
HAL Id: hal-02945949
https://hal.science/hal-02945949

Submitted on 22 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear time-varying flatness-based control of Anti-lock
Brake System (ABS)

Mohamed Ben Abdallah, Mounir Ayadi, Frédéric Rotella, Mohamed Benrejeb

To cite this version:
Mohamed Ben Abdallah, Mounir Ayadi, Frédéric Rotella, Mohamed Benrejeb. Linear time-varying
flatness-based control of Anti-lock Brake System (ABS). 2012 9th International Multi-Conference on
Systems, Signals and Devices (SSD), Mar 2012, Chemnitz, Germany. pp.51-56. �hal-02945949�

https://hal.science/hal-02945949
https://hal.archives-ouvertes.fr


OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

Any correspondence concerning this service should be sent  
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: http://oatao.univ-toulouse.fr/20071 

To cite this version: 
Ben Abdallah, Mohamed and Ayadi, Mounir and Rotella, 
Frédéric  and Benrejeb, Mohamed Linear time-varying flatness-
based control of Anti-lock Brake System (ABS). (2012) In: Systems, 
Signals and Devices (SSD), 2012 9th International Multi-
Conference on, 20 March 2012 - 23 March 2012 (Chemnitz, 
Germany). 

Official URL: https://ieeexplore.ieee.org/document/6198065 

mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://www.idref.fr/033201021
https://ieeexplore.ieee.org/document/6198065


Linear time-varying flatness-based control of

Anti-lock Brake System (ABS)

M. Ben Abdallah∗, M. Ayadi∗, F. Rotella∗∗ and M. Benrejeb∗
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École Nationale d’Ingénieurs de Tunis, BP 37, Le Belvédère, 1002 Tunis, Tunisia.
∗∗Laboratoire Genie de Production
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In this case, the pole placement problem was solved recently

by Marinescu [1], who proposes some technical methods for

factorization of linear time-varying transfert matrices. These

key points lead to solve Bezout equation written in the time-

varying framework.

In order to overcome these two points in LTV framework,

namely the choice of desired poles at the outset and the

determination of solution for the Bezout equation, we propose

in this paper to extend the flatness-based control strategy

developed in [4] to the case of time-varying systems. It will be

seen that applying the guideline induced by a flatness based

control to a LTV system leads to express it in a natural RST

form.

This control strategy is be compared to the flatness-based

control based on the use of a reduced order observer. The

paper is organized as follows: in section II, some background

notions about SISO LTV systems and flatness-based control

strategy are presented. In section III, a reduced order observer

for the state vector are presented. In section IV, the polynomial

controller design based on exact observer is proposed. The

state vector constituted by the flat output and its derivatives

and the designed observer is without dynamics. In section V,

the proposed strategy is illustrated on the control of an Anti-

lock Brake System (ABS).

II. BACKGROUND NOTIONS

A. SISO linear time-varying systems

For finite-dimensional, several input-output descriptions

have been introduced for LTV systems. Here, a time-varying

linear system is described by the following state space model

of dimension n:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)
(1)

The matrices A(t), B(t) and C(t) whose coefficients depend

on the time are of dimensions (n× n), (n× 1) and (1× n),
respectively. If the system (1) is completely controllable and

by applying the algorithm presented in [12], [13], we obtain

the controllable form of (1) given by:

Ż(t) = Ā(t)Z(t) + B̄(t)u(t)

y(t) = C̄(t)Z(t)
(2)
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Abstract—In this paper, a flatness-based control strategy for 
linear time-varying systems is proposed in order to track a 
desired trajectory. The flatness-based control is designed by 
using two observers: a reduced order observer with a constant 
estimator error gain and an exact observer for designing a 
polynomial two-degrees-of-freedom controller without resolving 
Bezout equation in time varying framework. The proposed 
approach is illustrated with the control of an Anti-lock Brake 
System (ABS) and led to track a given trajectory for the wheel 
slip.

