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Abstract 
Molecular visualisation is fundamental in the current scientific literature, textbooks and           
dissemination materials, forming an essential support for presenting results, reasoning on           
and formulating hypotheses related to molecular structure. Visual exploration has become           
easily accessible on a broad variety of platforms thanks to advanced software tools that              
render a great service to the scientific community. These tools are often developed across              
disciplines bridging computer science, biology and chemistry. Here we first describe a few             
Swiss Army knives geared towards protein visualisation for everyday use with an existing             
large user base, then focus on more specialised tools for peculiar needs that are not yet as                 
broadly known. Our selection is by no means exhaustive, but reflects a diverse snapshot of               
scenarios that we consider informative for the reader. We end with an account of future               
trends and perspectives. 
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Introduction 
Many parts of science rely on a visualization-driven cycle of experimentation, reasoning,            
conjecture and validation, even more so in relation with structural biology and biophysics.             
Molecular visualization (1) in particular is now broadly used in many contexts, with the              
purpose of illustration in the scientific literature or the aim to gain insight about primary               
research data. A broad interest in and need for these methods exists for many decades as                
described in (2). A key challenge is to pass information from intrinsically three-dimensional             
objects onto a 2D support such as a sheet of paper or common computer displays.               
Significant contributions originate in the computer science field of computer graphics. These            
contributions may only slowly transfer to the field of structural biology (3) as this process               
requires available end-user oriented software tools for efficient dissemination. Such tools are            
at the core of this survey. 
Tools for visualization of macromolecular structures have emerged from the longstanding           
need for molecular graphics and are accessible to scientists with broadly varying            
backgrounds as previously reviewed in (4). In this mini-review we focus on a few essential               
and generic tools along with some novelties and more singular solutions for specific needs.              
We will not focus on commercial closed source software, although there are definitely tools              
available, amongst which we may mention Yasara (5) and Maestro (6), both freely             
accessible. Commercial tools often integrate or interface with modelling features and may            
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preferably be used in industry settings or for occasional lay usage because of their user               
guidance, support and commercial ecosystem. 
The scope of applications we target with this mini-review ranges from very generic needs to               
specific usages. For instance a first generic application concerns the illustration of scientific             
publications and the scrutiny of hypotheses (7), as for example relating mutational data to              
structural representations (8). A further level of application may involve a more in-depth             
visual analysis of macromolecular structures and their properties (2), possibly related to the             
(spatial) distribution of charges, electrostatic properties, pockets and surface         
complementarities (4,9,10). An even more specialized usage may refer to depicting and            
analyzing data from theoretical chemistry (9), computational biology (10) and bioinformatics           
approaches (11). The need to analyze increasingly complex molecular dynamics simulations           
is one prominent example that has driven the field forward. This usage naturally leads into               
the field of data analytics and in particular visual analytics (12–14), which is beyond the               
scope of this review, although we will briefly discuss some aspects thereof. 
 
Swiss army knives for general needs 
A few molecular visualization packages have been used by the community for many             
decades and provide robust visualization capacities suitable for a large audience. Among            
these tools we will briefly discuss the Chimera (latest version called ChimeraX), JMol (and              
more recently JSmol), PyMol and VMD softwares, which all serve a large user base. Such               
legacy packages appear as a safe choice for visualization-based projects, with a stable             
codebase and API to interact with. Their usability has been refined over time, and although               
not necessarily easy to use for newcomers, they are well adapted to the tasks related to                
molecular visualization. Each tool may feature many functionalities and provide tutorials,           
scripts and extensions that enrich the user’s experience. Table 1 provides a first overview of               
this core set of software tools, whereas Figure 1 provides a pictorial comparison of a typical                
work session and each software’s user interface.  
 
Table 1: Feature overview for four broadly used tools for protein visualization 
Features\Tools VMD Pymol Chimera JMol/JsMol 

