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The characteristic function of Gaussian stochastic volatility

models: an analytic expression

Eduardo Abi Jaber∗

May 9, 2022

Abstract

Stochastic volatility models based on Gaussian processes, like fractional Brownian
motion, are able to reproduce important stylized facts of financial markets such as rich
autocorrelation structures, persistence and roughness of sample paths. This is made
possible by virtue of the flexibility introduced in the choice of the covariance function
of the Gaussian process. The price to pay is that, in general, such models are no longer
Markovian nor semimartingales, which limits their practical use. We derive, in two dif-
ferent ways, an explicit analytic expression for the joint characteristic function of the
log-price and its integrated variance in general Gaussian stochastic volatility models.
Such analytic expression can be approximated by closed form matrix expressions. This
opens the door to fast approximation of the joint density and pricing of derivatives
on both the stock and its realized variance using Fourier inversion techniques. In the
context of rough volatility modeling, our results apply to the (rough) fractional Stein–
Stein model and provide the first analytic formulae for option pricing known to date,
generalizing that of Stein–Stein, Schöbel–Zhu and a special case of Heston.

Keywords: Gaussian processes, Volterra processes, non-Markovian Stein–Stein/Schöbel-
Zhu models, rough volatility.

1 Introduction

In the realm of risk management in mathematical finance, academics and practitioners have
been always striving for explicit solutions to option prices and hedging strategies in their
models. Undoubtedly, finding explicit expressions to a theoretical problem can be highly
satisfying in itself; it also has many practical advantages such as: reducing computational
time (compared to brute force Monte-Carlo simulations for instance); achieving a higher
precision for option prices and hedging strategies; providing a better understanding of the

∗Université Paris 1 Panthéon-Sorbonne, Centre d’Economie de la Sorbonne, 106, Boulevard de l’Hôpital,
75013 Paris, eduardo.abi-jaber@univ-paris1.fr. I would like to thank Shaun Li for interesting discussions.
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role of the parameters of the model and the sensitivities of the prices and strategies with
respect to them. As one would expect, explicit expressions usually come at the expense
of sacrificing the flexibility and the accuracy of the model. In a nutshell, the aim of the
present paper is to show that analytic expressions for option prices can be found in a highly
flexible class of non-Markovian stochastic volatility models.

From Black-Scholes to rough volatility

In their seminal paper, Black and Scholes (1973) derived closed form solutions for the
prices of European call and put options in the geometric Brownian motion model where
the dynamics of the stock price S are given by:

dSt = StσdBt, S0 > 0, (1.1)

with B a standard Brownian motion and σ the constant instantaneous volatility parameter.
Although revolutionary, the model remains very simple: it drifts away from the reality of
financial markets characterized by non-Gaussian returns, fat tails of stock prices and their
volatilities, asymmetric option prices (i.e. the implied volatility smile and skew). . . see Cont
(2001). Since then a large and growing literature has been developed to refine the Black
and Scholes (1973) model. One notable direction is stochastic volatility modeling where the
constant volatility σ in (1.1) is replaced by a Markovian stochastic process (σt)t≥0. In their
celebrated paper, Stein and Stein (1991) modeled (σt)t≥0 by a mean-reverting Brownian
motion of the form

dσt = κ(θ − σt)dt+ νdWt, (1.2)

where W is a standard Brownian motion independent of B. Remarkably, they obtained
closed-form expressions for the characteristic function of the log-price, which allowed them
to recover the density as well as option prices by Fourier inversion of the characteristic
function. Later on the model has been extended by Schöbel and Zhu (1999) to account for
the leverage effect, i.e. an arbitrary correlation between W and B. Similar formulas for the
characteristic function of the log–price to those of Stein–Stein are derived for the non-zero
correlation case.

Prior to the extension by Schöbel and Zhu (1999), Heston (1993) took a slightly different
approach to include the leverage effect by introducing a model deeply rooted in the Stein–
Stein model. Heston observed that the instantenous variance process Vt = σ2

t in the
Stein–Stein model with θ = 0 follows a CIR process thanks to Itô’s formula,1 so that the
Stein–Stein model can be recast in the following form

dSt = St
√
VtdBt,

dVt = (ν2 − 2κVt)dt+ 2ν
√
VtdWt, (1.3)

1Squares of Brownian motion constitute the building blocks of squared Bessel processes, see Revuz and
Yor (1999, Chapter XI).
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where B = ρW +
√

1− ρ2W⊥ with ρ ∈ [−1, 1] and W⊥ a Brownian motion independent
of W . Such model remains tractable as it was shown earlier in the context of bond pricing
with uncertain inflation by Cox et al. (1985, Equations (51)-(52)).2 Heston (1993) carried
on by deriving closed form expressions for the characteristic function of the log–price, which
made his model one of the most, if not the most, popular model among practitioners. As
one would expect, the expressions of Heston (1993) and Schöbel and Zhu (1999) share a
lot of similarities and they perfectly agree when θ = 0 in (1.2), see Lord and Kahl (2006,
equation (44)). Such analytical tractability motivated the development of the theory of
finite-dimensional Markovian affine processes, see Duffie et al. (2003).

Unfortunately, Markovian stochastic volatility models, such as the Heston and the
Stein–Stein models, are not flexible enough: they generate an auto-correlation structure
which is too simplistic compared to empirical observations. Indeed, several empirical stud-
ies have documented the persistence in the volatility time series, see Andersen and Boller-
slev (1997); Ding et al. (1993). More recently, Gatheral et al. (2018) and Bennedsen et al.
(2016) show that the sample paths of the realized volatility are rougher than standard
Brownian motion at any realistic time scale as illustrated on Figure 1-(a). From a pricing
perspective, continuous semi-martingale models driven by a standard Brownian motion fail
to reproduce the power-law decay of the at-the-money skew of option prices as shown on
Figure 1-(b), see Carr and Wu (2003); Fouque et al. (2003); Lee (2005); Alòs et al. (2007);
Bayer et al. (2016); Fukasawa (2011, 2021).
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Figure 1: (a) Realized volatility of the S&P downloaded from https://realized.

oxford-man.ox.ac.uk/ with an estimated Hurst index of Ĥ = 0.11. (b) Term struc-

ture of the at-the-money skew of the implied volatility
∂σimplicit(k,T )

∂k

∣∣
k=0

for the S&P index
on June 20, 2018 (red dots) and a power-law fit t → 0.35 × t−0.41. Here k := ln(K/S0)

2The long-term level of the variance ν2 in (1.3) can be replaced by a more general coefficient θ ≥ 0.
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stands for the log-moneyness and T for the time to maturity.

These studies have motivated the need to enhance conventional stochastic volatility
models with richer auto-correlation structures. This has been initiated in Comte and
Renault (1998) by replacing the driving Brownian motion of the volatility process by a
fractional Brownian motion WH :

WH
t = 1

Γ(H+1/2)

∫ t
0 (t− s)H−1/2dWs + 1

Γ(H+1/2)

∫ 0
−∞((t− s)H−1/2 − (−s)H−1/2)dWs

where H ∈ (0, 1) is the Hurst exponent: H > 1/2 corresponds to positively correlated
returns, H < 1/2 to negatively correlated increments and H = 1/2 reduces to the case
of standard Brownian motion. Sample paths of WH are locally Hölder continuous of any
order strictly less than H, thereby less regular than standard Brownian motion. Initially
Comte and Renault (1998) considered the case H > 1/2. However, a smaller Hurst index
H ≈ 0.1 allows to match exactly the regularity of the volatility time series and the exponent
in the power–law decay of the at-the-money skew measured on the market (Figure 1).
Consequently models involving the fractional kernel t 7→ tH−1/2 with H < 1/2 have been
dubbed “rough volatility models” by Gatheral et al. (2018).

The price to pay is that, in general, such models are no longer Markovian nor semi-
martingales, which limits their practical use and make their mathematical analysis quite
challenging. This has initiated a thriving branch of research.3 The need for fast pricing
in such non-Markovian models is therefore, more than ever, crucial. One breakthrough in
that direction was achieved by El Euch and Rosenbaum (2019) who came up with a rough
version of the Heston (1993) model after convolving the dynamics (1.3) with a fractional
kernel to get

Vt = V0 +
1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2

(
(θ − κVs)ds+ ν

√
VsdWs

)
, (1.4)

for H ∈ (0, 1/2). Remarkably, they show that an analogous formula for the characteristic
function of the log price to that of Heston (1993) continue to hold modulo a fractional de-
terministic Riccati equation. From a theoretical perspective, the rough Heston model falls
into the broader class of non-Markovian affine Volterra processes developed in Abi Jaber
et al. (2019); Abi Jaber (2021), and can be recovered as a projection of infinite dimensional
Markovian affine processes as illustrated in Abi Jaber and El Euch (2019a); Cuchiero and
Teichmann (2020); Gatheral and Keller-Ressel (2019).

Although the rough Heston model can be efficiently implemented (Abi Jaber, 2019b;
Abi Jaber and El Euch, 2019b; Callegaro et al., 2018; Gatheral and Radoičić, 2019), no
closed-form solution for the fractional deterministic Riccati equation and whence for the
characteristic function is known to date, which has to be contrasted with the conventional
Heston (1993) model. One possible explanation could be that, unlike the Markovian case,

3Refer to https://sites.google.com/site/roughvol/home for references.

4

https://sites.google.com/site/roughvol/home


squares of fractional Brownian motion have different dynamics than (1.4), so that the
marginals of the process (1.4) are not chi-square distributed, except for the case H = 1/2.

