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Abstract We consider integer linear programs whose solutions are binary matrices and whose
(sub-)symmetry groups are symmetric groups acting on (sub-)columns. Such structured sub-
symmetry groups arise in important classes of combinatorial problems, e.g. graph coloring or
unit commitment. For a priori known (sub-)symmetries, we propose a framework to build (sub-
)symmetry-breaking inequalities for such problems, by introducing one additional variable per
considered sub-symmetry group. The derived inequalities are full-symmetry-breaking and in poly-
nomial number w.r.t. the number of sub-symmetry groups considered. The proposed framework
is applied to derive such inequalities when the symmetry group is the symmetric group acting on
the columns. It is also applied to derive sub-symmetry-breaking inequalities for the graph coloring
problem. Experimental results give insight into how to select the right inequality subset in order
to efficiently break sub-symmetries. Finally, the framework is applied to derive (sub-)symmetry
breaking inequalities for Min-up/min-down Unit Commitment Problem with or without ramp
constraints. We show the effectiveness of the approach by presenting an experimental comparison
with state-of-the-art symmetry-breaking formulations.
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1 Introduction

Symmetries arising in integer linear programs can impair the solution process, in particular when
symmetric solutions lead to an excessively large Branch and Bound (B&B) search tree. Various
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techniques, so called symmetry-breaking techniques, are available to handle symmetries in integer
linear programs of the form

pILP q mintcx | x P X u, with X Ď Ppm,nq and c P Rmˆn

where Ppm,nq is the set of m ˆ n binary matrices. A symmetry is defined as a permutation π
of the indices tpi, jq | 1 ď i ď m, 1 ď j ď nu such that for any solution matrix x P X , matrix
πpxq is also solution with the same cost, i.e., πpxq P X and cpxq “ cpπpxqq. The symmetry group
G of pILP q is the set of all such permutations. It partitions the solution set X into orbits, i.e.,
two matrices are in the same orbit if there exists a permutation in G sending one to the other. A
subproblem is problem pILP q restricted to a subset of X . In [5], symmetries arising in solution
subsets of pILP q are called sub-symmetries. Such sub-symmetries may not exist in G.

In this article, we focus on structured symmetries arising from (sub-)symmetry groups con-
taining all sub-column permutations of a given solution submatrix. These symmetry groups are
assumed to be known or previously detected [23,7].

A first idea to break symmetries is to reformulate the problem using integer variables sum-
ming the variables along orbits. Such a reformulation aggregates variables, thus reducing the
size of the resulting ILP [22]. However, it can be used only when aggregated solutions can be
disaggregated. This is for example the case when the integer decomposition property [2] holds.
A more general idea to break symmetries is, in each orbit to pick one solution, defined as the
representative, and then restrict the solution set to the set of all representatives. The most com-
mon choice of representative is based on the lexicographical order. Column y P t0, 1um is said
to be lexicographically greater than column z P t0, 1um if there exists i P t1, ...,m´ 1u such that
@i1 ď i, yi1 “ zi1 and yi`1 ą zi`1, i.e., yi`1 “ 1 and zi`1 “ 0. We write y ą z (resp. y ľ z) if y is
lexicographically greater than z (resp. greater than or equal to z). A technique is said to be full
symmetry-breaking (resp. partial symmetry-breaking) if the solution set is exactly (resp. partially)
restricted to the representative set. A symmetry-breaking technique is said to be flexible if, at
any node of the B&B tree, the branching rule can be derived from any linear inequality on the
variables.

Most techniques based on branching and pruning rules [28,33,13] are either full symmetry-
breaking or flexible. Variable fixing [19,5] is both full symmetry-breaking and flexible. Other
symmetry-breaking techniques rely on full or partial symmetry-breaking inequalities. Such tech-
niques are flexible. Note that the size of the LP solved at each node of the branching tree is
generally invariant under pruning and variable fixing techniques, whereas it is increased by the
use of symmetry-breaking inequalities.

Symmetry-breaking inequalities can be derived from the linear description of the convex hull
of an arbitrary representative set [16]. In most works, each chosen representative x is lexico-
graphically maximal in its orbit, i.e., x ľ gpxq, for each g P G. The convex hull of the latter
representative set is called the symmetry-breaking polytope [16]. When x is a matrix and when the
symmetry group G acts on the columns of x, the symmetry-breaking polytope is called orbitope.
Even if complete linear descriptions for orbitopes may be hard to reach in general [26], integer
programming formulations for these polytopes still yield full symmetry-breaking inequalities[16].
Instead of considering orbits of solutions, [23,24] introduce inequalities enforcing a lexicographical
order within orbits of variables.

When symmetry group G is the symmetric group Sn acting on the columns, i.e., the set
containing all column permutations, then the chosen representative x of an orbit may be such
that its columns xp1q, ..., xpnq are lexicographically non-increasing, i.e., for all j ă n, xpjq ľ

xpj ` 1q. The convex hull of all m ˆ n binary matrices with lexicographically non-increasing
columns is called the full orbitope [20]. Sub-symmetries and sub-orbitopes are introduced in [5]
as a generalization of symmetries and full orbitopes to a given set of matrix subsets. The aim
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in this paper is to develop a general framework, that enables deriving sub-symmetry-breaking
inequalities designed to handle simultaneously symmetries and sub-symmetries in symmetric
groups.

For the particular case of packing (resp. partition) problems, i.e., problems whose solution
matrix features at most (resp. exactly) one 1-entry in each row, a class of full symmetry-breaking
inequalities is introduced in [20]. These inequalities lead to a complete linear description of two
special cases of orbitopes: the packing (resp. partitioning) orbitope, i.e., the convex hull of all
m ˆ n binary matrices with lexicographically non-increasing columns and with at most (resp.
exactly) one 1-entry per row.

For the full orbitope, a complete linear description in the x variable space seems hard to reach
[26]. For the full orbitope restricted to 2-column matrices, a complete linear description in the
x space is available [26]. An Opmn3q extended formulation is given in [18]. To the best of our
knowledge, it has never been used in practice to handle symmetries.

Another class of symmetry-breaking inequalities aims to ensure that the integer solutions lie
in the full orbitope. For instance, the following full symmetry-breaking inequalities are introduced
by Friedman [14]:

m
ÿ

i“1

2m´ixi,j ě
m
ÿ

i“1

2m´ixi,j`1, @j P t1, ..., n´ 1u (1.1)

As the 2m´i term might cause numerical intractability, alternative inequalities featuring ternary
coefficients can be used at the expense of losing the full symmetry-breaking property, e.g. column
inequalities [20,30,31]:

i
ÿ

k“1

xk,j ě xi,j`1, @j P t1, ..., n´ 1u, @i P t1, ...,mu (1.2)

Another option is to use a partial symmetry-breaking form of Friedman inequalities, as in [17,
25]:

m
ÿ

i“1

xi,j ě
m
ÿ

i“1

xi,j`1, @j P t1, ..., n´ 1u (1.3)

The latter inequalities enforce that the total number of ones in each column is non-increasing, thus
not guaranteeing lexicographically non increasing columns for the representatives. An alternative
avoiding the exponential coefficients of Friedman’s inequalities can be to use the full symmetry-
breaking inequalities discussed in [16]. These inequalities ensure that any integer point is in the
full orbitope. They can be separated in linear time and have ternary coefficients like inequalities
(1.2) and (1.3).

In this article, sub-symmetries arising from solution subsets whose symmetry groups contain
the symmetric group acting on some sub-columns are assumed to be known. We propose a general
framework to build full symmetry-breaking inequalities in order to handle these sub-symmetries.
One additional variable per subset Q considered may be needed in these inequalities, depending
on whether variables x are sufficient to indicate that “x belongs to subset Q”.

The proposed framework is applied to derive such inequalities when the symmetry group is
the symmetric group Sn acting on the columns.

It is also applied to derive full (sub-)symmetry-breaking inequalities for two problems: the
Graph Coloring Problem (GCP) and a variant of the Unit Commitment Problem.

The GCP has a particular structure as it is a partition problem. Such structure can be
exploited to derive dedicated sub-symmetry-breaking inequalities. We consider the classical IP
formulation [11] which is often used as an example featuring many symmetric solutions. Note that
the integer decomposition property does not apply to the graph coloring problem as aggregating
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a solution in this case is meaningless. We demonstrate the efficiency of the proposed framework
to break symmetries. A comparison is performed with two state-of-the-art symmetry-breaking
families of inequalities: column inequalities (1.2) adapted to partition structures, and inequalities
completely describing the partitioning orbitope [20]. Experimental results highlight that a well-
chosen subset of the proposed sub-symmetry-breaking inequalities is competitive with these two
state-of-the-art techniques.

The considered variant of the Unit Commitment Problem is with constraints on the minimum
up and down times of each unit. This variant is called the Min-up/min-down Unit Commitment
Problem (MUCP) as defined in [35]. When the MUCP is considered, the integer decomposition
property holds for the classical formulation and thus efficient aggregation techniques apply [22]. A
variant of the MUCP is with constraints limiting power variations, referred to as ramp constraints.
When the ramp-constrained MUCP is considered, the integer decomposition property does not
hold anymore for the classical formulation, then the corresponding aggregated solutions can no
longer be disaggregated. This emphasizes that cases for which such property holds are more
the exceptions than the rule. We show that the proposed sub-symmetry-breaking inequalities
outperform state-of-the-art symmetry-breaking formulations, such as the aggregated interval
MUCP formulation [22] as well as the classical MUCP formulation featuring inequalities (1.3).
To extend the experimental comparisons, the proposed framework is also shown to be competitive
with two state-of-the-art symmetry-breaking techniques based on branching and fixing: Modified
Orbital Branching (MOB) [31] derived from Orbital Branching [33], and orbitopal fixing for the
full (sub)-orbitope [5].

Note that an extended abstract of this paper appeared in [6].
In Section 2, the framework is described. In Section 3, an application to the symmetric

group case is presented. The framework is applied to derive sub-symmetry-breaking inequalities
dedicated to the GCP in Section 4 and to the MUCP in Section 5, together with experimental
results.

2 Sub-symmetry-breaking inequalities

For a given solution subset Q, the symmetry group GQ of the corresponding subproblem is
different from G and may contain symmetries not present in G. In practice it is too expensive to
compute the symmetry group for every subset Q Ă X . However for many problems, symmetries of
G can be deduced from the problem’s structure, and so can symmetries of GQ, for some particular
solution subsets Q. In this case, symmetries of GQ are a priori known, and thus do not need to
be computed. Such symmetries may be handled together with symmetries of G. In this section,
we introduce sub-symmetry-breaking inequalities designed to simultaneously handle symmetries
and sub-symmetries in symmetric groups. First, we briefly recall the concepts of sub-symmetry
in ILP introduced in [5].

2.1 Background on sub-symmetries

Consider a subset Q Ă X of solutions of pILP q. The sub-symmetry group GQ relative to subset Q
is defined as the symmetry group of subproblem mintcx | x P Qu. Permutations in sub-symmetry
group GQ are referred to as sub-symmetries.

Let tQs Ă X , s P t1, ..., quu be a set of solution subsets. To each Qs, s P t1, ..., qu, there
corresponds a sub-symmetry group GQs

. Let Os
k, k P t1, ..., osu, be the orbits defined by GQs

on
subset Qs, s P t1, ..., qu, and O “ tOs

k, k P t1, ..., osu, s P t1, ..., quu. For given x P Ppm,nq, let
us define Gpxq “

Ť

QsQx
GQs , the set of all permutations π in

Ťq
s“1 GQs such that π applied to x
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defines a symmetric solution to x. Matrix x1 is said to be in relation with x P Ppm,nq if there
exist r P N and permutations π1, ..., πr such that πk P Gpπk´1 ˝ ... ˝ π1pxqq, @k P t1, ..., ru, and
x1 “ πr ˝ πr´1 ˝ ... ˝ π1pxq. The generalized orbit O of x with respect to tQs, s P t1, ..., quu is thus
the set of all x1 in relation with x. By definition, for any generalized orbit O, there exist orbits
σ1, ..., σp P O such that O “ Yp

s“lσl. To each orbit σ, there corresponds a representative ρpσq.
When dealing with sub-symmetries, the representatives should satisfy the following property to
make sure they would not be eliminated while breaking symmetries. The set of representatives
tρpσq, σ P Ou is said to be orbit-compatible if for any generalized orbit O “ Y

p
l“1σl, where σ1,

..., σp P O, there exists j such that ρpσjq “ ρpσlq for all l verifying ρpσjq P σl. Such a solution
ρpσjq is said to be a generalized representative of O.

For each orbit Os
k, k P t1, ..., osu, s P t1, ..., qu, let its representative xsk P O

s
k be the lexico-

graphically maximal element in Os
k.

Lemma 1 ([5]) The set of representatives txsk, k P t1, ..., osu, s P t1, ..., quu is orbit-compatible.

Given x P X and sets R Ă t1, ...,mu and C Ă t1, ..., nu, we consider submatrix pR,Cq of x,
denoted by xpR,Cq, obtained by considering columns C of x on rows R only. Symmetry group
GQ is the sub-symmetric group with respect to pR,Cq if it is the set of all permutations of the
columns of xpR,Cq. If GQ is the sub-symmetric group with respect to pR,Cq then subset Q is
said to be sub-symmetric with respect to pR,Cq.

Consider a set S of solution subsets Qs, s P t1, ..., qu, such that each subset Qs, s P t1, ..., qu,
is sub-symmetric with respect to pRs, Csq. For each orbit Os

k, k P t1, ..., osu of GQs , s P t1, ..., qu,
its representative xsk P O

s
k is chosen to be such that submatrix xskpRs, Csq is lexicographically

maximal, i.e., its columns are lexicographically non-increasing. Such xsk is said to be the lex-max
of orbit Os

k with respect to pRs, Csq. The following holds as a direct corollary of Lemma 1.

Lemma 2 ([5])

The set of lex-max representatives txsk, k P t1, ..., osu, s P t1, ..., quu is orbit-compatible.

The full sub-orbitope PsubpSq associated to S is the convex hull of binary matrices x such that
for each s P t1, ..., qu, if x P Qs then the columns of xpRs, Csq are lexicographically non-increasing.

