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The characteristic function of Gaussian stochastic volatility

models: an analytic expression

Eduardo Abi Jaber∗

September 22, 2020

Abstract

Stochastic volatility models based on Gaussian processes, like fractional Brownian
motion, are able to reproduce important stylized facts of financial markets such as rich
autocorrelation structures, persistence and roughness of sample paths. This is made
possible by virtue of the flexibility introduced in the choice of the covariance function
of the Gaussian process. The price to pay is that, in general, such models are no longer
Markovian nor semimartingales, which limits their practical use. We derive, in two
different ways, an explicit analytic expression for the joint characteristic function of
the log-price and its integrated variance in general Gaussian stochastic volatility mod-
els. Such analytic expression can be approximated by closed form matrix expressions
stemming from Wishart distributions. This opens the door to fast approximation of
the joint density and pricing of derivatives on both the stock and its realized variance
using Fourier inversion techniques. In the context of rough volatility modeling, our
results apply to the (rough) fractional Stein–Stein model and provide the first analytic
formulae for option pricing known to date, generalizing that of Stein–Stein, Schöbel–
Zhu and a special case of Heston.

Keywords: Gaussian processes, Volterra processes, non-Markovian Stein–Stein/Schöbel-
Zhu models, rough volatility.

1 Introduction

In the realm of risk management in mathematical finance, academics and practitioners have
been always striving for explicit solutions to option prices and hedging strategies in their
models. Undoubtedly, finding explicit expressions to a theoretical problem can be highly
satisfying in itself; it also has many practical advantages such as: reducing computational
time (compared to brute force Monte-Carlo simulations for instance); achieving a higher
precision for option prices and hedging strategies; providing a better understanding of the

∗Université Paris 1 Panthéon-Sorbonne, Centre d’Economie de la Sorbonne, 106, Boulevard de l’Hôpital,
75013 Paris, eduardo.abi-jaber@univ-paris1.fr.
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role of the parameters of the model and the sensitivities of the prices and strategies with
respect to them. As one would expect, explicit expressions usually come at the expense
of sacrificing the flexibility and the accuracy of the model. In a nutshell, the aim of the
present paper is to show that analytic expressions for option prices can be found in a highly
flexible class of non-Markovian stochastic volatility models.

From Black-Scholes to rough volatility

In their seminal paper, Black and Scholes (1973) derived closed form solutions for the
prices of European call and put options in the geometric Brownian motion model where
the dynamics of the stock price S are given by:

dSt = StσdBt, S0 > 0, (1.1)

with B a standard Brownian motion and σ the constant instantaneous volatility parameter.
Although revolutionary, the model remains very simple: it drifts away from the reality of
financial markets characterized by non-Gaussian returns, fat tails of stock prices and their
volatilities, asymmetric option prices (i.e. the implied volatility smile and skew). . . see Cont
(2001). Since then a large and growing literature has been developed to refine the Black
and Scholes (1973) model. One notable direction is stochastic volatility modeling where the
constant volatility σ in (1.1) is replaced by a Markovian stochastic process (σt)t≥0. In their
celebrated paper, Stein and Stein (1991) modeled (σt)t≥0 by a mean-reverting Brownian
motion of the form

dσt = κ(θ − σt)dt+ νdWt, (1.2)

where W is a standard Brownian motion independent of B. Remarkably, they obtained
closed-form expressions for the characteristic function of the log-price, which allowed them
to recover the density as well as option prices by Fourier inversion of the characteristic
function. Later on the model has been extended by Schöbel and Zhu (1999) to account for
the leverage effect, i.e. an arbitrary correlation between W and B. Similar formulas for the
characteristic function of the log–price to those of Stein–Stein are derived for the non-zero
correlation case.

Prior to the extension by Schöbel and Zhu (1999), Heston (1993) took a slightly different
approach to include the leverage effect by introducing a model deeply rooted in the Stein–
Stein model. Heston observed that the instantenous variance process Vt = σ2

t in the
Stein–Stein model with θ = 0 follows a CIR process thanks to Itô’s formula,1 so that the
Stein–Stein model can be recast in the following form

dSt = St
√
VtdBt,

dVt = (ν2 − 2κVt)dt+ 2ν
√
VtdWt, (1.3)

1squares of Brownian motion constitute the building blocks of squared Bessel processes, see Revuz and
Yor (1999, Chapter XI).
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where B = ρW +
√

1− ρ2W⊥ with ρ ∈ [−1, 1] and W⊥ a Brownian motion independent
of W . Such model remains tractable as it was shown earlier in the context of bond pricing
with uncertain inflation by Cox et al. (1985, Equations (51)-(52)).2 Heston (1993) carried
on by deriving closed form expressions for the characteristic function of the log–price, which
made his model one of the most, if not the most, popular model among practitioners. As
one would expect, the expressions of Heston (1993) and Schöbel and Zhu (1999) share a
lot of similarities and they perfectly agree when θ = 0 in (1.2), see Lord and Kahl (2006,
equation (44)). Such analytical tractability motivated the development of the theory of
finite-dimensional Markovian affine processes, see Duffie et al. (2003).

Unfortunately, Markovian stochastic volatility models, such as the Heston and the
Stein–Stein models, are not flexible enough: they generate an auto-correlation structure
which is too simplistic compared to empirical observations. Indeed, several empirical stud-
ies have documented the persistence in the volatility time series, see Andersen and Boller-
slev (1997); Ding et al. (1993). More recently, Gatheral et al. (2018) and Bennedsen et al.
(2016) show that the sample paths of the realized volatility are rougher than standard
Brownian motion at any realistic time scale as illustrated on Figure 1-(a). From a pricing
perspective, Markovian models fail to reproduce the power-law decay of the at-the-money
skew of option prices as shown on Figure 1-(b), see Alòs et al. (2007); Bayer et al. (2016);
Fukasawa (2011).
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Figure 1: (a) Realized volatility of the S&P with an estimated Hurst index of Ĥ = 0.11.

(b) Term structure of the at-the-money skew of the implied volatility
∂σimplicit(k,T )

∂k

∣∣
k=0

for
the S&P index on June 20, 2018 (red dots) and a power-law fit t → 0.35 × t−0.41. Here
k := ln(K/S0) stands for the log-moneyness and T for the time to maturity.

2The long-term level of the variance ν2 in (1.3) can be replaced by a more general coefficient θ ≥ 0.
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These studies have motivated the need to enhance conventional stochastic volatility
models with richer auto-correlation structures. This has been initiated in Comte and
Renault (1998) by replacing the driving Brownian motion of the volatility process by a
fractional Brownian motion WH :

WH
t = 1

Γ(H+1/2)

∫ t
0 (t− s)H−1/2dWs + 1

Γ(H+1/2)

∫ 0
−∞((t− s)H−1/2 − (−s)H−1/2)dWs

where H ∈ (0, 1) is the Hurst exponent: H > 1/2 corresponds to positively correlated
returns, H < 1/2 to negatively correlated increments and H = 1/2 reduces to the case
of standard Brownian motion. Sample paths of WH are locally Hölder continuous of any
order strictly less than H, thereby less regular than standard Brownian motion. Initially
Comte and Renault (1998) considered the case H > 1/2. However, a smaller Hurst index
H ≈ 0.1 allows to match exactly the regularity of the volatility time series and the exponent
in the power–law decay of the at-the-money skew measured on the market (Figure 1).
Consequently models involving the fractional kernel t 7→ tH−1/2 with H < 1/2 have been
dubbed “rough volatility models” by Gatheral et al. (2018).

The price to pay is that, in general, such models are no longer Markovian nor semi-
martingales, which limits their practical use and make their mathematical analysis quite
challenging. This has initiated a thriving branch of research.3 The need for fast pricing
in such non-Markovian models is therefore, more than ever, crucial. One breakthrough in
that direction was achieved by El Euch and Rosenbaum (2019) who came up with a rough
version of the Heston (1993) model after convolving the dynamics (1.3) with a fractional
kernel to get

Vt = V0 +
1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2

(
(θ − κVs)ds+ ν

√
VsdWs

)
, (1.4)

for H ∈ (0, 1/2). Remarkably, they show that an analogous formula for the characteristic
function of the log price to that of Heston (1993) continue to hold modulo a fractional de-
terministic Riccati equation. From a theoretical perspective, the rough Heston model falls
into the broader class of non-Markovian affine Volterra processes developed in Abi Jaber
et al. (2019); Abi Jaber (2019c), and can be recovered as a projection of infinite dimensional
Markovian affine processes as illustrated in Abi Jaber and El Euch (2019a); Cuchiero and
Teichmann (2020); Gatheral and Keller-Ressel (2019).