The main objective of the paper is to rely on squares of general Gaussian processes
with arbitrary covariance structures by considering the non-Markovian extension of the
Stein and Stein (1991) and the Schöbel and Zhu (1999) models. We will show that the
underlying Gaussianity makes the problem highly tractable and allows to recover analytic
expressions for the joint Fourier–Laplace transform of the log price and the integrated
variance in general, which would agree with that of Stein–Stein, Schöbel–Zhu and Heston
under the Markovian setting. Such models have been already considered several times
in the context of non-Markovian and rough volatility literature (Cuchiero and Teichmann,
2019; Gulisashvili et al., 2019; Harms and Stefanovits, 2019; Horvath et al., 2019) but there
has been no derivation of the analytic form of the characteristic function. Our methodology
takes a step further the recent derivation in Abi Jaber (2019a) for the Laplace transform
of the integrated variance and that of Abi Jaber et al. (2021) where the Laplace transform
of the forward co-variance curve enters in the context of portfolio optimization.

The Gaussian Stein–Stein model and main results

For T > 0, we will consider the following generalized version of the Stein–Stein model:

dSt = StXtdBt, S0 > 0, (1.5)

Xt = g0(t) +

∫ T

0
K(t, s)κXsds+

∫ T

0
K(t, s)νdWs, (1.6)

with B = ρW +
√

1− ρ2W⊥, ρ ∈ [−1, 1], κ, ν ∈ R, g0 a suitable deterministic input curve,
K : [0, T ]2 → R a measurable kernel and (W,W⊥) a two-dimensional Brownian motion.

Under mild assumptions on its covariance function, every Gaussian process can be writ-
ten in the form (1.6) with κ = 0, see Sottinen and Viitasaari (2016). Such representation
is known as the Fredholm representation. We will be chiefly interested in two classes of
kernels K:

• Symmetric kernels, i.e. K(t, s) = K(s, t) for all s, t ≤ T , for which the integration in
(1.6) goes up to time T , meaning that X is not necessarily adapted to the filtration
generated by W . In this case, the stochastic integral

∫ ·
0 XdB cannot be defined in a

dynamical way as an Itô integral whenever ρ 6= 0. We will make sense of (1.5)–(1.6)
in a static sense in Section 2.

• Volterra kernels, i.e. K(t, s) = 0 whenever s ≥ t, for which integration in (1.6) goes
up to time t, which is more in line with standard stochastic volatility modeling and
for which the stochastic integral

∫ ·
0 XdB can be defined in the usual Itô sense, see

Section 3. For instance, the conventional mean reverting Stein-Stein model (1.2) can
be recovered by setting g0(t) = X0 − κθt, κ ≤ 0 and by considering the Volterra
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kernel K(t, s) = 1s<t. The fractional Brownian motion with a Hurst index H ∈ (0, 1)
can be represented using the Volterra kernel

K(t, s) = 1s<t
(t− s)H−1/2

Γ(H + 1
2)

2F1

(
H − 1

2
;
1

2
−H;H +

1

2
; 1− t

s

)
,

where 2F1 is the Gauss hypergeometric function; and the Riemman-Liouville frac-
tional Brownian motion corresponds to the case K(t, s) = 1s<t(t − s)H−1/2/Γ(H +
1/2).

For suitable u,w ∈ C, we provide the following analytical expression for the conditional
joint Fourier–Laplace transform of the log-price and the integrated variance:

E
[
exp

(
u log

ST
St

+ w

∫ T

t
X2
sds

) ∣∣∣Ft] =
exp (〈gt,Ψtgt〉L2)

det (Φt)
1/2

, (1.7)

with 〈f, h〉L2 =
∫ T

0 f(s)h(s)ds, det the Fredholm (1903) determinant (see Appendix A.1),
gt the adjusted conditional mean given by

gt(s) = 1t≤sE
[
Xs −

∫ T

t
K(s, r)κXrdr

∣∣∣ Ft] , s, t ≤ T ; (1.8)

and Ψt a linear operator acting on L2 ([0, T ],R) defined by

Ψt = (id− bK∗)−1 a
(

id− 2aΣ̃t

)−1
(id− bK)−1 , t ≤ T, (1.9)

where K denotes the integral operator induced by K, K∗ the adjoint operator,4 id denotes
the identity operator, i.e. (idf) = f for all f ∈ L2 ([0, T ],C),

a = w +
1

2
(u2 − u), b = κ+ ρνu, (1.10)

and Σ̃t the adjusted covariance integral operator defined by

Σ̃t = (id− bK)−1Σt(id− bK∗)−1, (1.11)

with Σt defined as the integral operator associated with the covariance kernel

Σt(s, u) = ν2

∫ T

t
K(s, z)K(u, z)dz, t ≤ s, u ≤ T, (1.12)

and finally Φ is defined by

Φt =

{
(id− bK)(id− 2aΣ̃t)(id− bK) if K is a symmetric kernel

id− 2aΣ̃t if K is a Volterra kernel
.

4cf. below for detailed notations.
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At first glance, the expressions for Φ seem to depend on the class of the kernel, but
they actually agree. Indeed, for Volterra kernels, i.e. K(t, s) = 0 for s ≥ t, det(id− bK) =
det(id− bK∗) = 1 so that using the relation (Simon, 1977, Theorem 3.8) det((id +F )(id +
G)) = det(id + F ) det(id + G):

det((id− bK)(id− 2aΣ̃t)(id− bK∗)) = det(id− 2aΣ̃t).

As already mentioned, we prove (1.7) for two classes of kernels:

• Symmetric nonnegative kernels: we provide an elementary static derivation of
(1.7) for t = 0 and κ = 0, based on the spectral decomposition of K which leads to
the decomposition of the characteristic function as an infinite product of independent
Wishart distributions. The operator Ψ0 appears naturally after a rearrangement of
the terms. The main result is collected in Theorem 2.3.

• Volterra kernels: under some L2-continuity and boundedness condition, we adopt
a dynamical approach to derive the conditional characteristic function (1.7) via Itô’s
formula on the adjusted conditional mean process (gt(s))t≤s. The main result is
stated in Theorem 3.3. This is the class of kernels which is more suited for financial
applications.

From the numerical perspective, we will show in Section 4.1 that the expression (1.7)
lends itself to approximation by closed form solutions using finite dimensional matrices
after a straightforward discretization of the operators in the form

E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

)]
≈

exp
(
T
n g
>
n Ψn

0gn
)

det(Φn
0 )1/2

where gn ∈ Rn and Φn
0 ,Ψ

n
0 ∈ Rn×n are entirely determined by (g0,K, ν, κ, u, w) and det is

the standard determinant of a matrix, we refer to Section 4.1. We illustrate the applica-
bility of these formulas on an option pricing and calibration example by Fourier inversion
techniques in a (rough) fractional Stein–Stein model in Section 4.2.

Notations

Fix T > 0. We let K denote R or C. We denote by 〈·, ·〉L2 the following product

〈f, g〉L2 =

∫ T

0
f(s)>g(s)ds, f, g ∈ L2 ([0, T ],K) .

We note that 〈·, ·〉L2 is an inner product on L2 ([0, T ],R), but not on L2 ([0, T ],C). We
define L2

(
[0, T ]2,K

)
to be the space of measurable kernels K : [0, T ]2 → K such that∫ T

0

∫ T

0
|K(t, s)|2dtds <∞.
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For any K,L ∈ L2
(
[0, T ]2,K

)
we define the ?-product by

(K ? L)(s, u) =

∫ T

0
K(s, z)L(z, u)dz, (s, u) ∈ [0, T ]2, (1.13)

which is well-defined in L2
(
[0, T ]2,K

)
due to the Cauchy-Schwarz inequality. For any

kernel K ∈ L2
(
[0, T ]2,K

)
, we denote by K the integral operator induced by the kernel K

that is

(Kg)(s) =

∫ T

0
K(s, u)g(u)du, g ∈ L2 ([0, T ],K) .

K is a linear bounded operator from L2 ([0, T ],K) into itself. If K and L are two integral
operators induced by the kernels K and L in L2

(
[0, T ]2,K

)
, then KL is also an integral

operator induced by the kernel K ? L.
When K = R, we denote by K∗ the adjoint kernel of K for 〈·, ·〉L2 , that is

K∗(s, u) = K(u, s), (s, u) ∈ [0, T ]2,

and by K∗ the corresponding adjoint integral operator.
The square-root of a complex number

√
z is defined through its main branch, i.e.

√
z =

|z|eiarg(z)/2 with z = |z|eiarg(z) such that arg(z) ∈ (−π, π].

2 Symmetric kernels: an elementary static approach

We provide an elementary static derivation of the joint Fourier–Laplace transform in the
special case of symmetric kernels with κ = 0. We stress that, although the case of sym-
metric kernels is not of interest for practical applications, it naturally leads through direct
computations to the analytic expression (1.7) in terms of the operator Ψ given in (1.9).
Later on, in Section 3, such expressions are shown to hold in the more practical case of
Volterra kernels using a dynamical approach.

Definition 2.1. A linear operator K from L2 ([0, T ],R) into itself is symmetric nonnega-
tive if K = K∗ and 〈f,Kf〉L2 ≥ 0, for all f ∈ L2 ([0, T ],R). Whenever K is an integral
operator induced by some kernel K ∈ L2

(
[0, T ]2,R

)
, we will say that K is symmetric

nonnegative. In this case, it follows that K = K∗ a.e. and∫ T

0

∫ T

0
f(s)>K(s, u)f(u)duds ≥ 0, ∀f ∈ L2 ([0, T ],R) .

K is said to be symmetric nonpositive, if (−K) is symmetric nonnegative.
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Throughout this section, we fix T > 0 and we consider the case of symmetric kernels
having the following spectral decomposition

K(t, s) =
∑
n≥1

√
λnen(t)en(s), t, s ≤ T, (2.1)

where (en)n≥1 is an orthonormal basis of L2([0, T ],R) for the inner product 〈f, g〉L2 =∫ T
0 f(s)g(s)ds and λ1 ≥ λ2 ≥ . . . ≥ 0 with λn → 0, as n→∞, such that∑

n≥1

λn <∞. (2.2)

Such decomposition is possible whenever the operator K is the (nonnegative symmetric)
square-root of a covariance operator C which is generated by a continuous kernel. This is
known as Mercer’s theorem, see Shorack and Wellner (2009, Theorem 1, p.208) and leads
to the so-called Kac–Siegert/Karhunen–Loève representation of the process X, see Kac and
Siegert (1947); Karhunen (1946); Loeve (1955). In this case, one can show that any square-
integrable Gaussian process X with mean g0 and covariance C admits the representation
(1.6) with κ = 0 on some filtered probability space supporting a Brownian motion W , see
Sottinen and Viitasaari (2016, Theorem 12).