2.2 Definition and validity of sub-symmetry-breaking inequalities

Consider a set S of solution subsets Qs, s P t1, ..., qu, such that each subset Qs, s P t1, ..., qu, is
sub-symmetric with respect to pRs, Csq. Consider an integer variable zs, s P t1, ..., qu, such that
zs “ 0 if variable x P Qs, and such that zs ě 1 if x R Qs. For any x P X , one can define function
Z associating x to a vector Zpxq such that zs, s P t1, ..., qu, is the sth component of Zpxq denoted
by Zspxq

Note that in many cases, function Z can be chosen to be linear, i.e., each integer variable zs is
a linear expression of variables x. In such cases, no additional variable zs is needed, as zs “ Zpxq.
In some cases where function Z is not linear, variable zs can be linearly expressed from variables
x using a few additional inequalities or integer variables.

Given c, c1, two consecutive columns in Cs such that c ă c1, the sub-symmetry-breaking inequal-
ity, denoted by pIspcqq, is defined as follows.

xr1,c1 ď zs ` xr1,c where r1 “ minpRsq (2.1)
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If Q corresponds to a packing problem, i.e., each x P Q features at most one 1-entry in each
row, the sub-symmetry-breaking inequality pIspcqq simplifies to

xr1,c1 ď zs where r1 “ minpRsq (2.2)

The q sub-symmetric subsets contained in S correspond to known sub-symmetries to be
broken. The total number of inequalities (2.1) or (2.2) is Opnqq. Note that this number can be
large depending on the choice of S .

For each orbit Os
k, k P t1, ..., osu, of GQs

, s P t1, ..., qu, the chosen representative is the
lex-max of orbit Os

k with respect to pRs, Csq. Then by Lemma 2, this set of representatives is
orbit-compatible. In particular, solution set X can be restricted to the set of representatives
by considering its intersection with the full sub-orbitope PsubpSq. If x P Qs, inequality pIspcqq
enforces that the first row of submatrix xpRs, Csq is lexicographically non-increasing, hence the
following result.

Lemma 3 (Validity) If x P PsubpSq, then px, Zpxqq satisfies inequality pIspcqq for each s P
t1, ..., qu and c, c1 P Cs such that c ă c1.

Note that an inequality similar to (2.1) applied to a row of Rs distinct from r1 may not be
valid when used alongside with (2.1), as shown in Example 1.

Example 1 Let S “ tQ1u, q “ 1, where

Q1 “ tx P Pp4, 3q X X |
ř3

c“1 x2,c “ 3u

Let us suppose the symmetry group of Q1 is the sub-symmetric group with respect to submatrix
pt3, 4u, t1, 2, 3uq. Variable z1 can be defined using equality z1 “ 3 ´

ř3
c“1 x2,c. Note that z1 “

Z1pxq “ 0 when
ř3

c“1 x2,c “ 3, i.e., x P Q1, and is positive otherwise. Here the first row in R1 is
r1 “ minpR1q “ 3, thus given c, c1 P t1, 2, 3u, c ă c1, inequality pI1pcqq is

x3,c1 ď p3´
ř3

j“1 x2,jq ` x3,c.

This inequality enforces that row 3 of a solution matrix x is lexicographically ordered, i.e.,
x3,1 ě x3,2 ě x3,3, whenever

ř3
c“1 x2,c “ 3. Now consider solutions x1, x2 P Q1:

x1 “

»

—

—

–

1 0 0
1 1 1
1 0 0
0 1 1

fi

ffi

ffi

fl

and x2 “

»

—

—

–

1 0 0
1 1 1
0 0 1
1 1 0

fi

ffi

ffi

fl

Inequality pI1pcqq cuts off solution x2 from the feasible set. Inequality (2.1) applied to row 4

is x4,c1 ď p3 ´
ř3

j“1 x2,jq ` x4,c This inequality would cut off x1. This shows that these two
inequalities cannot be used simultaneously.

Note that in the general case, inequalities (2.1) may only be partial-symmetry-breaking.
Indeed, for given s P t1, ..., qu and c, c1 P Cs such that c ă c1, inequality pIspcqq only enforces that
the first row of submatrix xpRs, Csq is lexicographically non-increasing when x P Qs. In the case
when xr1,c1 ă xr1,c, then sub-columns xpRs, tc

1uq ă xpRs, tcuq. Otherwise, when xr1,c1 “ xr1,c,
inequality (2.1) is not sufficient to select the lexmax representatives.

To enforce a lexicographical order, subsequent rows of submatrix xpRs, Csq should be con-
sidered until a tie-break row is found. It is shown in the next section that inequalities pIspcqq for
all s P t1, ..., qu and c ă c1 P Cs enforce that x P PsubpSq provided a tie-break condition on set S
is fulfilled.
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2.3 Full symmetry-breaking sufficient condition

In this section, we introduce a condition for inequalities (2.1) to be full symmetry-breaking.
For each s P t1, ..., qu, consider Rs “ tr

s
1, ..., r

s
|Rs|
u and Cs “ tc

s
1, ..., c

s
|Cs|
u, where rs1 ă ... ă

rs
|Rs|

and cs1 ă ... ă cs
|Cs|

. For given s P t1, ..., qu and any two columns csl´1, c
s
l P Cs, if there is

a solution x P Qs such that columns csl´1 and csl are equal from row rs1 to row rsk´1, it must
be ensured that row rsk is lexicographically non increasing, i.e., xrsk,csl´1

ě xrsk,csl . The key idea

is to exhibit another set Qp P S for quadruple pQs, k, l, xq, such that Qp contains x and is sub-
symmetric with respect to pRp, Cpq, where the first row of Rp is rsk and Cp contains columns
csl´1 and csl . Then inequality pIppc

s
l´1qq will ensure that xrsk,csl´1

ě xrsk,csl . For each quadruple

pQs, k, l, xq, the existence of such a subset Qp in S will be ensured by tie-break condition pCq,
defined as follows:

pCq

$

&

%

@s P t1, ..., qu, @k P t2, ..., |Rs|u, @l P t2, ..., |Cs|u

If x P Qs such that xrs
k1
,csl´1

“ xrs
k1
,csl
, @k1 P t1, ..., k ´ 1u,

then there exists p P t1, ..., qu such that x P Qp, Cp Ě tc
s
l´1, c

s
l u and rsk “ minpRpq

If tie-break condition pCq holds, inequalities (Qspc
s
l´1, c

s
l q), @s P t1, ..., qu, @l P t2, ..., |Cs|u

exactly restrict the solution set to the representative set XXPsubpSq. They are thus full symmetry-
breaking, w.r.t. the sub-symmetries defined by S. This gives the proof idea for the following
theorem.

Theorem 1 If tie-break condition pCq holds, then:

piq px, Zpxqq satisfies (Ispc
s
l´1q), @s P t1, ..., qu, @l P t2, ..., |Cs|u

piiq x P PsubpSq
are equivalent.

For general set S, tie-break condition pCq may not hold. Fortunately, it will be shown that we

can construct from S another set rS satisfying pCq and such that PsubprSq “ PsubpSq.
The idea is to divide each Qs, s P t1, ..., qu, in smaller subsets such that for each row rsk P Rs

and each column csl P Cs, l greater than 1, there is a subset Q, which is sub-symmetric with
respect to pR,Cq “ ptrsk, ..., r

s
|Rs|
u, tcsl´1, c

s
l uq.

The set rS is defined as

rS “
"

rQspk, lq | s P t1, ..., qu, k P t1, ..., |Rs|u, l P t2, ..., |Cs|u

*

where for each s P t1, ..., qu, for each l P t2, ..., |Cs|u, for each k P t1, ..., |Rs|u, the tie-break

subset rQspk, lq is defined as

rQspk, lq “

"

x P Qs | xr,csl´1
“ xr,csl , @r P tr

s
1, ..., r

s
k´1u

*

Note that for solution x P Qs such that columns csl´1 and csl are equal from row rs1 to

row rsk´1, the set exhibited for quadruple pQs, k, l, xq is rQspk, lq. Note also that rQsp1, lq “ Qs,
l P t2, ..., |Cs|u.

We thus have the following result.

Lemma 4 Set rS satisfies pCq and is such that PsubprSq “ PsubpSq.

Proof The symmetry group of tie-break subset rQspk, lq is the sub-symmetric group with respect
to pR,Cq “ ptrsk, ..., r

s
|Rs|
u, tcsl´1, c

s
l uq. Thus if some solution x P Qs is such that columns csl´1

and csl are equal from row rs1 to row rsk´1, then tie-break subset rQspk, lq contains x and is such

that C Ě tcsl´1, c
s
l u and minpRq “ rsk. Tie-break condition pCq is therefore satisfied by rS. It can

be readily checked that the full sub-orbitopes defined by rS and S are the same. [\



8 P. Bendotti, P. Fouilhoux, C. Rottner

It follows, from Theorem 1, that inequalities (Qpc, c1q), c ă c1 P C, Q P rS are full symmetry-
breaking with respect to the sub-symmetries defined by S.

Corollary 1 If for each Q P rS, px, Zpxqq satisfies inequality (Qpc, c1q), @c ă c1 P C, then
x P PsubpSq.

Set rS can be considered instead of S to obtain full-symmetry-breaking inequalities. In this case,
one inequality (resp. at most one variable) is added per subset Q P rS, i.e., Opqmnq inequalities
(resp. variables).

Partial-symmetry-breaking relaxations If for each Qs P S, set rS contains sets rQspk, lq for each
l P t2, ..., |Cs|u and for each k P t1, ..., σu, where σ P t1, ..., |Rs|u, then the corresponding sub-
symmetry-breaking inequalities are not full-symmetry-breaking anymore. In this case we say that
they are σ-symmetry-breaking.

Variables rz Even if problem-specific variables rz could be more efficient, for each s P t1, ..., qu

and l P t2, ..., |Cs|u, variables rzspk, lq associated to subsets rQspk, lq, k P t2, ..., |Rs|u, can always
be inductively defined as

rzsp2, lq “ zs ` xrs1,csl´1
´ xrs1,csl

rzspk, lq “ rzspk ´ 1, lq ` xrsk´1,c
s
l´1
´ xrsk´1,c

s
l
, k P t3, ..., |Rs|u

Indeed, for any x P PsubpSq, we have that xrsk´1,c
s
l´1
ě xrsk´1,c

s
l

if rzspk ´ 1, lq “ 0.

For packing problems, variables rz can be straighforwardly defined as:

rzspk, lq “ zs `
řk´1

k1“1 xrsk1 ,c
s
l´1
, k P t2, ..., |Rs|u

Indeed, for x P PsubpSq, for each k1 P t1, ..., k ´ 1u, xrs
k1
,csl

cannot be 1 if
řk´1

k1“1 xrsk1 ,c
s
l´1
“ 0.

Example 2 Referring to Example 1, rS “
 

rQ1p1, lq, rQ1p2, lq, l P t2, 3u
(

. For each l P t2, 3u,
rQ1p1, lq “ Q1 as for any s, rQspk, lq “ Qs whenever k “ 1. We also have rQ1p2, lq “

 

x P

Q1 | x3,l´1 “ x3,l
(

. For each l P t2, 3u, rzl associated to subset rQ1p2, lq can be expressed as
follows: rzl “ 2z1 ` px3,l´1 ´ x3,lq. Indeed, when z1 “ 0, inequality (2.1) becomes x3,l´1 ď x3,l.
Thus, rzl “ 0 if x3,l´1 “ x3,l and zl ě 1 otherwise. When z1 “ 1, rzl ě 1. Hence the following
inequalities are full symmetry-breaking:

x3,l´1 ď

´

3´
ř3

j“1 x2,j

¯

` x3,l @l P t2, 3u

x4,l´1 ď

´

6` x3,l´1 ´ x3,l ´ 2
ř3

j“1 x2,j

¯

` x4,l @l P t2, 3u

2.4 Scope extension of sub-symmetry-breaking inequalities

For a given Qs, and c ă c1 P Cs, recall that if x P Qs, then inequality (2.1) enforces that row
r1 “ minpRsq is lexicographically ordered on columns c and c1. Interestingly it is not necessary
that x belongs to Qs to impose this lexicographical order. Indeed, to enforce this lexicographical
order, it suffices that x belongs to some set Q

s
whose symmetry group includes the transposition

π defined as: πpr1, cq “ pr1, c
1q. The idea is then to enforce the lexicographical order for any

solution x P Q
s
, instead of any x P Qs.

When Q
s

is such that Qs Ă Q
s
, then we say that a scope extension of the corresponding

sub-symmetry-breaking inequality is performed, in the sense that the lexicographical order is
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applied to a larger solution subset. Roughly speaking, we can say that sub-symmetry-breaking
inequalities corresponding to Q

s
have a larger scope than those corresponding to Qs. Thus,

considering Q
s

instead of Qs leads to break more sub-symmetries. Moreover, it may also simplify
the expression of variable zs, as done for example in the second case of Section 4.3.

The same argument applies to subsets rQspk, lq which can be replaced by rQ
s
pk, lq such that

rQspk, lq Ď rQ
s
pk, lq and transposition π defined as πprsk, c

s
l´1q “ pr

s
k, c

s
l q is in the symmetry group

of rQ
s
pk, lq.

The proposed framework is applied in the following three sections. Two applications are pre-
sented in Sections 3 and 5, where inequalities (2.1) are derived in a straightforward way in
the sense that set S already satisfies tie-break condition pCq in both applications. In Section 4,

examples of tie-break set rS construction and of scope extensions are given.

3 Application to the symmetric group case

In this section, we apply the framework of Section 2 to any problem whose symmetry group G is
the symmetric group Sn acting on the columns. The collection SS of subsets considered will lead
to inequalities restricting any solution x P X to be in the full orbitope. These inequalities feature
variables z which can be explicitly expressed from x with Opmnq linear inequalities. Here, the
sub-symmetries considered are restrictions of symmetries’ actions to solution subsets.

A complete linear description of the 2-column full orbitope, featuring additional integer vari-
ables, is proposed in [26]. In the general n-column case, we show that these inequalities can also
be derived using the framework described in Section 2, and can be used as full symmetry-breaking
inequalities.

We consider

SS “
"

Qi,j , i P t0u Y t1, ...,m´ 1u, j P t2, ..., nu

*

,

where Qi,j “

"

x P X | xi1,j´1 “ xi1,j @i
1 P t1, ..., iu

*

.

Subset Qi,j is the set of feasible solutions such that columns j ´ 1 and j are equal from row 1 to
row i. Note that Q0,j “ X . The symmetry group of Qi,j is then the sub-symmetric group with
respect to pRi, tj ´ 1, juq where Ri “ ti ` 1, ...,mu. It can be readily checked that in this case,
S already satisfies condition pCq.