Although the rough Heston model can be efficiently implemented (Abi Jaber, 2019b;
Abi Jaber and El Euch, 2019b; Callegaro et al., 2018; Gatheral and Radoičić, 2019), no
closed-form solution for the fractional deterministic Riccati equation and whence for the
characteristic function is known to date, which has to be contrasted with the conventional
Heston (1993) model. One possible explanation could be that, unlike the Markovian case,
squares of fractional Brownian motion have different dynamics than (1.4), so that the
marginals of the process (1.4) are not chi-square distributed, except for the case H = 1/2.

3Refer to https://sites.google.com/site/roughvol/home for references.
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The main objective of the paper is to rely on squares of general Gaussian processes
with arbitrary covariance structures by considering the non-Markovian extension of the
Stein and Stein (1991) and the Schöbel and Zhu (1999) models. We will show that the
underlying Gaussianity makes the problem highly tractable and allows to recover analytic
expressions for the joint Fourier–Laplace transform of the log price and the integrated
variance in general, which would agree with that of Stein–Stein, Schöbel–Zhu and Heston
under the Markovian setting. Such models have been already considered several times
in the context of non-Markovian and rough volatility literature (Cuchiero and Teichmann,
2019; Gulisashvili et al., 2019; Harms and Stefanovits, 2019; Horvath et al., 2019) but there
has been no derivation of the analytic form of the characteristic function. Our methodology
takes a step further the recent derivation in Abi Jaber (2019a) for the Laplace transform
of the integrated variance and that of Abi Jaber et al. (2020) where the Laplace transform
of the forward co-variance curve enters in the context of portfolio optimization.

The Gaussian Stein–Stein model and main results

For T > 0, we will consider the following generalized version of the Stein–Stein model:

dSt = StXtdBt, S0 > 0, (1.5)

Xt = g0(t) +

∫ T

0
K(t, s)κXsds+

∫ T

0
K(t, s)νdWs, (1.6)

with B = ρW +
√

1− ρ2W⊥, ρ ∈ [−1, 1], κ, ν ∈ R, g0 a suitable deterministic input curve,
K : [0, T ]2 → R a measurable kernel and (W,W⊥) a two-dimensional Brownian motion.

Under mild assumptions on its covariance function, every Gaussian process can be writ-
ten in the form (1.6) with κ = 0, see Sottinen and Viitasaari (2016). Such representation
is known as the Fredholm representation. We will be chiefly interested in two classes of
kernels K:

• Symmetric kernels, i.e. K(t, s) = K(s, t) for all s, t ≤ T , for which the integration in
(1.6) goes up to time T , meaning that X is not necessarily adapted to the filtration
generated by W .

• Volterra kernels, i.e. K(t, s) = 0 whenever s ≥ t, for which integration in (1.6) goes
up to time t, which is more in line with standard stochastic volatility modeling. For
instance, the conventional mean reverting Stein-Stein model (1.2) can be recovered by
setting g0(t) = X0−κθt, κ ≤ 0 and by considering the Volterra kernel K(t, s) = 1s<t.
The fractional Brownian motion with a Hurst index H ∈ (0, 1) can be represented
using the Volterra kernel

K(t, s) = 1s<t
(t− s)H−1/2

Γ(H + 1
2)

2F1

(
H − 1

2
;
1

2
−H;H +

1

2
; 1− t

s

)
,
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where 2F1 is the Gauss hypergeometric function; and the Riemman-Liouville frac-
tional Brownian motion corresponds to the case K(t, s) = 1s<t(t − s)H−1/2/Γ(H +
1/2).

For u,w ∈ C with <(u) ∈ [0, 1] and <(w) ≤ 0, we provide the following analytical
expression for the conditional joint Fourier–Laplace transform of the log-price and the
integrated variance:

E
[
exp

(
u log

ST
St

+ w

∫ T

t
X2
sds

) ∣∣∣Ft] =
exp (〈gt,Ψtgt〉L2)

det (Φt)
1/2

, (1.7)

with 〈f, h〉L2 =
∫ T

0 f(s)h(s)ds, det the Fredholm (1903) determinant (see Simon (1977)),
gt the adjusted conditional mean given by

gt(s) = 1t≤sE
[
Xs −

∫ T

t
K(s, r)κXrdr

∣∣∣ Ft] ; (1.8)

and Ψt a linear operator acting on L2 ([0, T ],R) defined by

Ψt = (id− bK)−∗ a
(

id− 2aΣ̃t

)−1
(id− bK)−1 , t ≤ T, (1.9)

where F−∗ := (F−1)∗, id denotes the identity operator, i.e. (idf) = f for all f ∈
L2 ([0, T ],C),

a = w +
1

2
(u2 − u), b = κ+ ρνu, (1.10)

and Σ̃t the adjusted covariance integral operator defined by

Σ̃t = (id− bK)−1Σt(id− bK)−∗, (1.11)

with Σt defined as the integral operator associated with the covariance kernel

Σt(s, u) = ν2

∫ T

t
K(s, z)K(u, z)dz, t ≤ s, u ≤ T, (1.12)

and finally Φ is defined by

Φt =

{
(id− bK)(id− 2aΣ̃t)(id− bK) if K is a symmetric kernel

id− 2aΣ̃t if K is a Volterra kernel
.

At first glance, the expressions for Φ seem to depend on the class of the kernel, but
they actually agree. Indeed, for Volterra kernels, i.e. K(t, s) = 0 for s ≥ t, det(id− bK) =
det(id− bK∗) = 1 so that using the relation (Simon, 1977, Theorem 3.8) det((id +F )(id +
G)) = det(id + F ) det(id + G):

det((id− bK)(id− 2aΣ̃t)(id− bK)∗) = det(id− 2aΣ̃t).

As already mentioned, we prove (1.7) for two classes of kernels:
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• Symmetric nonnegative kernels: we provide an elementary static derivation of
(1.7) for t = 0 and κ = 0, based on the spectral decomposition of K which leads to
the decomposition of the characteristic function as an infinite product of independent
Wishart distributions. The operator Ψ0 appears naturally after a rearrangement of
the terms. The main result is collected in Theorem 2.2.

• Volterra kernels: we adopt a dynamical approach to derive the conditional char-
acteristic function (1.7) via Itô’s formula on the adjusted conditional mean process
(gt(s))t≤s. The main result is stated in Theorem 3.3.

From the numerical perspective, we will show in Section 4.1 that the expression (1.7)
lends itself to approximation by closed form solutions using finite dimensional matrices
after a straightforward discretization of the operators. Alternatively, we provide another
approximation formula by closed form expressions stemming from Wishart characteristic
functions in the form

E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

)]
= lim

n→∞

exp
(
µ>nwn (I2n − 2Rnwn)−1 µn

)
det (I2n − 2Rnwn)1/2

,

where µn ∈ R2n and wn, Rn ∈ R2n×2n are entirely determined by (g0,K, ν, κ, u, w) and
det is the standard determinant of a matrix, we refer to Section 4.2. We illustrate the
applicability of these formulas on an option pricing and calibration example by Fourier
inversion techniques in a (rough) fractional Stein–Stein model in Section 4.3.

Notations

Fix T > 0. We let K denote R or C. We denote by 〈·, ·〉L2 the following product

〈f, g〉L2 =

∫ T

0
f(s)>g(s)ds, f, g ∈ L2 ([0, T ],K) .

We note that 〈·, ·〉L2 is an inner product on L2 ([0, T ],R), but not on L2 ([0, T ],C). We
define L2

(
[0, T ]2,K

)
to be the space of measurable kernels K : [0, T ]2 → K such that∫ T

0

∫ T

0
|K(t, s)|2dtds <∞.

