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ABSTRACT

We propose a new statistical model that can reproduce the hierarchical nature of the ubiquitous filamentary structures of molecular
clouds. This model is based on the multiplicative random cascade, which is designed to replicate the multifractal nature of intermittency
in developed turbulence. We present a modified version of the multiplicative process where the spatial fluctuations as a function of
scales are produced with the wavelet transforms of a fractional Brownian motion realisation. This simple approach produces naturally a
log-normal distribution function and hierarchical coherent structures. Despite the highly contrasted aspect of these coherent structures
against a smoother background, their Fourier power spectrum can be fitted by a single power law. As reported in previous works using
the multiscale non-Gaussian segmentation (MnGSeg) technique, it is proven that the fit of a single power law reflects the inability of
the Fourier power spectrum to detect the progressive non-Gaussian contributions that are at the origin of these structures across the
inertial range of the power spectrum. The mutifractal nature of these coherent structures is discussed, and an extension of the MnGSeg
technique is proposed to calculate the multifractal spectrum that is associated with them. Using directional wavelets, we show that
filamentary structures can easily be produced without changing the general shape of the power spectrum. The cumulative effect of
random multiplicative sequences succeeds in producing the general aspect of filamentary structures similar to those associated with
star-forming regions. The filamentary structures are formed through the product of a large number of random-phase linear waves at
different spatial wavelengths. Dynamically, this effect might be associated with the collection of compressive processes that occur in
the interstellar medium.
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1. Introduction

The origin of the scale-free nature of the interstellar medium
(ISM) has been debated for several decades. One of the first
scale-free signature, the Fourier power spectrum of Galactic
HI emission, was attributed to the turbulent nature of the ISM
(Green 1993). Turbulence naturally imposes scale-free hierarchi-
cal structures to the ISM, where large eddies are extended and
subdivided into smaller ones to which they transfer a fraction of
their energy up to the dissipation scale (Richardson 1922; Muzy
2019). However, comparisons with statistical models of cloud
structure proved that scale-free density fluctuations do not suc-
ceed in reproducing the ubiquitous filamentary structures seen
in the ISM (Elmegreen et al. 2001; Miville-Deschênes et al.
2007). More recently, some studies on thermal dust emission
observed by Herschel raised the question why contrasted fila-
mentary structures, which appear to have a characteristic width
(Arzoumanian et al. 2011, 2019), do not produce any break or
kink in the Fourier power spectrum (Panopoulou et al. 2017).
Robitaille et al. (2014, 2019) showed using the multiscale non-
Gaussian segmentation (MnGSeg) technique1 that filamentary
structures are in fact dominating the scale-free Fourier power

1 Codes and tutorials are available at https://github.com/
jfrob27/pywavan

spectrum. This result demonstrated that dense coherent struc-
tures of the ISM also have a hierarchical geometry (most likely
multifractal and intimately linked to the formation of stars) and
that this geometry is intertwined with the monofractal and dif-
fuse component of molecular clouds. This finding challenges
the recent results of Roy et al. (2019), who suggested that only
filamentary structures with a sufficiently high area filling fac-
tor and/or high column density contrasts have an effect on the
scale-free power spectrum of dust-continuum images.

Moreover, Elia et al. (2018) recently emphasised that the
monofractal approach to characterising ISM structures underlies
a certain degree of degeneracy as the statistical description of
the regions is based on a single parameter, the fractal dimen-
sion. They proposed to analyse the multifractal properties of
ISM structures in Galactic dust-continuum maps using the box-
counting approach. The multifractal mathematical framework,
which is now applied in many fields, from financial markets
to medical imagery analysis, can detect complex local struc-
tures and can describe local singularities. Multifractal analysis
is also intimately linked to the study of fully developed tur-
bulence (Frisch 1995), where instead of trying to capture the
turbulence intermittency from the final state of the dissipation
scale, the multifractal model suggests that the overall flow might
be described as a superposition of coexisting structures at all
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scales that are correlated with each other by a cascading intensity
(Muzy 2019).

The multifractal analysis of ISM structures was also per-
formed by Khalil et al. (2006) on Galactic HI-line emission using
a wavelet-based formalism. In contrast with the dust continuum,
HI maps revealed a monofractal signature in their study. The
monofractal signature of the Galactic HI could be attributed on
the one hand to the lower resolution of radio observations, and
on the other hand, to the more diffuse nature of the HI emission,
which is less inclined to produce local singularities than the dust
far-infrared emission.

In this paper, we propose a new statistical model to produce
synthetic coherent filamentary structures based on the multi-
plicative cascade process. This new model reproduces some
aspects of the probability distribution function (PDF) of young
star-forming regions and the scale-free Fourier power spectrum
despite the presence of highly contrasted coherent filamentary
structures. Moreover, we propose a multifractal analysis frame-
work based on the wavelet formalism of the MnGSeg technique.
As discussed in Sect. 4, we strongly suggest using the wavelet
approach for the multifractal analysis of continuous images
instead of the box-counting formalism developed for discrete sets
of points.

