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SOLUTIONS TO THE HAMILTON-JACOBI EQUATION FOR BOLZA

PROBLEMS WITH DISCONTINUOUS TIME DEPENDENT DATA

Julien Bernis and Piernicola Bettiol*

Abstract. We consider a class of optimal control problems in which the cost to minimize comprises
both a final cost and an integral term, and the data can be discontinuous with respect to the time vari-
able in the following sense: they are continuous w.r.t. t on a set of full measure and have everywhere left
and right limits. For this class of Bolza problems, employing techniques coming from viability theory,
we give characterizations of the value function as the unique generalized solution to the correspond-
ing Hamilton-Jacobi equation in the class of lower semicontinuous functions: if the final cost term is
extended valued, the generalized solution to the Hamilton-Jacobi equation involves the concepts of lower
Dini derivative and the proximal normal vectors; if the final cost term is a locally bounded lower semi-
continuous function, then we can show that this has an equivalent characterization in a viscosity sense.
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1. Introduction

Consider the non autonomous Bolza problem:

(PS,x0)


Minimize

∫ T
S
L(t, x(t), ẋ(t))dt+ g(x(T ))

over arcs x ∈W 1,1([S, T ],Rn) satisfying

ẋ(t) ∈ F (t, x(t)) for almost every t ∈ [S, T ],

x(S) = x0,

in which [S, T ] is a given interval, x0 ∈ Rn is a given initial datum, g : Rn → R ∪ {+∞} and L : [S, T ]× Rn ×
Rn → R are given functions, and F : [S, T ]× Rn  Rn is a given multivalued function. The reference problem
(PS,x0

) can be embedded in a family of problems (Pt,x) parametrized by pairs of initial data (t, x) ∈ [S, T ]×Rn.
This leads to the concept of the value function for (Pt,x) V : [S, T ] × Rn → R ∪ {+∞}, which, for all (t, x) ∈
[S, T ]× Rn, is defined taking the infimum cost for (Pt,x):

V (t, x) := inf

{∫ T

t

L(s, x(s), ẋ(s))ds+ g(x(T ))
∣∣∣x(·) F -trajectory on [t, T ], x(t) = x

}
.
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Here, an F -trajectory on the interval [s, t] ⊂ [S, T ] is an absolutely continuous arc x(·) : [s, t]→ Rn which satisfies
the reference differential inclusion ẋ(σ) ∈ F (σ, x(σ)) for a.e. σ ∈ [s, t]. We shall consider characterizations of
V (·, ·) as the unique solution – in a suitable generalized sense – to the Hamilton-Jacobi equation:

{
∂tϕ(t, x) + infv∈F (t,x){∂xϕ(t, x) · v + L(t, x, v)} = 0

ϕ(T, x) = g(x),
(HJE)

when we may have a discontinuous behaviour of F and L w.r.t. the time variable t. Many techniques have
been employed to characterize the value function as solution to (HJE), mainly coming from viscosity solutions
theory and viability theory. In both contexts a lot of work has been done including the case of discontinuous
time dependence problems (see for instance the monographs [2, 5, 9, 20] and the references therein). In this
paper we employ nonsmooth analysis tools and a viability approach to provide value function characterizations
involving the notions of lower Dini derivative (also called contingent epiderivative), proximal subdifferential, and
Fréchet subdifferential and superdifferential. An important feature is that we allow the final cost function g to
be a lower semicontinuous function, possibly extended valued, incorporating implicit terminal constraints. As a
consequence the natural class of functions in which we study the value function is the set of lower semicontinuous
functions.

In presence of extended terminal costs, the first result, using viability theory, characterizing lower semicon-
tinuous value functions as solutions to (HJE) in a generalized sense which involves the contingent epiderivatives,
is obtained in [12]. In the same paper we can find also characterizations using (Fréchet) subdifferentials, and
eventually both subdifferentials and superdifferentials leading to a comparison with viscosity solutions for con-
tinuous value functions. These results have been achieved for the Mayer problem (i.e. for L = 0) assuming
velocity sets F which are continuous in (t, x). A further significant contribution is [9], in which appropriate
invariance theorems allow to characterize the value function also considering proximal subdifferentials.

Passing to discontinuous time-dependent optimal control problems, the relevance of the role of lower Dini
derivatives to deal with measurable time-dependence was highlighted by [21]. Simple examples illustrate that
the value function might not be the unique lower semicontinuous generalized (according to the concepts above-
mentioned) solution to (HJE) in an ‘almost everywhere’ sense (cf. the discussion in [4]). However, uniqueness
properties of the solution can be derived for the mere measurable time dependent case imposing additional
conditions on the class of functions which are candidate to be solutions, such as the epigraph of the candidate
solution is absolutely continuous w.r.t. t, see [14].

A different perspective has been recently suggested in [4] for the intermediate case (between the continuous
one and the merely measurable one) when the multifunction t F (t, x) has everywhere one-sided limits, for all
x, and is continuous on the complement of a zero-measure subset of [S, T ] (without necessarily imposing further
a priori regularity conditions such as the absolute continuity of the epigraph of the candidate solutions). In
this context, considering optimal control problems with a final cost term (i.e. L = 0), the value function turns
out to be the unique lower semicontinuous solution to (HJE) taking into account ‘everywhere in t’ characteri-
zations which involve the concepts of lower Dini derivative and the proximal subdifferential. Further important
features of the results obtained in [4] are: the presence of left and right limits F (t+, x) and F (t−, x) (the role
of which cannot be exchanged) in the characterizing conditions and the presence of the horizontal proximal
subdifferentials in the concept of the proximal solution.

The main objective of this paper is to explore lower semicontinuous characterizations of the value function
in the context of non-autonomous Bolza problems, in which the velocity set F satisfies the same assumptions
as in [4]. The Lagrangian L is assumed to have the same behaviour in t (L(·, x, v) is continuous on a set of
full measure and has everywhere left and right limits), but is just continuous w.r.t. x. In addition, L satisfies
standard conditions in v (such as convexity and boundedness on bounded sets). We observe that it would be
natural to invoke a well-known augmentation technique and rewrite the reference Bolza problem (PS,x0) in
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a Mayer form:


Minimize g(x(T )) + y(T )

over arcs (x, y) ∈W 1,1([S, T ],Rn+1) satisfying

(ẋ(t), ẏ(t)) ∈ G(t, x(t)) for almost every t ∈ [S, T ],

x(S) = x0, y(S) = 0

where G(t, x) := {(v, w) | v ∈ F (t, x), w ≥ L(t, x, v)}. Even if this method provides a good insight of a correct
outcome, previous results on the Mayer problem are not applicable in our case. On the other hand, keeping
the Bolza formulation of the reference problem allows us, for instance, to impose weaker assumptions on the
Lagrangian L, avoiding additional (and more restrictive) Lipschitz continuity conditions of L w.r.t. the state
variable x, that would be otherwise necessary to impose if we passed to the Mayer form, and which is typically
required in previous work for the Mayer problem (cf. [4, 12, 13, 14]). Therefore, the mere state augmentation
technique does not simplify the task: we would add a step in the analysis and eventually end up with a (possibly
more involved) problem, with exactly the same difficulties as we left the reference optimal control problem in
the Bolza form.

Our first main result (see Thm. 2.1) provides a characterization of lower semicontinuous extended valued
value functions involving both the notions of generalized solution in terms of lower Dini derivatives and in terms
of proximal normals to epigraph sets (confirming that a result consistent with ([4], Thm. 2.2) can be obtained
also for the class of Bolza problems considered here). The second main result of our paper gives a positive answer
to an important question (highlighted in [4]): it was not known whether to achieve an extended-sense viscosity
solution characterization of lower semicontinuous value functions would require employing horizontal Fréchet
subderivatives (and superderivatives). Theorem 2.2 gives (together with the examples in Sect. 2.4) an answer to
this issue and represents, at the same time, an extension to earlier viscosity solutions characterizations such as
in [12, 14] (and [13] for the state constraints free case), to locally bounded lower semicontinuous value functions
for Bolza problems with F and L discontinuous in t and a discontinuous final cost term g.

To complete the huge picture of this strand, we recall that the viability approach is applicable also to
characterize value functions for state constrained optimal control problems (cf. [4, 13, 15, 20]). In this case, the
analysis requires some compatibility conditions of the velocity sets F with the state constraint (called ‘existence
of inward/outward pointing conditions’), which conveys more restrictive assumptions on F and is based on some
distance estimates results. The discussion on these technical aspects together with the appropriate assumptions
which allow to revisit our results in the context of the state constrained Bolza problems goes beyond the main
purpose of the present paper and is part of an ongoing project (cf. [3]).

The paper is organized as follows. In Section 2 we display the employed notation, the invoked assumptions
(together with an hypotheses reduction technique), our main results (Thms. 2.1 and 2.2) accompanied by
some refinements and a discussion based on three illustrative examples. The third section is dedicated to some
preliminary results. Section 4 provides the proof of Theorem 2.1, which is split into three main steps. The proof
of Theorem 2.2 is provided in Section 5.

2. Main results

2.1. Notation

In the paper we write R+ the set of non negative real numbers, i.e. {x ∈ R | r ≥ 0}, and B for the closed unit
ball in Rn. We denote the Lebesgue subsets of [S, T ] and the Borel subsets of Rm by L and Bm respectively.
The (associated) product σ-algebra of sets in [S, T ] × Rm is written L × Bm. We denote by Lp([α, β],Rn)
the space of Lp functions for the Lebesgue measure, that are defined on [α, β], and take values in Rn. We
write W 1,1([α, β],Rn), the space of absolutely continuous function for the Lebesgue measure endowed with
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the norm:

‖f‖W 1,1 := |f(α)|+
∫ β

α

|ḟ(s)|ds, for all f ∈W 1,1([α, β],Rn).

Let D ⊂ Rm, we denote by coD, D and coD respectively the convex hull, the closure and the closed convex
hull of D. The polar cone D∗ to a subset D is given by:

D∗ := {v ∈ Rm | ∀w ∈ D, v · w ≤ 0}.

For arbitrary nonempty closed sets in Rn, C ′ and C, we denote by dH(C,C ′) the ‘Hausdorff distance’ between
C and C ′:

dH(C,C ′) := inf{β > 0 |C ′ ⊂ C + βB} ∨ inf{β > 0 |C ⊂ C ′ + βB}.

Take a closed set C ⊂ Rm and x ∈ Rm. Then miny∈C{|x− y|} is the distance of x from the set C and is written
dC(x). If f : C ⊂ Rm → R is a locally bounded function, we denote its lower (resp. upper) semicontinous
envelope by:

f∗(x) := lim inf
y

C→x
f(y)

resp. f∗(x) := lim sup
y

C→x

f(y)

, for every x ∈ C.

The notation y
C→ x means that we are considering convergent sequences (yi)i∈N such that yi → x, and each

element yi belongs to C. An increasing function ω : R+ → R+ is a modulus of continuity if lims→0 ω(s) = 0.
We also recall some basic concepts and tools coming from nonsmooth analysis (detailed dissertations of which

can be found in the monographs [1, 5, 7, 9, 20]). Consider a set D ⊂ Rm, a point x ∈ D and a multifunction
G(·) : D  Rm. The limit inferior and the limit superior of G(·) at x along D (in the Kuratowski sense) are the
sets

lim inf
y

D→x
G(y) :=

{
v ∈ Rm | lim sup

y
D→x

dG(y)(v) = 0
}
,

lim sup
y

D→x

G(y) :=
{
v ∈ Rm | lim inf

y
D→x

dG(y)(v) = 0
}
.

The Bouligand tangent cone (alternatively referred to as contingent cone) TC(x) to a closed set C ⊂ Rm at
x ∈ C is defined by:

TC(x) :=

{
v ∈ Rm | lim inf

h→0+

dC(x+ hv)

h
= 0

}
= lim sup

h→0+

C − x
h

.

The proximal normal cone to C at x ∈ C, denoted NP
C (x), is defined by:

NP
C (x) := {η ∈ Rm | ∃M ≥ 0 s.t. η · (y − x) ≤M |y − x|2, ∀y ∈ C}.

The strict normal cone N̂C(x) to C at x is defined as follows

N̂C(x) :=
{
η ∈ Rm | lim sup

y
C→x

|y − x|−1 η · (y − x) ≤ 0
}
.
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We have N̂C(x) = [TC(x)]
∗

and

NP
C (x) ⊂ N̂C(x). (2.1)

Consider an extended valued function ϕ : Rm → R ∪ {±∞}. We write dom (ϕ) := {x ∈ Rm |ϕ(x) 6= ±∞},
epiϕ := {(x, r) ∈ Rm+1 | r ≥ ϕ(x)}, and hypϕ := {(x, r) ∈ Rm+1 | r ≤ ϕ(x)}. Take x ∈ dom (ϕ) and d ∈ Rm.
The lower Dini derivative (also called the contingent epiderivative, cf. [1, 5, 16]) of ϕ at x in the direction
d ∈ Rm, denoted D↑ϕ(x, d), is defined by:

D↑ϕ(x, d) := lim inf
h↓0
e→d

h−1(ϕ(x+ he)− ϕ(x)).