We start by making precise how one should understand (1.5)–(1.6) in the case of sym-
metric kernels and κ = 0. We rewrite (1.5) in the equivalent form

logSt = logS0 −
1

2

∫ t

0
X2
sds+ ρ

∫ t

0
XsdWs +

√
1− ρ2

∫ t

0
XsdW

⊥
s . (2.3)

We fix T > 0, g0 ∈ L2([0, T ],R) and a complete probability space (Ω,F ,Q) supporting a
two dimensional Brownian motion (W,W⊥) and, for each t ≤ T , we set

Xt = g0(t) +

∫ T

0
K(t, s)νdWs.

We note that (2.1)–(2.2) imply that K ∈ L2([0, T ]2,R) so that the stochastic integral∫ T
0 K(t, s)νdWs is well-defined as an Itô integral for almost every t ≤ T and X has sample

paths in L2([0, T ],R) almost surely. Setting Ft = FXt ∨FW
⊥

t where (FYt )t≥0 stands for the
filtration generated by the process Y , we have that W⊥ is still a Brownian motion with
respect to (Ft)t≥0 and, up to a modification, X is progressively measurable5 with respect
to (FXt )t≥0 (and whence w.r.t. the enlarged filtration (Ft)t≥0) so that∫ ·

0
XsdW

⊥
s

5Every jointly measurable and adapted process admits a progressively measurable modification, see
Ondreját and Seidler (2013).
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is well defined as an Itô integral with respect to (Ft)t≥0. If ρ = 0, (2.3) is therefore well-
defined in the classical way. However, for ρ 6= 0, since X is not necessarily adapted to
the filtration generated by W (and vice versa), W is no longer necessarily a Brownian
motion with respect to the extended filtration FX ∨FW , and one cannot make sense of the
stochastic integral

∫ ·
0 XdW in the usual dynamical sense. We provide a static interpretation

of (2.3) valid only at the terminal time T . To this end, since g0 ∈ L2([0, T ],R), we can
write g0 =

∑
n≥1〈g0, en〉en. Making use of (2.1), we first observe that, an application of

Fubini’s theorem (Veraar, 2012, Theorem 2.2), justified by the fact that∫ T

0

∑
n≥1

E
[∫ T

0
|
√
λnen(t)en(s)|2ds

]
dt =

∑
n≥1

λn

∫ T

0
en(t)2dt ≤

∑
n≥1

λn <∞,

yields that

Xt = g0(t) +

∫ T

0
K(t, s)νdWs =

∑
n≥1

(
〈g0, en〉+

√
λnνξn

)
en(t), dt⊗Q− a.e. (2.4)

where ξn =
∫ T

0 en(s)dWs, for each n ≥ 1. Since (en)n≥1 is an orthonormal family in L2,
(ξn)n≥1 is a sequence of independent standard Gaussian random variables that are FWT
measurable. We set

NT =
∑
n≥1

(
〈g0, en〉+

√
λnνξn

)
ξn. (2.5)

Remark 2.2. We note that NT plays the role of
∫ T

0 XsdWs, since a formal interchange
leads to

NT =
∑
n≥1

(
〈g0, en〉+

√
λnνξn

)∫ T

0
en(s)dWs

(=)

∫ T

0

∑
n≥1

(
〈g0, en〉+

√
λnνξn

)
en(s)dWs

(=)

∫ T

0
XsdWs.

Obviously, since ξn are not adapted the integral
∫ ·

0 ξnen(s)dWs cannot be defined in the
non-anticipative sense.

Finally, we take as definition for the log-price at the terminal time T :

logST = logS0 −
1

2

∫ T

0
X2
sds+ ρNT +

√
1− ρ2

∫ T

0
XsdW

⊥
s , S0 > 0, (2.6)

which is an FWT ∨ FT -measurable random variable.
We state our main result of the section on the representation of the characteristic

function for symmetric kernels.
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Theorem 2.3. Let K be as in (2.1), g0 ∈ L2([0, T ],R) and set κ = 0. Fix u,w ∈ C such
that <(u) = 0 and <(w) ≤ 0. Then,

E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

)]
=

exp (〈g0,Ψ0g0〉L2)

det (Φ0)1/2
, (2.7)

with Ψ0 and Σ̃0 respectively given by (1.9) and (1.11), for (a, b) as in (1.10) (with κ = 0),
that is

a = w +
1

2
(u2 − u), b = ρνu,

and Φ0 = (id− bK)(id− 2aΣ̃0)(id− bK).

The rest of the section is dedicated to the proof of Theorem 2.3. The key idea is to rely
on the spectral decomposition (2.1) to decompose the characteristic function as an infinite
product of independent Wishart distributions. The operators Σ̃0 and Ψ0 will then appear
naturally after a rearrangement of the terms.

In the sequel, to ease notations, we drop the subscript L2 in the product 〈·, ·〉L2 . We will

start by computing the joint Fourier–Laplace transform of
(∫ T

0 X2
sds,NT

)
. Furthermore,

the representation (2.4) readily leads to∫ T

0
X2
sds =

∑
n≥1

(
〈g0, en〉+

√
λnνξn

)2
. (2.8)

Lemma 2.4. Let K be as in (2.1), g0 ∈ L2([0, T ],R), set κ = 0 and fix α, β ∈ C such that

<(α) ≤ 0, <(β) = 0. (2.9)

Then,

E
[
exp

(
α

∫ T

0
X2
sds+ βNT

)]
=

exp
((
α+ β2

2

)∑
n≥1

〈g0,en〉2
1−2βν

√
λn−2αν2λn

)
∏
n≥1

√
1− 2βν

√
λn − 2αν2λn

. (2.10)

Proof. Define UT = α
∫ T

0 X2
sds+βNT . We first observe that (2.9) yields that |exp (UT )| =

exp(<(UT )) ≤ 1, so that E [exp (UT )] is finite. By virtue of the representations (2.5) and
(2.8), we have

UT =
∑
n≥1

αξ̃2
n + βξ̃nξn,

11



where ξ̃n =
(
〈g0, en〉+ ν

√
λnξn

)
, for each n ≥ 1. Setting Yn = (ξ̃n, ξn)>, it follows that

(Yn)n≥1 are independent such that each Yn is a two dimensional Gaussian vector with mean
µn and covariance matrix Σn given by

µn =

(
〈g0, en〉

0

)
and Σn =

(
ν2λn ν

√
λn

ν
√
λn 1

)
.

Furthermore, we have

UT =
∑
n≥1

Y >n wnYn,

with

wn =

(
α β

2
β
2 0

)
.

By successively using the independence of Yn and the well-known expression for the charac-
teristic function of the Wishart distribution, see for instance Abi Jaber (2019a, Proposition
A.1), we get

E [exp(UT )] = E

exp

∑
n≥1

Y >n wnYn


=
∏
n≥1

E
[
exp

(
Y >n wnYn

)]

=
∏
n≥1

exp
(

tr
(
wn (I2 − 2Σnwn)−1 µnµ

>
n

))
det (I2 − 2Σnwn)1/2

.

We now compute the right hand side. We have

(I2 − 2Σnwn) =

(
1− 2αν2λn − βν

√
λn −βν2λn

−2αν
√
λn − β 1− βν

√
λn

)
so that

det(I2 − 2Σnwn) = 1− 2βν
√
λn − 2αν2λn

and

(I2 − 2Σnwn)−1 =
1

1− 2βν
√
λn − 2αν2λn

(
1− βν

√
λn βν2λn

2αν
√
λn + β 1− 2αν2λn − βν

√
λn

)
.

Straightforward computations lead to the claimed expression (2.10).

Relying on the spectral decomposition (2.1), we re-express the quantities entering in
(2.10) in terms of suitable operators.
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Lemma 2.5. Let K be as in (2.1), set κ = 0 and fix α, β ∈ C as in (2.9). Then, the

following operator defined by (1.9) with a = α+ β2

2 and b = νβ:

Ψα,β
0 = (id− bK∗)−1 a

(
id− 2Σ̃0a

)−1
(id− bK)−1 , t ≤ T,

admits the following decomposition

Ψα,β
0 =

∑
n≥1

α+ β2

2

1− 2βν
√
λn − 2αν2λn

〈en, · 〉en (2.11)

and

det

(
1

α+ β2

2

Ψα,β
0

)
=
∏
n≥1

1

1− 2βν
√
λn − 2αν2λn

, (2.12)

with the convention that 0/0 = 1. In particular,

E
[
exp

(
α

∫ T

0
X2
sds+ βNT

)]
= det

(
1

α+ β2

2

Ψα,β
0

)1/2

exp
(
〈g0,Ψ

α,β
0 g0〉

)
. (2.13)

Proof. Throughout the proof, we will make use of the following rule for computing the
decomposition of a product of operators in terms of the orthonormal basis (en)n≥1: for K
and L in the form

K =
∑
n≥1

an〈en, · 〉en, L =
∑
n≥1

bn〈en, · 〉en,

the composition is given by

KL =
∑
n≥1

an〈en,
∑
m≥1

bmem〈en, · 〉〉en =
∑
n≥1

anbn〈en, · 〉en.

It follows from (2.1) that

(id− bK) =
∑
n≥1

(
1− b

√
λn

)
〈en, · 〉en.

Since <(β) = 0, <(1− b
√
λn) = 1 6= 0 for each n ≥ 1, so that (id− bK) is invertible with

an inverse given by

(id− bK)−1 =
∑
n≥1

1

1− b
√
λn
〈en, · 〉en. (2.14)
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Similarly, recalling (1.12), (2.1) leads to the representation of Σ0 = ν2KK∗:

Σ0 =
∑
n≥1

ν2λn〈en, · 〉en,

so that Σ̃0 given by (1.11) reads

Σ̃0 =
∑
n≥1

ν2λn(
1− b

√
λn
)2 〈en, · 〉en.