Scripting TCL Python Python Javascript 

OS Windows/Mac/Linux Windows/Mac/Linux Windows/Mac/Linux 
Web, 

Windows/Marc/Linux 

Selection 
Language ✔ ✔ ✔ ✔ 

Raytracing / 
Illustrations ✔ ✔ External POVRay External POVRay 

Plugins ✔ ✔ ✔ ✔ 

Cost Free​a Free​b Free​c Free 

URL 
https://www.ks.uiuc.
edu/Research/vmd/ https://pymol.org/2/ 

https://www.cgl.ucsf.
edu/chimera/ 

http://jmol.sourceforg
e.net/ 

a ​Some limitations apply to its redistribution. ​b​Both an open-source and a commercial version 
are distributed. ​c ​For non-commercial use. 
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The ​Chimera software (15) dates back to 1976, then developed under the name Midas, and               
provides functionalities for the visual exploration and analysis of molecular structures.           
Related descriptive data can be examined, in particular cryo-EM datasets with density maps,             
molecular dynamics trajectories and more. Creating animations of the visualized systems is            
made easy and the repertoire of  visual depictions is rich.  
Jmol was started ca. 1999 (16,17). It is a generic platform usable either as a standalone                
viewer or within a web context. Many educational applications feature Jmol for structure             
depiction as it is versatile and easy to embed in courseware or to use as graphical frontend                 
for the exploration of structural databases.  
PyMol (18) was launched at the end of 1999 and, as its name suggests, is built around a                  
python scripting environment. This tool is very popular with experimentalists as it provides             
useful features for crystallographic and NMR-derived structures. It generates publication          
quality figures and provides convenient molecular editing and atom selection functionalities. 
Since its inception in 1993, the ​VMD software focused on the graphical analysis of molecular               
dynamics data, hence its acronym Visual Molecular Dynamics. It manages even quite large             
systems smoothly and provides many extensions, in particular for advanced visual analysis,            
through plugins. 
An important feature common to all these packages is the possibility to automate and script               
tasks for easy re-use and batch deployment.  
Despite their long history, all packages still provide regularly novel functionalities and adapt             
to the progressing hardware technologies, for instance in the graphics card market.            
Sometimes such extensions may require an extensive re-design of the underlying code as             
has been documented for instance for ChimeraX (19). Such extensions may address more             
specific needs and usages adapting to an ever-evolving field as described in the subsequent              
section. 
 
Specific needs may be met by these (or additional) tools 
Using molecular visualization as a “service” in a broad sense is one of the more recent                
evolutions. This concept may relate to web integration, interactive visual notebooks such as             
with Jupyter (20,21) and web-based exploration with novel technologies such as accelerated            
graphics rendering through WebGL or virtual reality (VR) through WebVR. The NGLviewer            
(22) and more recently Mol* viewer (molstar.org)(23) address many of these particular            
aspects. Mol* for instance is now implemented as the default viewer on the PDBe web               
pages. JSmol and EzMol (24) provide easy web integration as well. WebVR-capable            
molecular viewers are less widespread, possibly due to the currently limited browser-support            
for this technology. VRMol (26) is a complete web-based VR tool available at vrmol.net              
which has recently been released. UnityMol experiments with WebVR have been reported            
as well (25). 
Another wide-spread and very common need is to ​generate illustrative and compelling            
images for publications, which has been reviewed by Goodsell and Jenkinson (27). David             
Goodsell has provided for many years the captivating images of the molecule of the month               
(28), which can now be reproduced by everyone with the Illustrate software (29). Previously,              
the introduction of ambient occlusion lighting with the Qutemol software (30) had already led              
to a significant improvement in the depth perception from static illustrative images. The             
possibility to continuously vary the abstraction level added further possibilities (31). For            
particularly eye-catching results, tools from the cinema and animation industry can be used             
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as well (32–36). Such publication quality images can be produced with the majority of              
packages described here, either directly within the package or through a subsequent            
ray-tracing step. Using ​interactive raytracing (37,38), very high quality images can be            
produced almost on the fly and explored interactively. Real-time, often GPU-powered,           
path-tracing approaches become more widely accessible, for instance through the Blender           
game engine (30). Alternative approaches attempt to produce visually similar results (39).  
The visual ​exploration of specific data sets ​represents an important aspect of protein             
visualization. Historically this aspect is illustrated by the need to visualize experimental            
electron density maps in crystallography, spawning many tools, among which O (40,41),            
Coot (42), CCP4mg (43) and uglymol (44) just to mention a few. More generally the               
advanced exploration of specific experimental data may represent a specific feature of some             
packages, such as Chimera, with a focus on CryoEM data. Similarly, through its tight              
integration with the protein data bank, Mol* provides many useful features for            
crystallographic data. A particular challenge may be the joint analysis of data spawning             
different data spaces. This task is nicely illustrated by the visual analytics approach             
implemented in the Aquaria software (45,46) enabling a user to link the evolutionary             
dimension of sequence-space with structure space. The MolArt structure annotation and           
visualization tool pursues similar avenues (47). Molecular dynamics simulations - and more            
generally computational simulation approaches including normal modes, Poisson-Boltzmann        
electrostatics, finite element and elastic network models - represent another source of            
specific data to be visualized. Historically, the VMD package was the first to focus on               
molecular simulations, but many others now provide such possibilities, most recently for            
instance MDsrv (38) or HTMoL (39) on the web (40) and Unitymol in VR.  
Such ​virtual reality exploration (48) of protein structures addresses the need to render the              
complex spatial features of macromolecules very efficiently in immersive 3D thereby helping            
shape perception and benefiting from advanced interaction devices. Several packages have           
reported VR capacities such as Molecular Rift (49), ChimeraX (50), UnityMol (25,51), Narupa             
(52), Nanome (53) and CootVR. 

