —_E2 13E,+15E3
36864 61144 W
3 0 0 T30 -2
1
4 0 0 0 20160
B. Factorization at order O(Qp) following we shall provide nontrivial evidence that such a

Following the results of [47] for N = 2, which were decomposition is indeed possible. _
From Tables VIII and IX we first notice that

reviewed in Sec. IV B, we expect that the free energy for the - -
N =3 LSTs in the NS limit to order O(Qg) can be gir’,;(z)x) (p) = ji’:_,(Z)x) (p) and, similarly, the polynomials

decomposed in terms of Hgéi:é?}, as in Eq. (4.6). In the p(ff k:(lgs) take the following simple form:

TABLE IX. Expansion coefficients jirk:(lz)s).

.(r=1) .(r=1) .(r=1) .(r=1) (r)
s k ’ Jo.t.k.(25) J1.6.k.(25) J2.¢.k.(25) J3.¢.k.(25) Pk, 2s)
0 1 1 0 0 0 1 1
1 E,
1 1 0 0 5 T 1
1 2 2
2 1 0 0 0 15 ny + njz
2 1 1 0 —L By —15E3-13E, 1
3072 5121 7680 , s
_— 2
2 1 0 0 384 192 o
1 4 2.2 4
3 1 0 0 0 —360 n| +niny + n;
3 1 1 1 __ b 11E4+15E3 184E¢+819E,E,+315E3 1
884736 49152 72457620 T 7741440 5 )
2 1 0 1 _E2 13E,+15E3 nZ4n
36864 6144 93160 1 2
1 E 4 2,2 4
3 1 0 0 Ti530 -5 nj +nin; +n;
1 6 4,2 24 6
4 1 0 0 0 30160 n{ + niny + nin; + n3
. . =2
TABLE X. Expansion coefficients dir(%;.
(r=2) (r=2) (r=2) (r=2) (r=2)
s dO.(2A‘) dl,(Zs) dZ.(ZS) d3.(23) d4.(2s)
0 0 T o 2B+E, 3E,E,—2Eg
1769472 221184 31184 55296
1 ;4 Ey SE4—4E3 TE,E4—2E3—4E, 108E3E4—208E, Eg+123E7
51224 42467328 14155776 1769472 10616832
(r=2) (r=2)
N dS.(2s) d6.(2x)
0 24E2E,—32E; Eg+9E? —E¢E3+3E,E3—2E,Eq
110592
67E,E2-24F3 E,—8(EgF2+4E4E, 128 2 +48E3 Eg+-T2E3 E2—384E, E4,Eg+141E3
4 2 2 6 2 254 4
884736 2654208
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TABLE XI. Expansion coefficients fa & (2Y
r=2) (r=2) (r=2) (r=2) (r=2)
N k fOk (25) f],k,(2s) f24,k4,(2s) f3,k,(23) f4k 2s) fS‘k‘(Zs) f6‘k‘(2s)
1 E, E 3E,E,—2E 2 )E,
0 1 0 0 55296 13824 7608 = 3E417221;_E6
1 E E E>E\—E,
3 0 0 0 0 3851 e s
1 1 0 2651708 0 211;“&;222 9E28§49;§E5 —125%54;2195;@“9@ E§E6+3531E2§—5E4E6
1 1E, _30E2 120E,E,~T7E _126E2E,— 2
2 0 0 o Tk 595144732(2)52 oLy Tk 126E2E4l4257145E2%E6+771E4
3 0 0 0 13 25E, 14E,—3E2 33E,E,—38E,
331776 165888 82044 207360
1 E, E
4 0 0 0 0 ®13 7550 7380
TABLE XII. Expansion coefficients g( . &5)
(r=2) (r=2) (r=2) (r=2) (r=2) (r=2) (r=2)
s k 9o.k.(25) 91k (25) D2k, (25) 93.1.(25) 94k, (25) 95k (25) 96.k.(25)
1 E E
0 1 0 0 0 308 (7) 5 HléTﬁ“
2 0 0 0 0 15 0 T
3 0 0 0 0 0 5376 (1)
4 0 0 0 0 0 0 0
1 E —3E,E,—5 2
1 1 0 0 73738 ~ T 2 T s
5 1E, 83E 11E,E, _ 29E,
2 0 0 0 13824 9972W 11;%0 - 384212; - W4§
3 0 0 0 0 55506 — 3 g,ozs ﬁg
4 0 0 0 0 0 17280 ~ 570
1
5 0 0 0 0 0 0 008
(r= < (r=1)
—
Py lk (2s) (ny,ny) = Z sh=2-2a 20 p”(zs)(nl,@) 0, V&>1. (5.6)
a=0

Furthermore, we can summarize Tables VI-IX through the following decompositions:

which we conjecture to hold for generic values of s and where A;

components are given by

ZWZs 2a) ,0,
ZWZS‘—QKI ,0,

@

a=0

lj’
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@ B, and 9 an

e(a+1)x(a

ZA,, (MH G (0 SH RS (0. 9),
ZB

ZWZS—Qa p.S ZC (ny,ny) E):é?}(p,S)Hé 0

+ 1) matrices whose
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TABLE XIII.  Expansion coefficients /.., ().
.(r=2) .(r=2) .(r=2) .(r=2) .(r=2) .(r=2) .(r=2) (r=2)
s k€ Jorkes) Jiek@s) Jacxes) Jacks) Jackes)  Jseks) Jeck(2s) Pk (25)
1
011 0 0 0 . 0 g 0 1
01 2 0 0 0 0 & 0 1
013 0 0 0 0 0 0 — L 1
21 0 0 0 0 T 0 0 Tn} + 10n,n, + 7n3
21 0 0 0 0 0 0 L 11n? + 20n,n, + 11n3
21 0 0 0 0 0 < 0 (n? 4+ nyny + n2)(5n% + 9nyn, + 5n3)
31 0 0 0 0 0 0 ﬁ (n; + ny)?(2nt + 4n3n, + 9nin3 + 4nyn3 + 2nj)
E — —
111 0 0 73;28 18432 651% 3%?34 e 252536(;%% l
2 1 0 0 0 = 0 0 0 n? +nyny + n3
2 2 0 0 0 0 _% 0 0 7n3 + 10n,n, + Tn3
23 0 0 0 0 0 “55420 0 83n3 + 121nyn, + 83n3
2 4 0 0 0 0 0 0 — Bk, 11123 +20n,n, + 1113
25 0 0 0 0 0 0 — e 2912 + 48n,n, + 2913
31 0 0 0 0 ﬁ 0 0 (n3 4 nyny + n2)(97n3 + 141n,n, + 97n3)
32 0 0 0 0 0 - 2B, (n? 4+ nyny + n2)(5n% + 9nyn, + 5n3)
4 1 0 0 0 0 0 o5 0 92n$ + 344n3n, + 751nin3 + 974n3n3
—|—751n%n‘2‘ + 344n1n§ + 92ng
4 2 0 0 0 0 0 0 —s (ny 4 )2 (20t + 4ning + 9ning + 4nyn3 + 2n3)
051 0 0 0 0 0 0 o (ny + ny)?(20n$ + 60n3n, + 165nn3

+166n3n3 + 165n2n% + 60n,n3 + 20nS)

2(_1>a+i+jn2a+1—2(i+j)
U TQa=2(i+j-1))
2(_1)u+i+jn2u+2—2(i+j)

(@) .
B.. = 9 —_1 — ,
i TTRa+i—2G+j-1)o@i=))
ati+j a—(i+j)
(a) 2(—1)atrH o vy 2(a—1-a) a€{0,...,s},
C. = Ola—1i— nyn , v 5.8
Yoo TRa+1-2(i+j-1)) ( J) az:; b2 i,j€{0,...,a}. 58
Explicitly, for low values of a we have
n5 i’lz
R s
A0 = (=2n), AL = < 3 > A — P ,
(=2n) oo L 2n 0
-2n 0 0
}’l6 114
i 2 W "
0) = (—p2 = 12 @ = '
BY) = (-n*), B _<—n2 O>’ B = U E
-n> 0 0
L n‘]‘Jrn%rz%Jrn‘z‘ _ n%Jrn% 1
_nl-i,-nz 1 360 12
c0) — (1)7 c) = < 12 >’ c = _mtn3 1 A (59)
1 0 2
1 0 0

Notice that these matrices are very closely related and satisfy, for example, 9,B“) (n) = A% (n). Moreover, Eq. (5.7)
yields a complete decomposition of the free energy for the N = 3 LSTs in the NS limit, where the building blocks are
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given only by the free energy of the N = 1 LST H E {())} and

the expansion coefficients of the NS limit of the function
(C4) Wiy (p. S).