Whence,

(
id− 2aΣ̃0

)
=
∑
n≥1

(
1− b

√
λn
)2 − 2aν2λn(

1− b
√
λn
)2 〈en, · 〉en.

Recalling that a = α+ β2

2 and b = νβ,
((

1− b
√
λn
)2 − 2aν2λn

)
= 1− 2νβ

√
λn − 2αν2λn.

Since <(α) ≤ 0 and <(β) = 0, we have that <(1 − 2νβ
√
λn − 2αν2λn) > 0 so that(

id− 2aΣ̃0

)
is invertible with an inverse given by

(
id− 2aΣ̃0

)−1
=
∑
n≥1

(
1− νβ

√
λn
)2

1− 2νβ
√
λn − 2αν2λn

〈en, · 〉en.

The representations (2.11)-(2.12) readily follows after composing by (id − bK∗)−1a from
the left, by (id − bK)−1 from the right and recalling (2.14). Finally, combining these
expressions with (2.10), we obtain (2.13). This ends the proof.

We can now complete the proof of Theorem 2.3.

Proof of Theorem 2.3. It suffices to prove that

E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

)]
= E

[
exp

(
α

∫ T

0
X2
sds+ βNT

)]
, (2.15)

where

α = w +
1

2
(u2 − u)− ρ2u2

2
and β = ρu.

Indeed, if this the case, then

<(α) = <(w) +
1

2
(ρ2 − 1)=(u)2 ≤ 0,
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so that an application of Lemma 2.5 yields the expression (2.7).
It remains to prove (2.15) by means of a projection argument. Conditional on (FXt ∨
FWt )t≤T , by independence of X and W⊥, the random variable

∫ T
0 XsdW

⊥
s is centered

gaussian with variance
∫ T

0 X2
sds so that

MT : = E
[
exp

(
u
√

1− ρ2

∫ T

0
XsdW

⊥
s

) ∣∣∣ (FXt ∨ FWt )t≤T

]
= exp

(
u2(1− ρ2)

2

∫ T

0
X2
sds

)
. (2.16)

A successive application of the tower property of the conditional expectation on the ex-
pression (2.6) yields that

E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

)]
= E

[
E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

) ∣∣∣ (FXt ∨ FWt )t≤T

]]
= E

[
exp

((
w − u

2

)∫ T

0
X2
sds+ ρu

∫ T

0
XsdWs

)
MT

]
leading to (2.15) due to (2.16). This ends the proof.

3 Volterra kernels: a dynamical approach

In this section, we treat the class of Volterra kernels which are practically relevant in
mathematical finance. We will consider the class of Volterra kernels of continuous and
bounded type in L2 in the terminology of Gripenberg et al. (1990, Definitions 9.2.1, 9.5.1
and 9.5.2).

Definition 3.1. A kernel K : [0, T ]2 → R is a Volterra kernel of continuous and bounded
type in L2 if K(t, s) = 0 whenever s ≥ t and

sup
t∈[0,T ]

∫ T

0
|K(t, s)|2ds <∞, lim

h→0

∫ T

0
|K(u+ h, s)−K(u, s)|2ds = 0, u ≤ T. (3.1)

The following kernels are of continuous and bounded type in L2.

Example 3.2. (i) Any convolution kernel of the form K(t, s) = k(t − s)1s<t with k ∈
L2([0, T ],R). Indeed,

sup
t≤T

∫ T

0
|K(t, s)|2ds = sup

t≤T

∫ t

0
|k(t− s)|2ds ≤

∫ T

0
|k(s)|2ds <∞

yielding the first part of (3.1). The second part follows from the L2-continuity of k,
see (Brezis, 2010, Lemma 4.3).
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(ii) For H ∈ (0, 1),

K(t, s) = 1s<t
(t− s)H−1/2

Γ(H + 1
2)

2F1

(
H − 1

2
;
1

2
−H;H +

1

2
; 1− t

s

)
,

where 2F1 is the Gauss hypergeometric function. Such kernel enters in the Volterra
representation (1.6) of the fractional Brownian motion whose covariance function is
Σ0(s, u) = (K ?K∗)(s, u) = 1

2(s2H + u2H − |s− u|2H), see Decreusefond and Ustunel
(1999). In this case,

sup
t≤T

∫ T

0
|K(t, s)|2ds = sup

t≤T
Σ0(t, t) ≤ T 2H

and by developing the square∫ T

0
|K(u+ h, s)−K(u, s)|2ds = Σ0(u+ h, u+ h)− 2Σ0(u+ h, u) + Σ0(u, u)

which goes to 0 as h→ 0.

(iii) Continuous kernels K on [0, T ]2. This is the case for instance for the Brownian
Bridge W T1 conditioned to be equal to W T1

0 at a time T1: for all T < T1, W T1

admits the Volterra representation (1.6) on [0, T ] with the continuous kernel K(t, s) =
1s<t(T1 − t)/(T1 − s), for all s, t ≤ T .

(iv) If K1 an K2 satisfy (3.1) then so does K1 ? K2 by an application of Cauchy-Schwarz
inequality.

Throughout this section, we fix a probability space (Ω,F , (Ft)t≤T ,Q) supporting a two

dimensional Brownian motion (W,W⊥) and we set B = ρW +
√

1− ρ2W⊥. For any
Volterra kernel K of continuous and bounded type in L2, and any g0 ∈ L2([0, T ],R), there
exists a progressively measurable R×R+-valued strong solution (X,S) to (1.5)-(1.6) such
that

sup
t≤T

E [|Xt|p] <∞, p ≥ 1, (3.2)

we refer to Theorem A.3 below for the proof. It follows in particular from (3.2) that∫ T
0 X2

sds <∞ almost surely, so that X has sample paths in L2([0, T ],R).
We now state our main result on the representation of the Fourier–Laplace transform

for Volterra kernels under the following additional assumption on the kernel:

sup
t≤T

∫ T

0
|K(s, t)|2ds <∞. (3.3)
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Theorem 3.3. Let g0 ∈ L2([0, T ],R) and K be a Volterra kernel as in Definition 3.1
satisfying (3.3). Fix u,w ∈ C, such that 0 ≤ <(u) ≤ 1 and <(w) ≤ 0. Then,

E
[
exp

(
u log

ST
St

+ w

∫ T

t
X2
sds

) ∣∣∣Ft] = exp (φt + 〈gt,Ψtgt〉L2), (3.4)

for all t ≤ T , with Ψt given by (1.9) for (a, b) as in (1.10) and

φt = −
∫ T

t
Tr(ΨtΣ̇t)dt, (3.5)

where Σ̇t is the strong derivative6 of t 7→ Σt induced by the kernel

Σ̇t(s, u) = −ν2K(s, t)K(u, t), a.e.

and Tr is the trace operator, see Appendix A.1.

Proof. We refer to Appendix B.

The following remark establishes the link between φ and the Fredholm determinant.

Remark 3.4. Assume u,w are real. We recall the definition

Φt = id− 2Σ̃ta, t ≤ T,

and that Σ̃t is an integral operator of trace class with continuous kernel by virtue of
Lemma A.5 below so that the determinant det(Φt) is well defined and non-zero by the
invertibility of (id− 2Σ̃ta), see Lemma A.6 and Simon (1977, Theorem 3.9). We set

φt = log(det(Φt)
−1/2) = −1

2
log(det(Φt)). (3.6)

Differentiation using the logarithmic derivative of the Fredholm’s determinant (see (Gohberg
and Krein, 1978, Chap IV, p.158 (1.3))) and (1.11) yields

φ̇t = Tr

(
a
(

id− 2Σ̃ta
)−1 ˙̃Σt

)
= Tr

(
a
(

id− 2Σ̃ta
)−1

(id− bK)−1Σ̇t(id− bK∗)−1

)
.

Finally, using (1.9) and the identity Tr(FG) = Tr(GF ), we obtain

φ̇t = Tr(ΨtΣ̇t). (3.7)

When u,w are complex numbers, the definition of (3.6) requires the use of several branches
of the complex logarithm. For numerical implementation, to prevent complex discontinu-
ities, one should either use (3.6) with multiple branches or stick with the discretization of
expression (3.5). We refer to section 4.1 for the numerical implementation.

6See Lemma B.1 below.
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Finally, for K(t, s) = 1s<t and an input curve of the form

g0(t) = X0 + θt, t ≥ 0, (3.8)

for some X0, θ ∈ R, one recovers from Theorem 3.3 the well-known closed form expressions
of Stein and Stein (1991) and Schöbel and Zhu (1999), and that of Heston (1993) when
θ = 0.

Corollary 3.5. Assume that K(t, s) = 1s<t and that g0 is of the form (3.8), then, the
expression (3.4) reduces to

E
[
exp

(
u log

ST
St

+ w

∫ T

t
X2
sds

) ∣∣∣Ft] = exp
(
A(t) +B(t)Xt + C(t)X2

t

)
(3.9)

where A,B,C solve the following system of (Backward) Riccati equations

Ȧ = −θB − 1

2
ν2B2 − ν2C, A(T ) = 0,

Ḃ = −2θC − (κ+ ρνu+ 2ν2C)B, B(T ) = 0,

Ċ = −2ν2C2 − 2(κ+ ρνu)C − w − 1

2
(u2 − u), C(T ) = 0.

In particular, (A,B,C) can be computed in closed form as in Lord and Kahl (2006, Equa-
tions (43)-(44)-(45)).

Sketch of proof. The characteristic function is given by (3.4). Assume that K(t, s) = 1s<t
and g0 is as in (3.8). Then,

Xs = Xt + (s− t)θ +

∫ s

t
κXudu+

∫ s

t
νdWu, s ≥ t,

so that taking conditional expectation yields

gt(s) = 1t≤s (Xt + (s− t)θ) .

