
HAL Id: hal-02945953
https://hal.science/hal-02945953v1

Submitted on 22 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to use the past to face the future?
Etienne Mauffret, Flavien Vernier, Sébastien Monnet

To cite this version:
Etienne Mauffret, Flavien Vernier, Sébastien Monnet. How to use the past to face the future?.
[Research Report] LISTIC. 2020. �hal-02945953�

https://hal.science/hal-02945953v1
https://hal.archives-ouvertes.fr

How to use the past to face the future?
Etienne Mauffret

LIP
Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342

Lyon, France
Etienne.Mauffret@ens-lyon.fr

Flavien Vernier
LISTIC

Savoie Mont Blanc University
Annecy, France

Flavien.Vernier@univ-smb.fr

Sébastien Monnet
LISTIC

Savoie Mont Blanc University
Annecy, France

Sebastien.Monnet@univ-smb.fr

Abstract—Large-scale distributed systems are highly dynamic:
nodes may crash, messages may be delayed or lost, new nodes
may join, virtual machines may migrate... The workload may
also vary a lot depending on the users or applications behavior.
Thus, distributed systems and services must adapt continuously
in order to remain efficient. To do so, distributed systems
usually monitor their environment and maintain a knowledge of
what has happened (e.g., heartbeats time-stamps for a failure
detection mechanism, data access statistics for a distributed
storage systems, etc.). Based on these observations, a distributed
system can decide to adapt to better tackle future situations
(migrate a virtual machine, create a new data replica, etc.).
However, even if a system has a full event log, it is not a trivial
task to decide how much and which part of the past must be
taken into account. In this paper we propose and study the impact
of multiple approaches, from “full-memory” to “no-memory”
through “time-window” and “fading-memory” based strategies.

Index Terms—Adaptative systems; distributed systems; moni-
toring

I. INTRODUCTION

With the advent of cloud platforms, more and more users
rely on “on-line services”. The arrival of 5G networks will
certainly even increase the use of remote resources. Many
applications, like social networks, on-line stores or on-line
office suite, operate worldwide. Such services rely on a large
pool of resources and handle requests emit by a huge number
of geo-distributed users.

At such a large scale, and with so many users, the distributed
on-line services have to deal with a heterogeneous and contin-
uously changing environment. The underlying infrastructure is
highly heterogeneous and dynamic: nodes may crash, network
latencies can change, messages may get lost, new nodes may
join, nodes performance may also change, etc. The workload
is also heterogeneous and highly dynamic. There are night
and days variations, weekly variations, some events/videos/
publications may become popular suddenly, etc.

Therefore, while designing a distributed service, it is neces-
sary to handle this highly dynamic environment. Fortunately,
the cloud’s economic “on-demand” model and recent technolo-
gies such as virtual machines, containers and orchestrators,
give the distributed service designer access to virtually an
infinite “on-demand” pool of resources. It is thus now possible
to react and adapt if needed: by allocating more resources
(physical nodes, virtual machines, bandwidth, storage space,

ANR RainbowFS project (https://rainbowfs.lip6.fr/).

...), by migrating to other locations, by moving pieces of
data... The possibilities offered by recent cloud platforms are
numerous and affordable. Using new technologies, such as
microservices, the distributed service adaptation can even be
finely tuned. Nowadays, many distributed systems have been
designed to adapt themselves to the environment changes [1],
[2], [3], [4]. . .

However, to keep a distributed service well adapted to
its continuously changing environment, it is necessary to
build and maintain a knowledge about this environment. This
concerns both the underlying infrastructure (through failure
detection, network monitoring, server load monitoring, etc.)
and the workload (e.g., by logging users’ requests). This
knowledge can then be used to forecast the future environment
and slightly adapt the service to fit the forecasted future
conditions.

As the knowledge is usually distributed among the nodes
involved in the service (each node is usually responsible to
log the events concerning itself and/or concerning resources
it is responsible for) and as the adaptation has got to be
performed quite frequently (to keep fitting the continuously
changing environment) machine learning techniques may be
hard to use there.