Similarly, one can also define the upper Dini derivative (alternatively referred to as the contingent hypoderiva-
tive), of ϕ at x in the direction d ∈ Rm, denoted D↓ϕ(x, d):

D↓ϕ(x, d) := lim sup
h↓0
e→d

h−1(ϕ(x+ he)− ϕ(x)).

We evoke the following useful relations (see [1]):

Tepiϕ (x, ϕ(x)) = epi D↑ϕ(x, ·), (2.2)

and

Thypϕ (x, ϕ(x)) = hyp D↓ϕ(x, ·). (2.3)

We recall also that if U is an extended valued function defined on [S, T ] × Rn, taking ε ∈ {1,−1}, then for
(t, x) ∈ dom (U) we can use a simpler expression for D↑U((t, x), (ε, d)):

D↑U((t, x), (ε, d)) = lim inf
h↓0
e→d

h−1(U(t+ εh, x+ he)− U(t, x)).

2.2. Hypotheses

In this paper we shall invoke the following hypotheses: for every given positive number R0, there exist
functions cF (·) ∈ L1([S, T ],R+) and kF (·) ∈ L1([S, T ],R+), a modulus of continuity ω(·) : R+ → R+, and
constants c0 > 0, M0 > 0 such that:

(H1): (i) The multivalued function F : [S, T ] × Rn  Rn takes convex, closed, nonempty values. For every
x ∈ Rn, F (·, x) is Lebesgue mesurable on [S, T ].

(ii) The function g : Rn → R ∪ {+∞} is lower semicontinuous, with nonempty domain.
(H2): (i) For almost every t ∈ [S, T ] and x ∈ Rn

F (t, x) ⊂ cF (t)(1 + |x|)B.

(ii) For all (t, x) ∈ [S, T ]×R0B

F (t, x) ⊂ c0B.
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(H3): (i)

dH(F (t, x′), F (t, x)) ≤ ω(|x− x′|), for all x, x′ ∈ R0B and t ∈ [S, T ].

(ii)

F (t, x′) ⊂ F (t, x) + kF (t)|x− x′|B, for all x, x′ ∈ R0B and for a.e. t ∈ [S, T ].

(H4): (i) For each x ∈ Rn, s ∈ [S, T [, and t ∈]S, T ] the following limits (in the sense of Kuratowski) exist and
are nonempty

F (s+, x) := lim
s′↓s

F (s′, x) and F (t−, x) := lim
t′↑t

F (t′, x).

(ii) For almost every s ∈ [S, T [ and t ∈]S, T ], and every x ∈ Rn we have

F (s+, x) = F (s, x) and F (t−, x) = F (t, x).

(H5): (i) The Lagrangian L : [S, T ]×Rn×Rn −→ R is L×Bn+n-measurable. For every t ∈ [S, T ] and x ∈ Rn,
L(t, x, ·) is convex.

ii) L is locally bounded in the following sense

|L(t, x, v)| ≤M0, for all (t, x, v) ∈ [S, T ]×R0B× 2c0B.

(H6): (i) |L(t, x′, v)− L(t, x, v)| ≤ ω(|x− x′|), for all x, x′ ∈ R0B, t ∈ [S, T ] and v ∈ c0B.
(ii) L(t−, x, v) := limt′↑t L(t′, x, v) exists for every (t, x, v) ∈]S, T ]×R0B× c0B, and

L(t−, x, v) = L(t, x, v) for a.e. t ∈]S, T ] and for all (x, v) ∈ R0B× c0B.
(iii) L(s+, x, v) := lims′↓s L(s′, x, v) exists for every (s, x, v) ∈ [S, T [×R0B× c0B, and

L(s+, x, v) = L(s, x, v) for a.e. s ∈ [S, T [ and for all (x, v) ∈ R0B× c0B.

2.2.1. A priori boundedness and hypotheses reduction technique

We observe that condition (H2) guarantees a well-known a priori uniform boundedness property for
the F -trajectories. More precisely, if we take initial data (t, x) ∈ [S, T ] × Rn and an F -trajectory y ∈
W 1,1([t, T ],Rn) such that y(t) = x, then for every s ∈ [t, T ], y(s) ∈ (1 + |x|) exp

(∫ T
S
cF (s)ds

)
B. Set R0 :=

(1 + |x|) exp
(∫ T

S
cF (s)ds

)
, then, owing to (H2) ii), for almost every s ∈ [t, T ], ẏ(s) ∈ c0B. As a consequence,

once we fix the initial data (t, x), using a standard hypotheses reduction argument (cf. [4] or [20]), when we are
interested in studying the behaviour of the value function at (t, x), we can impose much stronger assumptions.

More precisely, we introduce the multifunction F̂ : [S, T ]× Rn  Rn

F̂ (s, y) :=

{
F (s, y) if |y| ≤ R0

F (s,R0y/|y|) if |y| > R0 ,

and the function L̃ : [S, T ]× Rn × Rn −→ R

L̂(s, y, v) :=

{
L(s, y, v) if |y| ≤ R0

L(s,R0y/|y|, v) if |y| > R0 .
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The multifunction F̂ (·, ·) and the function L̂(·, ·, ·) satisfy hypotheses (H1), (H2)∗, (H3)∗, (H4), (H5)∗ and (H6)∗,
where we denote by (H2)∗, (H3)∗, (H5)∗ and (H6)∗ the global (stronger) version of conditions (H2), (H3), (H5)
and (H6), in which we have removed the constant R0.

The data of the problem (Pt,x) involving either (F,L) or (F̂ , L̂) do coincide in a neighbourhood of the
reference point (t, x). It follows that in the forthcoming analysis we can invoke the more restrictive version of
conditions (H1)–(H6) without loss of generality.

2.3. Characterizations of lower semicontinuous value functions

We consider the following family of minimization problems indexed by initial data (t, x) ∈ [S, T ]× Rn:

(Pt,x)


Minimize

∫ T
t
L(s, x(s), ẋ(s))ds+ g(x(T ))

over the arcs x ∈W 1,1([t, T ],Rn) satisfying

ẋ(s) ∈ F (s, x(s)), for almost every s ∈ [t, T ],

x(t) = x.

We recall that the value function V : [S, T ]× Rn → R ∪ {+∞} is defined by the infimum cost for (Pt,x):

V (t, x) = inf(Pt,x), for all (t, x) ∈ [S, T ]× Rn.

The first result provides a characterization of lower semicontinuous extended valued value functions in a
generalized sense involving the concepts of Dini derivative and proximal normal (to the epigraph); these are
sometimes referred to as “lower Dini solutions” and “proximal solutions” (cf. [7, 20]).

Theorem 2.1. (Characterization of lower semicontinuous extended valued value functions) Assume
(H1)–(H6). Let U : [S, T ]×Rn → R ∪ {+∞} be an extended valued function. Then the assertions (a), (b) and
(c) below are equivalent.

(a) The function U is the value function for (Pt,x): U = V .

(b) The function U is lower semicontinuous and satisfies:
i) for every (t, x) ∈ ([S, T [×Rn) ∩ dom(U)

inf
v∈F (t+,x)

[
D↑U((t, x), (1, v)) + L(t+, x, v)

]
≤ 0 ;

ii) for every (t, x) ∈ (]S, T ]× Rn) ∩ dom(U)

sup
v∈F (t−,x)

[
D↑U((t, x), (−1,−v))− L(t−, x, v)

]
≤ 0 ; (2.4)

iii) For all x ∈ Rn, U(T, x) = g(x).

(c) The function U is lower semicontinuous and satisfies:
i) for every (t, x) ∈ (]S, T [×Rn) ∩ dom(U)

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + λL(t+, x, v)

]
≤ 0, for all (ξ0, ξ1,−λ) ∈ NP

epiU ((t, x), U(t, x)) ;
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ii) for every (t, x) ∈ (]S, T [×Rn) ∩ dom(U)

ξ0 + inf
v∈F (t−,x)

[
ξ1 · v + λL(t−, x, v)

]
≥ 0, for all (ξ0, ξ1,−λ) ∈ NP

epiU ((t, x), U(t, x)) ; (2.5)

iii) for every x ∈ Rn,

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) = U(S, x),

and

lim inf
{(t′,x′)→(T,x) | t′<T}

U(t′, x′) = U(T, x) = g(x).

We consider now the case when the final cost is lower semicontinuous and locally bounded. In this case
it is immediate to see that the value function acquires the same properties. In presence of a locally bounded
candidate U to be a solution to an Hamilton-Jacobi equation, a well-known approach in viscosity solutions
theory suggests to consider its lower and upper semicontinuous envelopes and check whether the properties of
supersolution and subsolution in the viscosity sense are satisfied (cf. [2]). From the perspective developed in our
paper, this idea leads to a notion of viscosity solution expressed in terms of strict normals to the epigraph and
the hypograph of the candidate solution U .

Theorem 2.2. (Characterization of lower semicontinuous locally bounded value functions) Assume
(H1)–(H6). Suppose, in addition, that g is locally bounded and satisfies (g∗)∗ = g. Let U : [S, T ]× Rn → R be
a locally bounded function. Then, the assertions (a), (b) and (c) of Theorem 2.1 are equivalent to (d) below.

(d) U is lower semicontinuous and satisfies:
i) For every (t, x) ∈]S, T [×Rn

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + λL(t+, x, v)

]
≤ 0, for all (ξ0, ξ1,−λ) ∈ N̂epiU ((t, x), U(t, x)) ;

ii) for every (t, x) ∈]S, T [×Rn

− ξ0 + sup
v∈F (t+,x)

[
−ξ1 · v − λL(t+, x, v)

]
≤ 0, for all (−ξ0,−ξ1, λ) ∈ N̂hypU∗((t, x), U∗(t, x)) ; (2.6)

iii) for every x ∈ Rn,

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) = U(S, x),

U(T, x) = g(x),

and

U∗(T, x) = g∗(x).

If the condition (g∗)∗ = g in Theorem 2.2 is removed, then the implication is valid only in one sense.

Proposition 2.3. Assume (H1)–(H6) are satisfied and that g is locally bounded. Let U : [S, T ]× Rn → R be
a locally bounded function. Then, the assertions (a), (b) or (c) of Theorem 2.1 imply (d) of Theorem 2.2.
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Imposing also the lower semicontinuity of L w.r.t. t, we obtain the following result.

Proposition 2.4. Assume (H1)–(H6). If, in addition, we suppose that L( · , x, v) is a lower semicontinuous
function for all (x, v) ∈ R0B × c0B, then the assertions of Theorem 2.1, Theorem 2.2 and Proposition 2.3
remain valid when we replace L(t+, x, v) by L(t, x, v) in conditions (b) i), (c) i) and (d) i).

Remark 2.5. (i) The characterizations (c) and (d) of the value function V (·, ·) are expressed in terms of
proximal normals to its epigraph, and strict normals to its epigraph and hypograph. Invoking the well-known
relations between subdifferentials (superdifferentials) of a given function and the normal vectors to its epi-
graph (and hypograph) these properties can be alternatively rewritten considering proximal subdifferentials,
and (Fréchet) subdifferentials and superdifferentials of V (·, ·) at points (t, x) belonging to the domain of V (·, ·).
In [4], for instance, where the velocity set F has the same discontinuous behaviour, characterizations of the
values function are provided by conditions involving both horizontal and non-horizontal proximal subdiffer-
entials. Here, we prefer to use the formulation with normal vectors because it summarizes in a concise way
the characterization of interest, which in our case has to take into consideration also the Lagrangian term L.
Moreover, the normal vectors expression highlights the somewhat ‘abnormal’ feature of the horizontal normal
vectors (ξ0, ξ1, λ = 0), which corresponds to the case in which the Lagrangian disappears in conditions (c) and
(d). The contribution of horizontal normals can be easily removed when ‘F is continuous’ (cf. [12, 20]) owing
to the well-known (Rockafellar) horizontal approximation theorem (cf. [9]), and it is not clear whether this
simplification procedure would be in general applicable in the discontinuous context (cf. the issue raised in
Remark 2.2-(d) of [4]).

(ii) Conditions in (b), (c) and (d) are formulated taking into account particular left and right limits w.r.t. t of
F and L. For the Mayer problem, in [4] it is shown that the role of the left/right limits is crucial to characterize
the value function, and assertions (b) and (c) become in general false if we try to exchange the role of those
limits. As one may expect, our results for Bolza problems are consistent with [4]. We underline the fact that
also for the viscosity solutions characterization (d) the role of the right limit is crucial as illustrated by Example
2.6. Finally we observe that, in (b) i), (c) i) and (d) i) of Theorems 2.1 and 2.2 we can avoid consideration of
the limits of L w.r.t. t, imposing also the lower semicontinuity of L in t (see Prop. 2.4).