It follows that

〈gt,Ψtgt〉L2 = Ã(t) +B(t)Xt + C(t)X2
t

with

Ã(t) = θ2〈1t≤·(·−t),Ψt1t≤·(·−t)〉L2 , B(t) = 2θ〈1t≤·(·−t),Ψt1t≤·〉L2 , C(t) = 〈1t≤·,Ψt1t≤·〉.

Combined with (3.6) and (B.7) below, we obtain (3.9) with A such that AT = 0 and

Ȧ(t) = ˙̃A(t) + Tr(ΨtΣ̇t)

with Tr the trace of an operator (see Appendix A.1 below) and

Σ̇t(s, u) = −ν21t≤s∧u.

Using the operator Riccati equation satisfied by t 7→ Ψt, see Lemma B.1 below, and
straightforward computations as in Abi Jaber et al. (2021, Corollary 5.14) lead to the
claimed system of Riccati equations for (A,B,C).
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4 Numerical illustration

In this section, we make use of the analytic expression for the characteristic function in
(1.7) to price options. We first present an approximation of the formula (1.7) using closed
form expressions obtained from a natural discretization of the operators. Throughout this
section, we consider the case t = 0 and we fix a Volterra kernel K, i.e. K(t, s) = 0 if s ≥ t,
as in Section 3.

4.1 A straightforward approximation by closed form expressions

The expression (1.7) lends itself to approximation by closed form solutions by a simple
discretization of the operator Ψ0 given by (1.9) à la Fredholm (1903). Fix n ∈ N and let
ti = iT/n, i = 0, 1, . . . , n be a partition of [0, T ]. Discretizing the ?-product given in (1.13)
yields the following approximation for Ψ0 by the n× n matrix:

Ψn
0 = a

(
In − b(Kn)>

)−1
(
In − 2

aT

n
Σ̃n

)−1

(In − bKn)−1 ,

where In is the n× n identity matrix, Kn is the lower triangular matrix with components

Kn
ij = 1j≤i−1

∫ tj

tj−1

K(ti−1, s)ds, 1 ≤ i, j ≤ n, (4.1)

and

Σ̃n = (In − bKn)−1 Σn
(
In − b(Kn)>

)−1

with Σn the n× n discretized covariance matrix, recall (1.12), given by

Σn
ij = ν2

∫ T

0
K(ti−1, s)K(tj−1, s)ds, 1 ≤ i, j ≤ n. (4.2)

Defining the n-dimensional vector gn = (g0(t0), . . . , g0(tn−1))>, the discretization of the
inner product 〈·, ·〉L2 leads to the approximation

E
[
exp

(
u logST + w

∫ T

0
X2
sds

)]
≈

exp
(
u logS0 + T

n g
>
n Ψn

0gn
)

det(Φn
0 )1/2

(4.3)

with Φn
0 =

(
In − 2aTn Σ̃n

)
.

Remark 4.1. Recalling Remark 3.4, one needs to be careful with the numerical implemen-
tation of the square root of the determinant that appears in equation (4.3) to avoid complex
discontinuities, either by switching the sign of the determinant each time it crosses the axis
of negative real numbers or by discretizing (3.5) which would require the computation of Ψt

for several values of t but has the advantage of being analytic on the whole domain. We
refer to Mayerhofer (2019) for more details for finite-dimensional Wishart distributions.
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Remark 4.2. Depending on the smoothness of the kernel, other quadrature rules might
be more efficient for the choice of the discretization of the operator and the approxima-
tion of the Fredholm determinant based on the so-called Nyström method, see for instance
Bornemann (2009, 2010); Corlay (2010); Kang et al. (2003).

Remark 4.3. For the case u = 0 and κ = 0, the previous approximation formulas agree
with the ones derived in (Abi Jaber, 2019a, Section 2.3) where a numerical illustration for
the integrated squared fractional Brownian motion is provided.

4.2 Option pricing in the fractional Stein–Stein model

In this section, we illustrate the applicability of our results on the following fractional
Stein–Stein model based on the Riemann–Liouville fractional Brownian motion with the
Volterra convolution kernel K(t, s) = 1s<t(t− s)H−1/2/Γ(H + 1/2):

dSt = StXtdBt, S0 > 0,

Xt = g0(t) +
κ

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2Xsds+

ν

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs,

with B = ρW +
√

1− ρ2W⊥, for ρ ∈ [−1, 1], κ, ν ∈ R and a Hurst index H ∈ (0, 1). For
illustration purposes we will consider that the input curve g0, which can be used in general
to fit at-the-money curves observed in the market, has the following parametric form7

g0(t) = X0 +
1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2θds = X0 + θ

tH+1/2

Γ(H + 1/2)(H + 1/2)
. (4.4)

Remark 4.4. It would have also been possible to take instead of the fractional Riemman–
Liouville Brownian motion the true fractional Brownian motion by considering

Xt = g0(t) +
ν

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2

2F1

(
H − 1/2, 1/2−H;H + 1/2, 1− t

s

)
dWs,

where 2F1 is the Gaussian hypergeometric function.

Taking H < 1/2 allows one to reproduce the stylized facts observed in the market as
in Figure 1. Indeed, the simulated sample paths of the instantaneous variance process X2

with H = 0.1 in Figure 2 has the same regularity as the realized variance of the S&P in
Figure 1-(a). In the case H < 1/2, we refer to the model as the rough Stein–Stein model.

7In conventional Markovian stochastic volatility models, the input curve g0 is usually in the parametric
form (4.4). However, if one is interested in a practical implementation, then more general forms of g0
(non-parametric) would allow more flexibility (by making θ time dependent for instance). The advantage
is that g0 can be estimated from the market to match certain term structures today (e.g. term structure
of forward variance, etc. . . ). For illustration purposes here, and since a comparison with the standard
Stein–Stein model is given, we restrict to such parametric forms of g0.
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Figure 2: One simulated sample path of the stock price S and the instantaneous variance
process X2 in the rough Stein–Stein model with parameters: X0 = 0, 1, κ = 0, θ = 0.01,
ν = 0.02, ρ = −0.7 and H = 0.1.

We now move to pricing. The expression (1.7) for the joint characteristic function

allows one to recover the joint density pT (x, y) of
(

logST ,
∫ T

0 X2
sds
)

by Fourier inversion:

pT (x, y) =
1

2π

∫
R2

e−i(z1x+z2y)E
[
exp

(
iz1 logST + iz2

∫ T

0
X2
sds

)]
dz1dz2,

but also to price derivatives on the stock price and the integrated variance by Fourier in-
version techniques, see Carr and Madan (1999); Fang and Oosterlee (2009); Lewis (2001)
among many others. In the sequel we will make use of the cosine method of Fang and
Oosterlee (2009) to price European call options on the stock S combined with our approx-
imation formulae of Sections 4.1. We start by observing that the kernel Σ0 is given in the
following closed form

Σ0(s, u) =
ν2

Γ(H + 1/2)2

∫ s∧u

0
(s− z)H−1/2(u− z)H−1/2dz

=
ν2

Γ(α)Γ(1 + α)

sα

u1−α 2F1

(
1, 1− α; 1 + α;

s

u

)
, s ≤ u,

where α = H + 1/2 and 2F1 is the Gaussian hypergeometric function, see for instance
Malyarenko (2012, page 71).8 Fix n ∈ N and a given partition 0 = t0 < t1 < . . . < tn = T .

8Note that in the case of Remark 4.4, the expression for the covariance function simplifies to Σ0(s, u) =
ν2

2
(s2H + u2H − |s− u|2H).
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It follows that the n× n matrices (4.1)-(4.2) can be computed in closed form:

Kn
ij = 1j≤i−1

1

Γ(1 + α)
[(ti−1 − tj−1)α − (ti−1 − tj)α] , 1 ≤ i, j ≤ n,

Σn
ij =

ν2

Γ(α)Γ(1 + α)

ti−1
α

t1−αj−1

2F1

(
1, 1− α; 1 + α;

ti−1

tj−1

)
, Σn

ji = Σn
ij , 1 ≤ i ≤ j ≤ n,

with the convention that 0/0 = 0. We note that Kn is lower triangular with zeros on the
diagonal and that the symmetric matrix Σn has zeros on its first row and first column.
The final ingredient to compute (4.3) is the vector gn whose elements are given by:

gin = g0(ti−1) = X0 + θ
ti−1

α

Γ(1 + α)
, 1 ≤ i ≤ n.

As a sanity check, we visualize on Figure 3 the convergence of the approximation
methods on the implied volatility for H = 0.2 and H = 0.5 with the uniform partition
ti = iT/n. The benchmark is computed for H = 0.5 via the cosine method with the closed
form expressions for the characteristic function of the conventional Stein–Stein model,
see Lord and Kahl (2006); and for H = 0.2 using Monte Carlo simulation. The smaller
the maturity the faster the convergence. Other discretization rules might turn out to be
more efficient and would require less points to achieve the same accuracy, which makes
the implementation even faster, recall Remark 4.2. The main challenge for applying such
methods is the singularity of the kernel at s = t when H < 1/2 and is left for future
research.
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Figure 3: Convergence of the implied volatility slices for short (T = 0.05 year) and long
maturities (T = 1 year) of the operator discretization of Section 4.1 towards: (i) the explicit
solution of the conventional Stein–Stein model (H = 0.5 upper graphs); (ii) the 95% Monte-
Carlo confidence intervals (H = 0.2 lower graphs). The parameters are X0 = θ = 0.1,
κ = 0, ν = 0.25 and ρ = −0.7.

Going back to real market data, we calibrate the fractional Stein–Stein model to

(i) the at-the-money skew of Figure 1-(b). Keeping the parameters X0 = 0.44, θ = 0.3,
κ = 0 fixed, the calibrated parameters are given by

ν̂ = 0.5231458, ρ̂ = −0.9436174 and Ĥ = 0.2234273. (4.5)

This power-law behaviour of the at-the-money skew observed on the market is per-
fectly captured by the fractional Stein–Stein model as illustrated on Figure 4 with
only three parameters.
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(ii) the implied volatility surface of the S&P accross several maturities for in Figure 5.