The paper is structured as follows: Sect. 2 presents the fractal
models of the ISM and the general physical properties assigned
to them; Sect. 3 presents the details of the multiplicative random
cascade model and two modified models based on the wavelet
decomposition of random fractal images; Sect. 4 presents the
wavelet-based multifractal formalism and an analysis of the syn-
thetic monofractal and multifractal models; Sect. 5 discusses the
hierarchical nature of the models and compares them with obser-
vations; and we finally use this new multifractal framework to
produce synthetic ISM structures and lay out prospects for future
analyses in Sect. 7.

2. Fractal models

Fractional Brownian motion (fBm) models, as a basic model
for spatial intensity fluctuations in the ISM, can reproduce the
scale-free nature of structures measured by the Fourier power
spectrum. They are produced using the inverse Fourier transform
of random phase values in the u-v plane multiplied by a power
law for the squared modulus of the complex numbers. For a
power law of ∼ −3.0, the distribution function of the fBm model
is approximately Gaussian. An fBm model with a power-law
index of −3.1 is shown in Fig. 1a, and its distribution function
is shown in Fig. 2. The fBm model has a zero mean value and a
standard deviation of one.

In order to reproduce the typical log-normal density distribu-
tion measured in observations and simulations, Elmegreen et al.
(2001) proposed exponentiating the fBm following the relation

ρefbm(x) = exp[σρ f (x)], (1)

where f (x) is the fBm image, x is the position vector, σρ is the
standard deviation attributed to the fBm, and ρ is the modelled
gas density. According to the results of Padoan et al. (1997), σρ
can be related to the Mach number,M, as

σρ = (ln[1 + 0.5M2])0.5. (2)

Because σρ f (x) = ln ρ(x), the PDF, P, can be written as

P(ln ρ) =
1

(2πσρ)1/2 exp

−0.5
(

ln ρ − µ
σρ

)2 , (3)

where µ is the arithmetic mean value of f (x). The result of
the exponentiated fBm (efBm) is shown in Fig. 1b forM= 1.5.
The distribution function of this model is shown in Fig. 2. As
stated by Elmegreen et al. (2001), even if this model succeeds
in reproducing the log-normal PDF and the single power law of
the ISM, the resulting map lacks the sharp transitions in density
that are commonly identified as filaments, shells, and holes in
star-forming regions.

3. Multiplicative random cascade model

As noted by Vazquez-Semadeni (1994), hierarchical structures
are naturally expected to arise in flows in which the density has a
log-normal distribution. This emergence of a universal distribu-
tion can be associated with the central limit theorem, for which
the sum of a large number of random variables converges to
a normal distribution. If this assumption is attributed to a ran-
dom sequence of ln ρ, then the density ρ becomes log-normally
distributed. Thus, according to this description, after a finite
time, density can be considered the product of a large number
of independent random fluctuations δ,

ρ(tn) = δnδn−1... δ1δ0ρ(t0). (4)

In this paper, we point out the correspondence between Eq. (4)
and the multiplicative random cascade model that is designed
to reproduce the multifractal nature of intermittency in devel-
oped turbulence (Meneveau & Sreenivasan 1991; Frisch 1995).
In this model, the rate of turbulent energy dissipation ε is consid-
ered first as a nonrandom positive quantity for a cubic volume of
side `0. This volume is then subdivided into eight equal cubes of
side `1 = `0/2. For every subdivisions, the dissipation ε is mul-
tiplied by a series of independent random variables Wn that are
distributed identically. After n generations, the dissipation value
of a cube of side `n = `02−n becomes ε` = WnWn−1... W1W0ε.

The sequence of products by an independent random vari-
able, δ in the case of density fluctuations, has the effect of
producing large deviations, that is, an increasingly non-Gaussian
statistics towards smaller scales. In the ISM, this effect is mea-
sured notably through anomalous scaling of the high-order
structure functions of centroid velocity increments (Lis et al.
1996; Hily-Blant et al. 2008; Federrath et al. 2010; Bertram et al.
2015) (see Sect. 4). It has been observed in the early 1990s that
a probabilistic reformulation of turbulence intermittency anal-
ysis in terms of wavelet transforms of the velocity field was a
powerful alternative to velocity increments (Muzy et al. 1993;
Arnéodo et al. 1995; Frisch 1995). More recently, Robitaille et al.
(2014, 2019) discovered a similar anomalous scaling signature,
generally attributed to turbulence intermittency, in Herschel col-
umn density maps using PDFs of wavelet coefficients at different
spatial scales.

3.1. Modified random cascade model

In this paper, we modify the random cascade model by sub-
stituting the layered cubes at different scales with the wavelet
transforms of the fBm model presented in Sect. 2. Figure 3 gives
a schematic representation of the independent random variable
δ as multiscale density fluctuations. The wavelet transform of
a signal gives the local amount of fluctuations as a function of
scales, and, for anisotropic wavelet functions, also as a function
of orientations for a 2D signal. Because continuous wavelets are
redundant, a signal can be reconstructed from its wavelet coeffi-
cients simply by integrating over the scales and the orientations
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Fig. 1. Spatial intensity distribution of the fractal models described in Sect. 2. Panel a: fBm model and panel b: exponentiated fBm model, and the
random cascade models described in Sect. 3. Panel c: isotropic and panel d: directional random cascade models.