C. Hecke structures

Following the discussion in Sec. IV C for the case of
N =2, we will search for subsectors of the N = 3 free
|

energy which in the NS limit are related via Hecke
transformations. We shall be able to identify three different
contributions that are defined via certain contour integral
prescriptions.

Generalizing Eqgs. (4.27) and (4.28) to the case N = 3,
we can define the following three subsectors of the N = 3
free energy:

> dQ, [ dQ,, [dQ,
N=3.(r) a a a p(r A A
¢ 1.(25.0) P (. ]{Qlﬂﬂj{ QH;Pz (2?0)( 3,83, 5), (5.10)
a
— dQ, doQ,
N=3,(r) p A A Al a ay p(r) A A A

C2,(2s,0)( ﬁdalalQal 0 Qéj; ) Q1+; 2’<2S’0)(a17az7 as, S), (511)
2;0 D(p, S, 1) = i)’ 2?{6101017{ day(a, +az)P§f32S,o)(&1,&z,p, S). (5.12)

Here the contour integral §_ is along a small circle around
the point z € Z, in such a way as to extract the residue

in a Laurent series. Furthermore, in the definition of
ey =p—a,—a.

3,(25.0) 1 2
Finally, as in the case of N =2, we also introduce the
following series in powers of ¢;:

Ze%s ZaC )’

(p,S) we have implicitly used a3

=0 (p,8.€)) Va=1,23.

(5.13)

In the case of N = 3, the free energy counts BPS states of
three M5-branes separated on a circle with multiple M2-

branes stretched between them. The functions Cflv:3'<r>
receive contributions only from certain such configurations,
as is schematically shown in Fig. 8:

(i) Combination C1 2 0)) —Cllvzg)) can be described

by extracting a partlcular class of terms in the

r)

Fourier expansion of P3,(2,os) in powers of Q..

Indeed, upon writing

P(’)

3,(2s, o)(alv &27 &37 S)

-y Oy Qi PG (), (5.14)

ny,ny,n3=0

the contour prescriptions in Eq. (5.12) are designed
to extract only those terms with n; = n, = ns.

Therefore, Cll\/(:ig))

from those brane configurations, in which an equal

receives contributions only

number of M2-branes is stretched between any two
adjacent MS5-branes, as visualized in Fig. 8(a).

Following the definition of HE;)S’%) in Eq. (2.21),

we find that qu(:;y E)r)) can equivalently be written as

N=3.( ({000}
C, (2so ( ,§) = (232) (».S),

C1 P,S €)= Ze%s *H 2;%000}@ S).
(5.15)

It is in fact the reduced free energy for N =3
that was studied in [46]. Explicit expansions of

CIIV(:;SE;)) for r = 1 and r = 2 can be recovered from

Tables VI and X

(ii) Combination C2 o5 E); —The function C zmr)) in
Eq. (5.11) extracts specific coefficients i 1n a mixed
Fourier and Laurent series expansion of the free
energy. Starting from the Fourier expansion (5.14),

N=3(r)
C5 (250)

cients with n; # n, = n3. Physically, these corre-
spond to configurations where an equal number £ of
M2-branes is stretched between the second and
third as well as the third and first M5-branes,
while a different number n # £ of M2-branes is
stretched between the first and second M5-branes.
Such configurations are schematically shown in
Fig. 8(b). Finally, the last contour integral in
Eq. (5.11) over a; extracts the second order pole
in the Laurent expansion.

receives contributions only from coeffi-
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(a) (b) (©)

FIG. 8. Brane-web configurations made up of N = 3 M5-branes (drawn in orange) spaced out on a circle, with various M2-branes
(drawn in red, blue, and green) stretched between them. (a) An equal number # of M2-branes is stretched between any two neighboring
MS5-branes. Configurations of this type are relevant for C[,Vz3'(r). (b) £ M2-branes are stretched between M5-branes 2 and 3 as well as 3
and 1, while n # £ M2-branes between M5-branes 1 and 2. Configurations of this type are relevant for 012\1:34,0)- (c) Different numbers
ny3 (with n; # n; for i # j) of M2-branes are stretched between any of the neighboring MS5-branes. Configurations of this type are

relevant for CI3VZ3‘(r>.

With respect to the decomposition (5.3), the coefficients CZZV(:;SE;)) can be written in the following form™*:

N=3,(r n,0,0 n n,n,0 Qn
ot (p.8) = 5 f da,a, Z[ HY 0% (p.8)08 + HE " . S) | (5.16)
ap

In order to perform the final contour integration over a;, we can use the conjectured form (5.4) of H E . {')‘ 00 and

H (2)&3; "0} to write for the integrand
T = i 09 o 5)08 + HEH 1 (5, 5) 9%
Cg/(:zzi)r)) - . (25,0) a 25,0) P n
n= aj
2, o ”2k_lfi(£()2s) 0 2kQﬂgk (25) 1
- Z Z 1 ’" g1 + n + gl + n
n=1 k=1 -0 a (1 QP) a
rs+1 ( ) rs+1 0 2kQ
= i Tici(pa) + Y g, Z( — o (%, Q3. (5.17)
k=1 k=1 n=1 P

where we have exchanged the order of summations and 7, as defined in Eq. (4.15). With ﬁ =>"% , £x’, we can

write for the sum over n in the last term in Eq. (5.17)

SOS T wkeQir (s + 07 DZkZQpZ (05, + 037) = Ti(p,ar) = DFTo(p. &)

n=1 =1

For 0 < |Q,| < 1 the function 7, is in fact regular at &,, such that fo da,a,J(p,a,) = 0 for k > 0. Furthermore,
using Eq. (4.18), we get

N=3.(r L N=3,(r o
Cz,(zs,g)))(/)v S) :;fl((:)L(zs)(PvS)’ G UPvS €r) Ze% lfk 1.(25) (p.S). (5.18)

We remark in passing that contributions with n = # in Fig. 8(b) would give rise to terms with H (25 {())00} in Eq. (5.16). The

latter, however, depend only on p, not on &, and thus do not contribute to the contour integral over @, in C, (2s( ).
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(iii) Combination C3 (25.0 (") __The function C3 2S 0 Jin Eq. (5.12) receives contributions from M-brane configurations with
n; M2-branes stretciled between the ith and (i + 1)st M5-brane (with n; # n; for i # j). The contour integrals,
however, extract the second order poles for the successive limits a, - —a, and a; — 0. In the decomposition (5.3)

only the terms with n = {n; + ny,n;,0} for n;, > 1 contribute:

N=3, 1 A A PN A = r),{n +ny,n;,0 A A
Cy o) (4-9) :(2—)7{0174 day(ay + ) Y HEG " (p.)X, 1. 80.p). (5.19)

ny,no=1

with
ny+n n QZZ Zl Zl+n2
anA,nz (al’aZ’p) = Q&: zQa; + lnl + ny+n, Ans + (al g Cl2>. (520)
Qu,  Qn "0
Using the conjectured form (5.4) of H {';'Jr"z .0} , We can write

oo rs+l 0
3,
Gty - (2mi)? %ddlaljg dax(ay +a7) ) ZZ Z X m (@1, 82.p)

ny,ny=1 k= ky,ky=0
x | 05" s (ny 4 2m1) Y oy (1, =1 = )il 0 (0. 5)

+ Qk1n1+k2 Vl1+n2)(n% _ nz)p;rzc( )(nl» nz)lgﬂri( )(p’ S)i| . (521)

To further simplify this expression, let f;, € N and consider
1 (e8] o0
__.zjfdalal fdaz(a1 tay) Y oAl YT 0 TREX, L (@ . p). (5.22)
(27”) 0 ny,ny=1 ky .k, =0

Assuming that 0 < [Q,| < 1, the factors Q, act as regulators for the sum over n;, in the limit Q; , — 1. The
divergence that is relevant for the contour integrals therefore only stems from those terms where these factors are
absent—namely, for k; = k, = 0,7

1 &) o )
T :Wﬁ dalalfd&2(&1 +&2) Z I’l] n2 [(QalQaz)nl( af + Qai)]

ny,ny=1
1 o A . ) .
= 2ni f daya 74 day (@) + @) [D’;;(Dal - Dy Y (01,020
ny,ny=
fi 4 . n H"2
+ DN (Dgy = D3 )P Y (04,04, Q&Z]- (5.23)

ny,n,=1

Assuming that 0 < |Q, ,| < 1 we can perform the sum over n, , to find

%lQa2
1-0,05:)(1-04)

1 S f AL A
T = Wﬁ; da1a1 %dﬂz(al -+ (12) |:D'Z;(D211 - D&Z)ﬁz (

0.,0%,

b
=0 0a)(1 = Q@ZJ'

(5.24)

g
+ D)) (D, — Dy,

From the explicit series expansions

“Notice that, in order to have a pole for 4, — —a; and a, — 0, k, and k, have to vanish simultaneously.
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O {1 niC2t + ) + O,
( Qalan)(l Qa1> (2”i)2&1(&l+&2) wi(2a; + a, at,),
s : 1+ zi(a, + 2a O(a?
a Qa'Qaz)(l_Q&z> (2ni)*a (&14-02)[ +ai(a) +2a,) + 0(a7,)].