For any K,L ∈ L2
(
[0, T ]2,K

)
we define the ?-product by

(K ? L)(s, u) =

∫ T

0
K(s, z)L(z, u)dz, (s, u) ∈ [0, T ]2, (1.13)
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which is well-defined in L2
(
[0, T ]2,K

)
due to the Cauchy-Schwarz inequality. For any

kernel K ∈ L2
(
[0, T ]2,K

)
, we denote by K the integral operator induced by the kernel K

that is

(Kg)(s) =

∫ T

0
K(s, u)g(u)du, g ∈ L2 ([0, T ],K) .

K is a linear bounded operator from L2 ([0, T ],K) into itself. If K and L are two integral
operators induced by the kernels K and L in L2

(
[0, T ]2,K

)
, then KL is the integral

operator induced by the kernel K ? L.
When K = R, we denote by K∗ the adjoint kernel of K for 〈·, ·〉L2 , that is

K∗(s, u) = K(u, s), (s, u) ∈ [0, T ]2,

and by K∗ the corresponding adjoint integral operator.

2 Symmetric kernels: an elementary proof

We provide an elementary derivation of the joint Fourier–Laplace transform in the special
case of symmetric kernels with κ = 0. This will naturally lead to the analytic expression
(1.7) in terms of the operator Ψ given in (1.9).

Definition 2.1. A kernel K ∈ L2
(
[0, T ]2,R

)
is symmetric nonnegative if K = K∗ and∫ T

0

∫ T

0
f(s)>K(s, u)f(u)duds ≥ 0, ∀f ∈ L2 ([0, T ],R) .

In this case, the integral operator K is said to be symmetric nonnegative and K = K∗ and
〈f,Kf〉L2 ≥ 0. K is said to be symmetric nonpositive, if (−K) is symmetric nonnegative.

Throughout this section, we fix T > 0 and we consider the case of symmetric kernels
having the following spectral decomposition

K(t, s) =
∑
n≥1

√
λnen(t)en(s), t, s ≤ T, (2.1)

where (en)n≥1 is an orthonormal basis of L2([0, T ],R) for the inner product 〈f, g〉L2 =∫ T
0 f(s)g(s)ds and λ1 ≥ λ2 ≥ . . . ≥ 0 with λn → 0, as n→∞, such that∑

n≥1

λn <∞.

Such decomposition is possible whenever the operator K is the (nonnegative symmetric)
square-root of a covariance operator C which is generated by a continuous kernel. This is
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known as Mercer’s theorem, see Shorack and Wellner (2009, Theorem 1, p.208) and leads
to the so-called Kac–Siegert/Karhunen–Loève representation of the process X, see Kac and
Siegert (1947); Karhunen (1946); Loeve (1955). In this case, one can show that any square-
integrable Gaussian process X with mean g0 and covariance C admits the representation
(1.6) with κ = 0 on some filtered probability space supporting a Brownian motion W , see
Sottinen and Viitasaari (2016).

We state our main result of the section on the representation of the characteristic
function for symmetric kernels.

Theorem 2.2. Let K be as in (2.1), g0 ∈ L2([0, T ],R) and set κ = 0. Fix u,w ∈ C such
that <(u) = 0 and <(w) ≤ 0. Then,

E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

)]
=

exp (〈g0,Ψ0g0〉L2)

det (Φ0)1/2
, (2.2)

with Ψ0 and Σ̃0 respectively given by (1.9) and (1.11), for (a, b) as in (1.10) (with κ = 0),
that is

a = w +
1

2
(u2 − u), b = ρνu,

and Φ0 = (id− bK)(id− 2aΣ̃0)(id− bK).

The rest of the section is dedicated to the proof of Theorem 2.2. The key idea is to rely
on the spectral decomposition (2.1) to decompose the characteristic function as an infinite
product of independent Wishart distributions. The operators Σ̃0 and Ψ0 will then appear
naturally after a rearrangement of the terms.

In the sequel, to ease notations, we drop the subscript L2 in the product 〈·, ·〉L2 . We

will start by computing the joint Fourier–Laplace transform of
(∫ T

0 X2
sds,

∫ T
0 XsdWs

)
. To

this end, since g0 ∈ L2([0, T ],R), we can write g0 =
∑

n≥1〈g0, en〉en. Recalling that κ = 0,
and making use of (2.1) we get that

Xt = g0(t) +

∫ T

0
K(t, s)νdWs =

∑
n≥1

(
〈g0, en〉+

√
λnνξn

)
en(t), (2.3)

where ξn =
∫ T

0 en(s)dWs, for each n ≥ 1. Since (en)n≥1 is an orthonormal family in L2,
(ξn)n≥1 is a sequence of independent standard Gaussian random variables. Furthermore,
the representation (2.3) readily leads to∫ T

0
X2
sds =

∑
n≥1

(
〈g0, en〉+

√
λnνξn

)2
, (2.4)

∫ T

0
XsdWs =

∑
n≥1

(
〈g0, en〉+

√
λnνξn

)
ξn. (2.5)

9



Lemma 2.3. Let K be as in (2.1), g0 ∈ L2([0, T ],R), set κ = 0 and fix α, β ∈ C such that

<(α) ≤ 0, <(β) = 0. (2.6)

Then,

E
[
exp

(
α

∫ T

0
X2
sds+ β

∫ T

0
XsdWs

)]
=

exp
((
α+ β2

2

)∑
n≥1

〈g0,en〉2
1−2βν

√
λn−2αν2λn

)
∏
n≥1

√
1− 2βν

√
λn − 2αν2λn

(2.7)

Proof. Define UT = α
∫ T

0 X2
sds + β

∫ T
0 XsdWs. We first observe that (2.6) yields that

|exp (UT )| = exp(<(UT )) ≤ 1, so that E [exp (UT )] is finite. By virtue of the representations
(2.4)-(2.5), we have

UT =
∑
n≥1

αξ̃2
n + βξ̃nξn,

where ξ̃n =
(
〈g0, en〉+ ν

√
λnξn

)
, for each n ≥ 1. Setting Yn = (ξ̃n, ξn)>, it follows that

(Yn)n≥1 are independent such that each Yn is a two dimensional Gaussian vector with mean
µn and covariance matrix Σn given by

µn =

(
〈g0, en〉

0

)
and Σn =

(
ν2λn ν

√
λn

ν
√
λn 1

)
.

Furthermore, we have

UT =
∑
n≥1

Y >n wnYn,

with

wn =

(
α β

2
β
2 0

)
.

By successively using the independence of Yn and the well-known expression for the charac-
teristic function of the Wishart distribution, see for instance Abi Jaber (2019a, Proposition
A.1), we get

E [exp(UT )] = E

exp

∑
n≥1

Y >n wnYn


=
∏
n≥1

E
[
exp

(
Y >n wnYn

)]

=
∏
n≥1

exp
(

tr
(
wn (I2 − 2Σnwn)−1 µnµ

>
n

))
det (I2 − 2Σnwn)1/2

.
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We now compute the right hand side. We have

(I2 − 2Σnwn) =

(
1− 2αν2λn − βν

√
λn −βν2λn

−2αν
√
λn − β 1− βν

√
λn

)
so that

det(I2 − 2Σnwn) = 1− 2βν
√
λn − 2αν2λn

and

(I2 − 2Σnwn)−1 =
1

1− 2βν
√
λn − 2αν2λn

(
1− βν

√
λn βν2λn

2αν
√
λn + β 1− 2αν2λn − βν

√
λn

)
.

Straightforward computations lead to the claimed expression (2.7).

Relying on the spectral decomposition (2.1), we re-express the quantities entering in
(2.7) in terms of suitable operators.