(Robitaille et al. 2019),

f (x) = Cδ

∑

`

Nθ−1∑

j=0

` f̃ (x, `, θ j) + µ0, (5)

where Cδ is a correction factor, µ0 is the mean value of the orig-
inal signal, and f̃ (x, `, θ j) are the wavelet coefficients calculated
from the wavelet transform, defined as

f̃ (x, `, θ) =F −1
{
f̂ (k)ψ̂∗`,θ(k)

}
. (6)

In Eq. (6), F −1 denotes the inverse Fourier transform, and f̂ (k)
and ψ̂`,θ(k) represent the Fourier transform of f (x) and of a
daughter version of the mother wavelet, respectively. The latter
being dilated to a given scale ` and rotated by an azimuthal angle
θ. In order to recover the multiplicative process described by
Vazquez-Semadeni (1994) and modelled by the random cascade,
Eq. (1) can be expressed using the wavelet synthesis relation of

Eq. (5),

ρmc(x) = exp

σ
∑

l,θ

C` f̃ (x, `, θ)

 =
∏

l,θ

exp
[
σC` f̃ (x, `, θ)

]
, (7)

where C` is a constant depending on scale `. Equation (7)
demonstrates that when the fractal image is considered as the
summation of many spatial fluctuations, the exponentiated fBm
model of Eq. (1) becomes equivalent to the multiplicative pro-
cess described in Eq. (4).

However, compared to the exponentiated fBm, the layered
spatial fluctuations resulting from the fBm wavelet decompo-
sition have to be modified. An fBm image, by construction,
follows a squared-amplitude power law for its spatial fluctua-
tions. As shown in Fig. 1a, this power law is at the origin of
the hierarchal nature of the fractal image, where low spatial fre-
quencies dominate high spatial frequencies k. In order to meet
the random cascade model requirements, all spatial frequencies
need to be identically distributed. For this reason, the constant
C` in Eq. (7) becomes a scale-dependent normalisation factor
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Fig. 2. Distribution functions for the four models presented in Fig. 1.
Distribution functions for the efBm, the isotropic, and the directional
random cascade are normalised by the mean pixel value of the image.

δn

Fig. 3. Schematic representation of the modified random cascade
model, where each level is the normalised spatial fluctuations of an fBm
as a function of scales obtained from wavelet transforms.

C` = 1/σ`, where σ` is the standard deviation of wavelet coef-
ficients f̃ (x, `, θ). The construction of a discrete multiplicative
cascade, called the “W-cascades”, using an orthogonal wavelet
basis was proposed by Arnéodo et al. (1998) to reproduce the
multifractal nature of turbulence and of financial time series.
More recently, Muzy (2019) propose another grid-free model,
closer to the one proposed in the present paper, using continu-
ous wavelet transforms. Our model uses 2D continuous wavelet
transforms in order to synthesise the multifractal nature of ISM
maps.

To calculate the modified random cascade model, we used
the Fan wavelet transform (Kirby 2005; Robitaille et al. 2019).
The Fan wavelet is a rotated version of the classical Morlet
wavelet and is designed to optimally sample all azimuthal direc-
tions in Fourier space. The Fourier transform of the Morlet
wavelet is defined as

ψ̂`,θ(k) = ` · e−|`·k−k0 |2/2

= ` · e−[(`·u−|k0 | cos θ)2+(`·v−|k0 | sin θ)2]/2
(8)

where the vector wavenumber is defined as k = (u, v) and the

constant |k0|=
√

u2
0 + v2

0 is set to π
√

2/ ln 2 ≈ 5.336 to ensure

that the admissibility condition,
∫ +∞
−∞ ψ(x)dx = 0, is almost met

(Kirby 2005). The wavelet transform is performed following
Eq. (6). The result of the modified random cascade model as
defined in Eq. (7) is shown in Fig. 1c. This model uses the
same fBm model as in Fig. 1a. A different standard deviation
σ is introduced in Eq. (7) in order to keep the same value of
M ' 1.5 while taking into account the new coefficient C`. The
distribution function of the modified random cascade model, for
the isotropic case, is also shown in Fig. 2. The next section will
explore the anisotropic property of the Morlet wavelet in the
construction of the modified random cascade model.

3.2. Directional modified random cascade model

Finally, we explored the angular dependence of the modified ran-
dom cascade model. As for the initial fBm and the efBm, the
random cascade also fails to reproduce the typical highly con-
trasted filamentary structures observed in star-forming regions.
Dynamically, the cumulative effect of the random sequence of
ln ρ could be attributed to the accumulation of shock-like struc-
tures in the turbulent ISM (velocity shears, supersonic shocks,
etc.). These shock fronts are rarely isotropic, and their prefer-
ential direction can depend on the large-scale inhomogeneity of
the gas distribution before the passage of the shock front. More-
over, according to the Inutsuka et al. (2015) model, molecular
clouds would be preferentially formed in limited regions where
the compressional direction of the shock is almost parallel to
the local mean magnetic field lines or in regions experiencing a
larger number of sequential compressions.