(14852 4 Bl 4 O((a, +2,)%))

_ e G T ) [+ 7i(a; +2a,) + O@2,)],  (5.25)

it follows that Y is nonvanishing only for ; + £, = 2. To understand why no higher derivatives may contribute, we
define b = a; + a, and consider, respectively, for the first and second terms in Eq. (5.24)

; : 11 ira 11
Oa, Qs :[ —+l”“1’2+0(&%)H A+—+%+O()

— +
1- Qfll.z 1- Qi) 2”la1,2 2 6 2zib 2
R ura] O
Y L WO T 2 O 5.26
= 2m’l3+§+?+ (b7)] x (1+£+5+0(5%) L inlbeay) s (5.26)

2ria,

which only has poles of second order in &, , and b if hit with two derivatives. This implies that in Eq. (5.21) only

terms with £ = 1 (in which case p%zl.(m = const are polynomials of order 0) contribute. Performing the explicit

integrals, we obtain

1
N=3,(
G (250 __22 (29) Ifk 1, 25)(p’S)’

f
N=3.(r 1SN,
Y=, 8 ) _—ZZ 42 PV it s v hr (25) (0 S)- (5.27)
s=0

By comparing the explicit expressions for the contributions cs 1232 )) for r =1, 2 (and r = 3) and s up to 4, we find the

that they are related through Hecke operators in the following fashion:

(5.28)

=3.,(r
CIRV,(ZS,E)))('O’ S) =M, { zso ( S), VYa=1,2,3.

The normalization factors 1/r and 1/r? appearing in Egs. (5.11) and (5.12) were chosen to normalize the right-hand side
of Eq. (5.28).

D. Decomposition of C =

1. Factorization at order Q}
As in the case of the entire free energy P 22? 0) (@123, S) [see Eq. (5.7)], the functions C1 2. 3 ) can be decomposed into

small building blocks. Based on the examples provided in Sec. VI A, we find the followmg decomposmon
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D0} N
2s 0 =3 Z H (25—2a) Z 5a,i+jW(2i-0) W(ZJEO)’
i,j=0
0 . 1).{0
Cy 23 o 2ZH 2;{ i (p.S) Z SaitiW(i0) (P, S)HEQ;,({))}(A S),
i.j=0
- 1).{0} 1)-{0} 74(1).{0}
29 O Z H (2s—2a) Z 5‘1 ”FJ 21 0) H( 0) - (529)
i,j=0

These expressions (as similar equations in the remainder of this subsection) are understood to hold order by order in an
expansion of e;. Combining these expansion coefficients (in a series of €;), we can equivalently write

=3,(r=1
Y (0,8, e)) = 3HY (0. S.e1) Wi (p. S. €)Wy (p. S. €1),

CQJZS’UZI)(P, S.€)) = —2€1H§v):1 (p.S, €1>H1(v):1 (p.S, €1>W1(\;S)(p’ S.€1),
A 0.5 60) = GH, (0.5, ) YL, (o, S.e) HYL (9. .0, (5:30)

where the coefficients Hg\;)zl and WI(\}S) are as defined in Egs. (C3) and (C8), respectively.

2. Factorization at order 0%

Following the example of N = 2 discussed in Sec. IV D 3, we expect a decomposition of Ci\fzz;‘(r)

building blocks to also hold for r > 1. Indeed, for r =2 we find

into more fundamental

e = SH WRWR + (L) g, + (L )HEL Ty, + (L P P
T = —§H§5;H§?ilwﬁé + (HVL )T + (VL) HGL 5, )+ (HYL 2 (HEL P2, .
V=@ — gHﬁilHﬁéilHﬁv) A+ HYL)E o + (HGL )L 2, |+ (L) (HL )P2E), .
and for r =3
C]1V:3’(3) = %H( ) WSS) Wxs + (HN 1> ~§3()900) + (HE\}):IVHE\?):lsf()mLo)
+ (HYL ) HGL P 500 + (HYL ) HG ) E 50
+ HE\P:IHS\?):I(Hg\?):l>2gf(>l,l.2) + (HSLI)Z(HE\,) 1)2HN 1~ 53()2,2,1)’
¢ = _ng(\?):lHl(\?):lwl(\?g + (Hz(\}):l)9gs()9,o,o) + (Hz(\}):lsz(\?):lgs()Il,o)
+ (HGL S HEL )T s ) + (HELD HL P ES 5
+ HGL HGL (L )PES) )+ (HYL )P HGL PHGL 25

N=3, 9 & 3 3 1 3 | %) (3
G Y= 16H1(v>=1H1(v)=1H1(v)=1 + (va)zl)g‘lg.()g,o.o) + (HSV)_l)7H1(\,)=1‘£g,<)7’LO>

1 2 3 1 2 3
+ (H 1<v>:1>5(H§v>:1>2s§_()5,2,0) + (HE\/):1>3(H§\/):1>32;,()3,3,0)
1 2 3 3 1 2 3 3
+ L HGL (L DPES )+ (VL2 PHL T
Here %) ) are quasimodular forms that are independent of S which satisfy

~a,(iy.ip
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(2) 2q(2)
s@  _ 38‘12 (i.02) 28 T i) e 52 0T, (i1,i2)
MR et 0Ey(p) €l O(Ex(p))?T TR T OBy (p)
(3) 2q(3)
g0 3832,01,[’2,1’3) 8 P LY i) 3) 4 aq iy inis)

R _ o B A S 8 (X S0
Mt et OBy (p) 3¢t O(Ex(p))? Hiveh) 36t OEs(p)

and where ngl) can be expanded in €; as follows:

140 Eq | Ejet  11E.Eee}  e§(TE] + 4E3) L o)
€360 T 1927 768 | 46080 290304 P
1 2 E, Eset 17Eie! 31E,Eel X 2
g == O(e}), < =0.
%60 =g T ag T 570 gosdo O Tae
Similarly, ngl) can be expanded as™
1 40 _ 9E} +4E; 19E3Ecet  €](493E; + 583E,E) 0(cf)
3el2 730000 62208 124416 14929920 P
1o _SEEs | ef(13E} +7Eg) | 215E{Ege} o)
3el0 7310 1296 7776 186624 e
1 . 5E;  19¢{E,Eq 2E;  T3E: 3)
— g T4, T7IEATo N it 6 O(eb g =0.
3853520 T334 T 10as T \720 Taeess) T O Tt =
1o _20Eg | GE;  19EEqe} @), ey _E L, €k 0(e5).
3¢§ 730330 243 T 27 1458 o3t T2 3 9 T30
These examples suggest the following general form
N=3.(r r
cv=3) , e 3HU WOWY for a=1,
=3.(r r 1 i 1 i, r
b = Z %Ei, ,,,,, i,)(Hf(\’)=1) L (HyL) <61(r)> 2HLHL WA for =
ol HD wOwWD  for a=3,

which generalizes Eq. (4.38). Here the summation in Eq. (5.34) is restricted to

r

> jip=3r. i >0,

=1
and the coefficients ‘lf:gil .... i) satisfy
(1) () o (1)
a~3,(i1 ,,,,, i) 0 s(r) _ ia"'l(n ..... i) s(r) _ ia~1‘(" ,,,, i) Vi1
8E2(p) 3,(iysee003) r€% 8E2(p) 2,(iyseiy) re‘% 3E2(p)

3)

The first equation in fact implies that Z; (iy,..i,) are (holomorphic) Jacobi forms.

*To keep the length of this paper manageable, we refrain from explicitly writing ‘152232
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VI. HECKE STRUCTURE FOR N=4

In this section we present some partial results for the
LST with N = 4. Since in this case the free energy is
much more complicated than for N =2 or N =3, we
shall not be able to achieve a full characterization.
However, the partial results we manage to extract fall
in line with the patterns that we saw in the previous
sections.

A. Decomposition of the free energy

As in the previous cases, the starting point is to compute
the decomposition of the free energy. The web diagram
representing X, ;, which is relevant for the N =4 free
energy, is shown in Fig. 9. In addition to the Kihler
parameters shown in the figure, we have

p:&1+512+513+€l4, R—4S:1J—3m. (61)
From the partition function Z,; we can compute the free
energy

Fui(a1234:S R, €1,) =log Z4 1(a1234,5, R, €2).