Index Terms—Linear time-varying systems, trajectory lin-
earization, flatness, path tracking, exact observer, polynomial 
controller, reduced order observer.

I. INTRODUCTION

In the control theory, the study of linear time-varying (LTV) 
systems has been important since this situation is encountered 
not only when some parameters of the system vary with time, 
but also when the system to be controlled is nonlinear and 
the problem is approached by linearizing this system around 
a desired trajectory which leads to an LTV model.

For finite-dimensional and time-invariant linear systems, a 
well-known control design technique is obtained by polyno-

mial two-degrees-of-freedom controllers [5], [11], [20] which 
were introduced fifty years ago by Horowitz [8]. More details 
are given in the reference therein and in the following these 
controllers will be denoted as RST controllers [7]. Whatever 
the chosen design method, this powerful method is based on 
pole placement and presents one drawback: it needs to know 
where to place all the poles of the closed-loop system at the 
outset.

Following [4], by the use of flatness design control principles, 
the problem of pole placement which consists in imposing 
closed loop system dynamics can be related to the tracking 
problem, to design an RST (two-degree-of-freedom) controller 
with very natural choices of closed loop poles. In this design, 
a solution of the Bezout equation is obtained depending on 
the planned trajectories.

The RST design controller problem is not easy to transcribe 
in the case of LTV systems due to the fact that the coefficients 
do not commute with the time derivative operator. Besides, the 
structure of the set of the poles of the closed-loop system is 
more complex.



with:

Ā(t) =















0 1 0

...
. . .

. . .

0 0 1

−ψ0(t) −ψ1(t) · · · −ψn−1(t)















B̄ =
(

0 · · · 0 1
)T

, C̄ =
(

γ0 (t) · · · γ0 (t)
)

(3)

B. Short survey on flatness

The flatness property, which was introduced by Fliess et al.

in (1992) [14], for continuous-time nonlinear systems, leads to

interesting results for control design. This system property was

widely introduced and used in literature [2], [6], [9], [10]. The

existence of a variable called a flat output permits to define all

other system variables. Let us consider the nonlinear system

described by the following differential equation:

ẋ(t) = f(x(t), u(t)) (4)

where x(t) ∈ ℜn is the state vector and u(t) ∈ ℜm is the input

vector. Roughly speaking, this system is called differentially

flat if there exists a variable z(t) ∈ ℜm of the form:

z(t) = h(x(t), u(t), u̇(t), ..., u(r)(t)) (5)

such that the state and the input of the system are given by:

x(t) = A(z(t), ż(t), ..., z(α)(t)) (6)

u(t) = B(z(t), ż(t), ..., z(α+1)(t)) (7)

where α is an integer. The variable z(t) is called the flat output

of the system.

1) Implication for the LTV systems: Let us consider the

controllable state space equation (2) and let us denote by zi(t)
the i-th component of Z(t). The variable z1(t), denoted as

z(t), can be considered for this system as a flat output. Then,

the state vector of the controllable form Z(t) is composed by

the flat output and its derivatives.

2) Tracking control and pole placement: For a given

planned trajectory of the flat output, zd(t), the control law

based on flatness is as follows:

u(t) = z
(n)
d
(t) +

n−1
∑

i=0

ki(z
(i)
d
(t)− z(i)(t)) + ψi(t)z

(i)(t) (8)

and by introducing the polynomial:

K (p) = p
n +

n−1
∑

i=0

kip
i

(9)

where the ki are chosen such that K(p) is a Hurwitz polyno-

mial, the control u(t) can be written as:

u(t) = K(p)zd(t) +

n−1
∑

i=0

(ψi(t)− ki)z
(i)(t) (10)

By applying this control, the tracking error verifies:

lim
t→∞

(zd (t)− z (t)) = 0 (11)

and the closed-loop dynamics are given by the roots of

K (p). This strategy differs from the usual pole placement for

linear time-varying systems obtained by a time-varying state

feedback.