In order to reproduce these anisotropies in the modified ran-
dom cascade model, we removed the angular dependence in
relation (7) and performed the multiplicative process for each
angle independently before summing the resulting random cas-
cades over all direction. In our model, the angular directions are
discretised in 11 directions by the Morlet wavelet transforms in
order to sample the Fourier space optimally2. Following this new
model, Eq. (7) now becomes

ρdmc(x) =
1

Nθ

∑

θ


∏

l

exp
[
σC` f̃ (x, `, θ)

] . (9)

The result of the directional modified random cascade model is
shown in Fig. 1d. This model succeeds in producing filamen-
tary structures. It uses the same original fBm model as in Fig. 1a
andM ' 1.5. As shown in Fig. 2, the intensity distributions of
the isotropic and directional random cascade models and of the
efBm model are similar. It is worth noting that increasing the
number of angular directions does not change the general aspect
of the model, nor the straightness of the filamentary structures.
Moreover, because the intensity structures in each model are
different, this means that the global intensity distribution alone
cannot be used to distinguish the different models.

The Fourier power spectra for the four models are shown
in Fig. 4. Despite the highly contrasted features and the very
different spatial intensity distribution, all power spectra exhibit
a single power law. As shown in Fig. 8, the multiplicative
operation in our models produces a progressive non-Gaussian
contribution towards the small scales at which the Fourier anal-
ysis is not sensitive. Compared to the fBm power law, which
was chosen to be similar to the power laws measured on Gaus-
sian components of the multiscale segmentation performed by
Robitaille et al. (2014, 2019), the random cascade model power

2 See Robitaille et al. (2019) Sect. 3.1 and Fig. 2 for a representation of
the Morlet wavelet sampling in Fourier space.
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Equation 11 can be considered as the equivalent of the structure
function defined in Eq. 10, used here in models of column den-
sity maps, where

Fig. 4. Fourier power spectrum for the four models presented in Fig. 1.
The dashed lines show the fitted power laws. The fitted power indices
are listed in Table 1.

Table 1. Power laws fitted to the power spectra of Fig. 4.

Power law (γ)

fBm 3.01± 0.01
efBm 3.12± 0.01
Isotropic random cascade 1.87± 0.01
Directional random cascade 1.70± 0.01

laws have a shallower power law than those measured for the
non-Gaussian components. Because of the normalisation fac-
tor C`, the power law of the random cascade models become
independent of the original fBm.

4. Multifractal analysis

The previous section described that the sequence of products by
an independent random variable produces an increasingly non-
Gaussian statistics towards smaller scales. In turbulence analysis,
this effect is usually measured through structure functions of
the centroid of the line-of-sight projected velocity increments,
defined as

S p(`) = 〈|δC`(r)|p〉 ∝ `ζp , (10)

where δC` is the centroid velocity increment, δC`(r) = C(r) −
C(r + `), p is the statistical moment of the distribution, and
the average 〈〉 is calculated over all possible velocity increments
separated by `. When p increases, the velocity increment struc-
ture functions give a greater weight to rare events (Bertram
et al. 2015). The Kolmogorov (1941) turbulence theory pre-
dicts that the constant energy cascade in a turbulent medium
yields an exponent ζp = p/3 for every p. The constant energy
cascade of Kolmogorov (1941) for a subsonic non-compressive
turbulent medium results in a superposition of random Gaussian
fluctuations from large to small spatial scales, which is well
represented by stochastic monofractals. This can be completely
described statistically with a single power law. The multifrac-
tal nature of a medium induced by turbulence intermittency
means that the scaling behaviour changes locally in the medium
(Frisch 1995). In the case of the log-normal theory of K62
(Kolmogorov 1962), for example, ζp becomes quadratic in p such

that ζp = 1
2µl p/3(p/3 − 1), where µl quantifies intermittency. For

a general description that is not only associated with turbulence,
a multifractal scaling can be seen as a collection of interwoven
fractal subsets with a range of scaling exponents h, and fractal
(Hausdorff) dimension D(h) (Chappell & Scalo 2001).

To estimate the multifractal spectrum D(h), we chose the
probabilistic reformulation of turbulence intermittency analysis
in terms of wavelet transforms instead of increment structure
functions (Muzy et al. 1993; Arnéodo et al. 1995). The partition
functions are here defined in terms of the wavelet coefficients:

Zq(`) =
∑

x

Nθ−1∑

j=0

| f̃ (`, x, θ j)|q. (11)

Equation (11) can be considered as the equivalent of the structure
function defined in Eq. (10), used here in models of column den-
sity maps, where q is analogous to p and gives a greater weight to
rare events. This approach has been used to study the multifractal
spectrum of HI maps by Khalil et al. (2006) through the formal-
ism of the wavelet transform modulus maxima (WTMM) method
(Arnéodo et al. 2000). The main difference with our analysis is
that all wavelet coefficients are used to calculate the partitions
functions, instead of only a subset of maximum values among
the modulus of wavelet coefficients for the WTMM method. We
also used the same wavelet as was used in the current work and
in the MnGSeg technique (Robitaille et al. 2019), the complex
Morlet wavelet defined in Eq. (8), instead of the derivative of a
Gaussian, the DoG wavelet.