{0,0,0,01,
(n,0,n,0),

{n7 Ov O& 0}1
(n,n,n,0),

{n,n,0,0},

ny + n,,0,ny,0), (n

(ny +ny,ny,ny +

( (ny + ny,ny,ny,0),
(ny + ny,ny 4+ ny,ny,0),
(

ny +ny + ny,ny,ny + ny,0),

with n,ny,n,,n3 € N as well as all combinations that can
be obtained from Eq. (6.2) through the action of the
dihedral group Dihy, together with their cyclically permu-
tations. The full free energy can then be written in the
following somewhat symbolic fashion:

ZH o) > 05 QiR G O

Dihy

Pé(lf()%() ar1234:S

(6.3)

Here the first sum m = (m;, m,,m3,my) is over all
combinations appearing in Eq. (6.2), while the second
sum is over distinct orbits of Dih, acting on (&, @,, as, a,).

TABLE XIV. Expansion coefficients W(’=')¢m

(ny +ny + n3,ny +ny,0,ny),

NG
yd
2

FIG. 9. Web diagram of X, .

As in the cases of N =2 and N = 3, we focus exclusively
on the NS limit. In this case, following Eq. (2.22), we can

(r)n

decompose the free energy in terms of H (25.0)° where n can

be any one of the following combinations

{nl + ny, n1709 0}5

| +np,n,0,n),
n5,0), (ny +ny + n3,ny + ny,ny,0),
(6.2)

Conjectures for the H E;T(l);m for all m and s = 0, which

were presented in [58], are of the form

4
z :W 290

a=0

P)(D-21(p. ) (do1(p.S))*.
(6.4)

For the reader’s convenience, we recall some of the

ggzég’m(/}) in Table XIV, which turn out to be relevant

to the continuing discussion.

.(0.0) °
m a=0 a=1 a=2 a=23 a=4

0, 0,0, 0) 0 ﬁ 57_26 2E8§8 %
(.0.0.0) 0 0 51-07) g 12<n12—QQ;;:>2 72&%;5) 6(1?;32
(n,n,n,0) 0 0 W1-0)) #?Q/) + ﬁ 72(};€%QZ> * 6(1{%
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While the structure of the H E;S:(Z);m is in general more complicated, we have managed to identify particular patterns in

some of them which allow us to conjecture the following expressions:

8
OOOO Zvr 2), 0000 )(¢ 21(p’ ))a(¢0’l(p’s))8—a,

a=0
3 n 4
gn-mooo) _ 1 p2h-1p2 000 ) oy D 3 p2ke2p 2000, )
(0.0) 1= Q/V)l - 1.4.(0) P = Z)z - 2.k.(0) P
+Q,, Z 2k+1b2 n000)(p S)
(r).(n.n.n.0) R (2).(n.00.0) 1 : (2).(n.0.0.0)
Hoo """ =12 gr 2™ 08 g T 0S)
1+0) (2),(n.0,0.0
l_Q/ Z 2k+1b311 o )(p s), (6.5)
p k=1

where

X (o1 (p. )%, (6.6)
where the coefﬁcients vir:2>‘(0'0’0'0) are tabulated in
=2),(0,0.00)

Table XV and » are tabulated in Table XVI.

k,(0,0)
We have found evidence that other configurations
in Eq. (6.2) afford similar expansions. However,

owing to the increased complexity, it is difficult to make
conjectures based on the limited expansion of the free
energy.”

B. Hecke structures
Since the factorization of the free energy for N =4 at
order Qp and s =0 in the fundamental building blocks
HI(\,I):1 and Wl(\llg was already commented upon in [47], we

directly turn to the extraction of contributions that are
related through Hecke transformations.

At order Q% and for s =0, we managed to compute
coefficients up to O(Q3).

1. Contour prescription

As in Egs. (4.27) and (4.28) for N = 2 and Egs. (5.10)—
(5.12) for N = 3, we define the following three subsectors
of the N = 4 free energy:

0,0,0,0
TABLE XV. Expansion coefficients n!~ (0.0 ))( ).
a (r=2),(0,0,0,0)
a,(0,0)
0 0
1
1 4.240
2 _ B
824
a p(7=2)(00.00)
a,(0,0)
—4E2-E,
8-24°
4 3E¢—2E3—6E,E,
3.24°
32E,Eq—28E3E,—9E3
224
a b(rzz),(o,o,oi,o)
a,(0,0)
6 8E,Eq—16E3E,+28E3Eg—21E,E2
12247
7 64E3Eg—216E3E3+192E,E,Eq—9E3—32E
36247
8 —4EE3+ 14ES By Eq—9E, E3—8E, E2+TE Eq
36243
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2),(1,0,0,0
TABLE XVI. Expansion coefficients vf a) ,E'EO 0) ),
a k (r=2).(n.0.0.0) (r=2).(n.0.0,0) (r=2).(n.0.0,0) (r=2).(n.0,0,0) (r=2).(n.0.0.0)
Y2.a..(0.0) Y3.4.£.(0,0) V4.a.k.(0,0) U5.4.k,(0,0) V6,a.k.(0,0)
1 1 __1 . _E . —-E3-E, A4E¢—TE E, 56E,Eq—3E,(16E3+7E,)
4.24° T 1224 6247 3.24% — 62x4%
2 0 N _E —2F2-E, 3E¢—13E,E,
12:247 T 3624° 3608 90243
_ L _ B —2E2-E
3 0 0 243 324% 327 -
2 1 0 1 _ B _ TE, 27Eq—52E,E,
2247 12243 12243 15243
2 0 0 _ 1 _1E, _1E,
34 6243 180-247
__5 5E,
3 0 0 0 1224 T 324
1
3 0 0 0 0 ; 5% vE
E
3 1 0 0 0 0 @
2 0 0 0 0 13§2 1
3 0 0 0 0 31560
4 0 0 0 0 0
5 0 0 0 0 0
a k (r=2).(n,0,0,0) (r=2).(n,0,0,0)
Y7.a.k.(0.0) U8.a.k.(0.0)
1 1 4E(E3+E;)—9E,E? —3E3(4E3+3E,)+28E,E,E¢—8E;
9-24% 18243
2 —12E3E,+12E,E¢—5E} E4(Es—E>Ey4)
90-24° 180 cot 247
3 _ EE, __E
18-24° 368
2 1 40E, Eq—47E2 E4(27Eq—22E,E,)
252047 90-247
2 10E,—21E,E, 20E,Eq—97E3
60-24% 420242
3 _ SE4 Es—EE,
3243 15247
4 __E _E,
906-242 90 2;1
Ef E4
3 1 1512 1080
2 _ SE4 19E6
3456 18144
_E4_
3 0 ~ 1440
_ 1
4 21247 0
1
5 0 315247
N=4.(r) 1 -
=4,(r o 7 A A A (A A A A
Cuts 0.9) = G Y06 f dna § dintay+an)ef - dy (ot
( 7” r 0 —a; —ay——0i
do, dQ;
a ay A A A A .
?{Qlﬂ; Q1+fP4(250)(‘11’“2’“3’“4’5)’ Vi=1,273,4 (6.7)

In the following, we shall exclusively focus on C ‘_r and C 2S0 , for which the functions presented in Eq. (6.5)

are relevant:
(d) Combination C 2 0) —As before, C ( ) can be described by extracting a particular class of terms in the Fourier

expansion of P( ) in powers of Q. .,. Indeed, upon writing

P o1, an, 83,04, S) = Z O O Q1 QP I (s), (6.8)

ny,ny,n3,ny=0

()

the contour prescnptlons for C~ ) in Eq. (6.7) are designed to extract only those terms with n; = n, = n3 = ny.
Therefore, Cl.(2s03 receives contributions only from those brane configurations in which an equal number of

M2-branes is stretched between any two adjacent M5-branes, as shown in Fig. 10(a). Following the definition

066004-31



STEFAN HOHENEGGER and AMER IQBAL

PHYS. REV. D 103, 066004 (2021)

FIG. 10. Brane-web configurations made up of N = 4 MS5-branes (shown in orange) spaced out on a circle, with various M2-branes
(shown in red and blue) stretched between them. (a) An equal number # of M2-branes is stretched between any two neighboring

M5-branes. Configurations of this type are relevant for the computation of CII\/:4’(’) . (b) £ M2-branes are stretched between MS5-branes
2 and 3, 3 and 4, and 4 and 1, while n # £ M2-branes are stretched between M5-branes 1 and 2. Configurations of this type are relevant

for the computation of Cy

(e)

().

of H{)% in Eq. (2.21), we find that C)';1") can

equivalently be written as

r),{0,0,0,0
= HY 5" (0. 9).

o 0,0,0,0
ZG% 'H Z\E) }(p,S).