Let variable zi,j be such that zi,j “ 0 if x P Qi,j and 1 otherwise. Note that for all j P t2, ..., nu,
Q0,j “ X , thus z0,j “ 0, @x P X . Note also that XXPsubpSSq is a subset of the full orbitope. Thus,
given that the columns of any x P X X PsubpSSq are in a non-increasing lexicographical order,
function Z can be chosen such that Zpxq “ z, where z satisfies the following linear inequalities.

$

’

’

’

’

’

&

’

’

’

’

’

%

z1,j´1 “ x1,j´1 ´ x1,j @j P t2, ..., nu (3.1a)

zi,j´1 ď zi´1,j´1 ` xi,j´1 @i P t2, ...,mu, j P t2, ..., nu (3.1b)

zi,j´1 ` xi,j ď 1` zi´1,j´1 @i P t2, ...,mu, j P t2, ..., nu (3.1c)

xi,j´1 ď zi,j´1 ` xi,j @i P t2, ...,mu, j P t2, ..., nu (3.1d)

zi´1,j´1 ď zi,j´1 @i P t2, ...,mu, j P t2, ..., nu (3.1e)

Constraint (3.1a) sets variable z1,j´1 to 1 whenever columns j ´ 1 and j are different and in a
non-increasing lexicographical order on row 1, and to 0 when they are equal. Constraint (3.1b)
(resp. (3.1c)) sets variable zi,j´1 to 0 when zi´1,j´1 “ 0 and columns j ´ 1 and j are equal to 0
(resp. 1) on row i. Constraint (3.1d) sets variable zi,j´1 to 1 if columns j ´ 1 and j are different
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and in a non-increasing lexicographical order on row i. Constraint (3.1e) sets zi,j´1 to 1 when
variable zi´1,j´1 “ 1, i.e., when columns j ´ 1 and j are different from row 1 to i´ 1.

For each i P t2, ...,mu and j P t2, ..., nu, sub-symmetry breaking inequality (2.1) for subset
Qi´1,j is as follows:

xi,j ď zi´1,j ` xi,j´1 (3.2)

It ensures that if columns j ´ 1 and j of x are equal from row 1 to i, then row i ` 1 is in a
non-increasing lexicographical order.

Note that if zi´1,j ´ zi,j “ ´1 then necessarily xi,j “ 0. Thus inequality (3.2) can be lifted to

xi,j ď p2zi´1,j ´ zi,jq ` xi,j´1 (3.3)

In the special case when n “ 2, by replacing variable zi,j by yi,j where zi,j “ 1´
ři

i1“1 yi1,j ,
for each i P t1, ...,mu, j P t1, 2u, inequalities (3.1a)–(3.3) yield the complete linear description
of the 2-column full orbitope proposed in [26]. Note that the latter description is an extended
formulation, i.e., not in the original space as additional variables are introduced.

In the general n-column case, inequalities (3.1a)-(3.3) are still full symmetry-breaking (by
Theorem 1), and then can be used in practice to restrict the feasible set to any full orbitope. In
this case, Opmnq additional variables and constraints are needed. Possible alternatives to using
additional variables also exist, see e.g., [5] [26].

4 Application to the graph coloring problem

In this section, the framework of Section 2 is applied to the graph coloring problem.
Given an undirected graph G “ pV,Eq with |V | “ n, a vertex coloring of G is an assignment

of values t1, . . . , nu, denoted as colors, to the vertices so that no two adjacent vertices receive
the same color. The minimum number of colors in a vertex coloring of G is called the chromatic
number χpGq of G. The vertex coloring problem is to find a vertex coloring with a minimum
number of colors. Let K be an upper bound on χpGq. The classical IP formulation F [11] is the
following.

min
x,y

K
ÿ

k“1

yk

s. t. xi,k ` xj,k ď yk @ti, ju P E, @k P t1, ...,Ku (4.1)

K
ÿ

k“1

xi,k “ 1 @i P V (4.2)

xi,k, yk P t0, 1u @i P V, @k P t1, ...,Ku (4.3)

A solution is a matrix x “ pxi,kq where each column corresponds to a color and each row
corresponds to a vertex. Variable xi,k indicates that color k P t1, ...,Ku is assigned to vertex
i P t1, ..., nu, and variable yk indicates that color k is used to color some vertices. The feasible
solution set is denoted by Xcol.

Formulation pF q exhibits many symmetries. As pointed out in [20], symmetries make this
formulation difficult to solve in particular because they lead to the feasibility of many fractional
vertices, thus resulting in a poor LP-bound.

The symmetry group associated to formulation pF q contains the symmetric group acting on
the columns of solution matrices. Indeed, a column corresponds to a color and a new vertex
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coloring can be obtained from another by permuting color indices. Techniques to break such
symmetries have been largely investigated in the literature. One option is to propose alternative
formulations. For instance, an extension of the classical formulation has been devised in [9,12]
using the notion of representative vertices, i.e., vertices representing a color. Moreover, a col-
umn generation based linear program, proposed in [29], provides very good lower bounds. This
approach is also used to come up with exponential size ILPs [15,27]. Another option is to add
symmetry-breaking inequalities to formulation pF q in order to remove non-representative solu-
tions from the feasible set. For example, the authors of [30] propose the following full-symmetry-
breaking inequalities which correspond to column inequalities dedicated to partition problems:

xi,k ď
i´1
ÿ

i1“k´1

xi1,k´1, @1 ď k ď i

where xi,k “ 0 for any k and i such that k ą i.
In [20], a generalization of such partition-dedicated column inequalities is introduced and is

as follows:
minpi,nq
ÿ

k1“k

xi,k1 ď
i´1
ÿ

i1“k´1

xi1,k´1, @1 ď k ď i (4.4)

It is also shown in [20] that the partitioning orbitope is completely described by trivial
inequalities and shifted column inequalities, defined as:

minpi,nq
ÿ

k“j

xi,k ď
i´j`1
ÿ

p“1

xp`cp´1,cp (4.5)

for any pi, jq P pn,Kq and integers c1 ď ... ď ci´j`1 ď j ´ 1 such that for p P t1, ..., i ´ j ` 1u,
p` cp ´ 1 P t1, ..., nu.

4.1 Sub-symmetries in the graph coloring problem

Formulation pF q features many sub-symmetries. For two colors c1 and c2, a natural sub-symmetry
arises from the possibility of permuting colors c1 and c2 in a subsetR of vertices. This permutation
is a symmetry for the colorings such that all neighbors of R are colored neither by c1 nor by c2.
Note that a convenient way to obtain such a subset R is to start selecting two subsets S1 and S2

and then choose R non-adjacent to them.
Let S1 and S2 be two disjoint stable subsets of V and let R Ď V such that any r P R is

neither a neighbor of S1 nor of S2. The neighborhood of a set S is denoted by NpSq “ tv P
V zS : Dtu, vu P E s. t. u P Su

Consider solution subset

QS1,S2,R
c1,c2 “

"

x P Xcol | xi,c1 “ 1 @i P S1, xi,c2 “ 1 @i P S2, xi,c1 “ xi,c2 “ 0 @i P NpRq

*

Subset QS1,S2,R
c1,c2 contains all colorings such that S1 has color c1, S2 has color c2, and the neighbors

of R are neither colored by c1 nor by c2. Therefore, in general there exists an exponential number
of such subsets QS1,S2,R

c1,c2 . An illustration of columns c1 and c2 for the solutions of QS1,S2,R
c1,c2 is given

in Figure 1. The variables that are fixed in QS1,S2,R
c1,c2 are indicated with p0q or p1q, while the others

are indicated with symbol p˚q. Subset QS1,S2,R
c1,c2 is sub-symmetric with respect to pR, tc1, c2uq.

Such sub-symmetries, referred to as 0-neighbor sub-symmetries, correspond to permutations of a
set R of vertices between colors c1 and c2, because neighbors of R have any colors but c1 and c2.
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c1

S1 p1q

S2 p0q

R p˚q

NpRq p0q

U (*)

c2

p0q

p1q

p˚q

p0q

(*)

Fig. 1: Two columns of QS1,S2,R
c1,c2 where U “ V zpS1 Y S2 YRYNpRqq

1

2 3

4 5

6

7

Fig. 2: Example of a graph G “ pV,Eq

4.2 0-neighbor-sub-symmetry-breaking inequalities

Variable z associated to QS1,S2,R
c1,c2 can be linearly expressed in terms of x variables, as follows

z “
ÿ

sPS1

p1´ xs,c1q `
ÿ

sPS2

p1´ xs,c2q `
ÿ

rPNpRqzNpS1q

xr,c1 `
ÿ

rPNpRqzNpS2q

xr,c2 (4.6)

Note that there is no need to check that vertices of NpS1q (resp. NpS2q) are not colored by color
c1 (resp. c2). This is actually enforced by inequality (4.1) since we impose that all elements of
S1 (resp. S2) are colored by c1 (resp. c2).

As there is exactly one 1-entry on each solution row, the GCP is a partitioning problem and
a fortiori a packing problem. Thus packing-specific sub-symmetry-breaking inequalities (2.2) can
be applied:

xr1,c2 ď z, where r1 “ minR. (4.7)

Example 3 Figure 2 gives an example of a graph G “ pV,Eq. For S1 “ t2u and S2 “ ∅. Let set
R “ t6, 7u which does not contain any neighbor of 2. Here NpRq “ t4, 5u. For given colors c1 and
c2, set QS1,S2,R

c1,c2 contains all solutions such that vertex 2 is colored by c1 and such that vertices
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4 and 5 are colored neither by c1 nor by c2. Here r1 “ minpRq “ 6, thus sub-symmetry-breaking
inequality (4.7) writes

x6,c2 ď p1´ x2,c1q ` x4,c2 ` x5,c2 .
Note that considering non-empty set S1 enables us to check that vertex 2 is colored by c1 without
checking that vertices 4 and 5 are not colored by c1. Thus the inequality is tighter than the one
with S1 “ ∅.

Particular case Note that QS1,S2,R
c1,c2 Ď Q∅,∅,R

c1,c2 “ tx P Xcol | xi,c1 “ xi,c2 “ 0 @i P NpRqu. There-

fore, as Q∅,∅,R
c1,c2 may contain more solutions, the derived sub-symmetry-breaking inequalities will

have a larger scope. However, associated variables z may be different: variable z corresponding to
Q∅,∅,R

c1,c2 will feature the term
ř

vPNpr1q
xv,c1 , for a given r1 P R, while variable z corresponding to

QS1,S2,R
c1,c2 will feature the term

ř

sPS1XNpr1q
p1´ xs,c1q `

ř

vPNpr1qzNpS1q
xv,c1 instead. The former

term may feature much less variables (in particular if NpS1q contains a lot of elements of Npr1q)
but can also lead to weaker sub-symmetry-breaking inequalities.

Condition pCq Since set S contains arbitrary QS1,S2,R
c1,c2 , condition pCq is not necessarily satisfied.

For each QS1,S2,R
c1,c2 P S, for any r P t1, ..., |R|u, set rQS1,S2,R

c1,c2 prq is the tie-break set defined in
Section 2.3:

rQS1,S2,R
c1,c2 prq “ QS1,S2,R

c1,c2 X
 

x | xi,c1 “ xi,c2 , @i P tv1, ..., vr´1u
(

where R “ tv1, ..., v|R|u, v1 ă ... ă v|R|. Let us then consider set rS containing the sets in S and sets
rQS1,S2,R
c1,c2 prq, for each r P t2, ..., |R|u. By Lemma 4, set rS satisfies condition pCq and therefore the

associated sub-symmetry-breaking inequalities are full symmetry-breaking. As shown in Section
2.3, in the case of packing problems, variable rz associated to rQS1,S2,R

c1,c2 prq can be expressed as

rz “ z `
řr´1

i“1 xvi,c1 , where z is the variable associated to set QS1,S2,R
c1,c2 .

Column inequalities We can show that partition-dedicated column inequalities (4.4) can also be

derived using the proposed framework, by considering solution subsets Q∅,∅,V
k,k`1 , rQ∅,∅,V

k,k`1 prq, r P

t1, ..., |V |u and associated variables rz “
řr´1

j“k xj,k´
řminpr,Kq

k1“k`2 xr,k1 . Recall that these inequalities
break all-column-permutation symmetries in partition problems.

4.3 Scope extension

There is an exponential number of sub-symmetric subsets QS1,S2,R
c1,c2 thus in practice one must

choose which subsets to consider. An interesting question is how to choose R once S1 and S2 are
fixed. Indeed, sets R, S1 and S2 lead to |R|-symmetry-breaking inequalities for QS1,S2,R

c1,c2 . One
must find a trade-off between the size of Q and the size of R. Moreover, it is possible to apply
scope extension as described in Section 2.4.

Cardinality of R For a given set R, one sub-symmetry-breaking inequality per rQS1,S2,R
c1,c2 prq, r P

t1, ..., |R|u, can be added, resulting in a set of |R|-symmetry-breaking inequalities. On the one
hand, the larger R, the larger possible set of sub-symmetry-breaking inequalities. Note that the
set R with maximum cardinality for fixed S1 and S2 is Rmax “ V zrNpS1q YNpS2q Y S1 Y S2s.

On the other hand, a smaller subset R1 Ă R may lead to a larger subset QS1,S2,R
1

c1,c2 : indeed,

if NpR1q Ď NpRq, then QS1,S2,R
c1,c2 Ď QS1,S2,R

1

c1,c2 . It means that the derived sub-symmetry-breaking
inequalities have a larger scope.
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In the experimental results presented in Section 4.5, we chose the following subsets R “

V zrNpS1q Y NpS2q Y S1 Y S2s, where S1 and S2 are singletons. The thing is that considering
large sets R leads to a large corresponding set of |R|-symmetry-breaking inequalities. It was
computationally more efficient to add only the corresponding σ-symmetry-breaking inequalities,
where σ was chosen in t1, 2, 3u. Then a large scope seems a better option than a large set of
sub-symmetry-breaking inequalities.

Connected components of R Consider the subgraph GR induced by R and its connected compo-
nents R1, ..., Rk. Suppose R1 is the connected component containing r1 “ minpRq. Note that the
symmetry group G

Q
S1,S2,R1
c1,c2

contains the transposition π defined as πpr1, c1q “ pr1, c2q. Moreover,

QS1,S2,R
c1,c2 Ď QS1,S2,R1

c1,c2 . Therefore, the scope of the sub-symmetry-breaking inequality associated

to row r1 can be extended to QS1,S2,R1
c1,c2 . This simplifies the expression of associated variable z

as it only considers the neighbors of R1 Ď R instead of all neighbors of R. Applying such scope
extension for each r P R is equivalent to use sub-symmetry-breaking inequalities corresponding
to subsets QS1,S2,Ri

c1,c2 , i P t1, ..., ku and associated tie-break sets.