Lemma 2.4. Let K be as in (2.1), set κ = 0 and fix α, β ∈ C as in (2.6). Then, the

following operator defined by (1.9) with a = α+ β2

2 and b = νβ:

Ψα,β
0 = (id− bK)−∗ a

(
id− 2Σ̃0a

)−1
(id− bK)−1 , t ≤ T,

admits the following decomposition

Ψα,β
0 =

∑
n≥1

α+ β2

2

1− 2βν
√
λn − 2αν2λn

〈en, · 〉en (2.8)

and

det

(
1

α+ β2

2

Ψα,β
0

)
=
∏
n≥1

1

1− 2βν
√
λn − 2αν2λn

, (2.9)

with the convention that 0/0 = 1. In particular,

E
[
exp

(
α

∫ T

0
X2
sds+ β

∫ T

0
XsdWs

)]
= det

(
1

α+ β2

2

Ψα,β
0

)1/2

exp
(
〈g0,Ψ

α,β
0 g0〉

)
.(2.10)

Proof. It follows from (2.1) that

(id− bK) =
∑
n≥1

(
1− b

√
λn

)
〈en, · 〉en.

11



Since <(β) = 0, <(1 − b
√
λn) = 1 6= 0 fo each n ≥ 1, so that (id − bK) is invertible with

an inverse given by

(id− bK)−1 =
∑
n≥1

1

1− b
√
λn
〈en, · 〉en. (2.11)

Similarly, recalling (1.12), (2.1) leads to the representation of Σ0 = ν2KK∗:

Σ0 =
∑
n≥1

ν2λn〈en, · 〉en,

so that Σ̃0 given by (1.11) reads

Σ̃0 =
∑
n≥1

ν2λn(
1− b

√
λn
)2 〈en, · 〉en.

Whence, (
id− 2aΣ̃0

)
=
∑
n≥1

(
1− b

√
λn
)2 − 2aν2λn(

1− b
√
λn
)2 〈en, · 〉en.

Recalling that a = α+ β2

2 and b = νβ,
((

1− b
√
λn
)2 − 2aν2λn

)
= 1− 2νβ

√
λn − 2αν2λn.

Since <(α) ≤ 0 and <(β) = 0, we have that <(1 − 2νβ
√
λn − 2αν2λn) > 0 so that(

id− 2aΣ̃0

)
is invertible with an inverse given by

(
id− 2aΣ̃0

)−1
=
∑
n≥1

(
1− νβ

√
λn
)2

1− 2νβ
√
λn − 2αν2λn

〈en, · 〉en.

The representations (2.8)-(2.9) readily follows after composing by (id − bK)−∗a from the
left, by (id−bK)−∗ from the right and recalling (2.11). Finally, combining these expressions
with (2.7), we obtain (2.10). This ends the proof.

We can now complete the proof of Theorem 2.2.

Proof of Theorem 2.2. It suffices to prove that

E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

)]
= E

[
exp

(
α

∫ T

0
X2
sds+ β

∫ T

0
XsdWs

)]
, (2.12)

where

α = w +
1

2
(u2 − u)− ρ2u2

2
and β = ρu.

12



Indeed, if this the case, then

<(α) = <(w) +
1

2
(ρ2 − 1)=(u)2 ≤ 0,

so that an application of Lemma 2.4 yields the expression (2.2).
It remains to prove (2.12) by means of a projection argument. For this, we recall that
B = ρW +

√
1− ρ2W⊥ and we write

logST = logS0 −
1

2

∫ T

0
X2
sds+ ρ

∫ T

0
XsdWs +

√
1− ρ2

∫ T

0
XsdW

⊥
s . (2.13)

Denoting by FX the filtration generated by {Xs : s ≤ T}, we observe that

MT : = E
[
exp

(
u
√

1− ρ2

∫ T

0
XsdW

⊥
s

) ∣∣∣FX] = exp

(
u2(1− ρ2)

2

∫ T

0
X2
sds

)
(2.14)

so that, using successively the tower property of the conditional expectation, expression
(2.13) and the fact that X and W are FX -measurable, we obtain

E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

)]
= E

[
E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

) ∣∣∣ FX]]
= E

[
exp

((
w − u

2

)∫ T

0
X2
sds+ ρu

∫ T

0
XsdWs

)
MT

]
leading to (2.12) due to (2.14). This ends the proof.

3 Volterra kernels: a dynamical approach

In this section, we will consider the class of Volterra kernels of continuous and bounded
type in L2 in the terminology of Gripenberg et al. (1990, Definitions 9.2.1, 9.5.1 and 9.5.2).

Definition 3.1. A kernel K : [0, T ]2 → R is a Volterra kernel of continuous and bounded
type in L2 if K(t, s) = 0 whenever s ≥ t and

sup
t∈[0,T ]

∫ T

0
|K(t, s)|2ds <∞, lim

h→0

∫ T

0
|K(u+ h, s)−K(u, s)|2ds = 0, u ≤ T. (3.1)

The following kernels are of continuous and bounded type in L2.

Example 3.2. (i) Any convolution kernel of the form K(t, s) = k(t − s)1s<t with k ∈
L2([0, T ],R).
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(ii) For H ∈ (0, 1),

K(t, s) = 1s<t
(t− s)H−1/2

Γ(H + 1
2)

2F1

(
H − 1

2
;
1

2
−H;H +

1

2
; 1− t

s

)
,

where 2F1 is the Gauss hypergeometric function. Such kernel enters in the Volterra
representation (1.6) of the the fractional Brownian motion whose covariance function
is Σ0(s, u) = 1

2(s2H + u2H − |s− u|2H), see Decreusefond and Ustunel (1999).

(iii) Continuous kernels K on [0, T ]2. This is the case for instance for the Brownian
Bridge W T1 conditioned to be equal to W T1

0 at a time T1: for all T < T1, W T1

admits the Volterra representation (1.6) on [0, T ] with the continuous kernel K(t, s) =
1s<t(T1 − t)/(T1 − s), for all s, t ≤ T .

(iv) If K1 an K2 satisfy (3.1) then so does K1 ? K2 by an application of Cauchy-Schwarz
inequality.

Throughout this section, we fix a probability space (Ω,F , (Ft)t≤T ,Q) supporting a two

dimensional Brownian motion (W,W⊥) and we set B = ρW +
√

1− ρ2W⊥. For any
Volterra kernel K of continuous and bounded type in L2, and any g0 ∈ L2([0, T ],R), there
exists a progressively measurable R×R+-valued strong solution (X,S) to (1.5)-(1.6) such
that

sup
t≤T

E [|Xt|p] <∞, p ≥ 1, (3.2)

we refer to Theorem A.1 below for the proof.
We now state our main result on the representation of the Fourier–Laplace transform

for Volterra kernels under the following additional assumption on the kernel:

sup
t≤T

∫ T

0
|K(s, t)|2ds <∞. (3.3)

Theorem 3.3. Let g0 ∈ L2([0, T ],R) and K be a Volterra kernel as in Definition 3.1
satisfying (3.3). Fix u,w ∈ C, such that 0 ≤ <(u) ≤ 1 and <(w) ≤ 0. Then,

E
[
exp

(
u log

ST
St

+ w

∫ T

t
X2
sds

) ∣∣∣Ft] =
exp (〈gt,Ψtgt〉L2)

det
(

id− 2aΣ̃t

)1/2
, (3.4)

for all t ≤ T , with Ψt given by (1.9) for (a, b) as in (1.10).

Proof. We refer to Appendix B.
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Finally, for K(t, s) = 1s<t and an input curve of the form

g0(t) = X0 + θt, t ≥ 0, (3.5)

for some X0, θ ∈ R, one recovers from Theorem 3.3 the well-known closed form expressions
of Stein and Stein (1991) and Schöbel and Zhu (1999), and that of Heston (1993) when
θ = 0.

Corollary 3.4. Assume that K(t, s) = 1s<t and that g0 is of the form (3.5), then, the
expression (3.4) reduces to

E
[
exp

(
u log

ST
St

+ w

∫ T

t
X2
sds

) ∣∣∣Ft] = exp
(
A(t) +B(t)Xt + C(t)X2

t

)
(3.6)

where A,B,C solve the following system of (Backward) Riccati equations

Ȧ = −θB − 1

2
ν2B2 − ν2C, A(T ) = 0,

Ḃ = −2θC − (κ+ ρνu+ 2νC)B, B(T ) = 0,

Ċ = −2ν2C2 − 2(κ+ ρνu)C − w − 1

2
(u2 − u), C(T ) = 0.

In particular, (A,B,C) can be computed in closed form as in Lord and Kahl (2006, Equa-
tions (43)-(44)-(45)).