N=4(r)
G, (2s. E)) (p.S)

C11V = p,S €1) (6.9)

This is in fact the reduced free energy for N =4

that was studied in [46]. Explicit expansions of

CIIV=4‘(r) for r =1 and r = 2 can be recovered from

Tables XIV and XV.

Combination Cy ") —The function CIZV:“-(V) in
Eq. (6.7) extracts specific coefficients in a mixed
|

Fourier and Laurent series expansion of the free
energy. Starting from the Fourier expansion (6.8)
CN:4,(r)

) receives contributions only from coefficients
with n; # n, = ny = ny. From the brane-web picture,
these correspond to configurations where an equal
number £ of M2-branes is stretched between the M5
branes 2 and 3, 3 and 4, and 4 and 1, while a different
number n # ¢ of M2-branes is stretched between the
first and second M5-branes. Such configurations are
schematically shown in Fig. 10(b). Finally, the last
contour integral in Eq. (5.11) over a; extracts the
second order pole in the Laurent expansion.

With respect to the decomposition (6.3), the co-

efficients C ) can be written in the following form:

n

N=4, n,0,0,0 n r),{n,n,n,0 0
Cort) (p.S) = ]{dalaIZ[ o0 (o, 8)08 + HOYY }(p,S)Q—,; . (6.10)
ap
In order to perform the final contour integration over a;, we can use the conjectured form (6.5) of H 0.0 {)"000} and
H Eo)o{)n 10} for s =0 and r = 1 and r = 2 to write for the integrand
R (1.(n000) . ) {n .0} Q)
n= ap
w3 p2k-ly ()(HOOO) w4 p2k- 2Q ):(1.0.0.0)
_ et < . )
= + o T
2 1o ( o) RE e (6
0 3 2k+1 Q ( + Q ) 1
+ p p b(r nOOO (QZ )
ZZ a-gy o (%t
2 (r),(n,0,0,0) (r).(n.0,0,0) = n?hs 2Qp
:ZDZ,k:(O’) . Ik-l(ﬂ,al) szk Z +Q )
k=1 k= n:l
3 o 2k+1 n
7).(1.0.0.0 o;(1+05) .
+Z”(311(<0) : : (05 + 03, (6.11)

(1-0p)°

n=1
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where we have exchanged the summation over k and n and 7,

is as defined in Eq. (4.15). Using the geometric

series
x - x(l+x) &
= Oxf, L — x’, for |x| <1, (6.12)
(1-x)? ; (1-x)? ;
we can write for the sum over n in the last two terms of Eq. (6.11)
. nZk 2Ql’ n N 2k—2 n —n
D g (6 0a) = D) O (G + 07)
n:l n=1 ¢=1
D3\ ZZQ Z (05, +0i1) = D¥2T3 (p. ), (6.13)
- n2k+1Q2(1 + Qg) n —-n ke 2k+1 02 n —-n
> mr (06 Q) = D) Q07 + Q3
n=1 (1- Qp) n=1 ¢=1
-0 Sy () e e =pi a6
For 0 < |Q,| < 1 the functions jél) and jé)z) are in fact regular at a; = 0, such that ¢, dalalD’a‘]j((]l’z) (p.a,) =0 for
k > 0. Furthermore, using Eq. (4.18), we get
N=4.(r L (9.(n0.00 N=4.(r IS o1 (9).(10.0.0
C2,(25i0))< ) :;Dg,i.((o) >’ G, (>(p,S,€1) :;Ze% lb(l,i,io) >(p,5)- (6.15)

While we leave the study of the other functions for future work, we remark in passing that the a; of which we extract the

pole 0
such as, for example,

in Eq. (6.7) are consecutive. An interesting question is whether it makes sense to define more general functions

S dQu, [ dQ,
ey dina, ¢ das(a, + as) d G pl) (a4 4. 9), (6.16)
3, (250 T ) ) Q}”Jrf ) Q}Jf 4,250 \91.....
Both C;VZ and C 2‘ 0 ) receive contributions from slightly different M2-brane configurations (they are schematically

shown in Fig. 11). Wlth respect to the list in Eq. (6.2), the precise configurations are, respectively,

cy ;io {ny + ny.ny,0,0},

CN 4 : {ny +ny,0,n,,0},

From [58], one can see that the corresponding H Er:;M in

the case of C )) all involve polynomials of the n of order

3 or higher (whlle there are contributions with polynomials

of order 2 in the case of C;VZ4 (r)). Following the knowledge

gained in the previous sections this suggests that (at least to

leading order in Q) C 2S 0 = in fact may be vanishing.

{ni +ny,ny,n,0} {ny +ny,ny + ny, 0,0},

{nl + ny, nl’(), n]},

{n,n,0,0},

{ny +ny,n,n; +n,,0}, {n,0,n0}.

2. Factorization and Hecke relations
In the cases N = 2 and N = 3 we have observed that the
functions cﬁY:z Y and cN=3: (=) can be factorized as in
Eqgs. (4.28) and (5.29), respectively. Analyzing C 2s0 =D
for s > 0 is very complicated; however, based on the
expansions presented above, we find that
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(a)

FIG. 11.

(b)

Brane-web configurations made up of N = 4 M5-branes (shown in orange) spaced out on a circle, with various M2-branes

(shown in red and blue) stretched between them. (a) An equal number £ of M2-branes is stretched between the neighboring M5-branes
3 and 4 as well as 4 and 1, while different numbers of M2-branes n, # n, # ¢ are stretched between the M5-branes 1 and 2 as well as

2 and 3. Configurations of this type are relevant for the computation of Cgv:4

"), (b) An equal number # of M2-branes is stretched

between the neighboring M5-branes 2 and 3 as well as 4 and 1, while different numbers of M2-branes n; # ns # ¢ are stretched between

4.(r)

the M5-branes 1 and 2 as well as 3 and 4. Configurations of this type are relevant for the computation of 613\],(:2.{0) .

o (p.8) = aH (Y (p.8) (Wio0)(p. S)).
)

—4.(r= 2
ot 0. 5) = (Hg (0.9) Wi (p.5) ).
(6.17)

which are indeed in agreement with the general conjectured
form (3.9). Moreover, by comparing the explicit expres-

dCN4

and r = 2 to the free energy, we find that they satisfy the
following recursion relation:

sions for the contributions C for r =1

L) = el 0.5,
G 05) =6 5 5]

which generalizes the relations (4.26) and (5.28) to N = 4.
In view of the results of the previous sections, we con-
jecture that this result in fact generalizes not only for r > 2

)fOI'l—l L4

(6.18)

and s > 0 but also to all functions C

VII. CONCLUSIONS AND INTERPRETATION

Although the observations of the previous sections were
only for the specific cases N =2 and N = 3 (as well as
partially for N = 4) and for limited values of the order of Qp
(indicated by the subscript r) as well as €, (indicated by the
subscript 2s), the fact that they exhibit a rather clear-cut
pattern leads us to believe that they hold in general (i.e., for
generic N and generic values of r and s). To be concrete, we
therefore conjecture that for given N, to any instanton order*®

*Here we are taking the point of view of the U(N) gauge
theory that is engineered from the Calabi-Yau threefold X |,

r we can extract at every order 625 % (for s € N) N different

functions C S) [see Eq. (3.1) for the definitions]

2s0(

for i=1,...,N from the NS limit of the free energy
Px) (ay.... N) that count very specific BPS states from the

perspective of the M-brane webs. Indeed, focusing on
configurations where the same number of M2-branes is
stretched between N —i neighboring MS5-branes, they
extract a particular polar part of the free energy when
the remaining MS5-branes are collapsed on top of each
other. Viewed order by order in Qp, the formal series

C?]’(r) (p, S, ¢€;) for different values of r are related through
Hecke transformations [see Eq. (3.6)]. This generalizes
the observation made in [46], which in our language is

the specific case C?S]r) (p, S, €;). Furthermore, following the
logic put forward in [43,46], the Hecke relation (3.6)

suggests that the BPS states counted by Cﬁi(lr)(p,S, €1)
can be arranged in the form of a symmetric torus orbifold
CFT and we can define the corresponding CFT partition
functions,

ZV(R.p. S, e1) = exp (zgzrcy»v

r>1

ps.e). o)

The relation (3.6) Cﬁv’(r) H,(Cﬁv’(l)(p,S,el))

then implies [70]

(p’ Svel) =

Z< )(R psS.€ _exp<ZQl){r7‘{

r>1

@wm>nm

= Okxen(Sym’(M,)). (7.3)
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Here Qp keeps track of the symmetric products and we
conjecture the existence of spaces M; with equivariant

elliptic genus C?"'(l)(/), S,€1). We have defined only those
terms with instanton order, in the language of the dual
supersymmetric gauge theory, O(Q%) with r > 0, i.e., we
have not included the terms coming from the little string
partition function with Qp = 0 which correspond to pertur-
bative corrections in the dual gauge theory. Furthermore, to
make a paramodular symmetry of the CFT partition function
more manifest [43], we have used Q% as the generating
function parameter rather than Qp as in Eq. (7.3): indeed, the