For each tie-break set, scope extension can also be recursively applied to the corresponding
sub-symmetry-breaking inequalities. For example, given r1, ..., rk1

the vertex indices of R1, the

tie-break set rQS1,S2,R1
c1,c2 p2, 2q associated to row r2 is sub-symmetric with respect to ptr2, ..., rk1

u,
tc1, c2uq (cf. Section 2.3). If the subgraph of G induced by R1ztr1u, i.e., tr2, ..., rk1

u, has multiple
connected components R11, ..., R1k11

, then we can perform a scope extension by considering asso-

ciated subsets Q
S1,S2,R

1
k

c1,c2 X txr1,c1 “ xr1,c2 “ 0u, for each k P t1, ..., k11u, instead of considering
rQS1,S2,R1
c1,c2 p2, 2q.

4.4 Implementation description

Preliminary results lead us to choose the subset of sub-symmetry-breaking inequalities using the
following parameters. Note that these parameters are customized automatically with respect to
instance characteristics.

Vertex subsets Sets S1 and S2 are chosen to be singletons. For each pair of vertices s1 ă s2 P V ,

for each colors c1 ă c2, we consider solution subset Q
ts1u,ts2u,R
c1,c2 , where R “ V zpts1u Y ts2u Y

Npts1uq YNpts2uqq, and minpRq ą 1 as column inequalities (4.4) already break symmetries on
row 1.

Pairs of colors For each triplet pS1, S2, Rq, all pairs of consecutive colors are considered, except
in three particular cases where all possible pairs are considered. The first case is when n is large,

n ě 900, and K is small, K ď 10. We consider subsets Q
ts1u,ts2u,R
c1,c2 for each pair of vertices s1,

s2 and for each pair of colors c1 ă c2. Indeed, when n is large, there are more sub-symmetries to
break, and a small K enables to consider all pairs of colors with barely no extra computational
time. The second case is when the number of edges is small, |E| ă 300. It proved beneficial to
consider all pairs of colors. The third case is when the upper bound K on the chromatic number
is large compared to n (but not too large in absolute): n

K ă 10 and K ă 100. It is also useful to
consider all pairs of colors. Indeed, as a large K compared to n leads to many columns compared
to rows, thus many symmetries on the columns arise. Therefore, the columns should be handled
pairwise to break such symmetries, provided K is not too large.
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Parameter σ For each triplet pS1, S2, Rq, we consider corresponding tie-break sets rQ to obtain
partial σ-symmetry-breaking inequalities, as defined in Section 2. Parameter σ P t1, . . . , |R|u is
chosen with respect to the number of vertices n. Indeed, subset R is potentially larger when n
gets larger, thus there may be more sub-symmetries. Therefore we increase σ according to n as
follows: σ “ 1 when n ă 100, σ “ 2 when 100 ď n ď 900, and σ “ 3 when n ě 900.

Number of variables in z To prevent too large a processing time, we consider in most cases sub-
symmetry-breaking inequalities such that the number of variables needed to express z, referred
to as size of z, is lower than or equal to 10. In this way, these inequalities are also likely to
have a large scope. On the contrary, there are two cases where a larger size for z is considered.

When the graph is relatively large and dense, i.e., |E|n ą 10 and n ą 200 (resp. very dense, i.e.,
|E|
n ą 100), variables z of size 20 (resp. 30) at most are needed to capture more sub-symmetries

as subset R is likely to have many neighbors. Similarly, when the graph is smaller (i.e., n ă 200
and E ă 1000) but with large enough upper bound (i.e., K ą 5) the sub-symmetries captured
by variables z of size 20 seem to be quite helpful as well.

Connected components When K is not too large, and when the graph is dense, i.e. |E|n ą 10 and

K ă 15 (resp. very dense, i.e. |E|n ą 50 and K ă 100), subset R is likely to be quite small as
elements of R are chosen outside the neighborhood of s1 and s2. Therefore R may decompose
into connected components. In this case it appears useful to perform the scope extension from
Section 4.3, thus replacing R by its connected components.

Limit number on sub-symmetry-breaking inequalities We set the limit on the number of sub-
symmetry-breaking inequalities to be added to 50.000, except for extremely symmetric instances
(i.e., K ě 100) where a (very) large number of sub-symmetry-breaking inequalities proves useful.

4.5 Experimental results

Experimental results are performed on DIMACS graph coloring benchmark instances [1]. These
instances are classified according to their difficulty to be solved. In particular, class NP-s stands
for instances which are solvable by the best known algorithm in less than a minute, class NP-m
in less than an hour, class NP-h in less than a day, class NP-? means the instance is not solved
or the time is not known. Note that the best known algorithm is unlikely to be formulation F
using default Cplex.

All experiments are carried out using Cplex 12.8 C++ API on 28 threads of a cluster node with
a 64 bit Intel Xeon CPU E5-2697 v3 processor running at 2.6GHz, and 64 GB of RAM memory.
Instances are solved until optimality, defined within 10´7 of relative optimality tolerance, or until
the time limit of 7200 seconds is reached.

We compare the following symmetry-breaking techniques applied to the classical GCP for-
mulation F , where the upper bound K on the number of colors is computed as a preprocessing
step using DSATUR [8] algorithm :



16 P. Bendotti, P. Fouilhoux, C. Rottner

F -Col formulation pF q with column inequalities (4.4)
F -Part formulation pF q with column inequalities (4.4), and shifted column inequalities

(4.5)
F -Sub formulation pF q with column inequalities (4.4) and the subset of sub-symmetry-

breaking inequalities described in Section 4.4.
We observed the best performance of shifted column inequalities on the small instances, i.e.,
n ă 200 and K ă 20. Therefore, we add these inequalities to F -Sub on such instances.

Note that column inequalities and the chosen sub-symmetry-breaking inequalities are initially
added, whereas shifted column inequalities are separated using Cplex Generic Callback.

Since we use Cplex 12.8 C++ API with default setting, Cplex’s internal symmetry-breaking
techniques are turned on by default. To assess the impact of such techniques over the compared
inequalities, we also include experiments where Cplex’s internal symmetry-breaking techniques
are turned off. In particular, we deactivate the latter techniques in formulations F and F -Sub,
which are respectively denoted by F -S0 and F -Sub-S0. Since the performances of F and F -Col
are similar, and since F -Col and F -Part handle the same symmetries, it does not appear useful
to include F -Col-S0 and F -Part-S0 variants in the tables.

Tables 1, 2, 3 and 4 provide, for each DIMACS instance and for each symmetry-breaking
technique:

n: number of vertices,
|E|: number of edges,
K: upper bound on the number of colors obtained with DSATUR,
UB: upper bound on the number of colors obtained at the end
LB: lower bound on the number of colors obtained at the end
#SSBI: number of sub-symmetry-breaking inequalities added
#Part: number of partitioning orbitope inequalities added
#nodes: number of nodes in the B&B tree, 0 meaning resolution at root node
CPU: CPU time in seconds, including the time spent to generate sub-symmetry-

breaking inequalities
The number of column inequalities (4.4) is not indicated in the tables as it is in OpnKq.
To keep the focus on the most interesting instances, the results are presented for relatively

hard instances only, i.e., instances for which Cplex needs at least 50 seconds to solve with
formulation F . Moreover we report results as soon as a difference appears among some considered
techniques with respect to either upper or lower bounds or CPU time.

In general, the performances of F -S0, F , F -Col are surprisingly similar, indicating that neither
Cplex’s internal symmetry-breaking techniques nor column inequalities lead to significant CPU
time reduction. There are still some instances where F and F -Col slightly improve F -S0, for
example “FullIns” instances (from NP-m and NP-?).

As for NP-s instances in Table 1, there is one instance (queen9-9) on which no sub-symmetry-
breaking inequality is found. The time spent to search for sub-symmetry-breaking inequalities
appears to be significant and could not be compensated for by any symmetry breaking. On 1-
Insertions-4 instance, F -Part converges faster. On all other instances, F -Sub is the most efficient
technique. For example, on school1 instance, F -S0, F and F -Col (resp. F -Part) terminate in
about 2500 seconds (resp. 6500 seconds), while F -Sub finishes in around 1000 seconds. Interest-
ingly, F -Sub and F -Sub-S0 perform similarly except on 1-Insertions-4 instance.

Among NP-m instances in Table 2, there is one instance (ash608GPIA) where, surprisingly, F -
S0 is the most efficient. On le450-15a instance, none of the techniques is able to reach optimality
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Method n E K UB LB #SSBI #Part #nodes CPU
1-Insertions-4 F -S0 67 232 5 5 5 0 0 305455 371.28
1-Insertions-4 F 67 232 5 5 5 0 0 305455 372.78
1-Insertions-4 F -Col 67 232 5 5 5 0 0 305455 373.51
1-Insertions-4 F -Part 67 232 5 5 5 0 1160 91261 122.33
1-Insertions-4 F -Sub-S0 67 232 5 5 5 10780 985 162004 452.5
1-Insertions-4 F -Sub 67 232 5 5 5 10780 660 73288 218.14
DSJC125.1 F -S0 125 736 5 5 5 0 0 0 57.45
DSJC125.1 F 125 736 5 5 5 0 0 0 54.19
DSJC125.1 F -Col 125 736 5 5 5 0 0 0 59.94
DSJC125.1 F -Part 125 736 5 5 5 0 6 0 69.9
DSJC125.1 F -Sub-S0 125 736 5 5 5 7920 9 0 24.53
DSJC125.1 F -Sub 125 736 5 5 5 7920 9 0 25.82
queen9-9 F -S0 81 2112 10 10 10 0 0 130119 5048.6
queen9-9 F 81 2112 10 10 10 0 0 130119 5058.1
queen9-9 F -Col 81 2112 10 10 10 0 0 130119 5036.87
queen9-9 F -Part 81 2112 10 10 10 0 63 104943 4252.99
queen9-9 F -Sub-S0 81 2112 10 10 9 0 0 278060 7200
queen9-9 F -Sub 81 2112 10 10 9 0 0 274752 7200
r125.1c F -S0 125 7501 46 46 46 0 0 0 969.82
r125.1c F 125 7501 46 46 46 0 0 0 964.61
r125.1c F -Col 125 7501 46 46 46 0 0 0 968.14
r125.1c F -Part 125 7501 46 46 46 0 14431 0 568.96
r125.1c F -Sub-S0 125 7501 46 46 46 50000 0 0 355.96
r125.1c F -Sub 125 7501 46 46 46 50000 0 0 349.94
school1 F -S0 385 19095 14 14 14 0 0 0 2603.03
school1 F 385 19095 14 14 14 0 0 0 2580.66
school1 F -Col 385 19095 14 14 14 0 0 0 2490.22
school1 F -Part 385 19095 14 14 14 0 195 0 6530.22
school1 F -Sub-S0 385 19095 14 14 14 5772 0 0 1021.12
school1 F -Sub 385 19095 14 14 14 5772 0 0 1007.35

Table 1: Experimental results on NP-s graph coloring DIMACS instances

within time limit but F -Part seems slightly better as the upper bound found is tighter. On all
other instances, F -sub or F -sub-S0 outperforms the other techniques. For example on wap05a
instance, other techniques need around 800 seconds to reach optimality while F -Sub and F-Sub-
S0 need only 400 seconds. Similarly, on school1-nsh instance, the other techniques do not converge
within 7200 seconds while F-Sub and F-Sub-S0 do in 1700 seconds. Interestingly, on 4-Insertions-3
instance, F-Sub-S0 is better than F-Sub, suggesting that Cplex’s internal symmetry-breaking-
techniques are computationally expensive compared to the amount of symmetries broken when
sub-symmetry-breaking inequalities are used.

None of the techniques converged on NP-h instances in Table 3, but the lower bounds obtained
after 7200 seconds are different depending on the technique used. On r250.5 instance, the best
lower bound (61.33) is obtained by F , F -S0 and F -Col, while F -Part and F -Sub (resp. F -Sub-
S0) only obtain a bound of respectively 58 and 60. On flat300-28-0 instance, F -Part provides the
best lower bound (9.82062) while other techniques only obtain 9.81756. On DSJC125.5 instance,
this is the other way around as F , F -S0, F -Col, F -Sub and F -Sub-S0 all obtain the same lower
bound and F -Part does not as good. On remaining instances, F -Sub and F -Sub-S0 are able to
obtain a better lower bound than the other techniques. It is particularly the case on DSJR500.5
instance, where F -Sub and F -Sub-S0 are able to reach a bound of 114, while other techniques
provide a bound of 117.