In this paper we formalize the representation of the acquired
knowledge and study how it can be taken into account to build
heuristics allowing a distributed system to adapt itself and
to continue to offer good performance. We propose several
approaches that can be observed in existing distributed systems
and study their behavior under various scenarios. The goal is
to study the weight one should give to past events according
to: (i) their age (intuitively, recent events should weight more
than old ones); (ii) their frequency (intuitively, frequent events
should weight more than rare ones); or (iii) the associated
user’s priority (the system should give more weigh to events
concerning users/pieces of data/. . . having a high priority).

The contribution of this paper are:
• A formal mean to represent the distributed event log,

and a formal representation of various classical ap-
proaches: “full-memory”, “no-memory”, “time-window
based memory”, “fading-memory” and “frequency-aware
fading-memory”;

• A discussion about these approaches;
• An analyze of the behavior of the different approaches

under various realistic senarii, using a previous work: a

distributed data management system that needs to react
to changing users behavior.

The following of this paper is organized as follows. Sec-
tion II describes how we handle past events and presents
the proposed approaches. Section III presents how the system
can decide to adapt or not according to the strategy in use
and the estimated benefits. Section IV give our evaluation
results. Finally, Section V concludes the paper and gives some
perspectives.

II. BUILDING AND USING EVENT LOG

A. Memory representation

Let S be a dynamic distributed service operating at large
scale. This service runs for a given time T = [0; t∞]. Each
system node being part of the service runs a local instance. In
the following we consider a node’s point of view thus local
executions of S.

Each local instance of S must build a local event-log. This
history contains both the events known by the node and their
respective weight (note that this weight can be implicit, for
instance, it can be deduced from an event timestamp).

Usually, an event e is defined by a tuple composed of ae,
the source of the action se and the timestamps of the action
te. Depending on the service needs, more information can be
added. For instance, a destination node d for the action can
be logged when events are messages. In the following, we
consider events represented by the triplet presented here.

To set the weight of each event in the history S uses a
weighting function pS . This function returns a value between
0 and 1 depending on the age of the event. This weight permits
to define the strategy in use by S for its adaptation.

We mainly focus on 3 strategies. To illustrate lets consider
3 distributed services which differ only by their history usage
strategy (i.e., the only difference is their weighting function:

1) SIT : this service considers that all events have the same
weight (whether they are recent or very old);

2) SFT : this service uses a “time window”, it considers
only recent events (where “recent” depends on the
window size);

3) SEE : this service uses a fading memory model, the
weight of an event decreases with time.

When an event e occurs at time te on a node, it is logged
in the node’s event log. While using the learned knowledge,
at a time t ∈ T , the importance of the event is weighted using
pS(∆te), whith ∆te = t − te being the elapsed time since e
occurred.

We compare these approaches under various simple scenar-
ios. We consider that sources (nodes at the origin of events)
may have two types of behavior: active or passive on a given
period (i.e., generate events on this period or not). Depending
on the distributed system, it can be useful to distinguish which
resource(s) is impacted by events generated by an active node
(i.e., to define that a node is active/passive at the granularity
of a resource). For instance, a user can send requests for a
piece of data d1 but never for another piece of data d2. In this

Fig. 1. Scenario 1

Fig. 2. Scenario 2

case, it is stated that this user is active for d1 and passive for
d2. This is used to describe the following scenarios:

1) Stable behavior: sources (or user nodes) behave con-
stantly during the whole execution: a source remains
either active or inactive. This scenario models the use
of a distributed service by static users (having a constant
behavior). It is depicted by Figure 1 where user 1 is the
only active source;

2) Alternative behavior: two sets of sources change their
behavior regularly. Alternatively, the active group be-
comes inactive (for a given target) while the other
becomes active. Several sources may remain inactive
during the whole execution. This scenario is depicted
by Figure 2 in which the users 1 and 2 switch from
active to inactive periods alternatively (user 3 remains
inactive);

3) Unbalanced alternative behavior: tow sets of sources
switch from active to inactive alternatively indepen-
dently. This scenario models, for instance, the activity of
a group of users using a same service from two different
locations, like from home and from work. It is depicted
by Figure 3 in which users 1 and 2 alternate between
active and passive periods while 3 remains inactive;

4) Erratic behavior: sources exhibit no particular habit,
they behavior (active or inactive) can change at any time.
This is depicted by Figure 4.