Hecke structure of Eq. (4.26) implies that ZEN) (R,p,S,€p)is
the partition function of a symmetric orbifold conformal
field theory on the torus that is invariant under the para-
modular group X} C Sp(4,R) (see Appendix D for the

definition). To make invariance under X3, more manifest, we

remark that the Hecke structure of Eq. (4.26) in Zl(-N) can be
expressed in a product form [70]

Z[(N) _ H(] _ Q%rQﬁngp)—ci(kr,f,p),

r.k,t

(7.4)

where c¢;(k,Z, p) are the Fourier coefficients of the seed
function Cﬁv‘(l)(p, S,€1),

'V, S,ep) = > cilk 2. p)QS0O5q”
k.Z.p

(7.5)

Thus, the partition function Zl(.N) (R,p,S,€;) is an exponen-

tial lift of the Jacobi form CY""(p. S, €,) that is related”’
to a paramodular form of the group X} satisfying the

property [71],

ZM(R.p.S.e,) = zV (%,NR, S,el). (7.6)
Finally, we remark that X3, acts on H, the space of 2 x 2
matrices with a positive imaginary part as in Eq. (D3). The
quotient X3, \H, is the moduli space of Abelian surfaces with
polarization (1, N) [72,73]. These Abelian surfaces are
precisely the ones appearing in the F theory forming the
fibers of the double elliptically fibered Calabi-Yau threefolds
[27]. It would be very interesting to have a clearer geometric
interpretation of this result, for example, understanding
the target space of this CFT. We leave this question for
future work.

The functions Cgv,(r=1) (p, S, €;) atleading instanton order
O(Qp) exhibit a factorization into simpler building blocks

"If the terms with Qy = 0 are included in the definition (7.3)

of the reduced partition function then Zl(-sz)
paramodular form for X3

is precisely the

which go beyond the known self-similarity and recursive
structure (see Sec. II for a review of both) of the free
energy and extend the preliminary results in [47]: indeed,

Cﬁwr:l) (p, S, €;) can be written as the product (3.9), where

the building blocks H\|, (p. S. €,) and W\ (p. S. €,) either
stem from the expansion of the free energy for N =1 or
govern the BPS counting of a single M5-brane with single
M2-branes attached to it on either side (for a review see
Appendix C). To higher order in Qg, remnants of such a
factorization persist, but new elements appear as well [see
Eq. (3.11)]. It is difficult to conjecture a closed form
expression of the latter; however, we have succeeded in
showing for N =2 and N = 3 that they are governed by
differential equations that are very similar to holomorphic
anomaly equations.

The Cﬁv’(rzl)(/), S,e;) discussed in this work are
specific contributions to the BPS free energy of LSTs
of type A. It would be very interesting to understand the
geometric reason that makes these states special relative
to others, such that they can be interpreted as part of the
spectrum of a symmetric torus orbifold. This could give
us the key to understanding whether there are further
sectors in the spectrum of the LSTs of A type which
exhibit similar properties. Furthermore, this may also
give us a hint as to whether these various orbifold
CFTs can in any way be connected via a duality
transformation.

Another interesting observation is the fact that the
CN (r=1)

1

(p,S,€;) (except for i = 1) are obtained through

contour integrals from the free energy Pﬁp (a, . n) that
select the coefficient of a pole or poles in a;  y_y. In
[74] the BPS counting of supersymmetric black holes has
been discussed. It has been pointed out that the phe-
nomenon of wall crossing can be attributed to the polar
part of a meromorphic Jacobi form that counts multi-
centered black holes whose number can jump when
crossing a wall. It would be interesting to analyze if a
similar phenomenon takes place for the BPS counting
functions discussed in this paper when we cross the loci
a; = 0. In the dual U(1)N gauge theory &; are inverse
coupling constants for each of the U(1) factors and
crossing the a; = 0 locus corresponds to passing through
the infinite coupling region [75,76]. It would be interest-
ing to understand what happens in this case to the BPS

states that are counted by Cﬁ“’:') (p, S, €1). We leave this
question for future work.

.....
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APPENDIX A: MODULAR FORMS

Throughout this work we use various modular objects.
This Appendix compiles the definitions of all objects
that are used in the body of this article, as well as
additional useful information and identities. For a more
comprehensive review, we relegate the reader to the
literature, e.g., [77-79].

A weak Jacobi form of the modular group I" = SL(2, Z)
of index m € Z and weight w € Z is a holomorphic
function of the type

¢: HxC - C
(p.2) = d(p;2)

(where H is the upper complex plane), which behaves in the
following manner under transformations of I':

ap+b_  z
cp+dcep+d

(A1)

rimez?
) = (cp+d)"e T P(p:2).

a b
\4 er,
c d
Plprz+ C1p+ £5) = 2020 (i),

V£, eN. (A2)

Such functions allow a Fourier expansion of the form

= i Z c(n, ) Qne* <

n=0 ez

with Q, = .
(A3)
The Jacobi forms encountered throughout this work can be

decomposed in terms of two basis functions, i.e., for index
m and weight w, we can write

5022 = > Fol0)Gor(p D) (Pors(p ). (Ad)
a=0

Here ¢_, | and ¢, | are Jacobi forms of index 1 and weight
—2 and 0, respectively, which are defined as™

03(z:p)
n°(p)
(A5)

4 ..
bo.1(p.2) = 8zea(z’p) $-21(p.2) =

= 62(0,p)’

with 6,_1534(z;p) the Jacobi theta functions and 7(p) the
Dedekind eta function. Furthermore, the f,(p) in Eq. (A4)
are modular forms of weight w + 2a. In practice, the f,(p)

301 (p. z) defined below differs by a factor of 2 from its usual
definition in the literature [77]. As defined it is equal to the
elliptic genus of K3.

can be written as homogeneous polynomials in the
Eisenstein series E,,, which are modular forms of weight
2n and which are defined as

E2k —1——262k 1 Qp, VkEN, (A6)

where B, are the Bernoulli numbers, while o, (n) is the
divisor function. We shall sometimes also use the differ-
ently normalized functions

(27i)?
2k—1)! Zo"zkl n)Q;

— 2£(2K)Ex(p).

Gu(p) = 20(2k) +2—

(A7)

The holomorphic Eisenstein series (i.e., the E,, for n > 1)
form a ring, which is generated by {E,, E¢}. Furthermore,
most of the examples we encounter in this paper are in fact
quasi-Jacobi forms, in the sense that the f,(p) in their
decomposition (A4) also depend on the Eisenstein series
E,: the latter is strictly speaking not a modular form.
However, one can define the following nonholomorphic
object:

6i

Ey(p.p) = Eslp) = ————=. (A8)
’ 2 2lp-p)
which transforms with weight 2 under modular
transformations.

Another object that we encounter in the body of this
paper is the Weierstrass elliptic function

1 [Se]
= >k DGxa() (A9
k=1

which has a pole of order 2 in z.

Finally, many of the results found in this paper use Hecke
operators: these are maps from the space J,, ,,(I") of Jacobi
forms of index m and weight w to the space J,,,,(I") of
Jacobi forms of index km and weight w for k € N:

Hk : Jw,m (F) - Jw,km (F>

k bd k
_kw_lZd w¢(p+ ’Z>.

dlk
b mod d

#(p;z) = Hi(d(
(A10)

Hecke transformations of this type can also be extended to
Jacobi forms that depend on more than one variable: let
fuwm(p.Z): HxC" - C be a Jacobi form with index
vector 7. We then define
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Het fuia(p:2) = HiFwi(p,2))

k, bd k
_kw—lzd—wfwm<p+ ,dZ> (All)
dlk

b mod d
For further use, we consider the case that f allows for a
Laurent series expansion in one of the variables: let
(21, .0020) = (Z,2,) (where Ze€C"!), and let

(my,...,m,) = (m,m,) be the index vector of a Jacobi
form that affords the following (convergent) Laurent series:

E anera m ﬂ» v

where f,, .7 (p,Z) are Jacobi forms of weight w 4+ a and
index vector m. We then find for the action of the Hecke
operator

Swstmyerromy) (0325 20) (A12)

kp + bd kZ kz
— jv-1 E dav -
fW.(m] ----- ”Lz) < JZ d d )

— Zzakara 1 Zd—w afw+am<kp:1—2bd,l;z)

d|k
b mod d

=Y s furan(p. ). (A13)

APPENDIX B: (N, 1) PARTITION FUNCTIONS

The topological string partition function of the Calabi-
Yau threefold X ; is given by [21,22,26]