 
Future trends? 
Virtual reality was mentioned in the previous section, featuring currently available software            
tool implementations for protein visualization. In the future, much is to be expected from              
augmented reality (AR) headsets or glasses, which promise a great potential for multi-user             
interactions without isolating the scientists in a virtual world. These collaborative and social             
aspects are important for efficient scientific exchange as well as to lower the barrier to use                
such novel technology. AR is currently limited by three main barriers related to the available               
hardware. First of all, the characteristics of the devices need to improve for instance in terms                
of field of view, second, better graphics performance and processing power are required             
when they come embedded in the device such as is for instance the case with the 1st                 
generation of the HoloLens (54), and finally a good human-computer interaction interface            
with the device needs to be available. Current interaction paradigms through finger gestures             
and/or voice recognition are a useful step to get a glimpse of the possibilities, but are in the                  
long run not satisfactory for a continued regular usage of these devices as their current error                
rates build up user frustration rather quickly. 
Another trend lies in ​social features relating to annotating protein visualizations, sharing            
them, collaborating with other scientists and disseminating findings community-wide with          
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technologies akin to current social network tools. The jolecule tool (jolecule.com) introduced            
easily shareable annotated views using a web-based approach. Mol* also supports           
shareable remote states. To some extent the collaborative social features may be targeted             
by current VR approaches, such as (50,53,55), whereas foundations were laid a long time              
ago (56–59). 
A particular challenge for future molecular visualization will be to ​embrace the next scale of               
huge biomacromolecular assemblies and models. With experimental developments such as          
the resolution revolution of CryoEM (60) and the rise of integrative methods (61), the              
foreseeable future is in the representation of not only a single small protein but the               
representation of full organelles. The molecular modeling field significantly contributes to this            
expansion of the scale of biological objects that can be investigated down to             
(quasi)-atomistic resolutions (62–64). Exploration of such complex models would definitely          
benefit from immersive technologies to better comprehend the global molecular system,           
which is not possible to apprehend on a standard 2D display. This task may also necessitate                
new ways to interact with such complex systems. This interaction will be possible by using               
technologies such as virtual reality CAVEs, sophisticated stereoscopic display walls or           
possibly future generations of VR gear. At the same time these objects and simulations will               
even further increase the big amount of data to analyze, and immersive visual analytics              
approaches may contribute significantly to our ability to analyze such data sets and identify              
non-obvious complex patterns therein. Better tools to generate the analysis data, for            
instance through advanced analysis of molecular dynamics trajectories, may lead the way            
into this data-driven future. Some tools already exist (65,66) and the constitution of intuitively              
accessible data-bases including access to the raw data and visualizations thereof may be a              
way to delve into the wealth of information generated by such approaches. Several of these               
databases already exist, such as (67–69), to mention only a few, however interactive visual              
analysis (and visual analytics in particular) is currently rather limited. 
Whereas the overwhelming part of protein visualization so far may have focused on             
displaying existing models, the future may focus more intensely on methods to visually             
create complex molecular landscapes from scratch. Novel technology may be          
instrumental to this task (70–73).  
A final general and more philosophical comment about the progress of molecular graphics             
will conclude our collection of thoughts on future trends and perspectives. There still exists a               
huge potential for substantial improvements of visualization methods by better ​integration of            
different scientific communities, in particular computer scientists involved in the field of            
computer graphics and biologists with visualization needs. Much untapped potential can be            
found in exciting new methodologies developed in computer science that do not or only              
slowly transfer into tools accessible to structural biologists as described in more detail in (3).               
Among the upcoming new challenges in visualization that would benefit from such            
integration, we may mention for instance the depiction of uncertainty, see (74) for a recent               
exploration of this topic, or how to capture the dynamics governing macromolecules in static              
pictures (briefly discussed in (3) as well). 
 
Perspectives  

● software tools enable protein visualization, an essential part of scientific reasoning 
● knowing such tools and their range of applicability is key to efficiently coping with 

molecular structures and gaining relevant insights  
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● ongoing revolutions in technology such as augmented and virtual reality will drive 
even further the possibilities and level of visualizations that are possible  

● collaborative aspects may be more natively integrated in visualization tools as 
heralded by trends in multi-user VR applications 

● the complexity of visualizations is increasing and new concepts may require new 
visual metaphors; increasing the transfer of visualization methods from computer 
science to structural biology bears great potential to address these 

 
Conclusion 
Protein visualization is nowadays a vibrant and striving field, with an extraordinary longevity             
since the first drawings by hand that date back before the 1960s. It has reached a broad                 
audience in diverse subfields of modern biology and is ubiquitous on the web, in publications               
and on a broad variety of display devices used by researchers, from mobile phones to 3D                
theaters. This success has been driven by the availability of high-quality software tools, often              
developed and refined collectively by the scientific community. Beyond the classical axiom:            
“bigger (structure), larger (dataset), faster (visualization)”, future new developments related          
to molecular visualization of protein structures will serve our increasing need to integrate             
heterogeneous data and to efficiently use new hardware devices (from VR/AR headsets to             
smartphones). 
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Figure 1: A visual comparison of user interfaces and typical rendering features for VMD (top               
left), Chimera (top right), Jmol (bottom left) and Pymol (bottom right) software tools. A largely               
alpha-helical protein channel is used as example, highlighting features related to its            
secondary structure.  
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