Fig. 3. Scenario 3

Fig. 4. Scenario 4

Figure 5 illustrates the events occurring along time, this
figure will be used to explain the weight given to events
between ei and ei+7 depending on the strategy in use.

B. Full memory strategy

1) Concept: Using this strategy, all the events have the
same weight. Therefore, the age of an event is not taken into
account. In other words, the weighting function is a constant:
∀t1, t2 ∈ T , pSIT (t1− t2) = 1. This behavior is illustrated by
Figure 6.

This simple strategy has a major drawback. As no particular
weights are given, recent events have the same impact as very
old event that occurred at the beginning of the execution. In
case of configuration change, the adaptation will be very slow:
the system will start to adapt only when the number of events
that occurred in the new configuration is big enough to face
the number of events in the old configuration.

2) Points in favor: If a system is rather stable, this strategy
may be used. It can also be used in presence of erratic

Fig. 5. Events during time tk

Fig. 6. Events weight at time tk using the full memory strategy

behavior: in this case, the system will converge to a mean
configuration and will not try to adapt to better handle erratic
behaviors, exceptions.

This is illustrated by Figure 7.

Fig. 7. Full memory strategy

3) Full memory strategy limits: In case of rapid changes, in
the application behavior or in the infrastructure, the distributed
service will take a very long time to adapt. In several scenarios
the service should alternate between two (or more) configura-
tions to better fit the current needs; using the full memory
strategy would certainly lead to an average configuration
offering poor performance for the various cases.

Another drawback is that such a strategy forces the nodes to
keep a trace of all events since the beginning of the exécution.
This may be costly in terms of storage. This naive strategy
is thus not very adapted to a large-scale dynamic distributed
service.

C. Time-window based memory strategy

1) Concept: In order to adapt rapidly to changes, it is im-
portant to quickly take into account recent events. A common
way to give a high importance to recent events is to forget
old ones. The time-window based memory strategy consist
of taking into account only recent events: the ones that fit
in a time-window. The time window is a time frame of size
τ . Events that are older than τ are not taken into account
anymore. τ can be either fixed or dynamic. Therefore, using
this strategy, the weighting function pSFT returns 1 for recent
events and 0 for the others. More formally:

∀t1, t2 ∈ T , pSFT (t1 − t2) =

{
1, if (t1 − t2) ≤ τ
0, if (t1 − t2) > τ

2) Adaptability: This strategy favors the present and re-
move all the impact of old events. The distributed service using
this strategy can thus adapt quickly. For instance, if sources
have recently changed their behavior, in the time window,
most event will reflect this new behavior and the system will
adapt to better face this new situation if it can. This strategy
is illustrated by Figure 8.

However, this high adaptability presents some drawbacks:
the distributed system using this strategy may be too sensitive
to short term changes. Using such a strategy, it is possible

Fig. 8. Events weights at time tk using a time-window based strategy

that the system adapts too often. For instance, some important
event sources may become inactive for a short period of time
and the system may decide to reconfigure itself not taking
them into account, while these sources will be active again
soon as illustrated by Figure 9.

To tune the tradeoff between fast adaptation and stability, it
is necessary to configure the time-window size.

Fig. 9. Behavior while using a time-window based strategy

3) Time-window size importance: As stated above, the
time-window size can be either fixed or dynamic. A too short
time-window may lead to ignore important events and to a
poor stability (i.e., a system that adapt too fast to short terms
changes). A too long time-window will degrade the adaptation
speed. At the extreme case, a very long time-window is
equivalent to the full memory strategy. Fixing a time-window
size requires a good knowledge a priori. In the Section III-B
we study dynamic means to adapt the time-window size while
the service is running. Having to configure this time-window
size is the main limit of this strategy.

4) Time-window advantages: If the whole event-log is not
needed for some other reasons (e.g., security, post-mortem
analysis. . .), the system may only keep recent events: the
ones that fit in the time-window. This provides the ability to
periodically purge the event log and save a lot of memory.