Sketch of proof. The characteristic function is given by (3.4). Assume that K(t, s) = 1s<t
and g0 is as in (3.5). Then,

Xs = Xt + (s− t)θ +

∫ s

t
κXudu+

∫ s

t
νdWu, s ≥ t,

so that taking conditional expectation yields

gt(s) = 1t≤s (Xt + (s− t)θ) .

It follows that

〈gt,Ψtgt〉L2 = Ã(t) +B(t)Xt + C(t)X2
t

with

Ã(t) = θ2〈1t≤·(·−t),Ψt1t≤·(·−t)〉L2 , B(t) = 2θ〈1t≤·(·−t),Ψt1t≤·〉L2 , C(t) = 〈1t≤·,Ψt1t≤·〉.

Combined with (B.5) and (B.6) below, we obtain (3.6) with A such that AT = 0 and

Ȧ(t) = ˙̃A(t) + Tr(ΨtΣ̇t)

with
Σ̇t(s, u) = −ν21t≤s∧u.

Using the operator Riccati equation satisfied by t 7→ Ψt, see Lemma B.1 below, and
straightforward computations as in Abi Jaber et al. (2020, Corollary 5.14) lead to the
claimed system of Riccati equations for (A,B,C).
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4 Numerical illustration

In this section, we make use of the analytic expression for the characteristic function in
(1.7) to price options. We first present two approximations of the formula (1.7) using closed
form expressions. The first one is obtained from a natural discretization of the operators;
the second one is more informative and establishes the link with finite-dimensional Wishart
distributions.

4.1 A straightforward approximation by closed form expressions

For simplicity, we consider the case t = 0 and K a Volterra kernel, i.e. K(t, s) = 0 if s ≥ t.
The expression (1.7) lends itself to approximation by closed form solutions by a simple
discretization of the operator Ψ0 given by (1.9) à la Fredholm (1903). Fix n ∈ N and let
ti = iT/n, i = 0, 1, . . . , n be a partition of [0, T ]. Discretizing the ?-product given in (1.13)
yields the following approximation for Ψ0 by the n× n matrix:

Ψn
0 = a (In − bKn)−> (In − 2

aT

n
Σ̃n)−1 (In − bKn)−1 ,

where In is the n× n identity matrix, Kn is the lower triangular matrix with components

Kn
ij =

∫ tj

tj−1

K(ti−1, s)ds, j ≤ i− 1,

and
Σ̃n = (In − bKn)−1 Σn (In − bKn)−>

with Σn the n× n discretized covariance matrix, recall (1.12), given by

Σn
ij = ν2

∫ T

0
K(ti, s)K(tj , s)ds, i, j ≤ n. (4.1)

Defining the n-dimensional vector gn = (g0(t1), . . . , g0(tn))>, the discretization of the inner
product 〈·, ·〉L2 leads to the approximation

E
[
exp

(
u logST + w

∫ T

0
X2
sds

)]
≈

exp
(
u logS0 + T

n g
>
n Ψn

0gn
)

det(Φn
0 )1/2

with Φn
0 =

(
In − 2aTn Σ̃n

)
.

Remark 4.1. Depending on the smoothness of the kernel, other quadrature rules might
be more efficient for the choice of the discretization of the operator and the approxima-
tion of the Fredholm determinant based on the so-called Nyström method, see for instance
Bornemann (2009, 2010); Corlay (2010); Kang et al. (2003).
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4.2 An alternative approximation coming from Wishart distributions

We now provide an alternative representation stemming from Wishart distributions. With-
out loss of generality, we restrict to the case κ = 0.4 The key idea is to rely on the projection
argument already used in the proof of Theorem 2.2 to write

E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

)]
= E

[
exp

(
α

∫ T

0
X2
sds+ β

∫ T

0
XsdWs

)]
, (4.2)

with

α = w +
1

2
(u2 − u)− ρ2u2

2
and β = ρu.

We now approximate the right hand in (4.2) by Wishart distributions in the following way.
Let n ∈ N, ti = iT/n, i = 0, . . . , n and consider the Euler discretization of the quantities

(
∫ T

0 X2
sds,

∫ T
0 XsdWs):

α

∫ T

0
X2
sds+ β

∫ T

0
XsdWs ≈

n∑
i=1

αT

n
X2
ti + βXtiYi,

with

Xi = Xti−1 and Yi =

∫ ti

ti−1

dWs, i = 1, . . . , n.

Define the 2n-dimensional vector Zn = (X1, . . . , Xn, Y1, . . . Yn)> and the 2n × 2n dimen-
sional matrix

wn =

(
αT
n In

β
2 In

β
2 In 0Rn×n

)
.

Then, Zn is a 2n-dimensional Gaussian vector with mean the 2n-dimensional vector µn =
(g0(t0), . . . , g0(tn−1), 0, . . . , 0)> and 2n× 2n covariance matrix

Rn =

(
ΣX ΣXY

(ΣXY )> T
n In

)
with ΣXY and ΣX the n× n-matrices with components

ΣX
ij = ν2

∫ T

0
K(ti−1, s)K(tj−1, s)ds, ΣXY

ij = 1j≤i−1ν

∫ tj

tj−1

K(ti−1, s)ds. (4.3)

4If κ 6= 0, then making use of the resolvent kernel RκT of κK on [0, T ] (we refer to Appendix A), we
reduce to the case κ = 0 as illustrated on (A.3) by working on the kernel (K + RκT ) = 1

κ
RκT instead of K

and considering gκ0 = (id + Rκ
T )g0 instead of g0.
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Furthermore, we have

n∑
i=1

αT

n
X2
i + βXiYi = Z>n wnZn,

so that, the well-known expression for the characteristic function of the Wishart distribu-
tion, see for instance Abi Jaber (2019a, Proposition A.1), yields

E
[
exp

(
Z>n wnZn

)]
=

exp
(
µ>nwn (I2n − 2Rnwn)−1 µn

)
det (I2n − 2Rnwn)1/2

. (4.4)

By dominated convergence in (4.2) we obtain

E
[
exp

(
u log

ST
S0

+ w

∫ T

0
X2
sds

)]
= lim

n→∞

exp
(
µ>nwn (I2n − 2Rnwn)−1 µn

)
det (I2n − 2Rnwn)1/2

.

For practical implementation, one can take advantage of the block matrix structure of
(Rn, wn, µnµ

>
n , wn) to reduce to an expression involving n × n matrices instead of 2n ×

2n. The well-known inversion formula for 2 × 2 block matrices using Schur complements
combined with straightforward computations reduce expression (4.4) to

E
[
exp

(
Z>n wnZn

)]
=

exp
(
g>n

(
αTn Ãn + β

2 C̃n

)
gn

)
det (AnDn −BnCn)1/2

,

where gn = (g0(t0), . . . , g0(tn−1))> and An, Bn, Cn, Dn, Ãn, C̃n are the n × n matrices de-
fined by

I2n − 2Rnwn =

(
In − 2αTnΣX − βΣXY −βΣX

−2αTn (ΣXY )> − β Tn In In − β(ΣXY )>

)
=:

(
An Bn
Cn Dn

)
and

Ãn := (An −BnD−1
n Cn)−1, C̃n := −D−1

n CnÃn.

4.3 Option pricing in the fractional Stein–Stein model

In this section, we illustrate the applicability of our results on the following fractional
Stein–Stein model based on the Riemann–Liouville fractional Brownian motion with the
Volterra convolution kernel K(t, s) = 1s<t(t− s)H−1/2/Γ(H + 1/2):

dSt = StXtdBt, S0 > 0,

Xt = g0(t) +
ν

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs,
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with B = ρW +
√

1− ρ2W⊥, for ρ ∈ [−1, 1], ν ∈ R and a Hurst index H ∈ (0, 1). For
illustration purposes we will consider that the input curve g0, which can be used in general
to fit at-the-money curves observed in the market, has the following parametric form

g0(t) = X0 +
1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2θds = X0 + θ

tH+1/2

Γ(H + 1/2)(H + 1/2)
, t ≥ 0.