From these partition functions, we can define the scaling
exponent τ(q) according to the power-law fit,

Zq(`) ∝ `τ(q). (12)

In Eq. (12), τ(1) corresponds to the Hurst exponent H that is
related to the fractal dimension d f = E − H, where E is the
Euclidean dimension of the image (Stutzki et al. 1998; Khalil
et al. 2006). The index τ(2) is related to the second-order power
law γ measured by the Fourier power spectrum. The relation
between the exponent H and the power spectral index γ is given
by

γ = 2 + 2H. (13)

Properly speaking, the Hurst exponent H is generally used to
characterise a monofractal image or surface, as is the case for
fBms. In the case of a multifractal image, where the scaling
exponent changes from point to point, this exponent becomes
a local quantity and is generally referred to as the Hölder expo-
nent h(x). For a monofractal image, the function τ(q) is a linear
function of q of slope H. For a multifractal image, the function
τ(q) is non-linear and presents a collection of Hölder exponents,
where h = dτ(q)/dq.

As noted by Khalil et al. (2006), two realisations of a given
stochastic process are not a priori expected to have the same
set of Hölder exponents. For this reason, multifractal analyses
should be performed on several realisations of the same process.
For this analysis, each model is realised on 1024 × 1024 images
64 times and averaged following the quenched averaging method
(Hentschel 1994), where

e〈ln Zq(`)〉 ∼ `τ(q), ` → 0+. (14)

The Zq(`) and τ(q) functions for the four models presented in this
paper and the combined model presented in Sect. 5 are plotted
in Fig. 5. As expected for the first fBm model, τ(q) is close to
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ects other averaged quantities, such as the velocity or the
density fluctuations, and they cannot be measured with a single
Fourier power-spectrum index. When the multifractal analysis is
applied on the efBm, the isotropic and directional random cas-
cade models demonstrate that these models can reproduce the
intermittent behaviour of fully developed turbulence. However,
the directional random cascade model is the only model of those

presented here that is able to visually reproduce the filamentary
aspect of the ISM.

The multifractal analysis we performed on our synthetic
models has many di

Fig. 6. Multifractal spectrum D(h) derived from the τ(q) functions
shown in Fig. 5. The dotted red line corresponds to h = 0.55, the Hurst
exponent imposed on the fBm model.

a linear function of q of slope H ' 0.55, which corresponds to
γ ' 3.1 (see Eq. (13)). On the other hand, the efBm model and
the two random cascade models have a non-linear τ(q) function,
as expected for a multifractal geometry.

The multifractal spectrum D(h), also called the singular-
ity spectrum, is obtained from the Legendre transform of the
partition function scaling exponent τ(q):

D(h) = minq
[
qh − τ(q)

]
. (15)

The function D(h) measures the distribution of all the loca-
tions with a given scaling exponent h(x), that is, the Hausdorff
dimension of that set of points. In other words, D(h) shows the
manner in which regions of different scaling exponents fill space
(Chappell & Scalo 2001).

The resulting multifractal spectra for the models are shown
in Fig. 6. The spectra were fitted with a parabola according to the
so-called log-normal model (Kestener et al. 2010; Frisch 1995),

D(h) = E − (h − µh)2

2σh
, (16)

where E = 2, and µh and σh are free parameters. The fitted values
are listed in Table 2. The central value µh for the fBm corre-
sponds well to the Hurst exponent H = 0.55 (γ= 2 + 2H = 3.1;
the power-law index of the fBm) and has the smallest width
σh ' 0.01 compared to the three other models, which have a
σh an order of magnitude higher. As expected, for a monofrac-
tal model, the distribution almost collapses to one point, but
the multiplicative models of multifractal nature display a wide
range of scaling exponents with a range of fractal dimensions.
An independent multifractal analysis of the models has also
been performed using the WTMM method (Arnéodo et al. 2000;
Khalil et al. 2006). This second analysis gave the same results
within the numerical uncertainties.

According to the multifractal analysis, the fBm model repre-
sents well a non-intermittent turbulent medium with a constant
mean energy dissipation rate on which all statistically averaged
quantities depends. Consequently, because the fluctuating quan-
tities modelled by an fBm model are statistically well described
by a single scaling exponent, H or γ, its scaling index can
also be estimated with its Fourier power spectrum. A turbu-
lent field with an intermittent energy dissipation rate over the

Table 2. Parabola fitted value to D(h) functions of Fig. 6.

µh σh

fBm 0.57± 0.01 0.01± 0.01
efBm 0.65± 0.01 0.10± 0.01
Isotropic random cascade 0.06± 0.01 0.13± 0.01
Directional random cascade 0.07± 0.01 0.22± 0.01

field affects other averaged quantities, such as the velocity or the
density fluctuations, and they cannot be measured with a single
Fourier power-spectrum index. When the multifractal analysis is
applied on the efBm, the isotropic and directional random cas-
cade models demonstrate that these models can reproduce the
intermittent behaviour of fully developed turbulence. However,
the directional random cascade model is the only model of those
presented here that is able to visually reproduce the filamentary
aspect of the ISM.

The multifractal analysis we performed on our synthetic
models has many differences compared to the recent study pre-
sented by Elia et al. (2018), and we caution against comparing
the two approaches. As pointed out by Khalil et al. (2006), the
box-counting approach used by Elia et al. (2018) and Chappell
& Scalo (2001) is usually applied for the analysis of multifrac-
tal singular measures. The authors extrapolated this approach to
continuous functions (i.e. 2D images) by considering Pi as the
sum of the pixel brightness for all pixels contained in the ith
box. One consequence of this approach is the trivial estimate of
the scaling exponent h = 2.0 for all fields instead of its relation
with the Fourier spectrum power-law index, as demonstrated in
our study. Alternatively, Arnéodo et al. (1995) suggested the use
of wavelet functions for the multifractal analysis of continuous
functions as a natural oscillatory variant and generalisation of
the box function.