2]+ +|2n]
E Or Zjdy

Ay

Zyi(t,a,m, e ,) = (4,m,e€,),

with a = {&1,...,&1\/}, (Bl)
and where the sum is over N-tuples of partitions of non-
negative integers. The parts of the partition 4, are denoted
by A,; with A,y > 4,7 > 4,3 > ---. Bach partition 4,
corresponds to a Young diagram which is obtained by
putting A, ; boxes in the ith column such that a box in the
Young diagram can be assigned a coordinate (i, j) as long
as 1 <i<2(,).1 < j <A, The transpose of a partition
A is denoted by A, and is defined as the partition
corresponding to the Young diagram obtained by inter-
changing rows and columns of the Young diagram corre-
sponding to 4,. If we denote by £(4,) the total number of
nonzero parts of the partition 4,, we then define

M |_Z/1al’ ||/1 ||2 Z}“az

(B2)

As discussed in the body of the paper, the topological string
partition function (B1) also captures the partition function
of a supersymmetric gauge theories. Furthermore, from a
geometric point of view, the instanton part of Zy ; is the
generating function of equivariant elliptic genera of the
instanton moduli space M (N, k),

Zyn1 = ZOZQT)(en (N.Kk)), (B3)

where y.;(X) denotes the equivariant elliptic genus of any
manifold X,

Xen(X) = Ty (=1)FetFryFrgh e2eidh — (B4)
Here the trace is over the R—R sector, F p are the left and
the right moving fermion numbers and 4; are the Cartan
generators of the symmetry group G which acts on X (and
a-h =YY, a;h;). The path integral representation of the
above reduces to an index calculation,

dim(X T m +§ )
(B5)
where (y = e>7)
EQny = y_% ®f21 [/\—ny“ Tx ®/\—y"Qf T_X
® SoTx ® Sg;Tx] (B6)

and x; are the formal roots of the Chern polynomial. The
relation between Z, .., and y. (M (N, k)) is given by

M(N, k) = Zy i) Zo-

|21 [+ +|An =k

)(ell( (B7)

The function Z; .., (4,m,¢€,) in Eq. (B1) is defined as

Zfll"'}w (ﬁ m,€q 2)

(OQ,) 9, A,;(QaﬂQm)'gla/lﬂ(QaﬂQr_nl)

_ D
ZOH 8, (\/-) 1<zg<1v19/1 i/;(Qu/;\/) i(,ﬂ/;(Qa/;\/%)y

(B8)

where Q,; = ¢2"(@~) and

[T 010 =15+ -4gmaetich)
(i.j)€a

1 .
x H 0)(p; 2 Fagri),
(i.j)en

Sﬁﬂ(p’ Z) =

(B9)
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with 0, (p, z) the Jacobi theta function and p = Y_V_, a,.
The factor Z, in Egs. (B3) and (BS8) is independent of Q,
and is given by

Zozﬁ(l— g)—l[ 11 Faﬁ][ﬂ Haﬂ], (B10)

n=1 1<a<f<N a =1
- 0y 0arhy

where (with O, = 0,0, - 0, 07!

Fo=T1" — Q017207 (1 Qup Q@ 2q")
afp — . i1
/ ij=1 (I_Qaﬁt qj 1)(1_Qaﬂt lqj)

Hy= ] (

nij=1

(1 _QZQaﬂtiqj_l)(l _QgQaﬂti_lqj)
(B11)

1. Modular transformation

To understand how the partition function Zy; trans-
forms under the modular transformation,

1-0300 0! 1" (1-030,y 0 ™)

_ 8u(p.21)
Siﬂ(p’ ZZ)

(i.j)en

where z;, = "2, Using the following identities,

A 215
%ﬂ] Zﬂt, Z(ﬂ,—]—FE) :T, (BlS)

(i.j)en (iJ)A

K;,(hy, hy) appearing in Eq. (B14) can be simplified,

1
Koy o) = 5 (Wt = 13) (121 + [ul) + (b = o)

/12_/12 /112_ Iut2
o P e i e i

(B16)

Notice that in the unrefined case (e, =—€; =¢€)K,,(h.h,)
simplifies,

a b
( d) S PSL(Z, Z): (/),m,é'l’z,é\laﬂ)

c
. Clp+b m 612 &aﬂ
cp+d cep+dcep+dcep+d)

(B12)

which is generated by

11 0 -1
T= , S= ,
0 1 1 0
we need to determine the transformation properties of

93,(p. 2). Although 9,,(p, z) is not invariant under the T

transformation, it is easy to see that the ratio ;"Eﬂ Z'g is

(B13)

invariant for any z; ,. In view of the structure of Eq. (B8),
this implies that Zy ; is invariant under the T trans-

4
;“Eﬁ ]; however, is not invariant under
X

the S transformation,

formation. The ratio

(172 = W) (2] + ) + (s — ho(g);(ez (,,;. —"%) e (*" - +;>>

Rl o)

(B14)
I
Koy o) = 5 (8 = ) (A1 + )
+ (b = h)ele() ~x(w)]. (B17)
where k(1) = |\/1H2—2\|,1'|\2'

Thus, the function Z, .., - given in Eq. (B8) transforms as

2xiK
Zﬂr"ﬂ/v = e r Zﬁ]'“}w’

(B18)
with
K/I, »-le (&a/}’ m, €+)

- § : /Ma

+ Koiy (lap — m, agp + €]

_€+ + E [K/Iul/,(aa} + m, aaﬁ - €+)
1<a<p<N

Here we have defined a,; = a, — ag. Thus, the partition
function is not invariant under modular transformations
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(B12) but can be made invariant at the expense of
introducing a holomorphic anomaly [59].

2. Singularities

The function 8, (p, z) has some interesting properties. In
the unrefined case it becomes proportional to a Kronecker
delta function for z =1 [80] and t = ¢,

(P, 1) = 04 | [ 020, 4" )01 (p, 7))
(i)

= (=1)s,, IT 6100, "),
(i.j)er

(B19)

Since the partition function Z ; is a sum over all partitions,
from Eqgs. (B8) and (BY) it follows that the partition function
will have a pole whenever a,; € 5,11(, iy Y 8/21& P

o1 o1
Siaz,, = {el <—/1a,,» +J —§> ) (/1;” -1 +§)

e, l(ij) eza},

1 1
Sﬁaﬂﬂ - {el <l/}.l - ] + E) + €2 <_ﬂ'{tl.j + 1 — 5)

+e|(i,)) G/lﬂ}. (B20)
Thus, the total order of the poles in d,s (counting with

possible multiplicity) is 2(|4,| 4 |44]). The poles in the
|

variable a,; depend only on the shape of the pair of
partitions (4,.44), and therefore the pole structure for
N > 2 in the variables a,; follows from the pole structure
for the N = 2 case in the variable a,, = a.

The poles in the variable a for the N = 2 case form a
nested sequence, i.e., the set of poles at order Q’,‘e are
contained in the set of poles at order Qk"'. To see this,
consider a pair of partitions (41, 4,), with |1, + |4,| = k,
giving the set of poles S, ;.. For the case of N = 2 consider
the pair of partitions (4,,4,) = ((k;), 1¥"%1) which con-
tribute to the coefficient of ij forall k;, =0,1,..., k. With
this choice of the partitions the set of possible poles in
Eq. (B20) becomes (6 =0, 1)

ay, = a € {—(k; = 1)e; + kye; —20€, }
U{—je; —20e,|j=0,....k; —2}

x{(i—2)e; +2e,0li=1,....k—k}. (B21)
The free energy In(Zy ;) is a power series in €, with
coefficients which are refined genus g amplitudes. Once the
expansion in €;, has been carried out the coefficients,
refined genus g amplitudes, now have poles at d,z; = 0.
In this paper we study the poles of the refined genus g
amplitudes at a,; = 0O rather than the poles of the partition
function which occur at various locations in the
(€1, €,) plane.