Remark 4.2. It would have also been possible to take instead of the fractional Riemman–
Liouville Brownian motion the true fractional Brownian motion by considering

Xt = g0(t) +
ν

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2

2F1

(
H − 1/2, 1/2−H;H + 1/2, 1− t

s

)
dWs,

where 2F1 is the Gaussian hypergeometric function.

Taking H < 1/2 allows one to reproduce the stylized facts observed in the market as
in Figure 1. Indeed, the simulated sample paths of the instantaneous variance process X2

with H = 0.1 in Figure 2 has the same regularity as the realized variance of the S&P in
Figure 1-(a). In the case H < 1/2, we refer to the model as the rough Stein–Stein model.

1.0

1.1

1.2

0 1 2 3 4

  Time (in years)

Stock price

0.01

0.02

0 1 2 3 4

 Time (in years)

Variance process

Figure 2: One simulated sample path of the stock price S and the instantaneous variance
process X2 in the rough Stein–Stein model with parameters: X0 = 0, 1, θ = 0.01, ν = 0.02,
ρ = −0.7 and H = 0.1.

We now move to pricing. The expression (1.7) for the joint characteristic function

allows one to recover the joint density pT (x, y) of (logST ,
∫ T

0 X2
sds) by Fourier inversion:

pT (x, y) =
1

2π

∫
R2

e−i(z1x+z2y)E
[
exp

(
iz1 logST + iz2

∫ T

0
X2
sds

)]
dz1dz2,
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but also to price derivatives on the stock price and the integrated variance by Fourier in-
version techniques, see Carr and Madan (1999); Fang and Oosterlee (2009); Lewis (2001)
among many others. In the sequel we will make use of the cosine method of Fang and
Oosterlee (2009) to price European call options on the stock S combined with our approx-
imation formulae of Sections 4.1 and 4.2. We refer to Abi Jaber (2019a, Section 4) for
examples of pricing options on the integrated variance. We start by observing that the
covariance function of X is given in the following closed form

Σ0(s, u) =
ν2

Γ(H + 1/2)

∫ s∧u

0
(s− z)H−1/2(u− z)H−1/2dz

=
ν2

Γ(α)Γ(1 + α)

sα

u1−α 2F1

(
1, 1− α; 1 + α;

s

u

)
where α = H + 1/2 and 2F1 is the Gaussian hypergeometric function, see for instance
Malyarenko (2012, page 71).5 It follows that the matrices (4.1) and (4.3) can be computed
in closed form.

As a sanity check, for H = 0.5 we visualize on Figure 3 the convergence of both ap-
proximation methods on the implied volatility. The benchmark is computed via the cosine
method with the closed form expressions for the characteristic function of the conventional
Stein–Stein model, see Lord and Kahl (2006). Both methods converge. After some numer-
ical experiments, we found that the approximation method based on Wishart distributions
is slightly more stable for small values of H. We will therefore use it in the sequel with
n = 50. Other discretization rules might turn out more efficient and would require less
points to achieve the same accuracy, which makes the implementation much faster, recall
Remark 4.1. The main challenge for applying such methods is the singularity of the kernel
at s = t when H < 1/2 and is left for future research.
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5Note that in the case of Remark 4.2, the expression for the covariance function simplifies to Σ0(s, u) =
ν2

2
(s2H + u2H − |s− u|2H).
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Figure 3: Convergence of the implied volatility slice for T = 1 year of the operator dis-
cretization of Section 4.1 (left) and the approximation via Wishart distributions of Sec-
tion 4.2 (right) for H = 0.5 towards that of the conventional Stein–Stein model (red). The
parameters are X0 = 0.2, θ = 0, ν = 0.3 and ρ = −0.7.

Going back to real market data, we calibrate the fractional Stein–Stein model to the
at-the-money skew of Figure 1-(b). Keeping the parameters X0 = 0.44, θ = 0.3 fixed, the
calibrated parameters are given by

ν̂ = 0.5231458, ρ̂ = −0.9436174 and Ĥ = 0.2234273. (4.5)

This power-law behaviour of the at-the-money skew observed on the market is perfectly
captured by the fractional Stein–Stein model as illustrated on Figure 4 with only three
parameters. Again Ĥ < 0.5 indicates that the rough regime of the fractional Stein–Stein
model is coherent with the observations on the market.
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Figure 4: Term structure of the at-the-money skew for the S&P index on June 20, 2018 (red
dots) and for the rough Stein–Stein model with calibrated parameters (4.5) (blue circles
with dashed line).

A Resolvents

For a kernel K ∈ L2([0, T ]2,K), we define its resolvent RT ∈ L2([0, T ]2,K) by the unique
solution to

RT = K +K ? RT , K ? RT = RT ? K. (A.1)
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In terms of integral operators, this translates into

RT = K + KRT , KRT = RTK.

In particular, if K admits a resolvent, (id−K) is invertible and

(id−K)−1 = id + RT . (A.2)

Whenever K ∈ L2([0, T ]2,K), K is a Hilbert–Schmidt operator on L2([0, T ],K) into
itself. Whence, it has a countable spectrum sp(K). If 1 /∈ sp(K), then (id−K) is invertible
and K admits a resolvent. We refer to Smithies (1958) for more details.

Using the resolvent we can provide the explicit solution to the system (1.5)–(1.6).

Theorem A.1. Fix T > 0, g0 ∈ L2([0, T ],R) and a kernel K as in Definition 3.1. Then,
there exists a progressively measurable strong solution (X,S) to (1.5)–(1.6) on [0, T ] such
that (3.2) holds.

Proof. Since K is a Volterra kernel of continuous and bounded type, it follows from Gripen-
berg et al. (1990, Lemma 9.3.3, Theorem 9.5.5(i)) that κK admits a resolvent RκT which
is again a Volterra kernel of continuous and bounded type. A straightforward application
of the resolvent equation (A.1) together with stochastic Fubini’s theorem, yields that the
solution for (1.6) is given in the following closed form

Xt = g0(t) +

∫ t

0
RκT (t, s)g0(s)ds+

∫ t

0
(K(t, s) +RκT (t, s))νdWs, (A.3)

The existence of S readily follows from that of X and is given by the stochastic exponential:

St = S0 exp

(
−1

2

∫ t

0
X2
sds+

∫ t

0
XsdBs

)
.

Finally, (3.2) follows from the fact that sups≤T
∫ T

0 |R
κ
T (s, u)|2du < ∞ combined with the

Burkholder-Davis-Gundy inequality.

We now justify in the three following lemmas that the quantities (id − bK) and(
id− 2aΣ̃t

)
appearing in the definition of t 7→ Ψt in (1.9) are invertible so that Ψt is

well-defined for any kernel K as in Definition 3.1.

Lemma A.2. Let K satisfy (3.1) and L ∈ L2([0, T ]2,R). Then, K ? L satisfies (3.1).
Furthemore, if L satisfies (3.1), then, (s, u) 7→ (K ? L∗)(s, u) is continuous.

Proof. An application of the Cauchy-Schwarz inequality yields the first part. The second
part follows along the same lines as in the proof of Abi Jaber (2019a, Lemma 3.2).
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Lemma A.3. Fix b ∈ C and a kernel K as in Definition 3.1. Then, (id−bK) is invertible.
Furthermore, for all t ≤ T , Σ̃t given by (1.11) can be re-written in the form

Σ̃t = (id− bKt)
−1Σt(id− bKt)

−∗ (A.4)

where Kt is the integral operator induced by the kernel Kt(s, u) = K(s, u)1u≥t, for s, u ≤ T .

Proof. Since K is a Volterra kernel of continuous and bounded type, it follows from Gripen-
berg et al. (1990, Lemma 9.3.3, Theorem 9.5.5(i)) (see also Smithies (1958, Theorem 2.7.1))
that bK admits a resolvent RbT which is again a Volterra kernel of continuous and bounded
type. Whence, (A.2) yields that (id− bK) is invertible with an inverse given by (id +RbT ).
To prove (A.4), we fix t ≤ T and we observe that since Σt(s, u) = 0 whenever s ∧ u ≤ t,
we have

(RbT ? Σt)(s, u) =

∫ T

t
RbT (s, u)Σt(z, u)dz = (Rbt,T ? Σt(z, u))(s, u),

where we defined the kernel Rbt,T (s, u) = RbT (s, u)1u≥t. Similarly, Σt ? (RbT )∗ = Σt ? (Rbt,T )∗.