Furthermore, Khalil et al. (2006) showed that a multifractal
analysis must be performed on several realisations of the same
process with a well-defined averaging protocol. Our analysis
was therefore realised on 64 images of similar synthetic mod-
els. Importantly, Khalil et al. (2006) also pointed out that the
calculation of the Zq(`) function is increasingly less accurately
estimated at large scales, especially for high values of |q|. For
this reason, great care should be exercised when considering the
range of q values used in a multifractal analysis. The determi-
nation of this range of statistical order moments should not be
arbitrary, but rather dictated by the availability of statistics in the
analysed dataset to ensure statistical convergence. The range of
q values can be robustly and objectively determined (see Khalil
et al. 2006 Eq. (32) and Figs. 8 and 25). The multifractal charac-
terisation of a medium or a surface is a very sensitive analysis,
and we advise care in the choice of the approach according to the
type of data and the size of the sample exhibiting a similar statis-
tic. Unfortunately, several multifractal studies use q values are
high as |q|= 20 without justification (Elia et al. 2018; Chappell &
Scalo 2001), which can lead to numerical instabilities that may
very well create artificial multifractal signatures.

5. Hierarchical nature of filaments

The Fourier power spectra for the four models presented in
Sects. 2 and 3 are shown in Fig. 4. All models follow a single
scaling power law. The fBm and efBm models have a similar
power law, which is the power law that was initially imposed
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on the complex noise in the Fourier space for the fBm. The
two random cascade models have shallower power laws of ∼1.8,
indicating an enhancement of small-scale structures due to the
multiplicative process, but also due to the normalisation factor
C`.

We recall that the models presented here are purely statistical
and do not attempt to reproduce all the complex non-linear rela-
tions of physical processes that shape the ISM. However, without
perfectly reproducing observational features, such as the curved
shape of some filamentary structures, these models succeed in
reproducing fundamental statistical properties of star-forming
regions, such as the connection between the diffuse background
density fluctuations, filamentary structures, and the multifractal
nature of these regions.

Robitaille et al. (2014, 2019) showed using the MnGSeg
technique that the dense coherent and often filamentary struc-
tures of the ISM also possess a hierarchical nature. They also
demonstrated for two different regions of the ISM that the power
spectrum of filamentary structures dominates intermediate and
small scales without producing any break in the total Fourier
power spectrum of the region. Because these contrasted fea-
tures are the result of progressive non-Gaussian contributions
towards the small scales, no kink or break is visible in the Fourier
power spectrum. These progressive non-Gaussian contributions
may or may not change the total power law measured by the
Fourier spectrum because second-order moments alone cannot
fully describe the statistical properties of non-Gaussian fields.
A similar progressive non-Gaussian contributions is responsi-
ble for the anomalous scaling of structure functions of centroid
velocity increments for orders p > 4. This statistical description
of the filamentary dense coherent structures observed notably in
the dust continuum images differs from the model suggested by
Roy et al. (2019), where the synthetic filaments were modelled
with a Gaussian or Plummer profile. This model adds a contri-
bution in terms of power only to the spatial scale corresponding
to the width of the filament profile. In this case, the power law
measured by the Fourier power spectrum is only produced by
the fluctuating background. The filament model proposed here
contributes in terms of power to a broad range of spatial scales
and has a power law that is only limited in the case of real
observations by the telescope transfer function. Moreover, the
multiplicative operation of the model imposes a spatial coher-
ence through spatial scales to the filamentary structures. The
directional modified random cascade model is the first statis-
tical model that can produce filamentary structures that follow
a global log-normal density distribution and has a hierarchical
nature that is measured with its Fourier power spectrum.

The coherent structures are formed through the product of
a larger number of random phase linear waves at different spa-
tial wavelengths. Dynamically, this effect might be associated
with the collection of compressive processes that occur in the
ISM. The final amplitude of the resulting filamentary structure
depends on the phase coherence of the linear waves that model
the shock-like wave fronts. The initial fBm image we used to
construct the directional multiplicative random cascade is built
with a random phase, which intends to be representative of the
random mixing of the non-intermittent turbulence. As shown in
Fig. 1d, the hierarchy of filamentary structures is formed through
the random phase coherence of linear waves at different spa-
tial wavelengths. We showed with the modified random cascade
model that the product of initially random fluctuations is suffi-
cient to reproduce some of the complex statistical properties of
molecular clouds.