For NP-? instances in Table 4, only two instances are solved to optimality. On some instances
(2-Insertions-4, flat300-20-0 and flat300-26-0), F -Sub shows no improvement compared to the
other techniques. On 3-FullIns4 instance, F -Col is the most efficient as it converges in 2598
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Method n E K UB LB #SSBI #Part #nodes CPU
ash608GPIA F -S0 1216 7844 8 4 4 0 0 0 3260.55
ash608GPIA F 1216 7844 8 4 4 0 0 0 3884.08
ash608GPIA F -Col 1216 7844 8 4 4 0 0 0 3910.26
ash608GPIA F -Part 1216 7844 8 4 4 0 2005 0 3853.68
ash608GPIA F -Sub-S0 1216 7844 8 4 4 11256 0 3760 7200
ash608GPIA F -Sub 1216 7844 8 4 4 11256 0 0 3473.38
school1-nsh F -S0 352 14612 21 20 14 0 0 0 7200
school1-nsh F 352 14612 21 20 14 0 0 0 7200
school1-nsh F -Col 352 14612 21 20 14 0 0 0 7200
school1-nsh F -Part 352 14612 21 20 14 0 71 0 7200
school1-nsh F -Sub-S0 352 14612 21 14 14 4640 0 0 1712.02
school1-nsh F -Sub 352 14612 21 14 14 4640 0 0 1707.78

2-FullIns-4 F -S0 212 1621 6 6 6 0 0 3174 339.7
2-FullIns-4 F 212 1621 6 6 6 0 0 691 143.2
2-FullIns-4 F -Col 212 1621 6 6 6 0 0 691 155.36
2-FullIns-4 F -Part 212 1621 6 6 6 0 942 444 163.57
2-FullIns-4 F -Sub-S0 212 1621 6 6 6 140 0 1140 231.02
2-FullIns-4 F -Sub 212 1621 6 6 6 140 0 857 127.03

4-Insertions-3 F -S0 79 156 4 4 4 0 0 837188 1364.46
4-Insertions-3 F 79 156 4 4 4 0 0 837188 1356.85
4-Insertions-3 F -Col 79 156 4 4 4 0 0 837188 1363.89
4-Insertions-3 F -Part 79 156 4 4 4 0 347 71877 112.68
4-Insertions-3 F -Sub-S0 79 156 4 4 4 4500 310 36702 76.38
4-Insertions-3 F -Sub 79 156 4 4 4 4500 269 86430 185.6
5-FullIns-3 F -S0 154 792 8 8 8 0 0 25091 288.4
5-FullIns-3 F 154 792 8 8 8 0 0 18129 221.15
5-FullIns-3 F -Col 154 792 8 8 8 0 0 18129 218.51
5-FullIns-3 F -Part 154 792 8 8 8 0 2092 6832 153.91
5-FullIns-3 F -Sub-S0 154 792 8 8 8 14924 6000 21295 527.74
5-FullIns-3 F -Sub 154 792 8 8 8 14924 2378 7565 169.94
le450-15a F -S0 450 8168 19 17 15 0 0 132 7200
le450-15a F 450 8168 19 17 15 0 0 125 7200
le450-15a F -Col 450 8168 19 17 15 0 0 128 7200
le450-15a F -Part 450 8168 19 16 15 0 7717 0 7200
le450-15a F -Sub-S0 450 8168 19 17 15 2520 0 93 7200
le450-15a F -Sub 450 8168 19 17 15 2520 0 96 7200
myciel6 F -S0 95 755 7 7 5 0 0 849532 7200
myciel6 F 95 755 7 7 5 0 0 850427 7200
myciel6 F -Col 95 755 7 7 5 0 0 851264 7200
myciel6 F -Part 95 755 7 7 5.2 0 10924 369313 7200
myciel6 F -Sub-S0 95 755 7 7 6 11508 14235 864610 7200
myciel6 F -Sub 95 755 7 7 5.25 11508 7030 263566 7200
wap05a F -S0 905 43081 51 50 50 0 0 0 838.9
wap05a F 905 43081 51 50 50 0 0 0 822.08
wap05a F -Col 905 43081 51 50 50 0 0 0 836.3
wap05a F -Part 905 43081 51 50 50 0 9674 0 849.68
wap05a F -Sub-S0 905 43081 51 50 50 12300 0 0 501.02
wap05a F -Sub 905 43081 51 50 50 12300 0 0 495.89

Table 2: Experimental results on NP-m graph coloring DIMACS instances (continued)

seconds, while F -Sub (resp. F , F -Part) converges in 3769 seconds (resp. 4442 seconds, 5012
seconds). On all other instances, F -Sub performs better. For example, on 1-FullIns-5 instance,
the other techniques do not terminate within 7200 seconds while F -Sub converges in 3700 sec-
onds. Also, on r125.5 instance, F -Sub is able to converge faster (in 170 seconds) than the other
techniques (from 259 to 1000 seconds).



Symmetry-Breaking Inequalities for ILP with Structured Sub-Symmetry 19

Method n E K UB LB #SSBI #Part #nodes CPU
DSJC125.5 F -S0 125 3891 24 19 10.5254 0 0 1084 7200
DSJC125.5 F 125 3891 24 19 10.5254 0 0 1067 7200
DSJC125.5 F -Col 125 3891 24 19 10.5254 0 0 1112 7200
DSJC125.5 F -Part 125 3891 24 19 10.4365 0 35743 116 7200
DSJC125.5 F -Sub-S0 125 3891 24 19 10.5254 0 0 1063 7200
DSJC125.5 F -Sub 125 3891 24 19 10.5254 0 0 1084 7200
DSJC125.9 F -S0 125 6961 57 45 35.6026 0 0 164 7200
DSJC125.9 F 125 6961 57 45 35.6026 0 0 160 7200
DSJC125.9 F -Col 125 6961 57 45 35.6026 0 0 164 7200
DSJC125.9 F -Part 125 6961 57 47 36.1708 0 49330 142 7200
DSJC125.9 F -Sub-S0 125 6961 57 46 35.9338 19152 0 97 7200
DSJC125.9 F -Sub 125 6961 57 46 35.9338 19152 0 94 7200
DSJC250.9 F -S0 250 27897 100 97 35.299 0 0 0 7200
DSJC250.9 F 250 27897 100 97 35.299 0 0 0 7200
DSJC250.9 F -Col 250 27897 100 97 35.299 0 0 0 7200
DSJC250.9 F -Part 250 27897 100 97 32.7273 0 911 0 7200
DSJC250.9 F -Sub-S0 250 27897 100 86 35.9854 12276 0 0 7200
DSJC250.9 F -Sub 250 27897 100 86 35.9854 12276 0 0 7200
DSJR500.5 F -S0 500 58862 134 134 114 0 0 0 7200
DSJR500.5 F 500 58862 134 134 114 0 0 0 7200
DSJR500.5 F -Col 500 58862 134 134 114 0 0 0 7200
DSJR500.5 F -Part 500 58862 134 134 114 0 45765 0 7200
DSJR500.5 F -Sub-S0 500 58862 134 134 117 697452 0 0 7200
DSJR500.5 F -Sub 500 58862 134 134 117 697452 0 0 7200
flat300-28-0 F -S0 300 21695 48 39 9.81756 0 0 0 7200
flat300-28-0 F 300 21695 48 39 9.81756 0 0 0 7200
flat300-28-0 F -Col 300 21695 48 39 9.81756 0 0 0 7200
flat300-28-0 F -Part 300 21695 48 39 9.82062 0 10 0 7200
flat300-28-0 F -Sub-S0 300 21695 48 39 9.81756 0 0 0 7200
flat300-28-0 F -Sub 300 21695 48 39 9.81756 0 0 0 7200
r250.5 F -S0 250 14849 72 68 61.3333 0 0 0 7200
r250.5 F 250 14849 72 68 61.3333 0 0 0 7200
r250.5 F -Col 250 14849 72 68 61.3333 0 0 0 7200
r250.5 F -Part 250 14849 72 70 58 0 8847 0 7200
r250.5 F -Sub-S0 250 14849 72 70 60 50000 0 0 7200
r250.5 F -Sub 250 14849 72 70 60 50000 0 0 7200

Table 3: Experimental results on NP-h graph coloring DIMACS instances

All in all on DIMACS instances, sub-symmetry breaking appears to significantly improve on
only symmetry breaking.

5 Application to the Unit Commitment Problem

The framework of Section 2 is now applied to the Unit Commitment Problem, which features
many sub-symmetries undetected by symmetry group G.

Given a discrete time horizon T “ t1, ..., T u, a demand for electric power Dt is to be met at
each time period t P T . Power is provided by a set N of n production units. At each time period,
unit j P N is either down or up, and in the latter case, its production is within [P j

min, P j
max]. Each

unit must satisfy minimum up-time (resp. down-time) constraints, i.e., it must remain up (resp.
down) during at least Lj (resp. `j) periods after start up (resp. shut down). Each unit j also
features three different costs: a fixed cost cjf , incurred each time period the unit is up; a start-up

cost cj0, incurred each time the unit starts up; and a cost cjp proportional to its production. The
Min-up/min-down Unit Commitment Problem (MUCP) is to find a production plan minimizing
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Method n E K UB LB #SSBI #Part #nodes CPU
2-Insertions-4 F -S0 149 541 5 5 4 0 0 1.10839e+06 7200
2-Insertions-4 F 149 541 5 5 4 0 0 1.10282e+06 7200
2-Insertions-4 F -Col 149 541 5 5 4 0 0 1.1005e+06 7200
2-Insertions-4 F -Part 149 541 5 5 4 0 5156 1.5963e+06 7200
2-Insertions-4 F -Sub-S0 149 541 5 5 3 20160 2809 100253 7200
2-Insertions-4 F -Sub 149 541 5 5 4 20160 2179 662877 7200
1-FullIns-5 F -S0 282 3247 6 6 4.14286 0 0 18896 7200
1-FullIns-5 F 282 3247 6 6 4.33333 0 0 19353 7200
1-FullIns-5 F -Col 282 3247 6 6 4.33333 0 0 19304 7200
1-FullIns-5 F -Part 282 3247 6 6 4 0 3801 11511 7200
1-FullIns-5 F -Sub-S0 282 3247 6 6 5 740 0 23787 7200
1-FullIns-5 F -Sub 282 3247 6 6 6 740 0 26320 7139.29
3-FullIns-4 F -S0 405 3524 7 7 7 0 0 8147 4442.78
3-FullIns-4 F 405 3524 7 7 7 0 0 2898 2601.7
3-FullIns-4 F -Col 405 3524 7 7 7 0 0 2898 2598.23
3-FullIns-4 F -Part 405 3524 7 7 7 0 10622 14146 5012.53
3-FullIns-4 F -Sub-S0 405 3524 7 7 7 96 0 9204 5312.42
3-FullIns-4 F -Sub 405 3524 7 7 7 96 0 3895 3769.1
myciel7 F -S0 191 2360 8 8 4.22826 0 0 60242 7200
myciel7 F 191 2360 8 8 4.22826 0 0 60234 7200
myciel7 F -Col 191 2360 8 8 4.24913 0 0 60364 7200
myciel7 F -Part 191 2360 8 8 4 0 15955 10091 7200
myciel7 F -Sub-S0 191 2360 8 8 4 5488 17608 10775 7200
myciel7 F -Sub 191 2360 8 8 5 5488 18330 16524 7200
r125.5 F -S0 125 3838 36 36 36 0 0 0 259.37
r125.5 F 125 3838 36 36 36 0 0 0 259.02
r125.5 F -Col 125 3838 36 36 36 0 0 0 257.74
r125.5 F -Part 125 3838 36 36 36 0 9962 0 999.33
r125.5 F -Sub-S0 125 3838 36 36 36 50000 0 0 170.66
r125.5 F -Sub 125 3838 36 36 36 50000 0 0 170.93
flat300-20-0 F -S0 300 21375 38 29 10.0961 0 0 0 7200
flat300-20-0 F 300 21375 38 29 10.0961 0 0 0 7200
flat300-20-0 F -Col 300 21375 38 29 10.0961 0 0 0 7200
flat300-20-0 F -Part 300 21375 38 29 9.98414 0 1179 0 7200
flat300-20-0 F -Sub-S0 300 21375 38 29 10.0961 0 0 0 7200
flat300-20-0 F -Sub 300 21375 38 29 10.0961 0 0 0 7200
flat300-26-0 F -S0 300 21633 39 37 10.0629 0 0 0 7200
flat300-26-0 F 300 21633 39 37 10.0629 0 0 0 7200
flat300-26-0 F -Col 300 21633 39 37 10.0629 0 0 0 7200
flat300-26-0 F -Part 300 21633 39 37 10.0624 0 25 0 7200
flat300-26-0 F -Sub-S0 300 21633 39 37 10.0629 0 0 0 7200
flat300-26-0 F -Sub 300 21633 39 37 10.0629 0 0 0 7200

Table 4: Experimental results on NP-? graph coloring DIMACS instances

the total cost while satisfying the demand and the minimum up and down time constraints. The
MUCP is strongly NP-hard [4].

In the real-world Unit Commitment Problem (UCP), some more technical constraints have
also to be taken into account, such as ramp constraints or reserve requirement constraints, and
the start-up costs are an exponential function of the unit downtime. From a combinatorial point
of view, the MUCP is the core structure of the UCP. In this section, we study the MUCP with
and without ramp constraints.

For each unit j P N and time period t P T , let us consider three variables: xt,j P t0, 1u
indicates if unit j is up at time t; ut,j P t0, 1u whether unit j starts up at time t; and pt,j P R is
the quantity of power produced by unit j at time t. Without loss of generality we consider that
Lj , `j ď T . Formulation F px, uq for the MUCP is as follows [35,31,3].
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min
x,u,p

n
ÿ

j“1

T
ÿ

t“1

cjfxt,j ` c
j
ppt,j ` c

j
0ut,j

s. t.
t
ÿ

t1“t´Lj`1

ut1,j ď xt,j @j P N , @t P tLj , ..., T u (5.1)

t
ÿ

t1“t´`j`1

ut1,j ď 1´ xt´`j ,j @j P N , @t P t`j , ..., T u (5.2)

ut,j ě xt,j ´ xt´1,j @j P N , @t P t2, ..., T u (5.3)

P j
minxt,j ď pt,j ď P j

maxxt,j @j P N , @t P T (5.4)
n
ÿ

j“1

pt,j ě Dt @t P T (5.5)

xt,j , ut,j P t0, 1u @j P N , @t P T (5.6)

For convenience, we will also use variable wt,j “ xt´1,j ´ xt,j ` ut,j , indicating whether unit
j shuts down at time t.

5.1 Symmetries and sub-symmetries in the UCP

Symmetries in the MUCP (and in the UCP) arise from the existence of groups of identical
units, i.e., units with identical characteristics (Pmin, Pmax, L, `, cf , c0, cp). The instance is
partitioned into types h P t1, ...,Hu of nh identical units. The unit set of type h is denoted by
Nh “ tj

h
1 , ..., j

h
nh
u.

The solutions of the MUCP can be expressed as a series of binary matrices. For a given type
h, we introduce matrix xh P PpT, nhq such that entry xht,k corresponds to variable xt,jhk , where

jhk is the index of the kth unit of type h, k P t1, ..., nhu. Column j of matrix xh corresponds to
the up/down plan relative to the jth unit of type h. Similarly, we introduce matrices uh and ph.

The set of all feasible x “ pxt,jqtPT ,jPN is denoted by XMUCP . Note that any solution matrix
x (resp. u, p) can be partitioned in H matrices xh (resp. uh, ph). Since all units of type h are
identical, their production plans can be permuted, provided that the same permutation is applied
to matrices xh, uh and ph. Thus, the symmetry group G contains the symmetric group Snh

acting
on the columns of xh, for each unit type h. Consequently, for each type h, feasible solutions xh

can be restricted to be in the T ˆnh full orbitope. As binary variables u are uniquely determined
by variables x, breaking the symmetry on x variables will break the symmetry on u variables.
Note that this restriction to the T ˆ nh full orbitope for each type h can possibly be done using
inequalities from Section 3 featuring z variables.

There are also other sources of symmetry, arising from the possibility of permuting some sub-
columns of matrices xh. For example, consider two identical units. Suppose at some time period
t, these two units are down and ready to start up. Then their plans after t can be permuted,
even if they do not have the same up/down plan before t.