(iii) The characterization (d) provided by Theorem 2.2 concerns lower semicontinuous value functions for optimal
control problems having a terminal cost g which is locally bounded and satisfies the condition (g∗)∗ = g. A
natural question would be:

Is that possible to characterize V (·, ·) in the sense of Theorem 2.2 for optimal control problems removing
the conditions ‘g is locally bounded or (g∗)∗ = g’?

If g is a lower semicontinuous extended valued function (taking the value +∞ at some points), the issue of
interpreting the viscosity subsolution replacing the condition (d)-ii) immediately arises and it is not clear how
we have to interpret U∗. Taking the lim sup operator we would lose crucial information on the boundary of
dom(V ) and the viability approach would not be applicable or give the desired information. On the other hand,
if we consider the smaller (extended valued) upper semicontinuous function bigger than V on the domain of
V, under some circumstances (such as V is continuous on its domain and dom(V ) is a closed set) we would
be induced to end up with the function V − which coincides with V on dom(V ) and takes the value −∞
on [S, T ] × Rn \ dom(V ). The latter technique would not help either, as clarified by Example 2.7. Condition
(g∗)∗ = g can be removed if we are interested in proving that the value function is a viscosity solution in the
sense of (d) of Theorem 2.2 (as established by Prop. 2.3). However, condition (g∗)∗ = g becomes far from being
just a technical hypothesis and emerges as crucial if we want a characterization (comparison result) for the value
function. This point is illustrated in Example 2.8.

(iv) The results above are still valid if we start from a slightly more general context in which the Lagrangian
in now extended valued L : [S, T ] × Rn × Rn −→ R ∪ {+∞} and assumption (H5)-ii) is replaced by a ‘local
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boundedness a.e. in t’ in the following sense: there exists a set of full measure E ⊂ [S, T ] such that

|L(t, x, v)| ≤M0, for all (t, x, v) ∈ E ×R0B× 2c0B .

Indeed, using (H6) we can reduce attention to the case in which L is locally bounded in the sense of (H5), and
then the analysis remains the same.

(v) Assertions (c) and (d) of Theorems 2.1 and 2.2 can be easily reformulated in terms of an Hamiltonian
function

Hλ(t, x, p) := inf
v∈F (t,x)

[p · v + λL(t, x, v)] .

Observe that under our assumptions Hλ(·, x, p) turns out to be continuous on the complement of a zero-measure
subset of [S, T ] and has everywhere one-sided limits Hλ(t+, x, p) and Hλ(t−, x, p).

2.4. Examples

Example 2.6. Consider the optimal control problem

(Pt0,x0)


Minimize g(x(1)) +

∫ 1

0
L(t, x(t), ẋ(t))dt

over arcs x(·) ∈W 1,1([t0, 1],R) such that
ẋ(t) ∈ F (t) for a.e. t ∈ [t0, 1],
x(t0) = x0 ,

where t0 ∈ [0, 1], x0 ∈ R,

F (t) :=

{
[−1, 1], if 0 ≤ t ≤ 1

2 ,

[− 1
2 ,

1
2 ], if 1

2 < t ≤ 1,

g(x) :=

{
1 + x, if x > 0,

x, if x ≤ 0,

and

L(t, x, v) :=

{
(v + 1)2, if 0 < t ≤ 1

2 ,

(v + 1
2 )2 + 2, if 1

2 < t ≤ 1.

The value function V : [0, 1]× R→ R is

V (t, x) =


x+ t+ 5

4 , if 0 ≤ t ≤ 1
2 and x+ t− 3

4 > 0,

x+ t+ 1
4 , if 0 ≤ t ≤ 1

2 and x+ t− 3
4 ≤ 0,

x− 3t
2 + 5

2 , if 1
2 < t ≤ 1 and x+ t

2 −
1
2 > 0,

x− 3t
2 + 3

2 , if 1
2 < t ≤ 1 and x+ t

2 −
1
2 ≤ 0.

As a result of a routine analysis, one can see that conditions (b)–(c) of Theorem 2.1 and condition (d) of
Theorem 2.2 are satisfied by V . Here, we only display some calculations at the point (t0, x0) = (1

2 ,
1
4 ), which is
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of particular interest since it carries information about the discontinuous behaviour of the data F , L and g at
the same time. Consider, for instance, (d) ii) of Theorem 2.2. Take any (u, v) ∈ R2. We have:

D↓V
∗
((

1

2
,

1

4

)
, (u, v)

)
=


u+ v, if u ≤ 0 and u+ v ≥ 0,
−∞, if u ≤ 0 and u+ v < 0,
− 3u

2 + v, if u > 0 and u
2 + v ≥ 0,

−∞, if u > 0 and u
2 + v < 0,

and hence:

ThypV ∗

((
1

2
,

1

4

)
, V ∗

(
1

2
,

1

4

)
= 2

)
=

(u, v, `) ∈ R3
∣∣

u ≤ 0

u+ v ≥ 0

` ≤ u+ v

or


u > 0
u
2 + v ≥ 0

` ≤ − 3u
2 + v

 .

By polarity, we deduce that:

N̂hypV ∗

((
1

2
,

1

4

)
, 2

)
=

{
(−ξ0,−ξ1, λ) |λ ∈ R+, ξ

1 ≥ λ, ξ1 ≥ ξ0,−ξ0 +
ξ1

2
− 2λ ≤ 0

}
.

Consistently with condition (d) ii) in Theorem 2.2, the value function satisfies:

−ξ0 + max
v∈[− 1

2 ,
1
2 ]

{
−ξ1v − λ

[(
v +

1

2

)2

+ 2

]}
= −ξ0 +

ξ1

2
− 2λ ≤ 0,

for every (−ξ0,−ξ1, λ) ∈ N̂hypV ∗
((

1
2 ,

1
4

)
, 2
)
.

On the other hand, switching the roles of F
(

1
2

+
)

and F
(

1
2

−
)

in the analysis above, we would not obtain

the validity of condition (d) ii) since, taking the vector ( 3
2 ,−1, 1) ∈ N̂hypV ∗

((
1
2 ,

1
4

)
, 2
)
, we obtain:

3

2
+ max
v∈[−1,1]

{
−v −

[(
v +

1

2

)2

+ 2

]}
=

3

2
− 5

4
=

1

4
> 0.

Similarly, switching the roles of L
(

1
2 , x0, v

)
and L

(
( 1

2 )+, x0, v
)

for the same normal vector, we would not
obtain condition (d) ii) either:

3

2
+ max
v∈[− 1

2 ,
1
2 ]

{
−v − (v + 1)

2
}

=
3

2
+

1

4
=

7

4
> 0.

Even if we switched limits for both L and F , condition (d) ii) would not be satisfied since we have:

3

2
+ max
v∈[−1,1]

{
−v − (v + 1)

2
}

=
3

2
+ 1 =

5

2
> 0.

This example shows that condition (d) ii) must involve the right limits F (t+, x) and L(t+, x, v), for, if the
limits were taken from the other side, the assertion would be false in general. Similar considerations show the
fundamental significance of the right limits also in condition (d) i) of Theorem 2.2.

Theorem 2.2 provides a characterization for the class of lower semicontinuous functions which are also locally
bounded. One might wonder whether this result can be generalized to the class of lower semicontinuous extended
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valued functions, like for the characterization provided by Theorem 2.1. The major difficulty comes from inter-
preting the concept of viscosity subsolution (which would correspond to condition (d) ii)) on the boundary of
the domain of the candidate to be value function. The notion of viscosity subsolution used in our paper involves
consideration of the upper semicontinuous envelope V ∗, which has a clear meaning if V is locally bounded. On
the other hand, if V were extended valued (with a closed nonempty domain), one might be tempted to take
into account the upper semicontinuous extended valued function V −:

V −(t, x) :=

{
V (t, x), if (t, x) ∈ dom(V ),
−∞, elsewhere.

The following simple example shows that this would not provide the desired effect, even if F is continuous
and the value function V is continuous on dom(V ).

Example 2.7. Consider the optimal control problem:
Minimize g(x(1))
over arcs x(·) ∈W 1,1([t0, 1],R) such that
ẋ(t) ∈ F (t) for a.e. t ∈ [t0, 1],
x(t0) = x0 ,

where t0 ∈ [0, 1], x0 ∈ R,

g(x) :=

{
+∞, if x > 0,
x, if x ≤ 0,

and for all (t, x, v) ∈ [0, 1]× R× R,

F (t) := [−1, 1].

The value function V : [0, 1]× R→ R ∪ {+∞} is:

V (t, x) =

{
+∞, if x+ t− 1 > 0,
x+ t− 1, if x+ t− 1 ≤ 0.

Then

V −(t, x) =

{
−∞, if x+ t− 1 > 0,
x+ t− 1, if x+ t− 1 ≤ 0.

Let us consider (t0, x0) ∈ ]0, 1[×R such that x0 + t0 + 1 = 0. We have:

N̂hypV − ((t0, x0), V (t0, x0) = 0) =
{

(−ξ0,−ξ0, λ) |λ ∈ R+, ξ
0 ≤ λ

}
.

However if we use (1, 1, 1) ∈ N̂hypV − ((t0, x0), V (t0, x0)), then condition (d) ii) is violated since:

1 + max
v∈[−1,1]

{v} = 1 + 1 > 0.

Observe that the issue here is not due to the fact that horizontal vectors might be involved in the character-
ization, indeed the vector (1, 1, 1) ∈ N̂hypV − ((t0, x0) , V (t0, x0)), considered above, is definitely non-horizontal
and corresponds to the superdifferential p = (−1,−1) ∈ ∂+V (t0, x0).
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Example 2.8. Consider the Mayer problem:
Minimize g(x(1))
over arcs x(·) ∈W 1,1([t0, 1],R) such that
ẋ(t) ∈ F (t) for a.e. t ∈ [t0, 1],
x(t0) = x0 ,

where t0 ∈ [0, 1], x0 ∈ R,

g(x) :=

{
1, if x 6= 0,
0, if x = 0,

and for all (t, x) ∈ [0, 1]× R,

F (t) := [0, 1].

The value function V : [0, 1]× R→ R is:

V (t, x) =

{
0, if x+ 1− t ≥ 0 and x ≤ 0,
1, if x+ 1− t < 0 or x > 0.

One can easily check that V is a vicosity solution, i.e. satisfies (d) i)–iii). Consider the function U : [0, 1]×
R→ R:

U(t, x) :=

 0, if x = 0,
1
2 , if x 6= 0, x+ 1− t ≥ 0 and x ≤ 0,
1, if x+ 1− t < 0 or x > 0.

Then U is also a viscosity solution in the sense of condition (d). This shows that, if we do not have the property
(g∗)∗ = g, we do not obtain the uniqueness of the viscosity solution in the sense of (d).

3. Preliminary results

We observe that, under our reference assumptions (H1)–(H6) (or under their more restrictive form provided
by the a priori boundedness argument), for every (t, x) ∈ [S, T ]× Rn, the problem

inf
x(·)F -trajectory on [t,T ], x(t)=x

J(x(·)) :=

∫ T

t

L(s, x(s), ẋ(s))ds+ g(x(T ))

has a minimizer. This is due to the fact that, with respect to the W 1,1 topology, the set of F -trajectories
{x(·)F -trajectory on [t, T ], x(t) = x} is compact (cf. [7], Thm. 6.39 or [20], Thm. 2.5.3) and the functional J(·)
is lower semicontinuous.

Taking into account (H5)∗, we can state a local Lipschitz regularity lemma for the function L(s, y, ·) (locally
uniformly with respect to (s, y)), the proof of which is based on standard arguments on convex functions, and
therefore it is omitted. We just observe that the role of the number 2c0 (instead of the simpler c0) allows to
deduce the Lipschitz regularity of L in v in a ball with the smaller radius c0.
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Lemma 3.1. Assume (H5)∗. Then, there exists a positive constant kL such that for every (s, y) ∈ [S, T ]×Rn,
and v, v′ ∈ c0B:

|L(s, y, v)− L(s, y, v′)| ≤ kL|v − v′|. (3.1)

In the following lemma we establish a further (uniform) regularity property of the Lagrangian, which we will
invoke several times in our analysis.