Thus, if the time-window size is well configure, this strategy
can give good results (fast adaptation, but not too fast), at a
reasonable cost.

5) Double time-window: To lover the impact of the time-
window size, and to permit the distributed system to adapt
more gracefully, it is possible to use two time-windows. This is
illustrated by Figure 10. This approach permits to forget events
more gradually. Event leaving the first time-window will have
their weight reduced, then after a second period of time (the
second time-window, their weight becomes 0. Formally, for
two periods τ1, τ2 such that τ1 < τ2 :

∀t1, t2 ∈ T , pSFT (t1 − t2) =

1, if (t1 − t2) ≤ τ1
1
2 if τ1 < (t1 − t2) ≤ τ2
0, if (t1 − t2) > τ2

This approach presents the same pros and cons than the
single time-window approach: the size of the time-windows
may be hard to set, the system will be too reactive if they are
too small and not reactive enough if they are too long.

Fig. 10. Weight of events at time tk using a double time-window based
strategy

D. Fading memory strategy

1) Concept: Many distributed services have to adapt fast,
but also need to take into account old past events. In particular
to detect specific usage habits. The fading memory model is
thus a good choice. This strategy is based on the use of a
weighting function pSEE that gives a value decreasing with
time. Many functions can be used, we have identified 3 main
criteria to obtain a progressive vanishing of the history.

1) pSEE must be a piecewise-continuous function for all the
execution time. ∀t1, t2 ∈ T , pSEE (t1− t2) is defined. It
is not necessary that pSEE is a continuous function. That
means a weight can be given for all the events.

2) pSEE must be decreasing. ∀t1, t2, t3 ∈ T , t2 ≤ t3 ⇒
pSEE (t1 − t2) ≤ pSEE (t1 − t3). That means more an
even is old, less is weight is important.

3) pSEE should not be constant. ∀t1, t2 ∈ T ,∃t3 ∈
T | pSEE (t1 − t2) 6= pSEE (t1 − t3). It can be constant
locally it is the case for piecewise constant decreasing
functions.

In many cases an event should never be completely forgot-
ten. However, a very old single event should have a negligible
weight (but not null). We thus add a fourth criterion:

4) pSEE should not have root.
The use of a continuous function permits to give a weight

to each instant, but mas need many computation. In practice
the use of a piecewise-continuous function is enough, like
piecewise constant decreasing functions. This kind of function
usually use a time period τ to define the timeframe during
which the function is constant. This is very close to multi-
time-window strategies, it can be seen as a generalization. We
focus on the following function: pSEE (δt) = 1

2

b δtτ c, illustrated
by Figure 11.

Fig. 11. Weight of events at time tk using a fading memory strategy

This function simply periodically divides by 2 the weight
of past events. This low-cost operation provides the ability to
decrease rapidly the weight of old events while still taking
them into account, as shown by Figure 12. This strategy is
used by the Berthier’s failure detector to adapt to the changing
latency [5].

Fig. 12. Behavior while using a fading memory strategy

2) History size: Using the fading memory strategy usually
implies to keep a trace of all the past events. This can induce
a non negligeable cost. However, if the storage capacity of the
nodes is limited, it is simple to not respect the last constraint
4. For instance, in the case of the function pSEE (δt) = 1

2

b δtτ c,
it is possible to fix a maximum number of periods after which
an event is forgotten.

Strategies based on fading memories can use well adapted
weighting functions, at the cost of some computation.

3) Taking frequency into account: At last, the 2 constraint
can be relaxed. This constraint imposes the use of a decreasing
function. In the case where the service faces an event similar
to an old one (e.g., access by a same user a same piece of
data) it can increase the weight of the past event. This allows
to take frequency into account.

III. SERVICE ADAPTATION

A. re-configuration

In order to decide if a distributed service should change its
configuration, it needs to estimate the benefit of the change.
This change is done through an adaptation α. The service
should compute the estimated cost of α, c(α) and of the benefit
g(α) (g for gain).