Both calibration lead to Ĥ < 0.5 indicating that the rough regime of the fractional Stein–
Stein model is coherent with the observations on the market.
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Figure 4: Term structure of the at-the-money skew for the S&P index on June 20, 2018 (red
dots) and for the rough Stein–Stein model with calibrated parameters (4.5) (blue circles
with dashed line).

Figure 5: The implied volatility surface of the S&P index (red) and the calibrated fractional
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Stein–Stein model (blue) with parameters: X̂0 = 0.113, θ̂ = −0.044, κ̂ = −8.9e − 5, ν̂ =
0.176, ρ̂ = −0.704, and Ĥ = 0.279.

A Trace, determinants and resolvents

A.1 Trace and determinants

In this section we recall classical results on operator theory in Hilbert spaces regarding
mainly their trace and their determinant. For further details we refer to Gohberg and Krein
(1978); Gohberg et al. (2012); Simon (1977, 2005); Smithies (1958), and also Bornemann
(2009, Section 2 and 3). Let A be a linear compact operator acting on L2([0, T ],C). Then,
the operator A has a countable spectrum9 denoted by sp(A) = (λn(A))n≤N(A), where
N(A) is either a finite integer or infinity. Whenever A is a linear operator induced by a
kernel A ∈ L2([0, T ]2,C), A is a Hilbert–Schmidt operator on L2([0, T ],C) into itself and
is in particular compact.

The trace and the determinant are two important functionals on the space of compact
operators. Such quantities are defined for operators of trace class. A compact operator A
is said to be of trace class if the quantity

TrA =
∑
n≥1

〈Avn, vn〉 (A.1)

is finite for a given orthonormal basis (vn)n≥1. It can be shown that the quantity on the
right hand side of (A.1) is independent of the choice of the orthonormal basis and will be
called the trace of the operator A. Furthermore, Lidskii’s theorem (Simon, 2005, Theorem
3.7) ensures that

TrA =

N(A)∑
n=1

λn(A).

Remark A.1. The product of two Hilbert-Schmidt operators K and L is of trace class. If
in addition, both K and L are integral operators on L2([0, T ]) induced by K and L, then

Tr(KL) =

∫ T

0
(K ? L)(s, s)ds, (A.2)

see Brislawn (1988, Proposition 3).

Furthermore, the equivalence∏
n≥1

(1 + |λn|) <∞⇔
∑
n≥1

|λn| <∞,

9We recall that the spectrum sp(A) is defined as the set of points λ ∈ C for which there does not exist
a bounded inverse operator (λid−A)−1.
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allows one to define a determinant functional for a trace class operator A by

det(id + zA) =

N(A)∏
n=1

(1 + zλn(A)),

for all z ∈ C. If in addition A is an integral operator induced by a continuous kernel A,
then one can show that

det(id + zA) =
∑
n≥0

zn

n!

∫ T

0
. . .

∫ T

0
det [(A(si, sj))1≤i,j≤n] ds1 . . . dsn. (A.3)

The determinant (A.3) is named after Fredholm (1903) who defined it for the first time for
integral operators with continuous kernels.

A.2 Resolvents

For a kernel K ∈ L2([0, T ]2,C), we define its resolvent RT ∈ L2([0, T ]2,C) by the unique
solution to

RT = K +K ? RT , K ? RT = RT ? K. (A.4)

In terms of integral operators, this translates into

RT = K + KRT , KRT = RTK. (A.5)

In particular, if K admits a resolvent, (id−K) is invertible and

(id−K)−1 = id + RT . (A.6)

Lemma A.2. Any K as in Definition 3.1 admits a resolvent kernel RT which is again a
Volterra kernel and satisfies (3.1).

Proof. It follows from (3.1) that K is a Volterra kernel of continuous and bounded type in
the terminology of Gripenberg et al. (1990, Definitions 9.5.1 and 9.5.2). But since, we are
considering kernels on the compact set [0, T ], then every kernel of bounded and continuous
type is of bounded and uniformly continuous type, see Gripenberg et al. (1990, p.243,
paragraph 1). An application of Gripenberg et al. (1990, Theorem 9.5.5-(ii)), yields that
K admits a resolvent kernel RT which is again a Volterra kernel of bounded and continuous
type. In particular,

|RT |L1 := sup
t≤T

∫ T

0
|RT (t, s)|ds <∞.
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It remains to prove that RT inherits condition (3.1) from K using the resolvent equation
(A.4). We first show that ∫ T

0

∫ T

0
|RT (t, s)|2dtds <∞. (A.7)

An application of Jensen’s inequality on the normalized measure |RT (t, z)|dz/
∫ T

0 |RT (t, z′)|dz′
yields∫ T

0

∫ T

0
|(RT ? K)(t, s)|2dtds ≤ |RT |L1 sup

r≤T

∫ T

0
|K(r, s)|2ds

∫ T

0

∫ T

0
|RT (t, z)|dtdz <∞.

Combined with the resolvent equation (A.4) and the first part of (3.1), we obtain (A.7).
Using (A.7) and the Cauchy-Schwarz inequality we now get∫ T

0
|(K ? RT )(t, u)|2du ≤ sup

t′≤T

∫ T

0
|K(t′, z)|2dz

∫ T

0

∫ T

0
|RT (u, z)|2dudz <∞, t ≤ T,

which combined with (3.1) and (A.7) gives

sup
t≤T

∫ T

0
|RT (t, s)|2ds <∞,

which shows that RT satisfies the first condition in (3.1). Finally, another application of
the Cauchy-Schwarz inequality, for all t, h ≥ 0, shows that∫ T

0
|(K ? RT )(t+ h, s)− (K ? RT )(t, s)|2ds ≤

∫ T

0

∫ T

0
|RT (u′, s)|2du′ds

∫ T

0
|K(t+ h, u)−K(t, u)|2du

where the left hand side goes to 0 as h→ 0 from the second part of (3.1). Combined with
the resolvent equation (A.4), we can deduce that

lim
h→0

∫ T

0
|RT (t+ h, u)−RT (t, u)|2du = 0,

which yields the second condition in (3.1) for RT .

Using the resolvent we can provide the explicit solution to the system (1.5)–(1.6).

Theorem A.3. Fix T > 0, g0 ∈ L2([0, T ],R) and a kernel K as in Definition 3.1. Then,
there exists a unique progressively measurable strong solution (X,S) to (1.5)–(1.6) on [0, T ]
given by

Xt = g0(t) +

∫ t

0
RκT (t, s)g0(s)ds+

1

κ

∫ t

0
RκT (t, s)νdWs, (A.8)

St = S0 exp

(
−1

2

∫ t

0
X2
sds+

∫ t

0
XsdBs

)
, (A.9)
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where RκT is the resolvent kernel of κK with the convention that RκT /κ = K when κ = 0.
In particular, (3.2) holds.

Proof. If κ = 0, the existence is trivial. Fix κ 6= 0. An application of Lemma A.2 on the
kernel κK yields the existence of a resolvent RκT satisfying (3.1). We define X as in (A.8)
and we write it in compact form:

X = (id + Rκ
T )(g0) +

1

κ
Rκ
T (νdW ),

where we used the notation Rκ
T (νdW )(t) =

∫ t
0 R

κ
T (t, s)νdWs := Nt. We first observe that

X admits a progressively measurable modification. Indeed, the stochastic integral N is
adapted as an Itô integral and it is mean-square continuous, i.e. E[|Nt − Ns|2] → 0 as
s → t by virtue of Itô’s isometry and the fact that RκT satisfies (3.1) (see Lemma A.2).
Therefore, N admits a progressively measurable modification. We now show that X solves
(1.6). Using (A.6), composing both sides by (id + Rκ

T )−1 = (id − κK) and invoking
stochastic Fubini’s theorem yield

(id− κK)(X) = g0 + (id− κK)
1

κ
Rκ
T (νdW )

= g0 + K(νdW ),

where we used the resolvent equation (A.5) for the last equality. This shows that

Xt = g0(t) + κ(K)(X)(t) + K(νdW )(t) = g0(t) + κ

∫ t

0
K(t, s)Xsds+

∫ t

0
K(t, s)νdWs,

yielding that X is a strong solution of (1.6). Furthermore, (3.2) follows from the fact

that sups≤T
∫ T

0 |R
κ
T (s, u)|2du <∞ combined with the Burkholder-Davis-Gundy inequality.

One can therefore define S as in (A.9) and it is immediate that S solves (1.5) by an
application of Itô’s formula. The uniqueness statement follows by reiterating the same
argument backwards: by showing that any solution X to (1.6) is of the form (A.8) using
the resolvent equation.

We now justify in the three following lemmas that the quantities (id − bK) and(
id− 2aΣ̃t

)
appearing in the definition of t 7→ Ψt in (1.9) are invertible so that Ψt is

well-defined for any kernel K as in Definition 3.1.

Lemma A.4. Let K satisfy (3.1) and L ∈ L2([0, T ]2,R). Then, K ? L satisfies (3.1).
Furthemore, if L satisfies (3.1), then, (s, u) 7→ (K ? L∗)(s, u) is continuous.

Proof. An application of the Cauchy-Schwarz inequality yields the first part. The second
part follows along the same lines as in the proof of Abi Jaber (2019a, Lemma 3.2).
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Lemma A.5. Fix b ∈ C and a kernel K as in Definition 3.1. Then, (id−bK) is invertible.
Furthermore, for all t ≤ T , Σ̃t given by (1.11) is an integral operator of trace class with
continuous kernel and can be re-written in the form

Σ̃t = (id− bKt)
−1Σt(id− bK∗t )−1 (A.10)

where Kt is the integral operator induced by the kernel Kt(s, u) = K(s, u)1u≥t, for s, u ≤ T .