Using the resolvent equation (A.1) of RbT , it readily follows that Rbt,T is the resolvent of

bKt so that (id− bKt)
−1 = (id + Rb

t,T ). Combining all of the above leads to

Σ̃t = (id− bK)−1Σt(id− bK)−∗

= (id + Rb
T )Σt(id + Rb

T )∗

= id + Rb
TΣt + Σt(R

b
T )∗ + Rb

TΣt(R
b
T )∗

= id + Rb
t,TΣt + Σt(R

b
t,T )∗ + Rb

t,TΣt(R
b
t,T )∗

= (id + Rb
t,T )Σt(id + Rb

t,T )∗

= (id− bKt)
−1Σt(id + bKt)

−∗,

which ends the proof.

Lemma A.4. Fix a, b ∈ C such that <(a) ≤ 0 and <(a) + =(b)2

2ν2
≤ 0. Let t ≤ T and K

be a kernel as in Definition 3.1. Then, (id − 2Σ̃ta) is invertible and Ψt given by (1.9)
is well-defined. Furthermore, if =(a) = =(b) = 0 then, Ψt is a symmetric nonpositive
operator in the sense of Definition 2.1.

Proof. • Using Lemma A.3, we write

(id− 2aΣ̃t) = (id− bKt)
−1At(id− bKt)

−∗

with

At = (id− bKt) (id− bK∗t )− 2aΣt

= id− bKt − bK∗t + b2KtK
∗
t − 2aΣt.
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It suffices to prove that At is invertible, that is 0 /∈ sp(At). Taking real parts and observing
that Σt = ν2KtK

∗
t yields

<(At) = id−<(b)Kt −<(b)K∗t + <(b)2KtK
∗
t −=(b)2KtK

∗
t − 2<(a)Σt

= (id−<(b)Kt) (id−<(b)Kt)
∗ −

(
2<(a) +

=(b)2

ν2

)
Σt

= I + II

The operator I is symmetric nonnegative and invertible so that sp(I) ∈ (0,∞). Further-

more, since
(

2<(a) + =(b)2

ν2

)
≤ 0 by assumption and Σt is symmetric nonnegative we have

sp(II) ∈ [0,∞). It follows that sp(<(At)) ∈ (0,∞), showing that 0 /∈ sp(At) and that At

is invertible. Whence, (id − 2aΣ̃t) is invertible. Combined with Lemma A.3, we obtain
that Ψt is well-defined.
• Assume that =(a) = =(b) = 0. Σ̃t defined as in (1.11) is clearly a symmetric nonnegative
operator with a continuous kernel on [0, T ]2, recall Lemma A.2, an application of Mer-
cer’s theorem (Shorack and Wellner, 2009, Theorem 1, p.208) yields the existence of an
orthonormal basis (en)n≥1 of L2([0, T ],R) and nonnegative eigenvalues (λn)n≥1 such that

Σ̃t =
∑
n≥1

λn〈en, · 〉L2en.

Whence,

id− 2aΣ̃t =
∑
n≥1

(1− 2aλn)〈en, · 〉L2en.

Since a ≤ 0, (1 − 2aλn) ≥ 1 > 0, for each n ≥ 1, so that the inverse of (id − 2aΣ̃t) is a
symmetric nonnegative operator given by(

id− 2aΣ̃t

)−1
=
∑
n≥1

1

1− 2aλn
〈en, · 〉L2en.

Finally, Ψt is clearly symmetric and for any f ∈ L2([0, T ],R)

〈f,Ψtf〉L2 = a〈f̃ ,
(

id− 2aΣ̃t

)−1
f̃〉L2 ≥ 0,

with f̃ = (id− bK)−1f . This shows that Ψt is nonpositive.

B Proof of Theorem 3.3

This section is dedicated to the proof of Theorem 3.3. We fix T > 0, a Volterra kernel K
as in Definition 3.1 satisfying (3.3) and u,w ∈ C, such that 0 ≤ <(u) ≤ 1 and <(w) ≤ 0.
It follows that a, b defined by (1.10) satisfy

<(a) = <(w) +
1

2
(<(u)2 −<(u))− 1

2
=(u)2 ≤ 0
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and

<(a) +
=(b)2

2ν2
= <(w) +

1

2
(<(u)2 −<(u)) +

1

2
(ρ2 − 1)=(u)2 ≤ 0.

so that an application of Lemma A.4 yields that Ψt is well-defined.
We now collect from Abi Jaber et al. (2020, Lemma 5.8) further properties of t 7→ Ψt.

In particular, its link with an operator Riccati equation. We recall that t 7→ Ψt is said to
be strongly differentiable at time t ≥ 0, if there exists a bounded linear operator Ψ̇t from
L2 ([0, T ],C) into itself such that

lim
h→0

1

h
‖Ψt+h −Ψt − hΨ̇t‖op = 0, where ‖G‖op = sup

f∈L2([0,T ],C)

‖Gf‖L2

‖f‖L2

.

Lemma B.1. Fix a kernel K as in Definition 3.1 satisfying (3.3). Then, for each t ≤ T ,
Ψt given by (1.9) is a bounded linear operator from L2 ([0, T ],R) into itself. Furthermore,

(i) (−aid + Ψt) is an integral operator induced by a symmetric kernel ψt(s, u) such that

sup
t≤T

∫
[0,T ]2

|ψt(s, u)|2dsdu <∞.

(ii) For any f ∈ L2 ([0, T ],R),

(Ψtf1t)(t) =(aid + bK∗Ψt)(f1t)(t),

where 1t : s 7→ 1t≤s.

(iii) t 7→ Ψt is strongly differentiable and satisfies the operator Riccati equation

Ψ̇t = 2ΨtΣ̇tΨt, t ∈ [0, T ] (B.1)

ΨT = a (id− bK)−∗ (id− bK)−1

where Σ̇t is the strong derivative of t 7→ Σt induced by the kernel

Σ̇t(s, u) = −ν2K(s, t)K(u, t), a.e.

Proof. The proof follows from a straighforward adaptation of the proof of Abi Jaber et al.
(2020, Lemma 5.8).

Using the previous lemma and observing that the adjusted conditional mean given in
(1.8) has the following dynamics

gt(s) = 1t≤s

(
g0(s) +

∫ t

0
K(s, u)κXudu+

∫ t

0
K(s, u)νdWu

)
(B.2)

we derive in the next lemma the dynamics of t 7→ 〈gt,Ψtgt〉L2 .
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Lemma B.2. The dynamics of t 7→ 〈gt,Ψtgt〉L2 are given by

d〈gt,Ψtgt〉L2 =
(
〈gt, Ψ̇tgt〉L2 − aX2

t − 2uρνXt (K∗Ψt) (gt)(t)− Tr
(
ΨtΣ̇t

))
dt

+ 2ν ((K∗Ψt) gt) (t)dWt. (B.3)

Proof. We first note that

〈gt,Ψtgt〉L2 =

∫ T

0
gt(s)(Ψtgt)(s)ds,

and compute the dynamics of t 7→ gt(s)(Ψtgt)(s). For fixed s ≤ T , it follows from (B.2)
and the fact that gt(t) = Xt, that

dgt(s) = −δt=sXtdt+K(s, t)κXtdt+K(s, t)νdWt.

We recall that

(Ψtf)(t) = af(t) +

∫ T

0
ψt(s, u)f(u)du, (B.4)

see Lemma B.1–(i). Together with Lemma B.1-(iii), we deduce that t 7→ (Ψtgt)(s) is a
semimartingale on [0, s) with the following dynamics

d(Ψtgt)(s) = (Ψ̇tgt)(s)dt+ (Ψtdgt)(s)

= (Ψ̇tgt)(s)dt−Xtψt(s, t)dt+Xt(ΨtK(·, t)κ)(s)dt+ (ΨtK(·, t)ν)(s)dWt.