Example.—Let us consider the case N = 2 to first order
in Q.. The free energy (2.17) is given by

Fri=In(Zy) + 0,

81y (42

31)(1)(Qm) {19(1)(0)(leQm)'9<1)<0)(Q12Q;zl)+
19(1)(0)(Q12\/5)19(1)<o)(Q12\/%) 19(0)(1)(Q12\ﬁ)t‘f’(mm(le\/%)

19(0)(1)(QlZQm)lg(O)(l)(leQ;ll):| L

0
= ]n(Zo) + Qr 91 (p7 61)01 (,0, 62)

O1(p,a; +m—e,)0(a —m_€+)} T

From Egs. (B10) and (B11) we see that as a function of a,

i(p,m~+e_)0(m—e_) [el(pv&l +m+e)0(p.a—m+ey)
61(p9a1>91<p9a1 +2€+)

~ = B22
01(p.ay —2e,)0,(a,) (522
In(Zy) =Aln(a;) + - -, (B23)

where A is independent of a,. Thus, the free energy diverges like
O1(p,m+e_)0,(m—e_)0(p.m+€,)0i(p.m—e,) 2 o B

Fri=Aln(a,) - 0,

0,(p.€1)0,(p. €2)

(ay +2e.)(a; —2e,)

Thus, we see that there is a pole at a; = 3=2¢,. However, if we first expand in €, ,, then we get a single pole a; = 0 of
order 2. This persists at higher order in O, and we see poles at @; = 0 of various even orders.
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APPENDIX C: EXPANSION COEFFICIENTS OF
THE BASIC BUILDING BLOCKS

In this Appendix we collect explicit expressions for the
expansions of the free energy for N = 1, N = 2, and N = 3.

1. Coefficients of the N=1 free energy
Because of their frequent use throughout the body of this

article, we tabulate the coefficients HEZ)\ g;} (p,S) that

appear in the expansion of the free energy to leading
orders r and s. To this end, we decompose the former in the
following fashion:

P ZB 2&0

P)(@-21(p,S)) (0,1 (p,S)) ",

TABLE XVIL.  Coefficients in the expansion of b)) (p. S).
(r=1) (r=1)
s bO,(2s,0) BL(Z,Y,O)
0 0 -1
2 L SE3+13E,
4608 T 23040
3 SE3+TE, 35E3+273E, E,+184E,
2211840 T 2304320
4 35E3+147E,E4+124E; 175E3+2730E3 E4+3680E, Es +5583E;
2229534720 — 22295347200
(r)-{0} — (1).{0}
H(s.o) (p.S) = Hr(H(s,o) (p.5)). (C2)

The relations (4.26) for N = 2, (5.28) for N = 3, and (6.18)
for N =4 can be understood as generalizations of

(C1) Eq. (C2). Finally, for use in the body of this paper, we
also introduce
where b (250) is a quasimodular form of weight
25 4+ 2i — 2 which can be written as a polynomial in the o
Eisenstein series {E,,E,;,E¢}. For r=1, r=2, and Hl(\f)zl(p,S,el) = Ze%“_zHEQ(’)gO} (p.S). (C3)
r=23 the expansion -coefficients are tabulated in 5=0
Tables XVII-XIX, respectively.
Following [46], the coefficients HMO With > 1 can
) 2. Expansion of W(p. S
be recovered from those with r = 1 through Hecke trans- - Expansion of W(p. S, ¢;, ;)
formations, i.e., In [22,46] the (quasi-)Jacobi form
|
W(p’S’elz):91(p7S+€+)91(p’S_€+)_gl(p’S+€—)91(p’S_€—)’ with eizeliGZ’ (C4)
' 01(p.€1)0(p, €;) 2

was introduced, which governs the BPS counting of a single M5-brane with an M2-brane ending on it on either side. In the

NS limit, expanding the latter in powers of €¢;, we define

TABLE XVIIL  Coefficients in the expansion of b}, (p. 5).

: (r=2) (r=2) (r=2)
’ bO.(2x.0) bl,(Zx.O) bz,(zs,())
1
0 0 —1c 0
1 1 _E SEy
1536 384 384
2 Ey SE3+27E, 5(E,E4+2Eqg)
36864 92160 9216
3 SE3+13E, _ 35E3+567E,E,+1066E, SE3E,+20E, Eg+53E;
8847360 46448640 442368
4 70E3+546E,E4+1067Eg 175E3+5670E3 E4+21320E, Eg+54303E3 70E3 E4+420E3 Eg+2226E, E3+5393E, E¢
8918138880 B 22295347200 445906944
TABLE XIX. Coefficients in the expansion of b/, (1. 5).
(r=3) (r=3) (r=3) (r=3)
s 50.(2s.o) 51,(2:.0) b2.(2s.0) 53.(2:.0)
1 E
0 0 o) 0 B %
1 1 _E Ey _9E,E,+32E,
41472 6912 384 5184
2 E, I5E24+151E, 27E,E4+88E; 45E3E,+320E,E¢+1333E2
663552 ~ 3307760 165888 - 829440
3 SE3+23E, —105E3-3171E,E,—10088E 405E2E4+2640E, Eg+10103E2 —315E3 E,—3360E3Eq—27993E, E3—103400E, E¢
106168320 1114767360 79626240 278691840
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W (p. S,e1) = lirrg)W(p, S.€1,) = E T Wiy (0, ), (C3)
= s=0
where to low orders in s, we find

1
W) = 2 (o1 +2E2_5,),

1
W) = ~576 (Ey = E3)pa,
W _ 5(E4 - E%)¢01 + 2(5E% + 3E2E4 - 8E6)¢_2‘1
“) 552960 ’
_ p_21(35E3 + 168E3Ey + 16E,Eq — 219E3) — 14y 1 (SE; + 3E,E, — 8Ey)
W) = : (C6)

278691840

While not a function of R, following the free energy for N = 1 discussed in the previous Appendix C 1, we can define an
extension of W, to higher orders through

W (p.8) = H, (W (p.S)). (c7)
along with the building block
WAL 5.e0) = D W 0.5). (C8)
For convenience we can give explicit expressions for the first few instances of WE;)Y). To this end, we introduce the
decomposition
Wi (0.8) = D17 () (-1 (0. S)) (o (. ), (C9)
i=0

where Igi)zs) is a quasimodular form of weight 2s + 2i, which can be written as a polynomial in the Eisenstein series. For
r = 1, the expression (C6) can be tabulated as

(r=1) (r=1)
s IO,(ZS) I1 (2s)
1 E,
0 5 5
1 0 Ey—E3
7576
2 E,—E2 SE3+3E,E,—8Eq
110592 276480
3 —5E3—3E,E;+8E¢ 35E3+168E5E4+16E, Eg—219E7
39813120 278691840
4 —35E3—126E2E,—16E, Eg+177E3 175E3+2030E5 E4+2000E3 Eg+1203E, E2~5408E, Eq
35672555520 267544166400

For r = 2 we obtain

) I(r:2> I(’:2> I(’:2)
0,(2s) 1,(2s) 2,(2s)
0 1 Ey E,
384 96 96
1 0 E3-E, Eg—EyE;
2304 576
2 E,~E3 SE3+17E,E;—22E —3E3E,—4E,E¢+7E?
442368 552960 36864
3 —SE3—12E,E4+17E¢ 35E3+462E3E4+604E, Eg—1101E; —TE3E,—24E3 Eg—48E, E2+79E, Eg
79626240 278691840 3981312

and for r = 3 we find
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S I(r:3) I(’:3) I(":3) I(":3)
0.(2s) 1,(2s) 2.(2s) 3.(2s)
0 1 E, Ey 9E,E4—8E,
10368 1728 864 1296
1 0 E}-E, E¢—E>E, 3EJE,+8E,Eq—11E3
27648 1728 6912
2 Ey—E2 15E3+121E,E;—136E; —51E3E,—128E,E¢+179E> 45E3E,;+280E3Es+1003E,E3—1328E,Eq

5308416 13271040

1327104 3317760

APPENDIX D: THE PARAMODULAR GROUP X}

Let Ne N with N > 1. The degree 2 paramodular
groups are subgroups of the symplectic group Sp(4, Q)
labeled by an integer N and defined as [81,82]

* Nx % *
*/N

* * *

Sy = €Sp4,Q),|xeZ

* Nx %
Nx Nx Nx *
(D1)

Xy has the interesting property that ZyI'y C I'y, where
[y is the lattice Z@® Z @® Z & NZ in Sp(4,Q) and Ty
acts through simple matrix multiplication. A very useful
review of the degree n paramodular groups was given in [83].

In order to define the action of Xy on the free energies
discussed in the body of this paper, we introduce the period

matrix
S
Q= (p ) e H(2),
S R

where H(2) is the space of 2 x 2 matrices with a positive
imaginary part. We then define the action of Xy by

(D2)

A B ,
g= c D EXN: Q> Q =goQ

=(A-Q+B)-(C-Q+D)™, (D3)
where A, B, C, and D are 2 X 2 matrices.

Following [82,84,85] one can define an extension
of £y to a subgroup of Sp(4,R). To this end we

introduce
Uy O 1 0 N
hy = cSp(4,R), Uy=——
Y (0 Ug) P4.R). Uy W<1 0)
(D4)
and define

Notice that hy in Eq. (D4) acts as

NR S
hN:QHQ’:hNoQ:<S ﬁ), (D6)
N

which implies the symmetry f (R, p,S) = f(%.NR,S) for
paramodular forms.
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