By denoting: ψ − k =







ψ0(t)− k0

...

ψn−1(t)− kn−1







the previous control can be written as:

u(t) = K(p)zd(t) + (ψ − k)TZ(t) (12)

where:

Z (t) =
(

z (t) ż (t) · · · z(n−1) (t)
)T

(13)

is the state vector of the controllable form.

To implement the control (12), the vector Z(t) must be

estimated with an observer. In the next sections, two type of

observers are considered.

III. REDUCED ORDER OBSERVER

Let us consider the observable form of the state equation

(1) given by the following relation:

ẋo (t) =

















0 · · · 0 −τ0 (t)

1
. . .

... −τ1 (t)

. . . 0
...

0 1 −τn−1 (t)

















xo (t) +















σ0 (t)

σ1 (t)

...

σn−1 (t)















u (t)

y (t) =
(

0 · · · 0 1
)

xo (t)

(14)

As in (14), the system output is the last component, a reduced

order observer is then used to estimate the state vector xo (t).
Let us group the n−1 first components of xo (t) in χ(t) then1:

˙̂χ =













0

1 0

. . .
...

1 0













χ−













τ0

τ1

...

τn−2













y +













σ0

σ1

...

σn−2













u,

ẏ + τn−1(t)y − σn−1(t)u =
(

0 · · · 0 1
)

χ

The observer for this system is then given by:

˙̂χ =













0

1 0

. . .
...

1 0













χ̂−













τ0

τ1

...

τn−2













y +













σ0

σ1

...

σn−2













u

+Γ
(

ẏ + τn−1y − σn−1u−
(

0 · · · 0 1
)

χ̂
)

To overcome the output derivation, we are led to propose the

following reduced order observer with the introduction of a

1For space reasons, we dropped the time argument.



new variable ζ(t) = χ̂(t)−
(

λ0(t) · · · λn−2(t)
)T
y(t):

ζ̇ =













−λ0

1 −λ1

. . .
...

1 −λn−2













ζ +













σ0 − σn−1λ0

σ1 − σn−1λ1
...

σn−2 − σn−1λn−2













u

+















−τ0 − λ̇0 + (τn−1 − λn−2)λ0

λ0 − τ1 − λ̇1 + (τn−1 − λn−2)λ1
...

λn−3 − τn−2 − λ̇n−2 + (τn−1 − λn−2)λn−2















y

As the error dynamics are given by the matrix:













−λ0(t)

1 −λ1(t)

. . .
...

1 −λn−2(t)













we choose for all i, λi(t) as constant parameters to give

an asymptotic observer. The observation of xo (t) is then

deduced:

x̂o(t) =

(

ζ(t) +
[

λ0(t) · · · λn−2(t)
]T
y(t)

y(t)

)

(15)

In this solution, the difficulty appears in the choice of the

observers’ poles in the LTV framework. To overcome this

point, an enlightening ideas suggested in [15] and applied in

[4] can be used. The realization of this controller, using the

exact observer, will be the subject of the next part.

IV. EXACT STATE SPACE OBSERVER

Let us consider the model (2) where the first component of

the state vector Z (t) is the system flat output. By successive

derivations of the output plant y(t) until the order (n−1), we

get:

Y (t) = O(t)Z(t) +M(t)U(t) (16)

where:

• Y (t) =
(

y(t) · · · y(n−1)(t)
)T

,

• U(t) =
(

u(t) · · · u(n−2)(t)
)T

,

• O(t) is the observability matrix of the pair
(

Ā (t) , C̄ (t)
)

and it is given by:

O(t) =
(

C̄1(t) · · · C̄n(t)
)T

(17)

such that:

C̄1(t) = C̄(t)

C̄i(t) =
˙̄Ci−1(t) + C̄i−1(t)Ā(t) for i = 2 to n

• The matrix M(t) has the following expression:

M(t) =





















0 0 · · · 0

M1
. . .