Lemma 3.2. (i) Assume that L satisfies (H5)∗ i), (H6)∗ i) and (H6)∗ iii) . Let t ∈ [S, T [ and x ∈ Rn. Then,
for every ε > 0, there exists δ > 0 such that, for every y ∈ x+ δB, for every real s ∈ ]t, t+ δ]∩ [S, T ], and every
u ∈ c0B:

L(s, y, u) ≥ L(t+, x, u)− ε. (3.2)

(ii) Assume that L satisfies (H5)∗ i) and (H6)∗ i)-ii). Let t ∈ ]S, T ] and x ∈ Rn. Then, for every ε > 0, there
exists δ > 0 such that, for every y ∈ x+ δB, for every s ∈ [t− δ, t[∩[S, T ], and every u ∈ c0B:

L(s, y, u) ≥ L(t−, x, u)− ε. (3.3)

(iii) Assume that L satisfies (H5)∗ and (H6)∗ i), and that L( · , x, v) is lower semicontinuous for all (x, v) ∈
R0B× c0B. Let t ∈ [S, T [ and x ∈ Rn. Then, for every ε > 0, there exists δ > 0 such that, for every y ∈ x+ δB,
for every s ∈ [t− δ, t+ δ] ∩ [S, T ], and for every u ∈ c0B:

L(s, y, u) ≥ L(t, x, u)− ε. (3.4)

Proof. We start proving i). Fix any ε > 0. Take any v ∈ c0B. Invoking (H6)∗ iii), there exists 0 < δ1(v, ε) < 1
such that, for all s ∈ ]t, t+ δ1(v, ε)] ∩ [S, T ], we have

L(s, x, v) ≥ L(t+, x, v)− ε

4
. (3.5)

Invoking Lemma 3.1 we also know that, for all τ ∈ [S, T ] and v, u ∈ c0B,

|L(τ, x, v)− L(τ, x, u)| ≤ kL|u− v|. (3.6)

Set δ2(v, ε) := min{δ1(v, ε); ε
4kL
}(> 0). Then, combining inequalities (3.5) and (3.6) (this is used twice, i.e. for

τ = t+ and τ = s) yields: for every s ∈ ]t, t+ δ2(v, ε)] ∩ [S, T ], and every u ∈ (v + δ2(v, ε)B) ∩ c0B we have

L(s, x, u) ≥ L(t+, x, u)− 3

4
ε. (3.7)

Using the compactness of c0B, from the open cover of the set c0B ⊂
⋃
v∈c0B v + δ2(v, ε)B̊ (B̊ is the open unit

ball) we can extract a finite subcover:

c0B ⊂
N⋃
j=1

vj + δ2(vj , ε)B̊.

Define δ3 := minj=1,...,N δ2(vj , ε). We obtain:

L(s, x, u) ≥ L(t+, x, u)− 3

4
ε, (3.8)
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for all s ∈ ]t, t+ δ3] ∩ [S, T ], and every u ∈ c0B. From (H6)∗ i), we know that there exists 0 < δ ≤ δ3 such that
ω(δ) ≤ 1

4ε, and so

|L(s, y, u)− L(s, x, u)| ≤ 1

4
ε, for all y ∈ x+ δB.

As a consequence, from this inequality and from (3.8), we deduce the validity of (3.2). The proofs of ii) and
iii) follow along the same lines. Indeed, in the first step of the proof, we can use respectively (H6)∗ ii) and the
lower semicontinuity of L( · , x, v) instead of (H6)∗ iii) to obtain (3.5) on the suitable time interval.

We now introduce the auxiliary Lagrangian L− which will be used as a technical tool in the characterization
of solutions to the Hamilton-Jacobi equation. Take any (t, x) ∈ ]S, T ]× Rn. We consider the following modulus
of continuity of F with respect to time (from the left) θ−t : [0, t− S]→ R+, defined by: for every h ∈ [0, t− S],

θ−t (h) :=

{
sup 0<t−s≤h

|x−y|≤c0h
dH(F (s, y), F (t−, x)), if h 6= 0,

0, otherwise.
(3.9)

Write K := exp
(∫ T

S
kF (s)ds

)
. If we take also a vector v ∈ F (t−, x), we define the following set:

Z(t, x, v) := {z(·) F -trajectory on [S, t] | z(t) = x (3.10)

and ‖x+ (· − t)v − z(·)‖L∞([t−h,t],Rn) ≤ Kθ−t (h)h, for all h ∈ [0, t− S]}.

The Lagrangian L− : ]S, T ]× Rn × Rn → R ∪ {+∞} is defined as follows: for every (t, x, v) ∈]S, T ]× Rn × Rn,

L−(t, x, v) :=

lim inf
h↓ 0

h−1 inf

{∫ t

t−h
L(s, z(s), ż(s))ds

∣∣∣ z ∈ Z(t, x, v)

}
, if v ∈ F (t−, x),

L(t−, x, v), otherwise .

(3.11)

The map L− arises in a somehow natural way in some crucial steps of our analysis (cf. the proofs of Prop. 3.3 and
Thm. 2.1). A similar auxiliary Lagrangian function was introduced in [10, 11] to investigate characterization of
solutions to Hamilton-Jacobi equations in the context of calculus of variations. In our framework the expression
of L− is more involved since we have to take account of the velocity constraint given by the differential inclusion
ż(s) ∈ F (s, z(s)) and the possible different (from the left and from the right) limit behaviour of F w.r.t. t.

Proposition 3.3. Suppose that (H1), (H2)∗, (H3)∗, (H4) and (H5)∗ are satisfied.
(i) Then, for all (t, x, v) ∈ ]S, T ]× Rn × Rn, we have L−(t, x, v) ∈ R and

L(t−, x, v) ≤ L−(t, x, v). (3.12)

(ii) If, in addition, L satisfies (H6)∗ i)-ii), then for every (t, x, v) ∈ ]S, T ]× Rn × Rn we also obtain

L−(t, x, v) ≤ L(t−, x, v). (3.13)

Proof. (i) Consider (t, x) ∈ ]S, T ] × Rn. We can assume that v ∈ F (t−, x), since otherwise the stated inequal-
ity immediately follows from the definition of L−. Using Filippov existence theorem (cf. [20], Thm. 2.4.3),

we have Z(t, x, v) 6= ∅. As a consequence, we obtain inf
{∫ t

t−h L(s, z(s), ż(s))ds | z ∈ Z(t, x, v)
}
6= +∞, for all

h ∈ ]0, t− S].
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Invoking the a priori uniform boundedness of the F -trajectories, it is straightforward to see that all the arcs
in Z(t, x, v) are uniformly bounded and uniformly Lipschitz continuous. Since L is bounded in the sense of
condition (H5)∗, we deduce that there exists a constant M0 > 0 such that, for every z(·) ∈ Z(t, x, v),

|L(s, z(s), ż(s))| ≤M0, for almost every s ∈ [S, t].

It follows that, for all h ∈]0, t − S]:
∣∣∣inf

{∫ t
t−h L(s, z(s), ż(s))ds | z ∈ Z(t, x, v)

}∣∣∣ ≤ hM0, which implies that

|L−(t, x, v)| ≤M0, and therefore L−(t, x, v) ∈ R.

We now establish (3.12). Let ε > 0. For every h ∈ ]0, t− S], small enough, we choose zh ∈W 1,1([S, t],Rn) an
εh-minimizer for the following Lagrange problem:

inf

{∫ t

t−h
L(s, z(s), ż(s))ds

∣∣∣ z ∈ Z(t, x, v)

}
.

Invoking again the a priori boundedness of F -trajectories, the family (żh)h∈]0,t−S] is bounded in L∞ by c0.
Using (3.3) of Lemma 3.2 and Jensen’s inequality, we obtain for all h ∈ ]0, t− S]:

1

h

∫ t

t−h
L(s, zh(s), żh(s))ds ≥ 1

h

∫ t

t−h
L(t−, x, żh(s))ds− ε ≥ L

(
t−, x,

1

h

∫ t

t−h
żh(s)ds

)
− ε.

From standard analysis, we also know that limh↓0
1
h

∫ t
t−h żh(s)ds = v. Passing to the limit inferior in the last

equation, we have:

ε+ L−(t, x, v) ≥ L(t−, x, v)− ε,

which confirms (3.12) since ε is arbitrary.

(ii) Consider (t, x) ∈ ]S, T ] × Rn. Again, we can restrict attention to the case v ∈ F (t−, x), since otherwise
the assertion easily follows from the definition of L−, and claim that

L−(t, x, v) ≤ lim
h↓0

sup
0<t−s≤h
|x−y|≤c0h

L(s, y, v). (3.14)

Indeed, using Filippov existence theorem, we can find an F -trajectory z ∈ W 1,1([S, t],Rn), such that z(t) = x
and for every h ∈ [0, t− S]:

‖z − (x+ (· − t)v)‖L∞([t−h,t],Rn) ≤
∫ t

t−h
|ż(s)− v|ds ≤ Kθ−t (h)h, (3.15)

where K = exp
(∫ T

S
kF (s)ds

)
. From Lemma 3.1, there exists kL > 0 such that for every (t′, x′) ∈ [S, T ]× Rn,

v, v′ ∈ c0B:

|L(t′, x′, v)− L(t′, x′, v′)| ≤ kL|v − v′|.
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As a consequence, for every h ∈ ]0, t− S], we have:

inf

{∫ t

t−h
L(s, z(s), ż(s))ds | z ∈ Z(t, h, v)

}
≤
∫ t

t−h
L(s, z(s), ż(s))ds,

≤
∫ t

t−h
L(s, z(s), v)ds+

∫ t

t−h
kL|ż(s)− v|ds

≤ h sup
0<t−s≤h
|x−y|≤c0h

L(s, y, v) + h kLKθ
−
t (h).

Dividing across by h, passing to the limit inferior as h goes to 0, yields (3.14). If L satisfies satisfies also (H6)∗

i)-ii), then:

L−(t, x, v) ≤ lim
h↓0

sup
0<t−s≤h
|x−y|≤c0h

L(s, y, v) = L(t−, x, v),

which confirms (3.13).

We conclude this section recalling a well-known result, referred to as the Weak Invariance/Global Viability
Theorem (cf. [1] or [20]).

Theorem 3.4 (Weak invariance theorem). Take a multifunction Γ : Rk  Rk, an interval [S, T ] and a closed
set D ⊂ Rk. Assume:

(i) The graph of Γ is closed and Γ(x) is a nonempty, convex set for each x ∈ Rk;
(ii) there exists c > 0 such that

Γ(x) ⊂ c(1 + |x|)B for all x ∈ Rk;

(iii) for every x ∈ D we have

min
v∈Γ(x)

ζ · v ≤ 0 for all ζ ∈ NP
D (x).

Then, given any x0 ∈ D, there exists an absolutely continuous function x(·) satisfying ẋ(t) ∈ Γ(x(t)) for a.e. t ∈ [S, T ],
x(S) = x0,
x(t) ∈ D for all t ∈ [S, T ].

4. Proof of Theorem 2.1

The proof has the following structure: we first show that the value function satisfies property (b) of
Theorem 2.1. We subsequently prove that condition (b) implies condition (c). Finally, if a lower semicontinuous
function U satisfies (c) then we show that it coincides with the value function. Each step is highlighted by a
proposition or a theorem statement.

4.1. The value function satisfies (b) of Theorem 2.1

Proposition 4.1. Assume (H1)– (H6). Let V : [S, T ]×Rn → R∪ {+∞} be the value function of the problem.
Then V satisfies (b) i)–iii) of Theorem 2.1.
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Proof. From the definition of V it immediately follows that V (T, ·) = g(·) confirming (b) iii). The lower semi-
continuity of V can be deduced by standard arguments (see for instance [17], Thm. 1.1). We have to prove that
V satisfies (b) i) and (b) ii) of Theorem 2.1.

Step 1. The first part of this step is somewhat standard (cf. [4, 20]). We briefly reproduce this analysis since,
in the second part of this step, it has to be properly combined with suitable properties on the Lagrangian L,
mainly described by Lemma 3.2.

Take (t, x) ∈ ([S, T [×Rn) ∩ dom(V ). Let y ∈W 1,1([t, T ],Rn) be a minimizing F -trajectory for (Pt,x), whose
existence is guaranteed by our assumptions on F and L (see Sect. 3). Using the principle of optimality, for every
δ ∈ ]0, T − t], we have:

V (t+ δ, y(t+ δ))− V (t, x) =

∫ t

t+δ

L(s, y(s), ẏ(s))ds.

From the fundamental theorem of calculus we also have for every δ ∈ ]0, T − t]:

δ−1(y(t+ δ)− y(t)) = δ−1

∫ t+δ

t

ẏ(s)ds.

Let (δi)i∈N be a strictly decreasing sequence of positive real numbers that converges to 0. For every integer
i ∈ N, let us define vi ∈ Rn by:

vi := δ−1
i

∫ t+δi

t

ẏ(s)ds.

From the a priori boundedness of the F -trajectories guaranteed by the hypotheses reduction of Section 2,
|ẏ(s)| ≤ c0 for almost every s ∈ [t, T ]. From this inequality, we deduce that the sequence (vi)i∈N is bounded by
c0. Then, there exists a vector v̄ ∈ c0B such that, up to a subsequence, vi −−−−→

i→+∞
v̄.

Take any p ∈ Rn and i ∈ N. Since F (s+, y(s)) = F (s, y(s)) almost everywhere for each i ∈ N, we have:

p · vi = δ−1
i

∫ t+δi

t

p · ẏ(s)ds ≤ δ−1
i

∫ t+δi

t

max
v∈F (s+,y(s))

p · v ds. (4.1)

But since the function s 7−→ maxv∈F (s+,y(s)) p · v is right continuous at s = t, letting i go to +∞ in equation
(4.1), we have:

p · v̄ ≤ max
v∈F (t+,y(t))

p · v.