Proof. Lemma A.2 yields the existence of the resolvent RbT of bK which is again a Volterra
kernel of continuous and bounded type. Whence, (A.6) yields that (id− bK) is invertible
with an inverse given by (id + Rb

T ). To prove (A.10), we fix t ≤ T and we observe that
since Σt(s, u) = 0 whenever s ∧ u ≤ t, we have

(RbT ? Σt)(s, u) =

∫ T

t
RbT (s, z)Σt(z, u)dz = (Rbt,T ? Σt)(s, u),

where we defined the kernel Rbt,T (s, u) = RbT (s, u)1u≥t. Similarly, Σt ? (RbT )∗ = Σt ? (Rbt,T )∗.

Using the resolvent equation (A.4) of RbT , it readily follows that Rbt,T is the resolvent of

bKt so that (id− bKt)
−1 = (id + Rb

t,T ). Combining all of the above leads to

Σ̃t = (id− bK)−1Σt(id− bK∗)−1

= (id + Rb
T )Σt(id + Rb

T )∗

= Σt + Rb
TΣt + Σt(R

b
T )∗ + Rb

TΣt(R
b
T )∗

= Σt + Rb
t,TΣt + Σt(R

b
t,T )∗ + Rb

t,TΣt(R
b
t,T )∗ (A.11)

= (id + Rb
t,T )Σt(id + Rb

t,T )∗

= (id− bKt)
−1Σt(id + bK∗t )−1,

which proves (A.10). Furthermore, it can be readily deduced from (A.11) that Σ̃t is an
integral operator of trace class with continuous kernel: the trace class property follows from
the fact that the product of two Hilbert-Schmidt operators is of trace class; the continuity
of the kernel follows from the fact that both K and RbT satisfy (3.1), recall Lemma A.2.

Lemma A.6. Fix a, b ∈ C such that <(a) ≤ −=(b)2

2ν2
. Let t ≤ T and K be a kernel as

in Definition 3.1. Then, (id − 2Σ̃ta) is invertible and Ψt given by (1.9) is well-defined.
Furthermore, if =(a) = =(b) = 0 then, Ψt is a symmetric nonpositive operator in the sense
of Definition 2.1.

Proof. • Using Lemma A.5, we write

(id− 2aΣ̃t) = (id− bKt)
−1At(id− bK∗t )−1
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with

At = (id− bKt) (id− bK∗t )− 2aΣt

= id− bKt − bK∗t + b2KtK
∗
t − 2aΣt.

It suffices to prove that At is invertible, that is 0 /∈ sp(At). Taking real parts and observing
that Σt = ν2KtK

∗
t yields

<(At) = id−<(b)Kt −<(b)K∗t + <(b)2KtK
∗
t −=(b)2KtK

∗
t − 2<(a)Σt

= (id−<(b)Kt) (id−<(b)Kt)
∗ −

(
2<(a) +

=(b)2

ν2

)
Σt

= I + II

The operator I is symmetric nonnegative and invertible so that sp(I) ⊂ (0,∞). Further-

more, since
(

2<(a) + =(b)2

ν2

)
≤ 0 by assumption and Σt is symmetric nonnegative we have

sp(II) ∈ [0,∞). It follows that sp(<(At)) ∈ (0,∞), showing that 0 /∈ sp(At) and that At

is invertible. Whence, (id − 2aΣ̃t) is invertible. Combined with Lemma A.5, we obtain
that Ψt is well-defined.
• Assume that =(a) = =(b) = 0. Σ̃t defined as in (1.11) is clearly a symmetric nonnegative
operator with a continuous kernel on [0, T ]2, recall Lemma A.4, an application of Mer-
cer’s theorem (Shorack and Wellner, 2009, Theorem 1, p.208) yields the existence of an
orthonormal basis (en)n≥1 of L2([0, T ],R) and nonnegative eigenvalues (λn)n≥1 such that

Σ̃t =
∑
n≥1

λn〈en, · 〉L2en.

Whence,

id− 2aΣ̃t =
∑
n≥1

(1− 2aλn)〈en, · 〉L2en.

Since a ≤ 0, (1 − 2aλn) ≥ 1 > 0, for each n ≥ 1, so that the inverse of (id − 2aΣ̃t) is a
symmetric nonnegative operator given by(

id− 2aΣ̃t

)−1
=
∑
n≥1

1

1− 2aλn
〈en, · 〉L2en.

Finally, Ψt is clearly symmetric and for any f ∈ L2([0, T ],R)

〈f,Ψtf〉L2 = a〈f̃ ,
(

id− 2aΣ̃t

)−1
f̃〉L2 ≤ 0,

with f̃ = (id− bK)−1f . This shows that Ψt is nonpositive.
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B Proof of Theorem 3.3

This section is dedicated to the proof of Theorem 3.3. We fix T > 0, a Volterra kernel K
as in Definition 3.1 satisfying (3.3) and u,w ∈ C, such that 0 ≤ <(u) ≤ 1 and <(w) ≤ 0.
It follows that a, b defined by (1.10) satisfy

<(a) +
=(b)2

2ν2
= <(w) +

1

2
(<(u)2 −<(u)) +

1

2
(ρ2 − 1)=(u)2 ≤ 0,

so that an application of Lemma A.6 yields that Ψt is well-defined.
We now collect from Abi Jaber et al. (2021, Lemma 5.8) further properties of t 7→ Ψt.

In particular, its link with an operator Riccati equation. We recall that t 7→ Ψt is said to
be strongly differentiable at time t ≥ 0, if there exists a bounded linear operator Ψ̇t from
L2 ([0, T ],C) into itself such that

lim
h→0

1

h
‖Ψt+h −Ψt − hΨ̇t‖op = 0, where ‖G‖op = sup

f∈L2([0,T ],C)

‖Gf‖L2

‖f‖L2

.

Lemma B.1. Fix a kernel K as in Definition 3.1 satisfying (3.3). Then, for each t ≤ T ,
Ψt given by (1.9) is a bounded linear operator from L2 ([0, T ],R) into itself. Furthermore,

(i) Ψ̄t := (−aid+Ψt) is an integral operator induced by a symmetric kernel ψ̄t(s, u) such
that

sup
t≤T

∫
[0,T ]2

|ψ̄t(s, u)|2dsdu <∞.

(ii) For any f ∈ L2 ([0, T ],R),

(Ψtf1t)(t) =(aid + bK∗Ψt)(f1t)(t),

where 1t : s 7→ 1t≤s.

(iii) t 7→ Ψt is strongly differentiable and satisfies the operator Riccati equation

Ψ̇t = 2ΨtΣ̇tΨt, t ∈ [0, T ] (B.1)

ΨT = a (id− bK∗)−1 (id− bK)−1

where Σ̇t is the strong derivative of t 7→ Σt induced by the kernel

Σ̇t(s, u) = −ν2K(s, t)K(u, t), a.e.

Proof. The proof follows from a straighforward adaptation of the proof of Abi Jaber et al.
(2021, Lemma 5.6).

31



Using the previous lemma and observing that the adjusted conditional mean given in
(1.8) has the following dynamics

gt(s) = 1t≤s

(
g0(s) +

∫ t

0
K(s, u)κXudu+

∫ t

0
K(s, u)νdWu

)
we derive in the next lemma the dynamics of t 7→ 〈gt,Ψtgt〉L2 .

Lemma B.2. The dynamics of t 7→ 〈gt,Ψtgt〉L2 are given by

d〈gt,Ψtgt〉L2 =
(
〈gt, Ψ̇tgt〉L2 − aX2

t − 2uρνXt (K∗Ψt) (gt)(t)− Tr
(
ΨtΣ̇t

))
dt

+ 2ν ((K∗Ψt) gt) (t)dWt, dt×Q− a.e (B.2)

Proof. We first set

ḡt(s) = g0(s) +

∫ t

0
K(s, u)κXudu+

∫ t

0
K(s, u)νdWu, (B.3)

so that using Lemma B.1-(i), we can write

〈gt,Ψtgt〉L2 =

∫ T

t

(
aḡt(s)

2ds+ ḡt(s)(Ψ̄tgt)(s)
)
ds.

The Leibniz rule yields

d〈gt,Ψtgt〉L2 =
(
−aḡt(t)2 − ḡt(t)(Ψ̄tgt)(t)

)
dt

+

∫ T

t
d
(
aḡt(s)

2 + ḡt(s)(Ψ̄tgt)(s)
)
ds, dt×Q a.e. (B.4)

• We first compute the dynamics of t 7→ aḡt(s)
2ds + ḡt(s)(Ψ̄tgt)(s). We fix s ∈ [0, T ]. It

follows from (B.3), that

dḡt(s) = K(s, t)κXtdt+K(s, t)νdWt, dt×Q− a.e.

An application of Itô’s lemma on the square yields

dḡt(s)
2 =

(
ν2K(s, t)2 + 2ḡt(s)K(s, t)κXt

)
dt+ 2ḡt(s)K(s, t)νdWt, dt×Q− a.e.

Furthermore, we write

(Ψ̄tgt)(s) =

∫ T

t
ψ̄t(s, u)ḡt(u)du
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so that an application of the Leibniz rule combined with the fact that ḡt(t) = Xt for almost
every (t, ω) and Lemma B.1-(iii) yields that t 7→ (Ψ̄tgt)(s) is a semimartingale on [0, s)
with the following dynamics

d(Ψ̄tgt)(s) =

(
−ψ̄t(s, t)Xt +

∫ T

t

˙̄ψt(s, u)ḡt(u)du+

∫ T

t
ψ̄t(s, u)K(u, t)κXudu

)
dt

+

∫ T

t
ψ̄t(s, u)K(u, t)νdudWt

=
(
−Xtψ̄t(s, t) + (Ψ̇tgt)(s) +Xt(Ψ̄tK(·, t)κ)(s)

)
dt

+ (Ψ̄tK(·, t)ν)(s)dWt, dt×Q− a.e.

where we used that ˙̄Ψt = Ψ̇t and that K(u, t) = 0 for all u ≤ t. Moreover, the quadratic
covariation between t 7→ ḡt(s) and t 7→ (Ψ̄tgt)(s) is given by

d
[
ḡ·(s), (Ψ̄·g·)(s)

]
t

= ν2

∫ T

0
ψ̄t(s, u)K(u, t)K(s, t)dudt

= −
∫ T

0
ψ̄t(s, u)Σ̇t(u, s)dudt

= −
(
Ψ̄tΣ̇t(·, s)

)
(s)dt.