. . .
...

...
. . . 0 0

Mn−2 · · · M1 0

Mn−1 Mn−1,2 · · · M1





















(18)

with:

– M1 (t) = C̄1(t)B̄,

– Mi (t) = Ṁi−1 (t) + C̄i (t) B̄, for i = 2 to n− 1,

– Mn−1,2 (t) =Mn−2 (t) +
∑n−3

i=1 M
(n−2−i)
i (t) ,

– Mn−1,3 (t) = Mn−3 (t) +
∑n−4

i=1 (n− i− 2)M
(n−3−i)
i (t),

– etc.

As the pair (Ā(t), C̄(t)) is observable, the matrix O(t) is of

rank n and the state vector can be written as:

Z(t) = O−1(t)Y (t)−O−1(t)M(t)U(t) (19)

Taking into account the state space equation (2) and avoiding

variable derivations, we get:

Z(t) = p−1
(

Ā(t)Z(t)
)

+ p−1
(

B̄u(t)
)

(20)

where p−1 stands for the integration operator:

p−1h (t) =

t
∫

−∞

h (τ)dτ (21)

with h (−∞) = 0. This last hypothesis ensures commutativity

between p and p−1.

By rewriting this equation to the order (n−1), the equation(20)

becomes:

Z(t) = p−1
(

Ā(t)p−1(Ā(t) . . . p−1(Ā(t)Z(t))
)

+

p−1
(

Ā(t) . . . p−1(Ā(t)B̄p−1u(t))
)

+

p−1
(

Ā(t)B̄p−1u(t)
)

+ B̄p−1u(t)

(22)

If the term Z(t) is replaced in this equation by the one given

in (19), we get:

Z(t) = p−1
(

Ā(t) . . . p−1(Ā(t)O−1(t)Y (t)

−Ā(t)O−1(t)M(t)U(t))
)

+ p−1
(

Ā(t) . . .

p−1(Ā(t)B̄p−1u(t))
)

+ p−1
(

Ā(t)B̄p−1u(t)
)

+ B̄p−1u(t)

(23)

To eliminate the terms containing the derivatives of the plant

output y(t) in Y (t), we proceed by using successive integra-

tions by parts leading to the following expression of the state

vector:

Z(t) = p−n+1 (Θ1(t)y(t)) + · · ·+ p−1 (Θn−1(t)y(t))+

(Θn(t)y(t)) + p−n+1 (∆1(t)u(t)) + · · ·+

p−1 (∆n−1(t)u(t)) + p−1
(

Ā(t) . . . p−1(Ā(t)B̄p−1u(t))
)

+ · · ·+ p−1
(

Ā(t)B̄p−1u(t)
)

+ B̄p−1u(t)

(24)



where Θj(t) =
(

θ1j(t) · · · θnj(t)
)T

and ∆j(t) =
(

δ1j(t) · · · δnj(t)
)T

. The components θij(t) and δij(t)
are function of the parameters ψi(t) and their derivatives. The

control law (12) can be written in the RST form:

R
(

p−1, u (t)
)

= K(p)zd(t)− S(p
−1, y(t)) (25)

where:

S(p−1, y(t)) = (k − ψ)
(

p−n+1 (Θ1(t)y(t)) + · · ·+Θn(t)y(t)
)

R(p−1, u(t)) = u (t) + (k − ψ)
(

p−n+1 (∆1(t)u(t)) + · · ·
(

+p−1 (∆n−1(t)u(t))
))

+ (k − ψ)
((

p−1Ā(t) . . .

+p−1(Ā(t)B̄p−1u(t)) · · ·+ B̄p−1u(t)
)

The proposed control design can be seen as an RST controller

without resolution of a Bezout identity. Now the design is

focused in the choice of the trajectory zd(t) to follow and the

traking dynamis with K(p).
This regulator-observer permits to the output system to track

a desired trajectory without using an observer dynamics then

the problem of pole placement, which consists in imposing

closed-loop system dynamics, can be related to tracking.