Here, we used the fact that idδt = 0: indeed, for every f ∈ L2([0, T ],R) we have (idδt=·)(f) =
(f(·)δt=·) = 0L2 . Moreover, the quadratic covariation between t 7→ gt(s) and t 7→ (Ψtgt)(s)
is given by

d [g·(s), (Ψ·g·)(s)]t = aν2K(s, t)2dt+ ν2

∫ T

0
ψt(s, u)K(u, t)K(s, t)dudt

= −aΣ̇t(s, s)dt−
∫ T

0
ψt(s, u)Σ̇t(u, s)dudt

= −
(
ΨtΣ̇t(·, s)

)
(s).

Whence, combining the previous three identities, we get

d (gt(s)(Ψtgt)(s)) = dgt(s)(Ψtgt)(s) + gt(s)d(Ψtgt)(s) + d [g·(s), (Ψ·g·)(s)]t
= −δt=sXt(Ψtgt)(s)dt+XtκK(s, t)(Ψtgt)(s)dt

+ gt(s)(Ψ̇tgt)(s)dt− gt(s)ψt(s, t)Xtdt+ gt(s)Xt(ΨtK(·, t)κ)(s)dt

−
(
ΨtΣ̇t(·, s)

)
(s)dt

+ (νK(s, t)(Ψtgt)(s) + gt(s)(ΨtK(·, t)ν)(s)) dWt

=
[
I(s) + II(s) + III(s) + IV(s) + V(s) + VI(s)

]
dt

+ (VII(s) + VIII(s)) dWt.
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We now integrate in s. First, using (B.4) and Lemma B.1–(ii) successively we get that∫ T

0

[
I(s) + IV(s)

]
ds = −Xt(Ψtgt)(t)−Xt

∫ T

0
ψt(t, u)gt(u)du

= aX2
t − 2Xt(Ψtgt)(t)

= −aX2
t − 2b((K∗Ψt)gt)(t)

On the other hand, since, Ψ∗ = Ψ, we have∫ T

0

[
II(s) + V(s)

]
ds = 2κXt

((
K∗Ψt

)
gt

)
(t).

Therefore, summing the above and recalling that b = κ+ uρν yield∫ T

0

[
I(s) + IV(s) + II(s) + V(s)

]
ds = −aX2

t − 2uρνXt

((
K∗Ψt

)
gt

)
(t).

Finally, observing that∫ T

0
III(s)ds = 〈gt, Ψ̇tgt〉L2 ,

∫ T

0
VI(s)ds = Tr

(
ΨtΣ̇t

)
,∫ T

0

[
VII(s) + VIII(s)

]
ds = 2ν (K∗Ψt) (gt)(t)dWt,

we obtain the claimed dynamics (B.3).

We now recall the definition

Φt = id− 2Σ̃ta, t ≤ T,

so that

det(Φt)
−1/2 = det

(
id− 2Σ̃ta

)−1/2
,

which is well-defined by virtue of the invertibility of (id − 2Σ̃ta), see Simon (1977, Theo-
rem 3.9). Furthermore, Lidskii’s theorem, see Simon (1977), ensures that det(id + F ) =
exp (Tr(log(id + F ))). Hence,

det(Φt)
−1/2 = exp (φt) , (B.5)

with

φt = −1

2
Tr
(

log
(

id− 2Σ̃ta
))

.

27



Differentiation using (1.11) yields

φ̇t = Tr

(
a
(

id− 2Σ̃ta
)−1 ˙̃Σt

)
= Tr

(
a
(

id− 2Σ̃ta
)−1

(id− bK)−1Σ̇t(id− bK)−∗
)
.

Finally, using (1.9) and the identity Tr(FG) = Tr(GF ), we obtain

φ̇t = Tr(ΨtΣ̇t). (B.6)

We can now complete the proof of Theorem 3.3.

Proof of Theorem 3.3. Since Ψt and φt given by (1.9) and (B.6) are clearly analytic in
(a, b), see for instance Smithies (1958, Corollary on p.31), it suffices to prove that (3.4)
holds for all 0 ≤ u ≤ 1 and w ≤ 0 to obtain the claimed expression by analytic continuation
of the characteristic function on {(u,w) ∈ C2 : 0 ≤ <(u) ≤ 1 and <(v) ≤ 0}. Fix u ∈ [0, 1],
w ∈ R−. Set

Ut = u logSt + w

∫ t

0
X2
sds+ φt + 〈gt,Ψtgt〉L2 , (B.7)

and Mt = exp(Ut). It suffices to prove that M is a martingale. Indeed, if this is the case,
then observing that the terminal value of M is

MT = u logST + w

∫ T

0
X2
sds

and writing the martingale property E[MT |Ft] = Mt, for t ≤ T , yields (3.4).
Step 1. We prove that M is a local martingale by expliciting its dynamics. We first observe
that

dMt =Mt

(
dUt +

1

2
d〈U〉t

)
. (B.8)

Using (1.5), we have

d logSt = −1

2
X2
t dt+ ρXtdWt +

√
1− ρ2XtdW

⊥
t .

Combined with the dynamics (B.3) and the fact that a = w + 1
2(u2 − u), we get that

dUt =
(
〈gt, Ψ̇tgt〉L2 −

u2

2
X2
t − 2uρνXt (K∗Ψt) (gt)(t) + φ̇t − Tr

(
ΨtΣ̇t

))
dt

+ (ρuXt + 2ν (K∗Ψt) (gt)(t)) dWt + u
√

1− ρ2XtdW
⊥
t ,

so that

d〈U〉t =
(
u2X2

t + 4ρuνXt (K∗Ψt) (gt)(t) + 4ν2 ((K∗Ψt) (gt)(t))
2
)
dt.
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Observing that
4ν2 ((K∗Ψt) (gt)(t))

2 = −4〈gt,ΨtΣ̇tΨtgt〉L2 ,

we get that the drift part in (B.8) is given by

Mt

(
〈gt, Ψ̇t − 2ΨtΣ̇tΨtgt〉L2 + φ̇t − Tr

(
ΨtΣ̇t

))
= 0,

by virtue of the Riccati equations (B.1) and (B.6). This shows that M is a local martingale.
Step 2. It remains to argue that the local martingale M is a true martingale. To this end,
we fix t ≤ T . An application of the second part of Lemma A.4 yields that Ψt is a symmetric
nonpositive operator so that, recall (B.6),

〈gt,Ψtgt〉L2 ≤ 0 and φt = −
∫ T

t
Tr(ΨsΣ̇s)ds ≤ 0.

Whence, since w ≤ 0 and 0 ≤ u ≤ 1, it follows from (B.7) that

Ut ≤ u logSt

= u logS0 −
u

2

∫ t

0
X2
sds+ u

∫ t

0
XsdBs

≤ u logS0 −
u2

2

∫ t

0
X2
sds+ u

∫ t

0
XsdBs

Therefore,

|Mt| = exp(Ut) ≤ exp(u logSt) ≤ Nt

with Nt = Su0 exp
(
−u2

2

∫ t
0 X

2
sds+ u

∫ t
0 XsdBs

)
which can be shown to be a true martingale

by a similar argument to that used in Abi Jaber et al. (2019, Lemma 7.3). Finally, we
have showed that the local martingale M is bounded by a martingale, which gives that M
is also a true martingale. The proof is complete.

References

Abi Jaber, E. (2019a). The Laplace transform of the integrated Volterra Wishart process. arXiv
preprint arXiv:1911.07719.

Abi Jaber, E. (2019b). Lifting the Heston model. Quantitative Finance, 19(12):1995–2013.

Abi Jaber, E. (2019c). Weak existence and uniqueness for affine stochastic Volterra equations with
L1-kernels. arXiv preprint arXiv:1912.07445.

Abi Jaber, E. and El Euch, O. (2019a). Markovian structure of the Volterra heston model. Statistics
& Probability Letters, 149:63–72.

29



Abi Jaber, E. and El Euch, O. (2019b). Multifactor approximation of rough volatility models.
SIAM Journal on Financial Mathematics, 10(2):309–349.

Abi Jaber, E., Larsson, M., Pulido, S., et al. (2019). Affine Volterra processes. The Annals of
Applied Probability, 29(5):3155–3200.

Abi Jaber, E., Miller, E., and Pham, H. (2020). Markowitz portfolio selection for multivariate affine
and quadratic Volterra models. arXiv preprint arXiv:2006.13539.
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