More precisely, a unit j P N is ready to start up at time t P t1, ..., T u if and only if @t1 P
tt´ `j , ..., t´ 1u, xt1,j “ 0. Similarly, a unit j P N k is ready to shut down at time t P t1, ..., T u if
and only if @t1 P tt´ Lj , ..., t´ 1u, xt1,j “ 1.
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5.2 Sub-symmetry-breaking inequalities for the MUCP

For each time period t P t1, ..., T u and any two consecutive units jhk , jhk`1 of type h, k P t1, ..., nh´

1u, consider the following subsets of XMUCP :

qQt
k,h “

 

x P XMUCP | xt1,j “ 0, @t1 P tt´ `h, ..., t´ 1u, t ě `h ` 1, @j P tjhk , j
h
k`1u

(

pQt
k,h “

 

x P XMUCP | xt1,j “ 1, @t1 P tt´ Lh, ..., t´ 1u, t ě Lh ` 1, @j P tjhk , j
h
k`1u

(

where `h (resp. Lh) is the minimum down (resp. up) time of units of type h.

Note that qQt
k,h and pQt

k,h are different from subsets Qi,j defined in Section 3. Actually,

Qt,jhk`1
Ă qQt

k,h and Qt,jhk`1
Ă pQt

k,h.

Let G
qQt
k,h

and G
pQt
k,h

be the sub-symmetry groups associated to qQt
k,h and pQt

k,h, t P t1, ..., T u,
h P t1, ...,Hu, k P t1, ..., nh ´ 1u. The sub-symmetries in G

qQt
k,h

(resp. G
pQt
k,h

) are called start-up

sub-symmetries (resp. shut-down sub-symmetries). Most of these sub-symmetries are not detected
in the symmetry group of the MUCP.

Groups G
qQt
k,h

and G
pQt
k,h

contain the sub-symmetric group associated to the submatrix defined

by rows and columns ptt, ..., T u, tjhk , j
h
k`1uq.

Applying results from Section 2, variables qztk,h and pztk,h, indicating whether x P qQt
k,h and

x P pQt
k,h respectively, can be directly derived from variables x and u:

qztk,h “ xt´`h,j1 `

t´1
ÿ

t1“t´`h`1

ut1,j1 ` xt´`h,j `

t´1
ÿ

t1“t´`h`1

ut1,j t ě `h ` 1

pztk,h “ 1´ xt´Lh,j1 `

t´1
ÿ

t1“t´Lh`1

wt1,j1 ` 1´ xt´Lh,j `

t´1
ÿ

t1“t´Lh`1

wt1,j t ě Lh ` 1

where j “ jhk and j1 “ jhk`1 for sake of clarity.

Consider SMUCP “
 

qQt
k,h,

pQt
k,h, t P t1, ..., T u, h P t1, ...,Hu, k P t1, ..., nh ´ 1u

(

. In this
case, set SMUCP directly satisfies condition C. Note that |SMUCP | “ Op2Tnq thus leading to
Op2Tnq inequalities.

For each h P t1, ...,Hu, k P t1, ..., nh ´ 1u and t P t1, ..., T u, inequalities p qQt
k,hpj, j

1qq and

p pQt
k,hpj, j

1qq, where j “ jhk and j1 “ jhk`1, are as follows.

xt,j1 ď

„

xt´`h,j1 `

t´1
ÿ

t1“t´`h`1

ut1,j1



`

„

xt´`h,j `

t´1
ÿ

t1“t´`h`1

ut1,j



` xt,j t ě `h ` 1

xt,j1 ď

„

1´ xt´Lh,j1 `

t´1
ÿ

t1“t´Lh`1

wt1,j1



`

„

1´ xt´Lh,j `

t´1
ÿ

t1“t´Lh`1

wt1,j



` xt,j t ě Lh ` 1
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Strengthening symmetry-breaking inequalities Inequalities p qQt
k,hpj, j

1qq and p pQt
k,hpj, j

1qq can be
further strengthened, using the relationship between variables x and u.

First note that by definition of variables w:

xt,j1 ´

„

xt´`h,j1 `

t´1
ÿ

t1“t´`h`1

ut1,j1



“ ut,j1 ´
t
ÿ

t1“t´`h`1

wt1,j1 t ě `h ` 1

xt,j `

„

1´ xt´Lh,j `

t´1
ÿ

t1“t´Lh`1

wt1,j



“ ´wt,j ` 1`
t
ÿ

t1“t´Lh`1

ut1,j t ě Lh ` 1

Note that if ut,j1 “ 1 (resp. wt,j “ 1), then
řt

t1“t´`h`1 wt1,j1 “ 0 (resp.
řt

t1“t´Lh`1 ut1,j “ 0).

Replacing the previous two equalities into inequalities p qQt
k,hpj, j

1qq and p pQt
k,hpj, j

1qq yields the
following valid and stronger Start-Up-Ready and Shut-Down-Ready inequalities.

ut,j1 ď

„

xt´`h,j `

t´1
ÿ

t1“t´`h`1

ut1,j



` xt,j t ě `h ` 1 (5.7)

wt,j ď

„

1´ xt´Lh,j1 `

t´1
ÿ

t1“t´Lh`1

wt1,j1



` 1´ xt,j1 t ě Lh ` 1 (5.8)

Note that for any h P t1, ...,Hu and k P t1, ..., nh ´ 1u, qQ1
k,h “

pQ1
k,h “ XMUCP . As condition

pCq is satisfied by SMUCP , any x “ px1, ..., xHq satisfying inequalities (5.7) and (5.8) is such
that xh is in the T ˆ nh full orbitope, h P t1, ...,Hu. Hence inequalities (5.7) and (5.8) ensure in
particular that any solution xh is in the full orbitope.

5.3 Sub-symmetry-breaking inequalities for the ramp-constrained MUCP

In the real-world UCP, each unit j must also feature ramp-up (resp. ramp-down) constraints,
i.e., the maximum increase (resp. decrease) in generated power from time period t to time period
t` 1 is RU j (resp. RDj). Moreover, if unit i starts up at time t (resp. shuts down at time t` 1),
its production at time t cannot be higher than SU j (resp. SDj).

For each unit j P N and time period t P t2, ...T u, ramp constraints can be formulated as
follows:

pt,j ´ pt´1,j ď RU jxt´1,j ` SU
jut,j (5.9)

pt´1,j ´ pt,j ď RDjxt,j ` SD
jwt,j (5.10)

The MUCP formulation including ramp constraints can be further strengthened with valid in-
equalities as proposed in [32,34]. As the aim of this article is to compare symmetry-breaking tech-
niques, we will only consider the classical MUCP formulation (5.1) – (5.6) with ramp-constraints
(5.9) – (5.10), as done in [31,21].

When ramp-constraints are considered, the symmetry group of set qQt
k,h still contains the sub-

symmetric group associated to the submatrix defined by rows and columns ptt, ..., T u, tjhk , j
h
k`1uq.

Therefore, inequalities (5.7) can still be used.

However the symmetry group of set pQt
k,h no longer contains the sub-symmetric group associ-

ated to the submatrix defined by rows and columns ptt, ..., T u, tjhk , j
h
k`1uq. Indeed, if two identical

units have been up for at least Lh time periods at time t´ 1, they may produce distinct power
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values at time t´ 1 and thus, because of ramp constraints, their up/down trajectories from time
t to T cannot be permuted. Therefore, inequalities (5.8) can no longer be used.

Note that when two identical ramp-constrained units are ready to shut down, there still exist
some sub-symmetries that could be exploited. These sub-symmetries are more intricate because
they depend, for example, on the quantity of power produced by both units, or on the time of
their last start-up.

5.4 Experimental results

In this section, we compare various (sub-)symmetry-breaking techniques for the MUCP with or
without ramp constraints. Some of these techniques operate during the branching process, while
the others are compact or exponential symmetry-breaking MIP formulations.

5.4.1 Aggregated formulations for the UCP

In [22], the authors propose to break symmetries of the UCP by aggregating variables corre-
sponding to identical units. This method is shown to outperform existing symmetry-breaking
inequalities whenever the integer decomposition property holds [2], i.e., any integer solution of
the aggregated formulation can be disaggregated into an integer solution of the disaggregated
formulation.

‚ Aggregated px, uq formulation In the case of the MUCP, variables x, u of formulation (5.1–
5.6) are aggregated into variables rxt,h “

ř

jPNh
xt,j P t0, ..., nhu (resp. rut,h “

ř

jPNh
ut,j P

t0, ..., nhu) indicating how many units of type h are up (resp. start up) at time t. Variables
rpt,h “

ř

jPNh
pt,j P R is the total amount of power produced at time t by units of type h.

Aggregated px, uq formulation, denoted by A-prx, ruq, is formulation Fpx, uq where variables px, u, pq
are replaced by prx, ru, rpq.

When aggregating variables corresponding to h identical units, one must ensure that the
aggregated production plan can be disaggregated into h feasible production plans satisfying. In-
equalities (5.1)–(5.4) have the integer decomposition property, i.e., any integer solution prx, ru, rpq
of aggregated px, uq formulation can be disaggregated into an integer solution px, u, pq of formu-
lation (5.1)–(5.6). A disaggregation algorithm for the MUCP is proposed in [22].

When ramp constraints are considered in formulation (5.1)–(5.6), the integer decomposition
property is lost. Examples of aggregated solutions which cannot be disaggregated are given in
[22].

‚ Aggregated interval formulation As the integer decomposition property depends on the formu-
lation considered, an interval-based formulation is introduced in [22] for the ramp-constrained
MUCP. For each unit j P N , for each interval tt0, ..., t1´1u of size t1´t0 ě Lj , variable yt0,t1j “ 1
if and only if unit j starts up at time t0, remains up on interval tt0, ..., t1´ 1u and shuts down at
time t1. For each time period t P T , variable pt0,t1t,j represents the quantity of power produced by

unit j at time t if yt0,t1j “ 1, and pt0,t1t,j “ 0 otherwise. To each interval tt0, ..., t1´1u is associated

a production polytope giving the feasible domain of variable pt0,t1t,j .
The interval formulation consists in finding, for each unit i, a set of compatible intervals (i.e.,

non-overlapping intervals such that the minimum down time is satisfied) in order to satisfy the
demand. Such a formulation has the integer decomposition property, thus variables yt0,t1j (resp.

pt0,t1t,j ) can be replaced by aggregated variables ryt0,t1h “
ř

jPNh
yt0,t1j and rpt0,t1t,h “

ř

j P Nhp
t0,t1
t,j ,

leading to aggregated formulation Intpryq.
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5.4.2 Modified Orbital Branching

In [31] the authors present the Modified Orbital Branching (MOB) technique which operates at
each node of the branching tree. The idea is to branch on a subset of symmetric variables instead
of a single one. They apply MOB alongside with several complementary branching rules to break
symmetries of the MUCP with additional technical constraints. Among the proposed branching
rules, the most flexible one ensuring full-symmetry breaking is called Relaxed Minimum-Rank
Index (RMRI). Note that sub-symmetries are not exploited in practice. Different approaches are
compared experimentally: Default Cplex, Callback Cplex, OB (orbital branching), MOB with no
branching rules enforced (Cplex is free to choose the next branching variable), and MOB with
RMRI. It is shown that MOB with RMRI is more efficient than MOB, OB and Callback Cplex
in terms of CPU time. The difference of (geometric) average CPU time speed-up between using
MOB with RMRI and MOB alone is 1.098.

In this paper, we choose to compare our methods to MOB, even though MOB with RMRI is
shown to perform slightly better than MOB with no branching rules [31]. The rationale behind
is that its implementation is straightforward, thus leaving no room to interpretation.

5.4.3 Orbitopal fixing for the full orbitope

In [5], a variable fixing algorithm, called Orbitopal fixing for the full (sub-)orbitope, is proposed
in order to enumerate only solutions in full (sub-)orbitopes from the B&B tree. A dynamic
version of the orbitopal fixing algorithm is proposed, where the lexicographical order at node a
is defined with respect to the branching decisions leading to a. Experimental results on MUCP
instances show that the dynamic variant of the algorithm performs much better than the static
variant. Moreover, it is clear that sub-symmetries greatly impair the solution process for MUCP
instances, since dynamic orbitopal fixing for both full orbitope and full sub-orbitope performs
even better than dynamic orbitopal fixing for the full orbitope. The experiments show also that
the approach is competitive with commercial solvers like Cplex and state-of-the-art techniques
like MOB.

5.4.4 Experimental settings

In this section, we compare various symmetry-breaking formulations for the MUCP with or
without ramp constraints.

Each experiment is carried out using Cplex 12.8 C++ API on only 1 thread of a cluster
node with a 64 bit Intel Xeon CPU E5-2697 v3 processor running at 2.6GHz, and 64 GB of
RAM memory. The UCP instances are solved until optimality (defined within 10´7 of relative
optimality tolerance) or until the time limit of 3600 seconds is reached.

As shown in [31], neither Friedman inequalities (1.1) nor column inequalities (1.2) are com-
petitive with respect to the classical UCP formulation when solved by Cplex.

On the opposite, the weaker form of Friedman inequality (1.3) has been shown in [25] to
outperform Default Cplex.

Hence the following symmetry-breaking techniques are compared:
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- F px, uq: px, uq-formulation (5.1)–(5.6)
- MOB: Modified Orbital Branching
- Fixing: Dynamic orbitopal fixing for the full (sub-)orbitope
- A-prx, ruq: Aggregated prx, ruq-formulation (only when disaggregation applies)
- Intpryq: Aggregated interval formulation
- W px, uq: px, uq-formulation (5.1)–(5.6) with weaker Friedman inequalities (1.3)
- F px, u, zq: px, uq-formulation (5.1)–(5.6) with variables z, inequalities (3.1a)–(3.1e) and

sub-symmetry-breaking inequalities (3.3)
- LF px, uq: px, uq-formulation (5.1)–(5.6) with sub-symmetry-breaking inequalities (5.7)-

(5.8).

Symmetry-breaking techniques MOB and Fixing are implemented within Cplex C++ API
using the BranchCallback feature.

As for graph coloring experiments, we also include experiments where Cplex’s internal symmetry-
breaking techniques are turned off. We deactivate the latter techniques for F px, uq, W px, uq,
F px, u, zq and LF px, uq, which are respectively denoted by F px, uq-S0, W px, uq-S0, F px, u, zq-S0
and LF px, uq-S0. Due to the use of Cplex BranchCallback in MOB and Fixing, the Cplex’s in-
ternal symmetry-breaking techniques are already turned off. For A-prx, ruq and Intpryq, no change
has been detected with or without the latter techniques. It does not appear useful to include
their S0 variant in the tables.