Employing the characterization of the closed convex hull of a set by the support function ([19], Thm. 13.1), we
deduce that v̄ ∈ F (t+, y(t)) = F (t+, x).

Using the definition of D↑V ((t, x), (1, v̄)) and the principle of optimality, we obtain:

D↑V ((t, x), (1, v̄)) + L(t+, x, v̄) ≤ lim inf
i→∞

δ−1
i (V (t+ δi, y(t+ δi))− V (t, x)) + L(t+, x, v̄),

= lim inf
i→∞

δ−1
i

∫ t

t+δi

L(s, y(s), ẏ(s))ds+ L(t+, x, v̄),

= lim inf
i→∞

−δ−1
i

∫ t+δi

t

L(s, y(s), ẏ(s))ds+ L(t+, x, v̄). (4.2)
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Fix any ε > 0. We consider the constant δε > 0 given by Lemma 3.2 i) for the reference pair (t, x) ∈ [S, T [×Rn.
Since vi −−−−→

i→+∞
v̄ and L(t+, x, ·) is continuous, there exists N0 ∈ N such that:

|L(t+, x, vi)− L(t+, x, v̄)| ≤ ε, for all i ≥ N0,

and from the continuity of the F -trajectory y(·), we can choose an integer N ≥ N0 such that for every integer
i ≥ N : δi < δε, and for all s ∈ [t, t+ δi], |y(s)− x| ≤ δε. Since for almost every s ∈ [t, T ], |ẏ(s)| ≤ c0, Lemma 3.2
guarantees that for almost every s ∈ [t, t+ δε] ∩ [t, T ],

L(s, y(s), ẏ(s)) ≥ L(t+, x, ẏ(s))− ε.

Thus, for any integer i ≥ N :

δ−1
i

∫ t+δi

t

L(s, y(s), ẏ(s))ds ≥ δ−1
i

∫ t+δi

t

L(t+, x, ẏ(s))ds− ε.

Applying Jensen’s inequality to the convex function L(t, x, ·), we also obtain:

δ−1
i

∫ t+δi

t

L(t+, x, ẏ(s))ds ≥ L

(
t+, x, δ−1

i

∫ t+δi

t

ẏ(s)ds

)
− ε = L

(
t+, x, vi

)
− ε.

We deduce that −δ−1
i

∫ t+δi
t

L(s, y(s), ẏ(s))ds+ L(t+, x, v̄) ≤ 2ε for every integer i ≥ N , and so, from (4.2) we
obtain:

D↑V ((t, x), (1, v̄)) + L(t+, x, v̄) ≤ 2ε.

Since ε is arbitrary, this confirms (b)-i).

Step 2. Let (t, x) ∈ dom(V )∩ ]S, T ] × Rn. Let ṽ ∈ F (t−, x). For every s ∈ [S, t], set y(s) = x + (s − t)ṽ.
Hypotheses on the multifunction F allow us to use the Filippov existence theorem: there exists an F -trajectory
z̃(·) that satisfies z̃(t) = x, such that for every h ∈]0, t− S],

‖z̃ − y‖L∞([t−h,t],Rn) ≤ K
(∫ t

t−h
dF (s,y(s))(ṽ)ds

)
≤ Kθ−t (h)h,

where K = exp
(∫ T

S
kF (s)ds

)
and θ−t is the modulus of continuity defined in (3.9). Recalling the hypotheses

reduction and definition of Z(t, x, ṽ) given in (3.10) (see Sect. 2), it follows that z̃(·) ∈ Z(t, x, ṽ) 6= ∅. For any
h ∈ ]0, t− S], there exists an h2 minimizer zh(·) ∈ Z(t, x, ṽ) of the Lagrange problem:

inf

{∫ t

t−h
L(s, z(s), ż(s))ds

∣∣∣ z ∈ Z(t, x, ṽ)

}
For any h ∈ ]0, t− S], we write vh := h−1(x− zh(t− h)). We obtain:

|ṽ − vh| = h−1|zh(t− h)− y(t− h)| ≤ Kθ−t (h).

We deduce vh −−→
h↓0

ṽ.
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Using the principle of optimality applied to the F -trajectories zh(·), we also have:

V (t− h, x− hvh)− V (t, x) ≤
∫ t

t−h
L(s, zh(s), żh(s))ds, for every h ∈]0, t− S].

It follows that for every h ∈]0, t− S[,

h−1(V (t− h,x− hvh)− V (t, x)) ≤ h−1 inf

{∫ t

t−h
L(s, z(s), ż(s))ds

∣∣∣ z ∈ Z(t, x, ṽ)

}
+ h.

Hence, passing to the limit inferior when h goes to 0 and recalling the definition of L− in (3.11),

D↑V ((t, x), (−1,−ṽ)) ≤ lim inf
h→0

h−1 (V (t− h, x− hvh)− V (t, x)) ≤ L−(t, x, ṽ).

As a consequence, owing to ii) of Proposition 3.3, we obtain:

D↑V ((t, x), (−1,−ṽ)) ≤ L(t−, x, ṽ),

which establishes the validity of (b)-ii), concluding the proof of Proposition 4.1.

4.2. The value function is a proximal solution

In this subsection we prove that any lower semicontinous function U : [S, T ] × Rn → R ∪ {+∞} satisfying
condition (b) from Theorem 2.1 also verifies condition (c) from Theorem 2.1, i.e. is a proximal solution.

Proposition 4.2. Assume (H1)– (H6) and let U : [S, T ]×Rn → R∪{+∞} be a lower semicontinuous function
satisfying (b) i)–iii) from Theorem 2.1. Then U is a proximal solution to (HJE), i.e. satisfies (c) i)–iii).

We shall make use of two technical lemmas, which provide consequences of properties (b) i) and (b) ii) of
Theorem 2.1.

Lemma 4.3. Let U : [S, T ] × Rn → R ∪ {+∞} be a lower semicontinous function. Take any (t, x) ∈
([S, T [×Rn)∩ dom(U). Then, there exists v ∈ F (t+, x), a sequence (vi)i∈N in Rn converging to v, and a strictly
decreasing sequence (hi)i∈N in R+, converging to 0 as i goes to +∞, such that:

lim
i→+∞

h−1
i (U(t+ hi, x+ hivi)− U(t, x)) =

(
inf

w∈F (t+,x)
D↑U((t, x), (1, w)) + L(t+, x, w)

)
− L(t+, x, v).

Assume, in addition, that U satisfies (b) i). Then we have:

lim
i→+∞

h−1
i (U(t+ hi, x+ hivi)− U(t, x)) ≤ −L(t+, x, v). (4.3)

Proof. Fix any (t, x) ∈ ([S, T [×Rn) ∩ dom(U). Write ∆ := infw∈F (t+,x)D↑U((t, x), (1, w)) + L(t+, x, w). Let
(εj)j∈N in R+ be a strictly decreasing sequence that converges to 0. For any j ∈ N, there exists a vector
vj ∈ F (t+, x) such that:

∆ ≤ D↑U((t, x), (1, vj)) + L(t+, x, vj) ≤ ∆ + εj .

Since F (t+, x) is compact, there exists ṽ in F (t+, x) for which, up to a subsequence, (vj)j∈N converges to ṽ.
By definition of the limit inferior, for each j ∈ N, there exists a sequence (vj,i)i∈N in Rn converging to vj and a
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strictly decreasing sequence (hj,i)i∈N in R+ converging to 0 such that:

lim
i→+∞

h−1
j,i (U(t+ hj,i, x+ hj,ivj,i)− U(t, x)) = lim inf

v′→vj ,h′↓0
h′−1(U(t+ h′, x+ h′v′)− U(t, x)).

It follows that we can construct a sequence (ϕ(j))j∈N for which the subsequence (hj,ϕ(j))j∈N is strictly decreasing,
converges to 0, and such that for every j ∈ N∗:

|vj − vj,ϕ(j)| ≤ εj ,

h−1
j,ϕ(j)(U(t+ hj,ϕ(j) , x+ hj,ϕ(j)vj,ϕ(j))− U(t, x)) ∈ [∆− εj − L(t+, x, vj),∆ + 2εj − L(t+, x, vj)]. (4.4)

Write h̃j := hj,ϕ(j) and ṽj := vj,ϕ(j) for each j ∈ N∗. As a consequence, we have limj→+∞ ṽj = ṽ and

limj→+∞ h̃j = 0. Moreover, using the continuity of L(t+, x, ·), we obtain lim
j→+∞

L(t+, x, vj) = L(t+, x, ṽ).

Therefore, letting j go to +∞ in (4.4) yields:

lim
j→+∞

h̃−1
j (U(t+ h̃j , x+ h̃j ṽj)− U(t, x)) = ∆− L(t+, x, ṽ).

If U satisfies (b) i), we have ∆ ≤ 0, which implies

lim
j→+∞

h̃−1
j (U(t+ h̃j , x+ h̃j ṽj)− U(t, x)) ≤ −L(t+, x, ṽ),

and concludes the proof of the lemma.

Lemma 4.4. Let U : [S, T ] × Rn → R ∪ {+∞} be a lower semicontinous function. Assume that U satisfies
(b) ii). Let (t, x) ∈ (]S, T ]× Rn) ∩ dom(U). Then for every v ∈ F (t−, x), there exists a sequence (vi)i∈N in Rn
converging to v and a decreasing sequence (hi)i∈N in R+ which converges to 0, such that:

lim
i→+∞

h−1
i (U(t− hi, x− hivi)− U(t, x)) ≤ L(t−, x, v). (4.5)

Proof. Consider any (t, x) ∈ (]S, T ]× Rn) ∩ dom(U) and v ∈ F (t−, x). We have:

D↑U((t, x), (−1,−v)) ≤ L(t−, x, v).

Using the definition of D↑U , there exists a sequence (vi)i∈N in Rn converging to v and a decreasing sequence
(hi)i∈N in R+, converging to 0, such that:

lim inf
h↓0,vh→v

h−1(U(t− h, t− hvh)− U(t, x)) = lim
i→+∞

h−1
i (U(t− hi, t− hivi)− U(t, x)) ≤ L(t−, x, v),

which concludes the proof.

We are now ready to prove Proposition 4.2. The proof is split into three steps.

Step 1. We first claim that (c) i) from Theorem 2.1 holds: for every (t, x) ∈ (]S, T [×Rn) ∩ dom(U), for every
proximal vector (ξ0, ξ1,−λ) ∈ NP

epiU ((t, x), U(t, x)), we have

ξ0 + min
v∈F (t+,x)

ξ1 · v + λL(t+, x, v) ≤ 0.
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Take any (t, x) ∈ (]S, T [×Rn)∩dom(U) and (ξ0, ξ1,−λ) ∈ NP
epiU ((t, x), U(t, x)). We necessarily have λ ∈ R+.

Invoking the definition of the proximal normal cone, there exists M ∈ R+ such that for every (t′, x′, α′) ∈ epiU :

ξ0 · (t′ − t) + ξ1 · (x′ − x)− λ(α′ − U(t, x)) ≤M(|t− t′|2 + |x′ − x|2 + |α′ − U(t, x)|2). (4.6)

From Lemma 4.3, there exists v ∈ F (t+, x), a sequence (vi)i∈N in Rn that converges to v and a strictly
decreasing sequence (hi)i∈N in R+, converging to 0, such that:

lim
i→+∞

h−1
i (U(t+ hi, x+ hivi)− U(t, x)) ≤ −L(t+, x, v).

In particular we have:

lim
i→+∞

h−1
i |U(t+ hi, x+ hivi)− U(t, x)|2 = 0,

since it is the product of the sequence ([h−1
i (U(t+hi, x+hivi)−U(t, x))]2)i∈N, which converges and is therefore

bounded, with the sequence (hi)i∈N, that converges to 0.
Taking the particular values (t+ hi, x+ hivi, U(t+ hi, x+ hivi)) for (t′, x′, α′) in (4.6), and dividing across

by hi, for every i ∈ N, we obtain:

ξ0 + ξ1 · vi ≤ λh−1
i (U(t+ hi, x+ hivi)− U(t, x)) +Mhi(1 + |vi|2) +Mh−1

i |U(t+ hi, x+ hivi)− U(t, x)|2.

Letting the integer i go to +∞, we have: ξ0 + ξ1 · v = limi→+∞(ξ0 + ξ1 · vi) ≤ −λL(t+, x, v), and thus we obtain:
ξ0 + minv∈F (t+,x) ξ

1 · v + λL(t+, x, v) ≤ 0, which confirms the claim of step 1.

Step 2. We now prove that (c) ii) is satisfied: for every (t, x) ∈ (]S, T [×Rn)∩dom(U), for every proximal vector
(ξ0, ξ1,−λ) ∈ NP

epiU ((t, x), U(t, x)), we have

ξ0 + min
v∈F (t−,x)

ξ1 · v + λL(t−, x, v) ≥ 0.

Consider any (t, x) ∈ (]S, T [×Rn) ∩ dom(U) and (ξ0, ξ1,−λ) ∈ NP
epiU ((t, x), U(t, x)).