The fBm and the efBm models have a similar power law in
Fig. 4. This is due to the sensitivity limit of the Fourier power
spectrum to non-Gaussian distributions as a function of scales.
Robitaille et al. (2019) proposed performing the segmentation of
non-Gaussianities as a function of scales using complex wavelet
transforms in order to detect the contribution of these structures
and extract them. Previously, Robitaille et al. (2014) showed that
the efBm model failed to reproduce the shallower power law of
non-Gaussianities as it is measured in observations. As shown in
Fig. 4, through the multiplicative process and the normalisation
as a function of scales, the modified random cascade models suc-
ceed in producing a shallower power law than the Gaussian fBm
by introducing increasingly more non-Gaussianities towards the
small scales. Moreover, the distribution function and the Fourier
power spectrum, when averaged over angles, are blind to the
directional aspect of the modified random cascade model, which
makes these measurements highly degenerate.

6. Comparison with observations

This study demonstrates that common statistical tools, such as
the Fourier power spectrum and PDFs, present a high level of
degeneracy. These techniques fail to capture the level of com-
plexity of many hierarchical structures. These hierarchical prop-
erties observed in many star-forming regions can be represented
by a collection of interwoven scaling exponents with different
fractal dimensions. Unfortunately, because the multifractal anal-
ysis is high sensitive, the direct application of such methods
on a limited number of observations that are affected by very
similar physical processes is hazardous. However, knowing that
these regions possess multifractal properties opens exciting new
opportunities with regard to the development of new approaches
to analysing their hierarchical structures and to understand how
it affects the star formation activity of the regions. The develop-
ment of such approaches is beyond the scope of this paper, but
this section attempts to compare some fundamental properties
observed in ISM structures with our models.

The top panels of Fig. 7 show the results of the addition of
two models, the initial Gaussian fBm and the directional mod-
ified random cascade produced with the same fBm. The fBm
power law was kept at 3.1, but the directional modified random
cascade power law was artificially changed to 2.5 to match obser-
vations (Robitaille et al. 2019). This combined model is defined
by the following equation:

ρcomb(x) = Γ(x) ⊗ [A ∗ ρfBm(x) + ρdmc(x)] + N(x), (17)

where Γ(x) modelled the telescope transfer function with a Gaus-
sian kernel with a full width at half maximum (FWHM) of
3.0 pixels. The crossed circle is the convolution operation. A is a
constant, fixed to 5.0 in our model, to adjust the fBm power con-
tribution compared to the multiplicative cascade. The standard
deviation and the mean value of the combined model are also
adjusted in order to compare the model with the Polaris flare
region (lower panels of Fig. 7). The noise level is modelled by
N(x) and also based on the noise level of the Polaris region. This
combined model is an attempt to statistically reproduce the dual
nature of molecular clouds described by Falgarone et al. (2004).
In this description, star-forming clouds are seen as the combi-
nation of a diffuse component that dominates the large scales
and has a fractal geometry, and a coherent component, which is
well described by a network of filaments and dense cores. This
description suggests a connection between the highly dynamical
diffuse medium and dense molecular clouds. From a turbulence
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erent orientations, the posi-
tion of both components for the reconstructed maps is not ex-
clusive. This property of the segmented map explains why their
PDFs are overlapping. It is clear from the PDF analysis of the
combined model (top middle panel of Fig. 7) and for the Polaris

flare molecular complex (bottom middle panel of Fig. 7) that
the exponential part of the PDFs is associated with the coherent
structures in the maps. However, the coherent structures cover
a wider range of intensity in the case of the Polaris region. This
di

Fig. 8. PDFs as a function of scales for the combined model defined by
Eq. (17) that is shown in the top left panel of Fig. 7.

point of view, the large-scale fractal-dominated medium is con-
nected to the non-intermittent and monofractal turbulence of
Kolmogorov (1941), and the hierarchical coherent component is
attributed to a multifractal subset of the field due to the inter-
mittent behaviour of developed turbulence (Frisch 1995, and
references therein). We demonstrate using the multifractal exten-
sion of the MnGSeg technique (Robitaille et al. 2019) that the
multiplicative models, including the efBm, are multifractal and
thus have statistical properties similar to intermittent velocity
fields of fully developed turbulence.

The top middle panel of Fig. 7 shows the distribution func-
tion of the combined model. The distribution function follows a
log-normal distribution as for the efBm model. The segmented
PDFs, according to the separation made by MnGSeg, correspond
to the coloured distributions shown in Fig. 7. The MnGSeg

technique was applied on the wavelet coefficients in order to
segment the non-Gaussianities as a function of the scale and the
orientation of the Morlet wavelet transforms (see Appendix A for
more details). The Gaussian and the non-Gaussian (also called
coherent) components of the map are reconstructed using rela-
tion (5), without adding the mean value µ0 to either of the two
wavelet coefficient subsets, f̃Gaussian(x, `, θ j) or f̃coherent(x, `, θ j).
The mean value µ0 was also subtracted from the total image
PDF. Because the segmentation algorithm is applied in the
wavelet space at multiple scales and for different orientations,
the position of both components for the reconstructed maps
is not exclusive. This property of the segmented map explains
why their PDFs are overlapping. It is clear from the PDF anal-
ysis of the combined model (top middle panel of Fig. 7) and
for the Polaris flare molecular complex (bottom middle panel
of Fig. 7) that the exponential part of the PDFs is associated
with the coherent structures in the maps. However, the coher-
ent structures cover a wider range of intensity in the case of the
Polaris region. This difference can be a sign that the multiplica-
tive cascade alone cannot explain the highest density structures
even for a low stellar activity region such as Polaris. This high
density compared to the multiplicative cascade model might
be explained by the effect of a global collapse and/or accre-
tion mechanisms, which in addition to multiplicative processes
have the ability to concentrate more the mass of the coherent
structures (Vázquez-Semadeni et al. 2019).