Formulation F px, u, zq is obtained from the classical MUCP formulation F px, uq by a direct
use of the inequalities given in Section 3. As seen in Section 5, taking into account sub-symmetries
in the MUCP leads to formulation LF px, uq featuring lifted symmetry breaking-inequalities
(5.7) and (5.8), namely Start-up-ready and Shut-down-ready inequalities, in place of inequal-
ities (3.1a)–(3.3). Note that the start-up and shut-down sub-symmetries of the MUCP are not
handled by formulations F px, uq, W px, uq and F px, u, zq.

Formulations F px, uq, W px, uq, F px, u, zq and LF px, uq feature OpnT q variables while formu-
lation A-prx, ruq (resp. Intpryq) features OpHT q (resp. OpT 2Hq) variables, where H is the number
of groups of identical units.

For the ramp-constrained MUCP, inequalities (5.9)–(5.10) enforcing ramp constraints are
added to formulations F px, uq, W px, uq, F px, u, yq and LF px, uq. Aggregated formulation A-
prx, ruq can no longer be used, as its solutions cannot be disaggregated [22]. Note also that in this
context, Start-up-ready inequalities are adjoined to LF px, uq, but Shut-down-ready inequalities
cannot.

5.4.5 Instances

We generate MUCP instances as follows.
For each instance, we generate a “2-peak per day” type demand with a large variation between

peak and off-peak values: during one day, the typical demand in energy has two peak periods,
one in the morning and one in the evening. The amplitudes between peak and off-peak periods
have similar characteristics to those in the dataset from [10].

We consider the parameters (Pmin, Pmax, L, `, cf , c0, cp) of each unit from the dataset
presented in [10]. We draw a correlation matrix between these characteristics and define a possible
range for each characteristic. In order to introduce symmetries in our instances, some units are
randomly generated based on the parameters correlations and ranges. Each unit generated is
duplicated d times, where d is randomly selected in r1, n

F s in order to obtain a total of n units.
The parameter F is called symmetry factor, and can vary from 2 to 4 depending on the value of
n. Note that these instances are generated along the same lines as literature instances considered
in [3], but with different F factors.



Symmetry-Breaking Inequalities for ILP with Structured Sub-Symmetry 27

In order to determine which symmetry-breaking technique performs best with respect to the
number of rows and columns of matrices in feasible set X , we consider various instance sizes
n P t20, 30, 60u and T P t48, 60u, and various symmetry factors F P t2, 3, 4u. For each size
pn, T q and symmetry factor F , we generate a set of 20 instances. Symmetry factor F “ 4 is not
considered for instances with a small number n of units (n “ 20 or 30), as it leads to very small
sets of identical units.

Table 5 provides some statistics on the instances characteristics. For each instance, a group is
a set of two or more units with the same characteristics. Each unit which has not been duplicated
is a singleton. The first and second entries column-wise are the number of singletons and groups.
The third entry is the average group size and the fourth entry is the maximum group size. Each
entry row-wise corresponds to the average value obtained over 20 instances with same size pn, T q
and same symmetry factor F .

Size pn, T q Sym. factor Nb singl. Nb groups Av. group size Group max. size
(20,48) F = 3 1.25 4.90 3.96 5.75

F = 2 0.75 3.20 6.45 8.75

(20,96) F = 3 0.90 4.75 4.08 5.60
F = 2 0.75 3.45 5.93 8.65

(30,48) F = 3 1.10 5.35 5.51 9.45
F = 2 0.25 3.85 8.30 12.60

(30,96) F = 3 0.40 5.25 5.97 8.65
F = 2 0.55 4.05 7.59 11.40

(60,48) F = 4 0.80 7.70 7.86 13.20
F = 3 0.55 5.80 10.90 17.80
F = 2 0.20 4.75 13.90 23.80

(60,96) F = 4 0.60 7.90 7.79 13.20
F = 3 0.30 5.95 10.50 16.60
F = 2 0.20 4.35 14.80 24.90

Table 5: Instance characteristics

The ramp-constrained MUCP instances considered are the same as in the non-ramp-constrained

case, with additional ramp characteristics RU j “
P j

max´P j
min

3 , RDj “
P j

max´P j
min

2 and SU j “

SDj “ P j
min.

5.4.6 Results for the non-ramp-constrained MUCP

Tables 6 and 7 provide, for each formulation and each considered group of 20 instances:
#opt: Number of instances solved to optimality,
#nodes: Average number of nodes,
gap: Average optimality gap,
CPU time: Average CPU time in seconds.

Performance results reported in Tables 6 and 7 are relative to large instances, i.e., with
pn, T q “ p60, 48q and pn, T q “ p60, 96q. Smaller instances for the non-ramp-constrained MUCP
can be solved quite efficiently, thus making the comparison of the different techniques in terms of
performance not meaningful. The corresponding results are not reported in the enclosed tables.

From Tables 6 and 7, two extreme cases stand out of the comparison. On the one hand,
aggregated px, uq formulation A-prx, ruq outperforms by far all the other techniques. This could be
explained by the reduced size of aggregated formulation A-prx, ruq, but also by the good perfor-
mance of Cplex on ILP featuring integer variables (with bounds greater than 1). This efficiency
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will certainly be preserved any time the integer decomposition property holds for an px, uq for-
mulation of the UCP. On the other hand, aggregated interval formulation Intpryq is in average
one or even two orders of magnitude slower than the other techniques, except F px, uq-S0.

Obviously turning off Cplex’s symmetry-breaking techniques in F px, uq-S0 leads to poor per-
formance compared to that obtained with F px, uq. As no symmetries at all are handled in F px, uq-
S0, this highlights the impact symmetries can have on the difficulty to solve an MUCP instance.
For other techniques, the “S0” variant does not seem worse than the original. On the contrary,
on many instances, deactivating Cplex’s internal symmetry-breaking techniques helps improving
the computational time for many techniques. It is the case for example on pn, T q “ p60, 48q,
F “ 4 instances, where W px, uq-S0 (resp. LF px, uq-S0) CPU time is 58 (resp. 29) seconds on
average while W px, uq’s (resp. LF px, uq’s) is 209 (resp. 61) seconds. It shows that the impact
of Cplex’s internal symmetry-breaking techniques is limited compared to the time it takes to
detect and handle symmetries in these cases. On the most symmetric instances pn, T q “ p60, 96q,
F “ 2, however, W px, uq-S0 performs not as well (2374 seconds) as W px, uq (1914 seconds).
In this case, Cplex’s internal symmetry-breaking techniques come in useful to compensate for
W px, uq being only partial-symmetry-breaking. For the other techniques, the S0 variant does not
seem to significantly impact the CPU time on these instances.

On very symmetric pn, T q “ p60, 48q instances, i.e., when F “ 2, the second best technique
after aggregation is Fixing, which solves all instances to optimality with the second best CPU
time. On less symmetric pn, T q “ p60, 48q instances, i.e., when F “ 3 (resp. F “ 4), the second
best technique after aggregation is LF px, uq (resp. LF px, uq-S0), which solves all instances to
optimality with the second best CPU time.

On pn, T q “ p60, 96q instances, the second best technique after aggregation is clearly LF px, uq
as it solves many more instances to optimality compared to any other techniques.

In order to complete the results provided in Tables 6 and 7, Table 8 provides, for each
considered size pn, T q and factor F , average results for subset I of instances on which both
F px, uq and LF px, uq terminate within time limit:

#I cardinality of instance subset I
CPU F px, uq|I average CPU time of F px, uq, in seconds, on instance subset I
CPU LF px, uq|I average CPU time of LF px, uq, in seconds, on instance subset I

Interestingly, for pn, T q “ p60, 48q and F “ 3, F px, uq converges faster on the subset of
instances where both formulations finish, even if the average CPU time of LF px, uq (67 seconds)
is better than that of F px, uq (545 seconds). Since LF px, uq solves 3 more instances to optimality
than F px, uq, this shows that even if F px, uq is on average slightly faster on the remaining 17
instances, LF px, uq performs really well on the 3 instances not solved at all by F px, uq. The same
applies to pn, T q “ p60, 96q and F “ 2.

The techniques breaking sub-symmetries, i.e. Fixing, A-prx, ruq, and LF px, uq, perform better
on all instances than techniques breaking symmetries only, thus showing the impact of sub-
symmetry breaking.

5.4.7 Results for the ramp-constrained MUCP

Recall that aggregated formulation A-prx, ruq can no longer be used in this context.
Tables 9 to 11 provide, for each formulation and each group of 20 instances, the exact same

column entries as those in Tables 6 and 7.
First note that the ramp constraints make the MUCP instances much harder to solve by Cplex

in general, as the CPU times in Table 11 relative to pn, T q “ p60, 48q ramp-constrained MUCP
instances are much larger than those in Table 6 relative to the corresponding non-constrained
MUCP instances. For example, the integrality gap is in average more than 10 times larger for
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Instances Formulation #opt #nodes gap (%) CPU time

(60,48) F “ 2 F px, uq-S0 14 603 627 0.000 22 1121.7
F px, uq 19 77 937 0.000 03 270.3
MOB 16 164 474 0.000 26 739.1
Fixing 20 36 028 0 198.2
A-px, uq 20 89 0 0.1
A-Intpryq 2 857 402 0.009 45 3279.0
W px, uq-S0 17 79 972 0.000 05 754.1
W px, uq 17 124 718 0.000 07 797.0
F px, u, zq-S0 20 7441 0 361.8
F px, u, zq 20 12 631 0 426.7
LF px, uq-S0 17 197 580 0.000 14 593.1
LF px, uq 17 186 902 0.000 14 606.6

F “ 3 F px, uq-S0 14 951 079 0.000 46 1122.4
F px, uq 17 412 333 0.000 05 545.2
MOB 16 150 251 0.000 21 730.5
Fixing 19 49 243 0.000 30 279.3
A-px, uq 20 16 0 0.1
A-Intpryq 5 469 685 0.010 63 2758.6
W px, uq-S0 18 42 198 0.000 07 380.9
W px, uq 18 45 432 0.000 11 381.5
F px, u, zq-S0 19 24 024 0.000 05 379.7
F px, u, zq 19 19 251 0.000 04 330.5
LF px, uq-S0 20 15 810 0 72.6
LF px, uq 20 10 984 0 67.6

F “ 4 F px, uq-S0 15 936 362 0.000 14 1045.4
F px, uq 19 199 432 0.000 02 248.5
MOB 15 217 980 0.000 24 909.4
Fixing 19 50 095 0 202.2
A-px, uq 20 85 0 0.1
A-Intpryq 8 628 345 0.009 85 2343.6
W px, uq-S0 20 11 744 0 58.0
W px, uq 20 79 876 0 209.5
F px, u, zq-S0 19 53 702 0.000 01 430.7
F px, u, zq 19 40 117 0.000 03 424.9
LF px, uq-S0 20 3304 0 29.5
LF px, uq 20 25 381 0 61.3

Table 6: Performance indicators relative to the comparison of symmetry-breaking techniques
for (non-ramp-constrained) MUCP instances with pn, T q “ p60, 48q

the ramp-constrained problem on pn, T q “ p60, 48q and F “ 2 instances. Thus, smaller instances
with pn, T q “ p20, 48q, p20, 96q and pn, T q “ p30, 48q, p30, 96q, respectively, are also presented in
Tables 9 and 10.

Formulation Intpryq is still the less efficient formulation. It does not solve to optimality any
instance with n ą 20 except one. Moreover, on n “ 30 instances, and on pn, T q “ p60, 96q
instances, the root node cannot be processed at all within the time limit for formulation Intpryq;
the number of nodes explored is 0 and the optimality gap is 100%.

On instances of size pn, T q “ p60, 48q, formulation F px, u, zq is the most efficient, as it solves
to optimality a larger number of instances than the other techniques do. Formulations LF px, uq
and W px, uq performs also well in this context. For example, for F “ 3, F px, u, zq (resp. LF px, uq,
resp. W px, uq), solves 14 (resp. 8) instances to optimality, while formulations F px, uq and Intpryq
only solve 1 to optimality. Interestingly on pn, T q “ p60, 48q, F “ 4 instances, even if F px, u, zq
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Instances Formulation #opt #nodes gap (%) CPU time

(60,96) F “ 2 F px, uq-S0 13 463 340 0.000 16 1292.1
F px, uq 15 377 968 0.000 15 1015.2
MOB 7 303 871 0.000 68 2453.6
Fixing 9 242 482 0.000 32 1992.3
A-px, uq 20 0 0 0.1
A-Intpryq 2 253 361 10.012 18 3321.5
W px, uq-S0 8 288 736 0.000 40 2374.5
W px, uq 11 218 720 0.000 35 1914.0
F px, u, zq-S0 7 126 002 0.000 44 2478.8
F px, u, zq 8 133 994 0.000 36 2421.9
LF px, uq-S0 17 28 853 0.000 07 807.4
LF px, uq 18 17 334 0.000 06 728.8

F “ 3 F px, uq-S0 9 1 199 784 0.000 61 2033.8
F px, uq 13 878 444 0.000 49 1486.7
MOB 3 388 267 0.001 62 3134.9
Fixing 6 316 278 0.001 05 2558.1
A-px, uq 20 101 0 0.2
A-Intpryq 2 280 725 15.010 51 3453.1
W px, uq-S0 5 423 153 0.000 99 2760.6
W px, uq 5 478 280 0.000 84 2827.0
F px, u, zq-S0 6 143 152 0.001 20 2732.3
F px, u, zq 5 192 726 0.001 00 2775.8
LF px, uq-S0 19 47 209 0.000 14 335.4
LF px, uq 19 39 414 0.000 05 324.1

F “ 4 F px, uq-S0 10 1 654 635 0.000 28 1901.0
F px, uq 15 444 663 0.000 22 969.2
MOB 1 439 323 0.001 71 3420.6
Fixing 6 367 577 0.000 83 2856.2
A-px, uq 20 54 0 0.3
A-Intpryq 0 17 663 60.542 49 3600.0
W px, uq-S0 6 612 729 0.000 55 2602.7
W px, uq 4 645 343 0.000 63 2903.6
F px, u, zq-S0 8 146 496 0.000 81 2343.5
F px, u, zq 9 137 258 0.000 71 2275.3
LF px, uq-S0 20 3249 0 83.3
LF px, uq 20 3640 0 90.7