Take any v ∈ F (t−, x). Owing to Lemma 4.4, we can find two sequences (vi)i∈N and (hi)i∈N satisfying (4.5).
Employing the same arguments used in the first step, there exists M ∈ R+ such that for every i ∈ N:

−(ξ0 + ξ1 · vi) ≤ λh−1
i (U(t− hi, x− hivi)− U(t, x)) +Mhi(1 + |vi|2) +Mh−1

i |U(t− hi, x− hivi)− U(t, x)|2,

where limi→+∞ h−1
i |U(t− hi, x− hivi)− U(t, x)|2 = 0. Bearing in mind (4.5), letting i go to +∞, we obtain:

−(ξ0 + ξ1 · v) ≤ λL(t−, x, v).

Thus we have ξ0 + ξ1 · v + λL(t−, x, v) ≥ 0 and consequently:

ξ0 + inf
w∈F (t−,x)

ξ1 · w + λL(t−, x, w) ≥ 0.

Step 3. To conclude the proof we have to consider the boundary conditions (c) iii). Take any x ∈ Rn. Using
the lower semicontinuity of U , we have:

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) ≥ U(S, x), and lim inf
{(t′,x′)→(T,x) | t′<T}

U(t′, x′) ≥ U(T, x).
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If (S, x) /∈ dom(U), then we immediately obtain:

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) ≤ U(S, x) = +∞.

If (S, x) ∈ dom(U), then using Lemma 4.3, we can find v ∈ F (S+, x), a sequence (vi)i∈N in Rn converging to v,
and a strictly decreasing sequence (hi)i∈N in R+ converging to 0, such that (4.3) holds at t = S.
As a consequence lim supi→+∞ U(S + hi, x+ hivi) ≤ U(S, x). Thus we have:

U(S, x) ≤ lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) ≤ lim inf
i→+∞

U(S + hi, x+ hivi) ≤ U(S, x),

which gives the first equality in (c) iii) from Theorem 2.1.
If (T, x) /∈ dom(U), clearly we have: lim inf{(t′,x′)→(T,x) | t′<T} U(t′, x′) ≤ U(T, x), so we consider the case

when (T, x) ∈ dom(U). Then fix any v ∈ F (T−, x). Using Lemma 4.4, we deduce the existence of a sequence
(vi)i∈N in Rn converging to v and a decreasing sequence (hi)i∈N in R+, that converges to 0, such that (4.5)
holds at t = T .

Since L(t−, x, v) is finite, from (4.5) we deduce that lim supi→+∞ U(T − hi, x − hivi) ≤ U(T, x). It follows
that

U(T, x) ≤ lim inf
{(t′,x′)→(T,x) | t′<T}

U(t′, x′) ≤ lim inf
i→+∞

U(T − hi, x− hivi) ≤ U(T, x).

Using the relation U(T, x) = g(x), given by the fact U satisfies (b) iii), we obtain the last desired boundary
condition at t = T .

4.3. A proximal solution coincides with the value function: comparison results

We display the last part of the proof which consists in showing that if a lower semicontinuous function
U : [S, T ]× Rn → R ∪ {+∞} satisfies (c) of Theorem 2.1, then it coincides with the value function for (Pt,x).
We observe that for the inequality V (t, x) ≤ U(t, x) conditions (H6) ii) and iii) are not necessary, but they are
required for the opposite inequality. More precisely we will prove the following result.

Theorem 4.5. Assume (H1)–(H5) and (H6) i). Let U : [S, T ]× Rn → R ∪ {+∞} be a lower semicontinous
function.

(i) Suppose that U satisfies (c) i), and that, for all x ∈ Rn,

U(T, x) = g(x) and lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) = U(S, x).

Then V (t, x) ≤ U(t, x) for any (t, x) ∈ ([S, T ]× Rn) ∩ dom(U).

(ii) Assume, in addition, that L satisfies (H6) ii) and iii). Suppose that U satisfies (c) ii), and for all x ∈ Rn

lim inf
{(t′,x′)→(T,x) | t′<T}

U(t′, x′) = U(T, x) = g(x).

Then V (t, x) ≥ U(t, x) for any (t, x) ∈ ([S, T ]× Rn) ∩ dom(U).

Theorem 4.5 contains two ‘comparison results’ establishing the last part of the proof of Theorem 2.1 with
the implication ‘(c) ⇒ (a)’. Combined with Propositions 4.1 and 4.2, it provides uniqueness result for the
characterization of the value function in the class of lower semicontinuous functions, as summarized in the
Corollary below.
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Corollary 4.6. Assume that (H1)–(H6) are satisfied. Then the value function V is the unique lower
semicontinuous function solution to (HJE) in the sense of (b)–(c) of Theorem 2.1.

Proof of Theorem 4.5 i). In order to establish the first comparison result, bearing in mind the hypotheses
reduction of Section 2, we introduce an auxiliary multivalued function: Q : [S, T ] × Rn  Rn × R defined
by:

Q(τ, x) :=



{
(v,−η) | v ∈ F (S+, x),M0 ≥ η ≥ L(S+, x, v)

}
, if τ = S,

co
{

(v,−η) | v ∈ {F (τ−, x) ∪ F (τ+, x)} ,M0 ≥ η ≥ L̃(τ, x, v)
}
, if τ ∈ ]S, T [,{

(v,−η) | v ∈ F (T−, x),M0 ≥ η ≥ L(T−, x, v)
}
, if τ = T ,

where L̃(τ, x, v) := min{L(τ+, x, v), L(τ−, x, v)}. A routine analysis allows to verify that the multifunction Q
takes as values nonempty convex sets with elements which are (uniformly) bounded by c :=

√
c20 +M2

0 ; moreover
the graph of Q is closed.

Take any (t0, x0) ∈ (]S, T [×Rn)∩dom(U). The crucial point of Theorem 4.5 i) is establishing the applicability
of the Weak Invariance Theorem 3.4 for the following differential inclusion:

 (τ̇ , ẋ, ˙̀)(t) ∈ Γ(τ(t), x(t), `(t)), for a.e. t ∈ [t0, T ],
(τ(t), x(t), `(t)) ∈ epi U, for all t ∈ [t0, T ],
(τ(t0), x(t0), `(t0)) = (t0, x0, U(t0, x0)),

where Γ : [S, T ]× Rn+1  Rn+2 is defined by

Γ(τ, x, `) :=


co ({(0, 0, 0)} ∪ ({1} ×Q(S, x))), if τ = S,

{1} ×Q(τ, x), if τ ∈ ]S, T [,

co ({(0, 0, 0)} ∪ ({1} ×Q(T, x))), if τ = T.

Clearly the multifunction Γ inherits the following properties from Q: the graph of Γ is closed, for all (τ, x, `) ∈
[S, T ] × Rn+1, Γ(τ, x, `) is nonempty convex set and Γ(τ, x, `) ⊂ (c + 1)B. The ‘inward pointing condition’ iii)
of Theorem 3.4 is also satisfied. Indeed, for τ = S, T the construction of Γ immediately yields the required
inequality (for instance taking w = 0 that belongs to both Γ(S, x, `) and Γ(T, x, `)). On the other hand, since U
satisfies (c) i) of Theorem 2.1, for every (τ, x) ∈ dom(U), and every (ξ0, ξ1,−λ) ∈ NP

epiU ((τ, x), U(τ, x)), there

exists v̄ ∈ F (τ+, x) (recall that F (τ+, x) is compact) such that:

ξ0 + ξ1 · v̄ + λL(τ+, x, v̄) ≤ 0 (4.7)

and minw∈Γ(τ,x,`)(ξ
0, ξ1,−λ) ·w ≤ ξ0 +ξ1 · v̄+λL(τ+, x, v̄). Then, the Weak Invariance Theorem 3.4 is applicable

and there exists (τ(·), x(·), `(·)) ∈W 1,1([t0, T ],R× Rn × R) satisfying τ(t) = t and


(ẋ(t), ˙̀(t)) ∈ Q(t, x(t)), for a.e. t ∈ [t0, T ]

x(t0) = x0, `(t0) = U(t0, x0)

`(t) ≥ U(t, x(t)) for all t ∈ [t0, T ].
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Taking into account the definition of the multivalued function Q and the hypotheses on both F and L, we
deduce that x(·) is an F -trajectory and that ˙̀(s) ≤ −L(s, x(s), ẋ(s)) for a.e. s ∈ [t0, T ]. Hence we have:

g(x(T )) = U(T, x(T )) ≤ `(T ) = `(t0) +

∫ T

t0

˙̀(s)ds ≤ U(t0, x0)−
∫ T

t0

L(s, x(s), ẋ(s))ds,

which implies:

g(x(T )) +

∫ T

t0

L(s, x(s), ẋ(s))ds ≤ U(t0, x0).

Thus we obtain:

V (t0, x0) ≤ U(t0, x0).

If (S, x0) belongs to dom(U), we pick a decreasing sequence (hi)i∈N in R+ that converges to 0 and a sequence
(yi)i∈N in Rn that converges to x0 such that:

lim
i→+∞

U(S + hi, yi) = lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) = U(S, x0).

From what precedes, for every integer i ∈ N, we have:

V (S + hi, yi) ≤ U(S + hi, yi).

Passing to the limit inferior in that last equation yields:

V (S, x0) = lim inf
{(t′,x′)→(S,x)|t′>S}

V (t′, x′) ≤ lim inf
i→+∞

V (S + hi, yi) ≤ lim
i→+∞

U(S + hi, yi) = U(S, x0).

Note that we also have g(x0) = V (T, x0) ≤ U(T, x0) = g(x0).

Proof of Theorem 4.5 ii). Pick (t̄, x̄) ∈ ([S, T ]× Rn) ∩ dom(U) and let x ∈ W 1,1([t̄, T ],Rn) be an F -trajectory
such that x(t̄ ) = x̄. We want to prove:

U(t̄, x̄) ≤ g(x(T )) +

∫ T

t̄

L(s, x(s), ẋ(s))ds.

We can assume that g(x(T )) < +∞, otherwise we automatically have the desired inequality. Using the fact
that lim inf{(t′,x′)→(T,x) | t′<T} U(t′, x′) = U(T, x) = g(x), we can find a sequence of points (Ti, yi) in ]t̄, T [×Rn
such that limi→+∞(Ti, yi) = (T, x(T )) and limi→+∞ U(Ti, yi) = U(T, x(T )). Invoking Filippov’s existence the-
orem and arguing as in [4], we obtain a subsequence of F -trajectories xi(·) on [t̄, T ] such that xi(Ti) = yi, for
all i, and ‖xi(·)− x(·)‖W 1,1 → 0 as i→ +∞.

The multivalued function F satisfies the assumptions which allow to apply Carathéodory’s parametrization
theorems ([1], Thms. 9.6.2 and 9.7.2). Hence there exists a mesurable function:

f : [S, T ]× Rn × B→ Rn,
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such that:
For every (t, x) ∈ [S, T ]× Rn, F (t, x) = f(t, x,B) ;

For every (x, u) ∈ Rn × B, f(·, x, u) is mesurable ;

For every (t, u) ∈ [S, T ]× B, f(t, ·, u) is 10nkF (t)-Lipschitz ;

For every (t, x) ∈ [S, T ]× Rn, (u, u′) ∈ B2, |f(t, x, u)− f(t, x, u′)| ≤ 5nmaxv∈F (t,x) |v||u− u′|.

(4.8)

Under our hypotheses, for all (s, x, u) ∈]S, T [×Rn × B, we have (cf. [4]):

lim
s′↓s,x′→x,u′→u

f(s′, x′, u′) ∈ F (s−, x) and lim
s′↑s,x′→x,u′→u

f(s′, x′, u′) ∈ F (s+, x).

Fix i ≥ 0. Since xi(·) is an F -trajectory, for almost every t ∈ [t̄, T ]:

ẋi(t) ∈ f(t, xi(t),B).

and, using Filippov’s selection theorem (cf. [20], Thm. 2.3.13), there exists a mesurable selection ui : [t̄, T ]→ B
such that:

ẋi(t) = f(t, xi(t), ui(t)), for almost every t ∈ [t̄, T ].

Let ε > 0. Lusin’s theorem (cf. [7], Prop. 6.14) allows us to find a pair of functions (xεi , u
ε
i ) defined on [t̄, T ]

such that xεi (Ti) = xi(Ti) and
ẋεi (t) = f(t, xεi (t), u

ε
i (t)) for almost every t ∈ [t̄, T ] ;

the control uεi is continuous ;

‖xi − xεi‖L∞([t̄,T ],Rn) ≤ ε ;

meas ({t ∈ [t̄, T ] |ui(t)− uεi (t) 6= 0}) ≤ ε.

(4.9)

For every (t, x) ∈ [t̄, T ] × Rn, we write v+(t, x) := f(t+, x, uεi (t)), v
−(t, x) := f(t−, x, uεi (t)). We define

two multivalued functions F εi : [t̄, Ti] × Rn  Rn, Λεi : [t̄, Ti] × Rn  R by the relations: for every (t, x) ∈
[t̄, Ti]× Rn:

F εi (t, x) := co {v−(t, x), v+(t, x)},

Λεi (t, x) := co {L(t−, x, v−(t, x)), L(t+, x, v+(t, x))}.