The cost estimation is service dependent. In the case of a
failure detector, it may consist in updating a local timer while
in the case of a distributed data storage system, it may lead
to data migration. Thus, we suppose that the service is able
to estimate c(α).

The benefit g(α) is obtained by computing the difference
between the current configuration σcur and the configuration
after the adaptation σα. This value is estimated through a per-
formance evaluation function µ which gives a value depending
on an event e and a configuration σ. This measure depends
on the service. It can represent a detector accuracy, a data
access latency, . . . To estimate future performance, the service
may rely on events present in the event log. We propose the
following formula to compute the gain.

g(α) =
∑
e∈HS

(pS(t− te)(µ(σα, e)− µ(σcur, e)).

This approach consists in computing the performance dif-
ference for each event present in the log, weighted by its
associated cost (depending on the strategy in use).

One the cost and the benefits have been estimated, the
service can easily decide if it should adapt or not. in particular,
if g(α) − c(α) > 0, then the service should estimate that it
should adapt.

This example of method to adapt a distributed service
highlight the importance to the weight given to the events in
the event log. The service uses these weights to forecast the
future.

B. Estimating time-window size or fading period

Many strategies exploiting the knowledge in the event log
are based on a period τ . This period can be fixed or adaptable.
A fixed period (time-window size/fading function) requires an
a priori knowledge. This knowledge can be hard to acquire.
It may be necessary to design an algorithm to adapt the
period length itself. There again, the algorithm depends on
the service.

1) Case study: period estimation using CAnDoR: To study
the impact of the period size we have taken CAnDoR [6], a
distributed data management service. CAnDoR has to adapt
data replica placement in order to reduce the overall access
latency, it takes into account users’ location, other replicas

location and the consistency protocol in use. CAnDoR mech-
anisms are detailed in [6] and are outside the scope of this
paper.

The event log is composed of read and write requests on
pieces of data from users. Adaptations consist in moving
pieces of data. The performance is simplified: we consider
the median access time for all users.

In this evaluation users follow the “alternative” behavior
detailed in Section II-A: at the beginning of the execution
2 groups of users are chosen uniformly at random. these 2
groups alternate their activity.

Figure13 compares the median access time of active users
between a baseline (static placement, smart placement but
without further adaptation) a dynamic placement using the
fading memory strategy (left) and a dynamic placement using
a time-window based strategy. The fixed period is set to 500
seconds (8, 3 minutes, purple solid line) then 1000 seconds
(166 minutes, green dashed line).

Fig. 13. Performance using fixed period. Fading memory (left) and time-
window (right)

Time-window and fading memory present very similar
behavior (when we compare executions using the same period
value). While using fading memory and a long period (166
minutes), the period is to long and the service is close to
static. .However, with a 8, 3 minutes period, the adaptation is
fast and access times are improved.

2) Over or under-adapting: This first method to adapt the
period length is based on the monitoring of the service adap-
tations. The service counts the number of re-configurations.
It also counts the number of computations it did to decide
whether or not it should adapt (i.e., reconfigure). If the ratio
nbreconfiguration/nbcomputation is close to 1, the service
over-adapts (each time it checks if it should adapt, it should
according to its history and strategy). On the over hand, if this
ratio is close to 0 the service under-adapts. It almost never
adapts.

This approach is simple to implement, but it is not accurate.
How to make the difference between a well adapted service
that remains well-adapted and a under-adapted service? How-
ever, it can be used asidealong with another method.

Figure 14 presents the performance while using this method
(purple) compared to a fixed period. We can observe a little
improvement.

3) shadow pages cache-based method: The second method
the adapt the period length is inspired by a Linux Kernel

Fig. 14. Adapting the period length according to the number of re-
configuration. Fading memory (left), time-window (right)

mechanism: the shadow page cache ([7], [8]). The kernel
keeps in memory reference of pages that were in the cache
recently (a kind of list of recently evinced pages). If an
accessed page is not in the cache but is in this list (the shadow
page cache), the kernel can put it directly in the active pages
(because it is almost like if it was a hit in the cache). In fact,
the page would have been in the cache if it was slightly bigger.