The right top panel of Fig. 7 presents the power spectrum
analysis of the combined model. The Fourier analysis gives the
total power spectrum of the model. The addition of the two mod-
els with two different power laws produces no clear break in the
Fourier power spectrum, as for the Polaris flare region. The sym-
bols are the averaged squared absolute value of complex wavelet
coefficients at a certain spatial scale (see Appendix A). The
segmentation shows that the Fourier power spectrum is
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Table 3. Power laws for the power spectra of Fig. 7.

Combined model Polaris flare

Total Fourier 2.53± 0.01 2.38± 0.02
Gaussian wavelet 3.13± 0.03 3.05± 0.07
Coherent wavelet 2.33± 0.05 2.41± 0.04

dominated by the filaments structures over a wide range of
scales. The fitted power laws for the combined model and Polaris
flare are shown in Table 3. Robitaille et al. (2019) showed that the
small-scale flattening in the Gaussian wavelet power spectrum
was caused by the cosmic infrared background noise, which here
was not modelled by the combined model.

As shown in the turbulence review by Frisch (1995), the
models presented in Figs. 1 and 7 satisfy the statistical spatial
distribution of turbulent velocity fields and energy dissipation
associated with non-intermittent monofractal media and/or inter-
mittent multifractal media well. Robitaille et al. (2014, 2019)
showed that these statistical properties, like the single power law
of the Fourier power spectrum that is dominated by the con-
trasted coherent structures in field, are also characteristic of the
gas column-density distribution observed through the infrared
thermal dust emission. The direct dependences of the velocity
and density fields in turbulence are difficult to determine. It is
likely, however, that the multifractal nature of one may affect the
statistical properties of the other. There is also a possibility that
because of the non-linear nature and the hierarchical structures
involved in this process, the mechanism of hierarchical collapse
of molecular clouds such as described by Vázquez-Semadeni
et al. (2019) has the capacity of enhancing the multifractal nature
of star-forming regions.

7. Conclusion

We presented the first statistical model that can reproduce the
fundamental gas distribution properties that have been seen in
observations and numerical simulation of the ISM. It reproduces
the ubiquitous log-normal distribution, the scale-free power
spectrum, some aspects of the filamentary structures, and the
multifractal geometry that is observed and measured in modern
studies. The modified multiplicative random cascade model is
easy to produce. The multifractal nature of star-forming regions
has great implications on the hierarchal properties of their den-
sity distribution. The statistical modelling proposed in this paper
indicates that dense coherent structures that are isolated through
multiscale non-Gaussian segmentation exhibit a continuum of
scaling exponents of different fractal dimensions. Multiplicative
cascades can explain the origin of these structures. However,
comparisons with observations seem to indicate that additional
compressive effects, such as the gravitational collapse of the
region, are necessary to explain the high density of observed
star-forming regions compared to their diffuse monofractal back-
ground. The multifractal nature of these particular regions as a
function of their derived properties or degree of evolution will
be investigated in future works.
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Appendix A: Non-Gaussian segmentation

The non-Gaussian segmentation of the wavelet coefficients is
based on an iterative algorithm of denoising. The threshold Φ
splits the non-Gaussian and the Gaussian wavelet coefficients at
all scales and directions of the Morlet wavelet transform defined
in Eq. (6). The sequence defining Φ is
{

Φ0(`, θ) = ∞
Φn+1(`, θ) = qσ`,θ(Φn(`, θ)), (A.1)

where q (that is different from the q in Eq. (11)) is a dimen-
sionless constant that controls how restrictive the definition of
non-Gaussianities is. The variance σ2

`,θ is defined as

σ2
`,θ(Φ) =

1
N`,θ(Φ)

∑

x
LΦ(| f̃`,θ(x)|)| f̃`,θ(x)|2, (A.2)

where

LΦ(| f̃`,θ(x)|) =

{
1 if | f̃`,θ(x)| < Φ
0 else. (A.3)

and

N`,θ(Φ) =
∑

x
LΦ(| f̃`,θ(x)|). (A.4)

The q parameter varies as a function of θ and `. When the algo-
rithm converges to an optimal value for the threshold Φ, the
skewness, the third moment of the distribution, of the Gaussian
wavelet coefficient distribution is calculated. If the skewness is
higher than a certain value, the parameter q is diminished by 0.1.
This operation is repeated until convergence of the parameter q.

The segmented wavelet power spectra can be calculated
by averaging the square absolute value of complex wavelet
coefficients as a function of spatial scales,

P(`) =
δθ

NθNx

∑

x

Nθ−1∑

j = 0

| f̃ (`, x, θ j)|2, (A.5)

where δθ = 2
√−2 ln 0.75/|k0|, Nθ = ∆θ/δθ is the number of

directions θ needed to sample the Fourier space over the range
∆θ, and Nx is the number of pixels in the image. The conver-
sion between the spatial scale ` and the Fourier wavenumber k is
made through the relation k = |k0|/l. See Robitaille et al. (2019)
for more details.
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