Then we set a new multifunction Γεi : [0, Ti − t̄ ] × Rn × R  R × Rn × R defined for every (t, x, `) ∈ [0, Ti −
t̄ ]× Rn × R:

Γεi (t, x, `) =

{
co {(0, 0, 0) ∪ {1} × −F εi (t̄, x)× Λεi (t̄, x)} , if t = Ti − t̄,
{1} × −F εi (Ti − t, x)× Λεi (Ti − t, x), if t ∈ [0, Ti − t̄ [.

The multivalued function Γεi is convex, compact valued and has closed graph. We consider the following
differential inclusion: 

(τ̇(t), ẏ(t), ˙̀(t)) ∈ Γεi (τ(t), y(t), `(t)), for a.e. t ∈ [0, Ti − t̄ ],

τ(0) = 0, y(0) = xεi (Ti) = xi(Ti), `(0) = U(Ti, x(Ti)),

`(t) ≥ U(Ti − τ(t), y(t)), for all t ∈ [0, Ti − t̄ ].

(4.10)
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We define the arc

t 7→ (τεi (t), yεi (t), `
ε
i (t)) :=

(
t, xεi (Ti − t), U(Ti, xi(Ti)) +

∫ t

0

L(Ti − s, xεi (Ti − s), ẋεi (Ti − s))ds
)
.

The arc (τεi , y
ε
i , `

ε
i ) is the unique Γεi -trajectory with initial condition (0, x(Ti), U(Ti, xi(Ti))). Owing to the

‘hypotheses reduction’ argument of Section 2, we deduce that there exists a constant c :=
√
c20 +M2

0 such that
Γεi (t, x, `) ⊂ (c+ 1)B, for every (t, x, `).

For every (τ, x) ∈ [0, Ti − t̄ ]× Rn, we set Ũ(τ, x) := U(Ti − τ, x). Therefore the last condition in (4.10) can

be interpreted as the inclusion (τ(t), y(t), `(t)) ∈ epi Ũ for all t ∈ [0, Ti− t̄ ]. We claim that the Weak Invariance
Theorem 3.4 is applicable to the differential inclusion (4.10). We have already observed that the assumptions i)
and ii) of this theorem are satisfied. We show now that Γεi also satisfies the last (‘inward pointing’) condition

iii). That is, for every pair (τ, x) ∈ ([0, Ti − t̄ [×Rn) ∩ dom(Ũ) and every ` ≥ Ũ(τ, x):

min
w∈Γε

i (τ,x,`)
(ξ0, ξ1,−λ) · w ≤ 0, for all (ξ0, ξ1,−λ) ∈ NP

epi Ũ
((τ, x), `). (4.11)

Indeed, let (τ, x) ∈ ([0, Ti − t̄ [×Rn)∩ dom(Ũ) and (ξ0, ξ1,−λ) ∈ NP
epi Ũ

((τ, x), Ũ(τ, x)) (we recall that we can

always reduce to the case ` = Ũ(τ, x)), which is equivalent to say:

(−ξ0, ξ1,−λ) ∈ NP
epiU ((Ti − τ, x), U(Ti − τ, x)).

We notice that v−(Ti − τ, x) ∈ F εi (Ti − τ, x) ∩ F ((Ti − τ)−, x) and, bearing in mind U satisfies (2.5) of
condition (c) ii), we obtain:

−ξ0 + ξ1 · v−(Ti − τ, x) + λL((Ti − τ)−, x, v−(Ti − τ, x)) ≥ 0.

Hence we can confirm (4.11) by choosing w = (1,−v−(Ti − τ, x), L((Ti − τ)−, x, v−(Ti − τ, x))). As a conse-
quence we can apply the Weak Invariance Theorem obtaining that the arc (τεi (·), yεi (·), `εi (·)) is the solution to
(4.10). For t = Ti − t̄, by a change of variable, we have:

U(Ti, xi(Ti)) +

∫ Ti

t̄

L(s, xεi (s), ẋ
ε
i (s))ds ≥ U(t̄, xεi (t̄)), for all ε. (4.12)

Invoking condition (H2)∗, for all t ∈ [t̄, T ], maxv∈F (t,xi(t)) |v| ≤ c0. So, for almost every s ∈ [t̄, T ] we have:

|ẋεi (s)− ẋi(s)| = |f(s, xεi (s), u
ε
i (s))− f(s, xi(s), ui(s))|

≤ |f(s, xεi (s), u
ε
i (s))− f(s, xi(s), u

ε
i (s))|+ |f(s, xi(s), u

ε
i (s))− f(s, xi(s), ui(s))|

≤ 10nkF (s)|xεi (s)− xi(s)|+ 5n max
v∈F (s,xi(s))

|v||uεi (s)− ui(s)|

≤ 10nkF (s)ε+ 5nc0|uεi (s)− ui(s)|.

Since meas ({t ∈ [t̄, T ] |ui(t)− uεi (t) 6= 0}) ≤ ε and ‖ui − uεi‖L∞ ≤ 2, this implies that

ẋεi
L1([t̄,T ],Rn)−−−−−−−−→

ε→0
ẋi.
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As a consequence, up to a subsequence, ẋεi (·) converges to ẋi(·) almost everywhere in [t̄, T ]. Using (H6)∗ and
(3.1), we can apply Lebesgue’s dominated convergence theorem, and we obtain:

∫ Ti

t̄

L(s, xεi (s), ẋ
ε
i (s))ds −−−→

ε→0

∫ Ti

t̄

L(s, xi(s), ẋi(s))ds.

Passing to the limit inferior in (4.12), bearing in mind that xεi (t̄) −−−→
ε→0

xi(t̄), and U is lower semicontinuous,

we obtain

U(Ti, xi(Ti)) +

∫ Ti

t̄

L(s, xi(s), ẋi(s))ds ≥ U(t̄, xi(t̄)), for all i.

Then, as i→ +∞,

g(x(T )) +

∫ T

t̄

L(s, x(s), ẋ(s))ds ≥ U(t̄, x̄).

Since x(·) was an arbitrary F -trajectory satisfying x(t̄) = x̄, we deduce that

V (t̄, x̄) ≥ U(t̄, x̄).

This concludes the proof.

5. Proofs of Theorem 2.2, and Propositions 2.3 and 2.4

Proof of Theorem 2.2. The proof is organized as follows: in Step 1 we show that, assuming hypotheses (H1)–
(H6), the value function V is a viscosity solution in the sense of condition (d) of Theorem 2.2. In Step 2, we
prove that if a lower semicontinuous function U satisfies (d) i) and (d) iii) of Theorem 2.2, then V ≤ U . In Step
3 we prove that if we impose the additional assumption (g∗)∗ = g, then any lower semicontinuous function U
satisfying (d) ii) and (d) iii) satisfies U ≤ V .

Step 1: The value function V satisfies (d) i)–iii).
Assume that hypotheses (H1)–(H6) are satisfied. We first observe that, from the a priori boundedness of the

F -trajectories, and the local boundedness of g and L, it immediately follows that V is locally bounded.
Let (t, x) ∈ ]S, T [×Rn. We invoke the ‘hypotheses reduction’ of Section 2, and we can apply the same argument

of the proof of Step 1 of Proposition 4.1, obtaining the existence of a vector v ∈ F (t+, x) such that:

D↑V ((t, x), (1, v)) ≤ −L(t+, x, v).

This and the relation (2.2) imply that:

(1, v,−L(t+, x, v)) ∈ TepiV ((t, x), V (t, x)) .

Let (ξ0, ξ1,−λ) ∈ N̂epiV ((t, x), V (t, x)). Since N̂epiV ((t, x), V (t, x)) is the polar cone to the set
TepiV ((t, x), V (t, x)) we have:

(ξ0, ξ1,−λ) · (1, v,−L(t+, x, v)) ≤ 0.
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This easily implies that:

ξ0 + min
v∈F (t+,x)

[
ξ1 · v + λL(t+, x, v)

]
≤ 0, for all (ξ0, ξ1,−λ) ∈ N̂epiV ((t, x), V (t, x)),

which confirms (d) i).
Let (t, x) ∈ ]S, T [×Rn and ṽ ∈ F (t+, x). There exists a sequence (ti, xi)i∈N in ]S, T [×Rn \ {(t, x)} that

converges to (t, x) such that:

lim
i→+∞

V (ti, xi) = V ∗(t, x).

We claim that we can extract a subsequence such that ti > t for all i ∈ N. Let us assume that ti ≤ t for every
i ∈ N and take a strictly decreasing sequence (τi)i∈N in ]t, T ] that converges to t. Fix any i ∈ N, and take an
F -trajectory xi(·) ∈W 1,1([ti, T ],Rn) such that xi(ti) = xi. Using the principle of optimality, we obtain:

V (ti, xi)−
∫ τi

ti

L(s, xi(s), ẋi(s))ds ≤ V (τi, xi(τi)).

Using the local boundedness of L given by condition (H5)∗, there exists M0 > 0 such that for every i ∈ N:

V (ti, xi)−M0|τi − ti| ≤ V (τi, xi(τi)).

Passing to the limit superior and using the upper semicontinuity of V ∗, we obtain:

V ∗(t, x) = lim sup
i→+∞

V (ti, xi) ≤ lim sup
i→+∞

V (τi, xi(τi)) ≤ lim sup
i→+∞

V ∗(τi, xi(τi)) ≤ V ∗(t, x).

Hence lim supi→+∞ V (τi, xi(τi)) = V ∗(t, x) and there exists a subsequence (ik)k∈N for which:

V (τik , xik(τik)) −−−−−→
k→+∞

V ∗(t, x).

Fix any ṽ ∈ F (t+, x). Then for every i ∈ N, there exists vi ∈ F (t+i , xi) such that limi→+∞ vi = ṽ. For every
i ∈ N, we consider the arc

yi(s) := xi + (s− ti)vi, for all s ∈ [ti, T ].

Using the Filippov existence theorem, for every i ∈ N there exists an F -trajectory zi(·) that satisfies zi(ti) = xi
and such that for every h ∈ ]0, T − ti]

‖zi − yi‖L∞([ti,ti+h],Rn) ≤ K

(∫ ti+h

ti

dF (s,yi(s))(vi)ds

)
,

where K = exp
(∫ T

S
kF (s)ds

)
. From the a priori boundedness of F -trajectories, we can pick R0 > 0

such that, for every i ∈ N, |yi(s)| ≤ R0 for every s ∈ [ti, T ]. Observe also that |ẏi(s)| ≤ c0, for any i ∈
N and for almost every s ∈ [ti, T ].

For every i ∈ N, we define δi = max{|V (ti, xi)−V ∗(t, x)|, |xi−x|, |ti− t|}. Take a strictly decreasing sequence
(hi)i∈N that converges to 0 such that hi ≥

√
δi.
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We recall the definition of D↓V
∗((t, x), (1, ṽ)):

D↓V
∗((t, x), (1, ṽ)) = lim sup

h↓0
e→1, w→ṽ

h−1 [V ∗(t+ he, x+ hw)− V ∗(t, x)] .

Fix any i ∈ N, and set wi = 1
hi

∫ ti+hi

ti
żi(s)ds. Note that we have:

|vi − wi| ≤ K

(∫ ti+hi

ti

dF (s,yi(s))(vi)ds

)
≤ Kθi(hi),

where

θi(h) :=

{
sup 0<s−ti≤h

|xi−y|≤c0h

dH(F (s, y), F (t+i , xi)), if h 6= 0,

0, otherwise.

There exists τ ∈ [ti, ti + hi] and z ∈ Rn verifying |xi − z| ≤ c0hi such that:

θi(hi) ≤ dH(F (τ, z), F (t+i , xi)) +
1

i+ 1
.

Hence we obtain:

θi(hi) ≤ dH(F (τ, z), F (t+, x)) + dH(F (t+, x), F (t+i , xi)) +
1

i+ 1
.

We notice that:

τ − t ≤ (τ − ti) + (ti − t) ≤ hi + h2
i and |x− z| ≤ |z − xi|+ |xi − x| ≤ hic0 + h2

i .

This yields:

θi(hi) ≤ sup
0<s−t≤hi+h2

i
|y−x|≤c0hi+h2

i

dH(F (s, y), F (t+, x)) + sup
0<s−t≤h2

i
|y−x|≤h2

i

dH(F (t+, x), F (s+, y)) +
1

1 + i
,

which implies that θi(hi) −−−−→
i→+∞

0. Recalling that for every i ∈ N, |ṽ − wi| ≤ θi(hi) + |vi − ṽ|, we obtain:

wi −−−−→
i→+∞

ṽ.