V. APPLICATION TO ANTI-LOCK BRAKING SYSTEM (ABS)

IN VEHICLE

As an illustrative example of the proposed strategy, the

control of the wheel slip in an Anti-lock Brake System is

studied. The considered process is an Anti-lock Brake System

(ABS), used to control the slip of each wheel of a vehicle to

prevent it from locking such that a high friction is achieved and

steerability is maintained. The main objective of this control

system is the prevention of wheel-lock while braking and the

maintaining of the wheel slip the nearest possible to 0. The

problem of wheel slip control is better explained by looking

at a quarter car model. A mathematical model of the wheel

slip dynamics is given by [16], [17]:

λ̇ (t) = − 1
v(t)

[

1
m
(1− λ (t)) + r

2

J

]

F (λ) + 1
v(t)

r

J
T (t)

v̇ (t) = − 1
m
F (λ)

(26)

where:
ω (t) angular speed of the wheel (rad/s)
v (t) horizontal speed (m/s)
T (t) brake-acceleration torque (N.m)
m mass of the quarter car (450 kg)

r wheel radius (0.32 m)

J wheel inertia (1kg.m2)
g acceleration of gravity (9.81 m/s2)

and λ (t) is the wheel slip given by:

λ (t) =
v (t)− rω (t)

v (t)
(27)

The input signal T (t) is a brake-acceleration torque applied

to the wheel, it is expressed in (N.m), and the output is

the vehicle speed v (t). The longitudinal slip λ (t) is defined

by the normalized difference between v (t) and the speed of

the wheel perimeter ω (t) r. F (λ) is the friction force, which

depends on the normal force, steering angle, road surface, tyre

w
v

F m gz= ·

F -m v= ·

T

•

Fig. 1. Quarter car forces and torques.

characteristics and velocity of the car. The friction or adhesion

coefficient µ (λ) is defined as the ratio of the frictional force

acting in the wheel plane F (λ) and the wheel ground contact

force FZ :

µ (λ) =
F (λ)

FZ

(28)

The calculation of friction force can be carried out using the

Burckhardt method [19]:

µ (λ) = c1.
(

1− e−c2.λ(t)
)

− c3λ (t) (29)

The parameters c1, c2 and c3 are given for various road

surfaces.In the case of asphalt and dry road, the friction force

is given by:

F (λ) = mg [1.28× (1− exp (−24λ (t)))− 0.52λ (t)] (30)

To design a control law which maintains the wheel slip the

nearest possible to 0, we perform, in the next development,

an approximation to a friction force F (λ) by applying the

Taylor series for this function with a first-order approximation

at λ = 0 to obtain:
F (λ) = aλ (t) (31)

where a = 30.2 × mg. The equation of the system (26)

becomes:

λ̇ (t) = −
1

v (t)

[

1

m
(1− λ (t)) +

r2

J

]

aλ (t) +
1

v (t)

r

J
T (t)

v̇ (t) = −
a

m
λ (t)

(32)

By analyzing the equation (32), we remark that the input and

the output system are function of a finite number of derivatives

of the horizontal speed v(t). By denoting z(t) = v(t), we

obtain:

T (t) =
J

r

(

−m

a
z (t) z̈ (t)− ż (t)

(

1 +
mr2

J

)

−
−m

a
ż
2 (t)

)

λ (t) = −
m

a
ż (t)

(33)

Then the vehicle speed is a flat output of the considered non-

linear model. For the considered system, a desired trajectory

(Td (t) , λd (t) , vd (t)) is defined and the following variables

are given: δT (t) = Td (t) − T (t), δλ (t) = λd (t) − λ (t)
and δv (t) = vd (t) − v (t). The drawback of the flatness

control is that all system variables are carried out from the

flat output trajectory. This situation is critical for the flatness

control because the dynamics of the output system can not



be well controlled. To deny this critical point, a tyre slip is

imposed and all the system variables are designed from this

trajectory which is given by:

λd (t) = 0.04× (− cos (πt) + 1) if t ∈ [0, 2] (34)

From equation (32), the desired flat output are given by:

zd (t) =
t
∫

0

−
α

m
λd (h) dh

= −
(

0.04×α

m

)

.
(

− sin(πt)
π

+ t
)

+ zd0

(35)

where zd0 = 36.11 m/s is the initial condition for the hori-

zontal speed. The brake-acceleration torque Td (t) is deduced

from equation (33). The figures 2 and 3 show the desired

trajectories for the input, tyre slip and the flat output of the

nonlinear system. The linearized model of (26) around this

desired trajectory is given by:

δλ̇ =
−λ̇d

vd
δv −

(

a

(

1− λd

m
+
r2

J

)

−
aλd

m

)

δλ

vd
+

r

Jvd
δT

δv̇ = −a
δλ

m
(36)

To design the closed-loop control which allows to track

variable reference trajectories, the following state space rep-

resentation of the system is considered:

ẋ(t) = A(t)x(t) +B(t)δT (t)

δλ = C(t)x(t)
(37)

with x(t) =
(

δλ δv
)T

is the state vector such that:

A(t) =

(

−
a

vd

(

1
m
+ r

2

J
−

2λd

m

)

−λ̇d

vd

−
a

m
0

)

B(t) =
(

r

Jvd
0

)T

, C(t) =
(

0 1
)

(38)

For the model equation (36), it can be seen that δv is a flat

output of the linearized system.

The linearization around a reference trajectory leads to a LTV

system and its controllability matrix is given by:

K (t) =





r

Jvd

−rv̇d

Jv2
d

+
ar

Jv2
d

(

1

m
+
r2

J
−
2λd

m

)

0 −
ar

mJvd





where K (t) has rank 2 because
ar2

mJ2v2d
6= 0 ∀ t ≥ 0. Then,

the system (37) is completely controllable and following [2],

the time-varying linearized system (37) is flat. The observabil-

ity matrix of the pair (A (t) , C (t)) is given by:

O(A(t),C(t)) =

(

0 1

−
a

m
0

)

which has rank 2 ∀ t ≥ 0. The system is then observable

and its controllable canonical form is obtained by applying

the algorithm presented in section II:

δŻ(t) = Ā (t) δZ(t) + B̄δT (t)

δλ(t) = C̄δZ(t)
(39)

with Ā (t) =

(

0 1

−ψ0 (t) −ψ1 (t)

)

, B̄ =

(

0

1

)

δZ(t) = P (t)x(t) and δZ(t) =
(

δz(t) δż(t)
)T

. The

previous control law (12) can be written as:

T (t) = Td(t) + (k1 −Ψ1(t)) δż(t) + (k0 −Ψ0(t)) δz(t)

which leads to:
δT (t) = Λ(t)δZ(t) (40)

with Λ(t) =
[

(Ψ0(t)− k0) (Ψ1(t)− k1)
]

.

From equation (16), we deduce:

δY (t) = O(t)δZ(t) +M(t)δT (t) (41)

with: δY (t) =
(

δv(t) δv̇(t)
)T

O(t) =

(

C̄(t)

˙̄C(t) + C̄(t)Ā(t)

)

,M(t) =

(

0

C̄(t)B̄

)

The equation (39) can be written as:

δZ(t) = p
−1 [

Ā(t)δZ(t) + B̄δT (t)
]

(42)

By replacing the expression of δZ(t), deduced from equation

(41), in equation (41) in the right side of the equation (42),

we get:

δZ(t) = p−1
[

Ā(t)O−1(t)δY (t)
]

−

p−1
[

Ā(t)O−1(t)M(t)δT (t)
]

+ B̄p−1δT (t)
(43)

with:

Ā(t)O−1(t) =

(

α1(t) α2(t)

α3(t) α4(t)

)

, Ā(t)O−1(t)M(t) =

(

β1 (t)

β2 (t)

)

By using integration by parts, it leads to the following expression
of the state vector:

δZ(t) =

(

α2 (t)

α4 (t)

)

δv (t) + p−1

[(

α1 (t)− α̇2 (t)

α3 (t)− α̇4 (t)

)

δv(t)

]

+p−1

[(

−β1

1− β2

)

δT (t)

]

(44)
By rewriting the expression (40), the following form is obtained:

δT (t) = Λ(t)×

[(

α2 (t)

α4 (t)

)

δv (t)+

p−1

[(

α1 (t)− α̇2 (t)

α3 (t)− α̇4 (t)

)

δv(t)

]

+ p−1

[(

−β1

1− β2

)

δT (t)

]]

(45)
and then:

δT (t) = S
(

p
−1
, δv(t)

)

+R
(

p
−1
, δT (t)

)

(46)

with:

S
(

p−1, δv(t)
)

= Λ(t)×

[(

α2 (t)

α4 (t)

)

δv (t)+

p−1

[(

α1 (t)− α̇2 (t)

α3 (t)− α̇4 (t)

)

δv(t)

]] (47)

R
(

p
−1
, δT (t)

)

= Λ(t)× p−1

[(

−β1

1− β2

)

δT (t)

]

(48)



By applying the previous control strategy to the new state space
representation and by considering the tracking model set to be a
second order model with a time response of 0.005 s, the simulation
results are obtained in figure 2, where the trajectories of the nonlinear
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Fig. 2. The output v(t) and the slip λ(t) trajectories of the nonlinear system
and the traking error for the speed by the use of an exact observer

system follow the desired trajectories with a good performance. The
observable forme of the state equation (38) is given by:

ẋo (t) =

(

0 −τ0 (t)

1 −τ1 (t)

)

xo (t) +

(

−
ra

Jmvd

0

)

δT (t)

δv (t) =
(

0 1
)

xo (t)

(49)

where:

τ0 (t) =
a

mv2

d

(

λ̇dvd +
(

1 + r
2

Jm
− 2λd

)

v̇d

)

τ1 (t) =
a

mvd

(

1− 2λd +
mr

2

J

) (50)

Following section III, the estimated state vector of the observable
form is given by:

x̂o (t) =

(

ζ (t) + λ0δv (t)

δv (t)

)

(51)

ζ̇ (t) = λ0ζ (t) +

(

−
ra

Jmvd

)

δT (t) + (τ1 (t)− λ0)λ0 (52)

By replacing δx̂o (t) into the control law (40) leads to:

δT (t) = Λ(t)P (t)xo (t) (53)

where P (t) is the change of variable from the observable form to
the controllable form. With a constant dynamics observer λ0 = 10
and by considering the tracking model set to be a second order model
with a time response of 0.005 s, the results are obtained the in figure
3. These results point out the effectiveness of the use of the flatness-
based approach for the LTV systems in a path tracking context.

VI. CONCLUSION

In this paper, we have underlined the advantage of the use of a
reduced order observer in order to design a flatness-based control
for tracking a desired trajectory in the case of LTV systems. This
advantage consists in the calculation of the error estimator gain which
is found constant. A method with a direct calculation of the state
vector which contains the flat output and its derivatives is proposed
and leads to a control law which can be seen as an RST controller but
without resolution of the Bezout equation. This regulator-observer
permits to the output system to track a desired trajectory without
using observer dynamics. The control law applied on an Anti-lock
Brake System (ABS) gives a high level performances in terms of the
tracking of the wheel slip.
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Fig. 3. The output v(t) and the slip λ(t) trajectories of the nonlinear system
and the traking error for the speed by the use of a reduced order observer
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tude,Techniques de l’Ingénieur, Traité Informatique Industrielle, S 7 450,
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