Whence, combining the previous three identities, we get the dynamics of Ut(s) := aḡt(s)
2 +(

ḡt(s)(Ψ̄tgt)(s)
)
:

dUt(s) = adḡt(s)
2 + dḡt(s)(Ψ̄tgt)(s) + ḡt(s)d(Ψ̄tgt)(s) + d

[
ḡ·(s), (Ψ̄·g·)(s)

]
t

= aν2K(s, t)2dt+ 2aḡt(s)K(s, t)κXtdt

+ XtκK(s, t)(Ψ̄tgt)(s)dt+ ḡt(s)(Ψ̇tgt)(s)dt

− ḡt(s)ψ̄t(s, t)Xtdt+ ḡt(s)Xt(Ψ̄tK(·, t)κ)(s)dt

−
(
Ψ̄tΣ̇t(·, s)

)
(s)dt

+
(
2aḡt(s)K(s, t)ν + νK(s, t)(Ψ̄tgt)(s) + ḡt(s)(Ψ̄tK(·, t)ν)(s)

)
dWt

=
[
I(s) + II(s) + III(s) + IV(s) + V(s) + VI(s) + VII(s)

]
dt

+ (VIII(s) + IX(s) + X(s)) dWt, dt×Q− a.e. (B.5)

• We now integrate in s to obtain the right hand side in (B.4). We let N = {(t, ω) : ∃s ∈
[0, T ] such that (B.5) does not hold}. Then, N is a null set and we fix (t, ω) ∈ [0, T ]×Ω\N .
In the sequel, all the equalities are written for this particular ω. First, using that Σ̇t(s, s) =
−ν2K(s, t)2 and recalling that

Ψ = aid + Ψ̄ (B.6)

33



we obtain that10 ∫ T

t
(I(s) + VII(s)) ds = −Tr

(
ΨtΣ̇t

)
.

Combining (B.6) with Lemma B.1–(ii) and the fact that Ψ̄∗ = Ψ̄ we obtain that∫ T

t

[
II(s) + III(s) + VI(s)

]
ds = 2κXt

∫ T

0
K(s, t)(Ψtgt)(s)ds = 2κXt(K

∗Ψtgt)(t).

On the other hand, we have∫ T

0
IV(s)ds = 〈gt, Ψ̇tgt〉L2 ,

∫ T

0
V(s)ds = −Xt(Ψ̄tgt)(t),∫ T

0

[
VIII(s) + IX(s) + X(s)

]
ds = 2ν (K∗Ψt) (gt)(t)dWt.

Therefore, summing the above, plugging in (B.4), using Lemma B.1-(ii) and recalling (B.6)
and that b = κ+ uρν and ḡt(t) = Xt yield

d〈gt,Ψtgt〉L2 =
(
−aX2

t + 2κXt(K
∗Ψtgt)(t)− 2Xt(Ψ̄tgt)(t)

)
dt

+
(
〈gt, Ψ̇tgt〉L2 − Tr

(
ΨtΣ̇t

))
dt+ 2ν (K∗Ψt) (gt)(t)dWt

=
(
−aX2

t − 2uρνXt (K∗Ψt) (gt)(t)− Tr
(
ΨtΣ̇t

)
+ 〈gt, Ψ̇tgt〉L2

)
dt

+ 2ν (K∗Ψt) (gt)(t)dWt

leading to the claimed dynamics (B.2).

We can now complete the proof of Theorem 3.3. We recall that φ given in (3.5) solves

φ̇t = Tr(ΨtΣ̇t). (B.7)

Proof of Theorem 3.3. It suffices to prove that (3.4) holds for all 0 ≤ u ≤ 1 and w ≤ 0 to
obtain the claimed expression by analytic continuation. Indeed, the left hand side in (3.4)
is analytic in (u,w) in an open region (<(u),<(w)) ∈ (u−, u+)×(w−, w+) by general results
on the analycity of characteristic functions, see Widder (2015, Theorem II.5a). The right
hand side is also analytic in (u,w) since resolvents are analytic: they are given by power
series. Therefore, if (3.4) holds for all 0 ≤ u ≤ 1 and w ≤ 0, then by analytic continuation

10The operator ΨtΣ̇t = aΣ̇t + Ψ̄tΣ̇t is of trace class: (i) Σ̇t is of trace class since it can be written
as product of two Hilbert-Schmidt integral operators Σ̇t = K̃tK̃t

∗
with K̃t(s, z) = K(s, t)/

√
T , so that

(A.2) yields Tr(Σ̇t) =
∫ T
0

Σ̇t(s, s)ds; (ii) Ψ̄tΣ̇t is of trace class as product of two Hilbert-Schmidt integral

operators so that (A.2) yields Tr(Ψ̄tΣ̇t) =
∫ T
0

∫ T
0
ψ̄t(s, z)Σ̇t(z, s)dzds.
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(3.4) remains valid on {(u,w) ∈ C2 : 0 ≤ <(u) ≤ 1 and <(v) ≤ 0}.
Fix u ∈ [0, 1], w ∈ R−. Set

Ut = u logSt + w

∫ t

0
X2
sds+ φt + 〈gt,Ψtgt〉L2 , (B.8)

and Mt = exp(Ut). It suffices to prove that M is a martingale. Indeed, if this is the case,
then observing that the terminal value of M is

MT = u logST + w

∫ T

0
X2
sds

and writing the martingale property E[MT |Ft] = Mt, for t ≤ T , yields (3.4).
Step 1. We prove that M is a local martingale by expliciting its dynamics. We first observe
that

dMt =Mt

(
dUt +

1

2
d〈U〉t

)
. (B.9)

Using (1.5), we have

d logSt = −1

2
X2
t dt+ ρXtdWt +

√
1− ρ2XtdW

⊥
t .

Combined with the dynamics (B.2) and the fact that a = w + 1
2(u2 − u), we get that

dUt =
(
〈gt, Ψ̇tgt〉L2 −

u2

2
X2
t − 2uρνXt (K∗Ψt) (gt)(t) + φ̇t − Tr

(
ΨtΣ̇t

))
dt

+ (ρuXt + 2ν (K∗Ψt) (gt)(t)) dWt + u
√

1− ρ2XtdW
⊥
t ,

so that

d〈U〉t =
(
u2X2

t + 4ρuνXt (K∗Ψt) (gt)(t) + 4ν2 ((K∗Ψt) (gt)(t))
2
)
dt.

Observing that
4ν2 ((K∗Ψt) (gt)(t))

2 = −4〈gt,ΨtΣ̇tΨtgt〉L2 ,

we get that the drift part in (B.9) is given by

Mt

(
〈gt,

(
Ψ̇t − 2ΨtΣ̇tΨt

)
gt〉L2 + φ̇t − Tr

(
ΨtΣ̇t

))
= 0,

by virtue of the Riccati equations (B.1) and (B.7). This shows that M is a local martingale.
Step 2. It remains to argue that the local martingale M is a true martingale. To this end,
we fix t ≤ T . An application of the second part of Lemma A.6 yields that Ψt is a symmetric
nonpositive operator so that, recall (B.7),

〈gt,Ψtgt〉L2 ≤ 0 and φt = −
∫ T

t
Tr(ΨsΣ̇s)ds ≤ 0.
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Whence, since w ≤ 0 and 0 ≤ u ≤ 1, it follows from (B.8) that

Ut ≤ u logSt

= u logS0 −
u

2

∫ t

0
X2
sds+ u

∫ t

0
XsdBs

≤ u logS0 −
u2

2

∫ t

0
X2
sds+ u

∫ t

0
XsdBs

Therefore,

|Mt| = exp(Ut) ≤ exp(u logSt) ≤ Nt

with Nt = Su0 exp
(
−u2

2

∫ t
0 X

2
sds+ u

∫ t
0 XsdBs

)
which can be shown to be a true martingale

by a similar argument to that used in Abi Jaber et al. (2019, Lemma 7.3). Finally, we
have showed that the local martingale M is bounded by a martingale, which gives that M
is also a true martingale. The proof is complete.
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Schöbel, R. and Zhu, J. (1999). Stochastic volatility with an Ornstein–Uhlenbeck process: an
extension. Review of Finance, 3(1):23–46.

Shorack, G. R. and Wellner, J. A. (2009). Empirical processes with applications to statistics. SIAM.

Simon, B. (1977). Notes on infinite determinants of Hilbert space operators. Advances in Mathe-
matics, 24(3):244–273.

Simon, B. (2005). Trace ideals and their applications. Number 120. American Mathematical Soc.

Smithies, F. (1958). Integral equations.

Sottinen, T. and Viitasaari, L. (2016). Stochastic analysis of Gaussian processes via Fredholm
representation. International journal of stochastic analysis, 2016.

Stein, E. M. and Stein, J. C. (1991). Stock price distributions with stochastic volatility: an analytic
approach. The review of financial studies, 4(4):727–752.

39



Veraar, M. (2012). The stochastic Fubini theorem revisited. Stochastics An International Journal
of Probability and Stochastic Processes, 84(4):543–551.

Widder, D. V. (2015). Laplace transform. Princeton university press.

40


	Introduction
	Symmetric kernels: an elementary static approach
	Volterra kernels: a dynamical approach
	Numerical illustration
	A straightforward approximation by closed form expressions
	Option pricing in the fractional Stein–Stein model

	Trace, determinants and resolvents
	Trace and determinants
	Resolvents

	Proof of Theorem 3.3
	References