For every i ∈ N, we define: ei := 1− t−ti
hi

and w̃i := wi− x−xi

hi
, and immediately notice that limi→+∞(ei, w̃i) =

(1, ṽ). This yields:

D↓V
∗((t, x), (1, ṽ)) ≥ lim sup

i→+∞
h−1
i [V ∗(t+ hiei, x+ hiw̃i)− V ∗(t, x)] ,

= lim sup
i→+∞

h−1
i [V ∗(ti + hi, xi + hiwi)− V ∗(t, x)] ,

≥ lim sup
i→+∞

h−1
i [V (ti + hi, xi + hiwi)− V ∗(t, x)] .
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Fix i ∈ N. We have:

V (ti + hi, xi + hiwi)− V ∗(t, x) ≥ V (ti + hi, xi + hiwi)− V (ti, xi)− δi. (5.1)

Using the principle of optimality, we obtain:

V (ti + hi, xi + hiwi)− V (ti, xi) ≥ −
∫ ti+hi

ti

L(s, zi(s), żi(s))ds.

Hence, dividing across equation (5.1) by hi, passing to the limit superior in this inequality while recalling
δi
hi
≤
√
δi, we obtain:

D↓V
∗((t, x), (1, ṽ)) ≥ − lim inf

i→+∞

1

hi

∫ t+hi

ti

L(s, zi(s), żi(s))ds. (5.2)

We recall that from Lemma 3.1, there exists kL > 0 such that for every (t′, x′) ∈ [S, T ]×Rn, and v, v′ ∈ c0B:

|L(t′, x′, v)− L(t′, x′, v′)| ≤ kL|v − v′|.

As a consequence, for every i ∈ N we have:∫ ti+hi

ti

L(s, zi(s), żi(s))ds ≤
∫ ti+hi

ti

L(s, zi(s), ṽ)ds+

∫ ti+hi

ti

kL|żi(s)− ṽ|ds,

≤ hi sup
|z−x|≤c0hi+h2

i
0<s−t≤hi+h2

i

L(s, z, ṽ) + hi kL(Kθi(hi) + |vi − ṽ|).

Dividing across by hi, passing to the limit inferior as i goes to +∞ gives:

lim inf
i→+∞

1

hi

∫ t+hi

ti

L(s, zi(s), żi(s))ds ≤ L(t+, x, ṽ). (5.3)

Combining (5.2) and (5.3) we obtain:

D↓V
∗((t, x), (1, ṽ)) ≥ −L(t+, x, ṽ).

From the relation (2.3), this implies that:

(1, ṽ,−L(t+, x, ṽ)) ∈ ThypV ∗ ((t, x), V ∗(t, x))

Let (−ξ0,−ξ1, λ) ∈ N̂hypV ∗((t, x), V ∗(t, x)). Necessarily we have λ ∈ R+. Hence using the polarity relation
between the contingent cone and the strict normal cone we have:

−ξ0 − ξ1 · ṽ − λL(t+, x, ṽ) ≤ 0.

This relation being valid for all v ∈ F (t+, x), we obtain:

−ξ0 + max
v∈F (t+,x)

[
−ξ1 · ṽ − λL(t+, x, ṽ)

]
≤ 0,
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which confirms (d) ii).
To prove that V satisfies (d) iii), only the assertion V ∗(T, ·) = g∗(·) remains to be proved. Since V (T, ·) = g(·),

it is obvious that V ∗(T, x) ≥ g∗(x) for every x ∈ Rn. We prove that the converse inequality is also satisfied.
Fix any x ∈ Rn. There exists a sequence (ti, xi)i∈N in [S, T ]× Rn \ {(T, x)} converging to (T, x) such that:

lim
i→+∞

V (ti, xi) = lim sup
(t,y)→(T,x)

V (t, y) = V ∗(T, x).

For every i ∈ N there exists an F -trajectory xi(·) ∈ W 1,1([ti, T ],Rn) such that xi(ti) = xi. By the principle
of optimality:

V (ti, xi)−
∫ t

ti

L(s, xi(s), ẋi(s))ds ≤ V (t, xi(t)), for all t ∈ [ti, T ].

Using again condition (H5)∗, we know that there exists a constant M0 > 0 such that for every i ∈ N:

V (ti, xi)−M0|T − ti| ≤ V (T, xi(T )) = g(xi(T )).

Using the fact limi→+∞ xi(T ) = x, we pass to the limit superior as i tends to +∞ and obtain:

V ∗(T, x) ≤ lim sup
i→+∞

g(xi(T )) ≤ lim sup
y→x

g(y) = g∗(x),

which achieves to show that V satisfies (d) iii).
Step 2. We show that if U satisfies (d) i) and (d) iii), then for every (t̄, x̄) ∈ [S, T ]×Rn we have V (t̄, x̄) ≤ U(t̄, x̄).

Bearing in mind (2.1), from (2.6) we deduce that for all (t, x) ∈]S, T [×Rn

ξ0 + min
v∈F (t+,x)

[
ξ1 · v + λL(t+, x, v)

]
≤ 0, for all (ξ0, ξ1,−λ) ∈ NP

epiU ((t, x), U(t, x)).

This implies that U satisfies (c) i) from Theorem 2.1. Since U satisfies (d) iii), we can use the same arguments
employed in the proof of Theorem 4.5 i) we have:

V (t̄, x̄) ≤ U(t̄, x̄), for every (t̄, x̄) ∈ [S, T ]× Rn.

Step 3. We prove that if U satisfies (d) ii) and (d) iii), then for every (t̄, x̄) ∈ [S, T ] × Rn we have U(t̄, x̄) ≤
V (t̄, x̄).
Using (d) iii), we can restrict attention to the case when (t̄, x̄) ∈ ]S, T [×Rn. Let x ∈ W 1,1([t̄, T ],Rn) be an
F -trajectory such that x(t̄ ) = x̄. We want to prove prove that:

U(t̄, x̄) ≤ g(x(T )) +

∫ T

t̄

L(s, x(s), ẋ(s))ds.

We can find a sequence (ξj)j∈N∗ in Rn, converging to x(T ), such that:

lim
j→+∞

g∗(ξj) = (g∗)∗(x(T )).

Applying Carathéodory’s parametrization theorem and Filippov’s selection theorem, we can find a mesurable
function u(·) such that ẋ(t) = f(t, x(t), u(t)) for almost every t ∈ [t̄, T ], for a Lipschitz continuous parametriza-
tion f of F satisfying (4.8). Applying Lusin’s theorem, for every j ∈ N∗ we construct a pair of functions (zj , uj)
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defined on [t̄, T ] such that:
żj(t) = f(t, zj(t), uj(t)) for almost every t ∈ [t̄, T ] and zj(t̄) = x(t̄) ;

the control uj is continuous ;

‖x− zj‖L∞([t̄,T ],Rn) ≤ 1
j ;

meas ({t ∈ [S, T ] |u(t)− uj(t) 6= 0}) ≤ 1
j .

(5.4)

For every j ∈ N∗, we define yj(·) ∈W 1,1([0, T − t̄ ],Rn) as the solution to the following differential equation:{
ẏ(s) = −f(T − s, y(T − s), uj(T − s)) for a.e. s ∈ [0, T − t̄ ],

y(0) = ξj .

For every j ∈ N∗, we note x̄j := yj(T − t̄) and define xj(·) ∈W 1,1([t̄, T ],Rn) by:

xj(s) := yj(T − s),

which implies that xj(·) is the solution to the following differential equation:{
ẏ(s) = f(s, y(s), uj(s)) for a.e. s ∈ [t̄, T ],

y(0) = x̄j .

Owing to the Lipschitz continuity of f and the properties of (uj)j∈N∗ we have:

‖xj − x‖W 1,1([t̄,T ],Rn) −−−−→
j→+∞

0.

For every (t, x) ∈ [t̄, T ]× Rn, we write v+(t, x) := f(t+, x, uj(t)), v
−(t, x) := f(t−, x, uj(t)).

We then define two multivalued functions Fj : [t̄, T ]× Rn  Rn, Λj : [t̄, T ]× Rn  R by the relations: for
every (t, x) ∈ [t̄, T ]× Rn:

Fj(t, x) := co {v−(t, x), v+(t, x)},

Λj(t, x) := −co {L(t−, x, v−(t, x)), L(t+, x, v+(t, x))}.

Then we set a new multifunction Γj : [t̄, T ]×Rn×R R×Rn×R defined for every (t, x, `) ∈ [t̄, T ]×Rn×R:

Γj(t, x, `) :=

{
{1} × Fj(t, x)× Λj(t, x), if t ∈ [t̄, T [,

co {(0, 0, 0) ∪ {1} × Fj(T, x)× Λj(T, x)} , if t = T.

Observe that the multivalued function Γj is convex, compact valued and has closed graph.
We consider the following differential inclusion:

(τ̇(t), ẏ(t), ˙̀(t)) ∈ Γj(τ(t), y(t), `(t)), for a.e. t ∈ [t̄, T ],

τ(t̄) = t̄, y(t̄) = x̄j , `(t̄) = U∗(t̄, x̄j),

(τ(t), y(t), `(t)) ∈ hypU∗, for all t ∈ [t̄, T ].

(5.5)

Observe that the last condition in (5.5) means that `(t) ≤ U∗(τ(t), y(t)), for all t ∈ [t̄, T ].
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We define the arc on [t̄, T ]

t 7→ (τj(t), xj(t), `j(t)) :=

(
t, xj(t), U

∗(t̄, x̄j)−
∫ t

t̄

L(s, xj(s), ẋj(s))ds

)
.

Observe that (τj , xj , `j) is the unique Γj-trajectory with initial condition (t̄, x̄j , U
∗(t̄, x̄j)).

Assumptions i) and ii) of Weak Invariance Theorem 3.4 are satisfied from the discussion above and from the
fact that the ‘hypotheses reduction’ of Section 2 guarantee also that Γj(τ, x, `) ⊂ (c + 1)B, for every (τ, x, `),

where c :=
√
c20 +M2

0 . The ‘inward pointing’ condition iii) is also satisfied, we prove the validity of the following
property: for every pair (τ, x) ∈ ]t̄, T [×Rn and every ` ≤ U∗(τ, x)

min
w∈Γj(τ,x,`)

(−ξ0,−ξ1, λ) · w ≤ 0, for all (−ξ0,−ξ1, λ) ∈ NP
hypU∗((τ, x), `). (5.6)

Let (τ, x) ∈ [t̄, T [×Rn and (−ξ0,−ξ1, λ) ∈ NP
hypU∗((τ, x), U∗(τ, x)) (we recall that we can always reduce to the

case ` = U∗(τ, x)). We notice that v+(τ, x) ∈ Fj(τ, x)∩F (τ+, x) and, bearing in mind (2.1) and that U satisfies
(2.6), we obtain:

−ξ0 − ξ1 · v+(τ, x)− λL(τ+, x, v+(τ, x)) ≤ 0.

So (5.6) is confirmed since (1, v+(τ, x),−L(τ+, x, v+(τ, x))) ∈ Γj(τ, x, U
∗(τ, x)).

As a consequence, the Weak Invariance Theorem 3.4 is applicable to the differential inclusion (5.5), and we
can conclude that the arc (τj , xj , `j) is a solution to the constrained differential inclusion (5.5). It follows that
at t = T :

U∗(t̄, x̄j)−
∫ T

t̄

L(s, xj(s), ẋj(s))ds ≤ U∗(T, xj(T )) = g∗(xj(T )), for every j. (5.7)

Since ‖xj − x‖W 1,1([t̄,T ],Rn) −−−−→
j→+∞

0, by Lebesgue’s dominated convergence theorem we have:

∫ T

t̄

L(s, xj(s), ẋj(s))ds −−−−→
j→+∞

∫ T

t̄

L(s, x(s), ẋ(s))ds.

Since U ≤ U∗, and U is lower semicontinuous, passing to the limit inferior in (5.7) yields:

U(t̄, x̄) ≤ lim inf
j→+∞

g∗(ξj) +

∫ T

t̄

L(s, x(s), ẋ(s))ds.

Recalling that limj→+∞ g∗(ξj) = (g∗)∗(x(T )) and (g∗)∗ = g, we obtain:

U(t̄, x̄) ≤ g(x(T )) +

∫ T

t̄

L(s, x(s), ẋ(s))ds,

which implies

U(t̄, x̄) ≤ V (t̄, x̄),

and concludes the proof.
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Proof of Proposition 2.3. The proof immediately follows from the proof of Theorem 2.2, observing that condition
(g∗)∗ = g is used only in Step 3.

Proof of Proposition 2.4. The proof of Proposition 2.4 follows along the same lines as the proof of Theorem 2.1
and Theorem 2.2, replacing L̃ with L in the definition of the the multivalued function Q (steps ‘(c) ⇒ (a)’, ‘(d)
⇒ (a)’, and proof of Thm. 4.5 i)), and taking into account that, when L is lower semicontinuous with respect
to the time variable, we have L(t, x, v) ≤ L(t+, x, v), for all (t, x, v) ∈ [S, T [×Rn × Rn (steps ‘(a) ⇒ (b)’, ‘(b)
⇒ (c)’ and ‘(a) ⇒ (d)’).
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