In our system, we keep a view on the previous configuration,
then at each request (or from time to time) we compute if the
old configuration could have done better than the current one.
This can help to detect too short periods. However, the cost
induced by this method is not negligible.

Fig. 15. Adapting the period length comparing with previous state. Fading
memory (left) and time-window (right)

Figure 15 presents the performance obtained using this
approach compared to static periods. There again, the gain is
negligible. Some results are even worse than the ones obtain
with static periods.

4) Using the number of requests: The third method is based
on the number of received requests. First, we determine the
number k of events necessary for the service to perform a
correct placement. At the end a period, the service count how
many events occurred during the period : n (number of events
having a weight of 1). If n is not “close” to k then the service
increase or decrease the period in order to allow future n to
get closer to k.

This approach allows the service to adapt the period de-
pending on the activity.

Figure 16 shows the performance with this last approach
(red) compared to the static one. The performance is there
again slightly better but comparable.

Fig. 16. Adapting the period length using the number of requests. Fading
memory (left) and time-window (right)

IV. EVALUATING WEIGHTING STRATEGIES

The goal of this section is to study the impact of the
proposed strategies to weight the past on the performance of
our distributed data management service CAnDoR. We use 3
configurations of CAnDoR: CIT a version of CAnDoR with
full memory (i.e. all the events weight 1), CFT , using a time-
window based strategy and CEE , based on the fading memory
strategy. The weighting function used by CEE is the function
pSEE (δt) = 1

2

b δtτ c. CFT and CEE handle a dynamic period
(adapted through the method base don the number of requests)
as detailed in previous section.

The 3 configurations are evaluated with sources (i.e., users)
following the scenarios described in Section II-A.

We use our CAnDoR simulator based on Peersim [9] to
simulate 100 clusters able to store data copies; and groups of
10 users among 100 send requests to access a piece of data. We
measure the median access time for these users, for each case.
We use P , a static data placement method taking consistency
into account as a baseline (a smart placement at the start, but
no adaptation).

1) Stable behavior: In this scenario, active users are de-
signed at the beginning and remain active all the time. The
placement service mainly focus on the ratio “requests sent by
a given user”/”total number of requests” As the behavior is
quite constant, this ratio does not change a lot and the use of
various strategies has a very low impact here. We can observe
on Figure 17 that the 3 strategies produce a very similar result.
We can also see that the adaptation is efficient and brings a
good benefit (from 175 to 130 ms) compared to the static data
placement (that does not know which nodes will be active or
not). CFT , CEE induce small data movements when a user
becomes punctually more active.

2) Alternative behavior: Under this scenario, sources are
divided in 3 groups:

1) group A: active one period out of two, 10 users;
2) group B: active one périod out of two, when group A is

not active, 10 users;
3) group C: never active, the remaining 80 users.
The execution is divided in 250 minutes periods of ac-

tivity/inactivity. Figure 18 presents the results obtained with
this scenario. We can observe that after each behavior switch,
CFT , CEE have a quick latency peak (around 160 milliseconds)
but the service adapts itself quickly to offer good performance

Fig. 17. Comparison of the weighting strategies under scenario 1

again. However, CIT needs much more time to adapt and find
efficient data placement (more than 100 minutes for the first
switch). We can see that the latency peak decreases from
switch to switch, but also becomes more and more long to
lower.. This is because this configuration of the service gives
the same importance to all the events, old or recent. After a
long time, user switching will not affect the data placement,
CIT will then propose an average placement to the two groups
without considering which one is active.

Fig. 18. Comparison of the weighting strategies under scenario 2

3) Unbalanced alternative behavior: In this scenario
sources are divided in 3 groups:

1) group A: active one period out of two, 10 users;
2) group B: active one périod out of two, 10 users;
3) group C: never active, the remaining 80 users.

The execution is divided in 250 minutes periods of activ-
ity/inactivity for group A and 50 minutes pour group B. The
results of this experiment are presented in Figure 19. We can
observe that CIT exhibit good performance while group A is
is active but poor performance while group B is active. Giving
the same weight to all the request, CIT gives a great advantage

to group A which is globally more active. CFT and CEE have
good performance, however, at each switch, they need some
time to adapt.