Table 7: Performance indicators relative to the comparison of symmetry-breaking techniques
for (non-ramp-constrained) MUCP instances with pn, T q “ p60, 96q

Instances # I CPU F px, uq|I CPU LF px, uq|I
(60,48) F “ 2 17 105.7 78.3
(60,48) F “ 3 17 6.1 71
(60,48) F “ 4 19 72.1 35.9
(60,96) F “ 2 15 153.6 256.9
(60,96) F “ 3 13 348.8 71.6
(60,96) F “ 4 15 92.3 34.9

Table 8: For each triplet pn, T, F q, comparison of formulations F px, uq and LF px, uq on the
subset of non-ramp-constrained MUCP instances that are solved within the time limit in both

settings
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Instances Formulation #opt #nodes gap (%) CPU time

(20,48) F “ 2 F px, uq-S0 6 1 119 029 0.012 43 2600.0
F px, uq 11 779 156 0.009 41 2063.4
MOB 7 933 509 0.018 57 2432.0
Fixing 7 831 828 0.020 43 2478.5
A-Intpryq 11 14 193 0.020 40 2394.1
W px, uq-S0 10 241 898 0.011 92 1947.4
W px, uq 10 241 595 0.011 90 1941.8
F px, u, zq-S0 13 143 469 0.008 75 1678.9
F px, u, zq 13 140 331 0.010 21 1710.1
LF px, uq-S0 16 209 873 0.002 19 976.8
LF px, uq 16 190 531 0.002 30 937.5

F “ 3 F px, uq-S0 12 788 243 0.007 11 1567.6
F px, uq 13 879 270 0.004 79 1445.5
MOB 8 935 221 0.010 39 2184.5
Fixing 11 720 463 0.009 28 1851.2
A-Intpryq 3 5640 0.041 20 3281.5
W px, uq-S0 15 257 665 0.003 69 1210.6
W px, uq 15 271 876 0.004 10 1195.1
F px, u, zq-S0 18 110 324 0.002 61 917.8
F px, u, zq 18 107 921 0.002 62 889.8
LF px, uq-S0 20 15 559 0 70.1
LF px, uq 20 21 166 0 89.9

(20,96) F “ 2 F px, uq-S0 3 651 409 0.021 23 3069.6
F px, uq 4 541 930 0.018 83 2912.2
MOB 0 671 072 0.051 51 3600.0
Fixing 2 613 269 0.048 30 3400.7
A-Intpryq 0 0 100.000 00 3600.0
W px, uq-S0 4 301 307 0.024 09 3003.2
W px, uq 3 312 391 0.024 26 3083.0
F px, u, zq-S0 4 107 589 0.023 11 2948.4
F px, u, zq 4 115 529 0.022 82 2955.6
LF px, uq-S0 5 214 206 0.007 09 2725.3
LF px, uq 6 232 265 0.006 52 2666.9

F “ 3 F px, uq-S0 6 549 541 0.013 05 2681.9
F px, uq 6 544 877 0.011 32 2633.6
MOB 1 756 515 0.029 01 3519.7
Fixing 3 624 378 0.032 86 3200.1
A-Intpryq 0 0 100.000 00 3600.0
W px, uq-S0 5 264 221 0.014 41 2707.6
W px, uq 5 270 094 0.014 19 2708.1
F px, u, zq-S0 5 114 113 0.015 52 2711.9
F px, u, zq 7 110 321 0.015 12 2549.1
LF px, uq-S0 14 137 192 0.005 03 1573.6
LF px, uq 13 144 603 0.005 22 1679.5

Table 9: Performance indicators relative to the comparison of symmetry-breaking techniques
for ramp-constrained MUCP instances with n “ 20

solves 17 instances to optimality while LF px, uq only solves 15, the best average CPU time (962
seconds) is still achieved by LF px, uq, as average F px, u, zq CPU time is 1262 seconds.

On the other test sets, i.e., pn, T q “ p20, 48q, p20, 96q and pn, T q “ p30, 48q, p30, 96q and
pn, T q “ p60, 96q, LF px, uq is more efficient than all considered techniques. For example, on
pn, T q “ p20, 96q and F “ 3 instances, LF px, uq solves to optimality 13 instances with an average
CPU time of 1679, while the second best technique on this instance set, F px, u, zq, solves only
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Instances Formulation #opt #nodes gap (%) CPU time
(30,48) F “ 2 F px, uq-S0 3 1 202 051 0.010 74 3133.4

F px, uq 4 1 144 442 0.007 19 2922.1
MOB 1 1 010 438 0.016 57 3480.5
Fixing 7 692 926 0.016 95 2672.5
A-Intpryq 0 0 100.000 00 3600.0
W px, uq-S0 7 279 210 0.011 13 2542.4
W px, uq 6 276 914 0.011 29 2612.0
F px, u, zq-S0 9 86 139 0.005 69 2352.6
F px, u, zq 9 84 914 0.005 69 2364.2
LF px, uq-S0 13 353 064 0.002 87 1809.1
LF px, uq 14 346 568 0.002 76 1768.3

F “ 3 F px, uq-S0 5 1 556 647 0.009 22 2876.7
F px, uq 8 1 082 060 0.006 48 2365.5
MOB 4 991 032 0.012 32 3142.1
Fixing 9 539 062 0.009 98 2048.6
A-Intpryq 0 0 100.000 00 3600.0
W px, uq-S0 10 334 639 0.007 01 2064.1
W px, uq 10 328 935 0.006 46 2059.5
F px, u, zq-S0 11 122 580 0.003 41 1761.1
F px, u, zq 11 122 133 0.003 59 1758.4
LF px, uq-S0 14 338 088 0.001 99 1318.0
LF px, uq 14 337 476 0.002 31 1309.8

(30,96) F “ 2 F px, uq-S0 2 583 630 0.005 85 3253.3
F px, uq 4 564 244 0.004 83 3009.7
MOB 1 368 914 0.014 23 3435.3
Fixing 2 287 804 0.015 83 3334.7
A-Intpryq 0 0 100.000 00 3600.0
W px, uq-S0 5 142 411 0.005 35 2879.2
W px, uq 4 154 970 0.005 09 3014.7
F px, u, zq-S0 5 76 181 0.005 18 2846.3
F px, u, zq 5 82 723 0.005 03 2891.4
LF px, uq-S0 5 510 958 0.003 07 2739.5
LF px, uq 9 205 904 0.003 17 2091.3

F “ 3 F px, uq-S0 1 735 071 0.003 91 3426.5
F px, uq 2 713 144 0.003 35 3247.8
MOB 0 432 731 0.012 92 3600.0
Fixing 0 445 503 0.013 15 3600.0
A-Intpryq 0 0 100.000 00 3600.0
W px, uq-S0 5 228 263 0.004 21 3007.6
W px, uq 4 285 665 0.004 22 3062.9
F px, u, zq-S0 5 107 442 0.003 28 2896.9
F px, u, zq 5 84 094 0.003 36 2838.5
LF px, uq-S0 9 275 787 0.001 19 2183.4
LF px, uq 9 272 120 0.001 10 2164.7

Table 10: Performance indicators relative to the comparison of symmetry-breaking techniques
for ramp-constrained MUCP instances with n “ 30

7 instances to optimality, and the average CPU time is 2549 seconds. On pn, T q “ p30, 96q and
F “ 2 instances, LF px, uq solves to optimality 9 instances and has an average CPU time of 2091,
while F px, u, zq, F px, u, zq-S0, LF px, uq-S0, and W px, uq-S0 solve only 5 instances to optimality
on this instance set, and the average CPU time is around 2800 seconds. Other techniques solve
less than 5 instances to optimality on this test set, and their average CPU time is higher than 3000
seconds. Interestingly on these instances, LF px, uq performs much better than LF px, uq-S0. It
seems that sub-symmetry breaking enhances Cplex’s internal symmetry-breaking techniques. A
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guess is that there remains some symmetries after applying sub-symmetry-breaking inequalities,
for example “shut-down” sub-symmetries, that Cplex is able to partially break once “start-up”
sub-symmetries are broken.

On the largest instances (pn, T q “ p60, 96q), LF px, uq manages to solve to optimality two
instances, while other formulations do not reach optimality on any of these instances. Note that
the table corresponding to pn, T q “ p60, 96q is not included as too few instances terminate within
time limit.

Recall that W px, uq is only partial symmetry-breaking. Thus, when T is smaller, the number
of feasible columns featuring a given number of 1-entries is also smaller. On the opposite, when
T “ 96, the number of one-entries is not a very discriminating indicator among symmetric
columns. Therefore W px, uq is not able to break as much symmetries, and LF px, uq globally
performs better. Similarly, when T is larger the number of sub-symmetries also increases. As
F px, u, zq only handles symmetries, it performs not as well in this context as LF px, uq, which is
able to handle both symmetries and sub-symmetries.

In order to complete the results provided in Tables 9, 10 and 11, Table 12 compares the CPU
times of formulations F px, uq and LF px, uq for the subset of instances on which both formulations
terminate within time limit, for each size pn, T q and factor F . Column labels of Table 12 are
the same as in Table 8. The table shows that even when considering an instances subset where
both formulations terminate, LF px, uq remains much faster than F px, uq.

6 Conclusion and perspectives

We propose a framework to build sub-symmetry-breaking inequalities, in order to handle the
symmetries arising from a collection of sub-symmetric solution subsets. These inequalities may
require to introduce one additional integer variable z per solution subset considered. Depending
on the subset structure, variable z could be a linear expression of variables x, and therefore would
not need to be introduced in the model as an additional variable. The derived sub-symmetry-
breaking inequalities are full symmetry-breaking under a mild condition. Even if this condition
is not satisfied, a new collection of sub-symmetric subsets can be polynomially constructed such
that the derived inequalities are full symmetry-breaking.

The framework is applied to two problems: the GCP and the MUCP with or without ramp
constraints.

It is well known that the classical GCP formulation is rife with symmetries. Experimental
results highlight that when sub-symmetries have a significant impact on the resolution process,
such sub-symmetries can be handled using appropriate subsets of inequalities derived from the
proposed framework. Perspectives are to find other types of sub-symmetries in the classical
formulation of the GCP to derive new sub-symmetry-breaking inequalities from the proposed
framework. Another perspective is to apply the framework to other GCP formulations.

Experimental results for the MUCP show that aggregation of the classical formulation is a
very efficient technique to handle symmetries and sub-symmetries arising in the MUCP. When
ramp constraints are taken into account in the MUCP, disaggregation is no longer possible.
Sub-symmetry-breaking inequalities can still be used and are competitive with state-of-the-art
symmetry-breaking techniques. In particular, sub-symmetry-breaking inequalities outperform
all other techniques on instances with a large number of time steps, i.e., T “ 96. One perspective
is to use the proposed framework to derive new sub-symmetry-breaking inequalities for “shut
down” sub-symmetries in the ramp-constrained MUCP.

Aggregation techniques appear to work well for cases when the decomposition property holds.
Such cases are more the exceptions than the rule. Sub-symmetry-breaking inequalities are always
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applicable as the solution subsets considered can capture the specific conditions under which the
symmetries hold. Experimental results on MUCP and GCP instances show that sub-symmetry-
breaking significantly improves on symmetry-breaking only.

Thus, perspectives are to apply the proposed framework to other problems featuring sub-
symmetric solution subsets such as covering problems, or bin packing variants where one item
can be placed in multiple bins.

Last but not least, it would be useful to study how the presented framework could be auto-
mated, so that sub-symmetric subsets are automatically detected and variables z automatically
constructed.

Instances Formulation #opt #nodes gap (%) CPU time
(60,48) F “ 2 F px, uq-S0 2 913 875 0.004 48 3397.3

F px, uq 1 1 118 040 0.002 87 3426.4
MOB 1 363 483 0.008 20 3421.6
Fixing 3 287 440 0.008 11 3123.5
A-Intpryq 0 15 463 0.014 82 3600.0
W px, uq-S0 4 225 614 0.003 21 2928.9
W px, uq 4 252 508 0.003 18 2906.1
F px, u, zq-S0 8 99 207 0.003 88 2607.3
F px, u, zq 8 117 186 0.003 82 2551.0
LF px, uq-S0 2 1 020 320 0.002 94 3269.8
LF px, uq 4 814 321 0.002 67 2941.8

F “ 3 F px, uq-S0 1 1 092 890 0.003 83 3440.5
F px, uq 1 1 190 022 0.003 54 3421.3
MOB 1 468 546 0.007 40 3433.9
Fixing 7 328 643 0.005 02 2626.7
A-Intpryq 1 11 905 0.018 58 3540.0
W px, uq-S0 8 214 408 0.002 23 2480.9
W px, uq 8 241 259 0.002 17 2424.3
F px, u, zq-S0 12 109 288 0.000 37 1989.0
F px, u, zq 14 101 805 0.000 35 1751.0
LF px, uq-S0 8 1 041 436 0.000 66 2623.6
LF px, uq 8 657 602 0.000 78 2222.8

F “ 4 F px, uq-S0 2 1 646 866 0.003 50 3264.4
F px, uq 7 1 578 458 0.002 63 2774.1
MOB 3 558 513 0.004 61 3179.3
Fixing 9 392 990 0.003 61 2243.5
A-Intpryq 0 3130 0.023 69 3600.0
W px, uq-S0 12 292 577 0.000 68 1772.9
W px, uq 11 260 574 0.001 05 1758.2
F px, u, zq-S0 16 43 731 0.000 21 1249.3
F px, u, zq 17 53 574 0.000 15 1262.1
LF px, uq-S0 12 911 378 0.000 49 1619.7
LF px, uq 15 300 012 0.000 50 962.9

Table 11: Performance indicators relative to the comparison of symmetry-breaking techniques
for ramp-constrained MUCP instances with n “ 60
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Instances # I CPU F px, uq|I CPU LF px, uq|I
(20,48) F “ 2 11 806.2 65.6
(20,48) F “ 3 13 285.3 41.4
(20,96) F “ 2 4 160.8 32.6
(20,96) F “ 3 6 378.4 341.7
(30,48) F “ 2 4 210.4 171.8
(30,48) F “ 3 8 513.7 32.7
(30,96) F “ 2 4 648.5 33.8
(30,96) F “ 3 2 78 23
(60,48) F “ 2 1 128.1 6.4
(60,48) F “ 3 1 25.6 14.7
(60,48) F “ 4 7 1240.3 26.9

Table 12: For each triplet pn, T, F q, comparison of formulations F px, uq and LF px, uq on the
subset of ramp-constrained MUCP instances that are solved within the time limit in both

settings
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