Fig. 19. Comparison of the weighting strategies under scenario 3

4) Erratic behavior: In this scenario, each user can send
request (or not) periodically (or not). The results of this
experiment is show by Figure 20. The figure shows that the
dynamic methods cannot do better than the static one.
CFT and CEE try to adapt to event that will not reproduce,

leading to poor performance. CIT converges toward a place-
ment equivalent for all users, close to a static one

Fig. 20. Comparison of the weighting strategies under scenario 4

V. DISCUSSIONS & CONCLUSIONS

Distributed systems need to gracefully adapt to their con-
tinuously changing environment. To do so, they need to
monitor, detect changes and forecast the future. There are
many means to use information gathered in the past by the
monitoring system. In this paper we propose a simple formal
representation of the history and we study different strategies.
We propose the use of a weighting function over the past

events in order to be able to give more or less importance
depending on the age of the events.

We saw that it is obviously a good idea to give more
importance to recent events. However, forgetting too quickly
past events may lead to unstable systems changing their
configuration too frequently. On the over hand, giving to much
weight to old events may be harmful for the reactiveness. It is
therefore necessary to finely tune the weighting function. In
this paper we also suggest directions to automatically adapt
the weighting function (i.e, adapt the adaptation mechanism
itself).

We used CAnDoR, our distributed data management system
designed to dynamically adapt the data layout according to the
users’ behavior, to experiment the various weighting functions
and adaptation strategies.

We are currently working on the validation of our ap-
proaches with various scenarios. In a near future, we plan
to compare the proposed approaches against machine learning
techniques.

REFERENCES

[1] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement
strategy in scientific cloud workflows,” Future Generation Computer
Systems, vol. 26, no. 8, pp. 1200 – 1214, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X10000208

[2] I. Gupta, T. D. Chandra, and G. S. Goldszmidt, “On scalable and efficient
distributed failure detectors,” in Proceedings of the twentieth annual
ACM symposium on Principles of distributed computing, 2001, pp. 170–
179.

[3] R. O. Saber and R. M. Murray, “Consensus protocols for networks of
dynamic agents,” 2003.

[4] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services,”
2010.

[5] M. Bertier, O. Marin, and P. Sens, “Implementation and performance
evaluation of an adaptable failure detector,” in Proceedings International
Conference on Dependable Systems and Networks. IEEE, 2002, pp.
354–363.

[6] E. Mauffret, F. Vernier, and S. Monnet, “Candor: Consistency aware
dynamic data replication,” pp. 1–5, 2019.

[7] Johannes Weiner, “thrash detection-based file cache sizing,”
https://lwn.net/Articles/552327/, accessed: June 2020.

[8] Jonathan Corbet, “Better active/inactive list balancing,”
https://lwn.net/Articles/495543/, accessed: June 2020.

[9] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,” in
2009 IEEE Ninth International Conference on Peer-to-Peer Computing.
IEEE, 2009, pp. 99–100.

[10] N. Hayashibara, A. Cherif, and T. Katayama, “Failure detectors for
large-scale distributed systems,” in 21st IEEE Symposium on Reliable
Distributed Systems, 2002. Proceedings. IEEE, 2002, pp. 404–409.

[11] N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The/spl
phi/accrual failure detector,” in Proceedings of the 23rd IEEE Interna-
tional Symposium on Reliable Distributed Systems, 2004. IEEE, 2004,
pp. 66–78.

[12] P. Viotti and M. Vukolić, “Consistency in non-transactional distributed
storage systems,” ACM Computing Surveys (CSUR), vol. 49, no. 1, pp.
1–34, 2016.

[13] S. Agarwal, “Public cloud inter-region network latency as heat-maps,”
2018. [Online]. Available: https://medium.com/@sachinkagarwal/public-
cloud-inter-region-network-latency-as-heat-maps-134e22a5ff19

[14] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in Concurrency: the Works of Leslie Lamport, 2019, pp. 179–
196.

[15] D. A. Popescu, “Latency-driven performance in data centres,” Ph.D.
dissertation, University of Cambridge, 2019.

