Pascale Bendotti 
email: pascale.bendotti@edf.fr
  
¨pierre Fouilhoux 
email: pierre.fouilhoux@lip6.fr
  
¨cécile Rottner 
  
Cécile Rottner 
email: cecile.rottner@edf.fr
  
P Fouilhoux 
  
Symmetry-Breaking Inequalities for ILP with Structured Sub-Symmetry

Keywords: 

We consider integer linear programs whose solutions are binary matrices and whose (sub-)symmetry groups are symmetric groups acting on (sub-)columns. Such structured subsymmetry groups arise in important classes of combinatorial problems, e.g. graph coloring or unit commitment. For a priori known (sub-)symmetries, we propose a framework to build (sub-)symmetry-breaking inequalities for such problems, by introducing one additional variable per considered sub-symmetry group. The derived inequalities are full-symmetry-breaking and in polynomial number w.r.t. the number of sub-symmetry groups considered. The proposed framework is applied to derive such inequalities when the symmetry group is the symmetric group acting on the columns. It is also applied to derive sub-symmetry-breaking inequalities for the graph coloring problem. Experimental results give insight into how to select the right inequality subset in order to efficiently break sub-symmetries. Finally, the framework is applied to derive (sub-)symmetry breaking inequalities for Min-up/min-down Unit Commitment Problem with or without ramp constraints. We show the effectiveness of the approach by presenting an experimental comparison with state-of-the-art symmetry-breaking formulations.

Introduction

Symmetries arising in integer linear programs can impair the solution process, in particular when symmetric solutions lead to an excessively large Branch and Bound (B&B) search tree. Various in this paper is to develop a general framework, that enables deriving sub-symmetry-breaking inequalities designed to handle simultaneously symmetries and sub-symmetries in symmetric groups.

For the particular case of packing (resp. partition) problems, i.e., problems whose solution matrix features at most (resp. exactly) one 1-entry in each row, a class of full symmetry-breaking inequalities is introduced in [START_REF] Kaibel | Packing and partitioning orbitopes[END_REF]. These inequalities lead to a complete linear description of two special cases of orbitopes: the packing (resp. partitioning) orbitope, i.e., the convex hull of all m ˆn binary matrices with lexicographically non-increasing columns and with at most (resp. exactly) one 1-entry per row.

For the full orbitope, a complete linear description in the x variable space seems hard to reach [START_REF] Loos | Describing orbitopes by linear inequalities and projection based tools[END_REF]. For the full orbitope restricted to 2-column matrices, a complete linear description in the x space is available [START_REF] Loos | Describing orbitopes by linear inequalities and projection based tools[END_REF]. An Opmn 3 q extended formulation is given in [START_REF] Kaibel | Branched polyhedral systems[END_REF]. To the best of our knowledge, it has never been used in practice to handle symmetries.

Another class of symmetry-breaking inequalities aims to ensure that the integer solutions lie in the full orbitope. For instance, the following full symmetry-breaking inequalities are introduced by Friedman [START_REF] Friedman | Fundamental Domains for Integer Programs with Symmetries[END_REF]:

m ÿ i"1 2 m´i x i,j ě m ÿ i"1
2 m´i x i,j`1 , @j P t1, ..., n ´1u

(1.1)

As the 2 m´i term might cause numerical intractability, alternative inequalities featuring ternary coefficients can be used at the expense of losing the full symmetry-breaking property, e.g. column inequalities [START_REF] Kaibel | Packing and partitioning orbitopes[END_REF][START_REF] Méndez-Díaz | A polyhedral approach for graph coloring[END_REF][START_REF] Ostrowski | Modified orbital branching for structured symmetry with an application to unit commitment[END_REF]:

i ÿ k"1
x k,j ě x i,j`1 , @j P t1, ..., n ´1u, @i P t1, ..., mu

Another option is to use a partial symmetry-breaking form of Friedman inequalities, as in [START_REF] Jans | Solving lot-sizing problems on parallel identical machines using symmetry-breaking constraints[END_REF][START_REF] Lima | Symmetry breaking in MILP formulations for Unit Commitment problems[END_REF]:

m ÿ i"1
x i,j ě m ÿ i"1

x i,j`1 , @j P t1, ..., n ´1u (1.

3)

The latter inequalities enforce that the total number of ones in each column is non-increasing, thus not guaranteeing lexicographically non increasing columns for the representatives. An alternative avoiding the exponential coefficients of Friedman's inequalities can be to use the full symmetrybreaking inequalities discussed in [START_REF] Hojny | Polytopes associated with symmetry handling[END_REF]. These inequalities ensure that any integer point is in the full orbitope. They can be separated in linear time and have ternary coefficients like inequalities (1.2) and (1.3).

In this article, sub-symmetries arising from solution subsets whose symmetry groups contain the symmetric group acting on some sub-columns are assumed to be known. We propose a general framework to build full symmetry-breaking inequalities in order to handle these sub-symmetries. One additional variable per subset Q considered may be needed in these inequalities, depending on whether variables x are sufficient to indicate that "x belongs to subset Q".

The proposed framework is applied to derive such inequalities when the symmetry group is the symmetric group S n acting on the columns.

It is also applied to derive full (sub-)symmetry-breaking inequalities for two problems: the Graph Coloring Problem (GCP) and a variant of the Unit Commitment Problem.

The GCP has a particular structure as it is a partition problem. Such structure can be exploited to derive dedicated sub-symmetry-breaking inequalities. We consider the classical IP formulation [START_REF] Coll | Facets of the graph coloring polytope[END_REF] which is often used as an example featuring many symmetric solutions. Note that the integer decomposition property does not apply to the graph coloring problem as aggregating a solution in this case is meaningless. We demonstrate the efficiency of the proposed framework to break symmetries. A comparison is performed with two state-of-the-art symmetry-breaking families of inequalities: column inequalities (1.2) adapted to partition structures, and inequalities completely describing the partitioning orbitope [START_REF] Kaibel | Packing and partitioning orbitopes[END_REF]. Experimental results highlight that a wellchosen subset of the proposed sub-symmetry-breaking inequalities is competitive with these two state-of-the-art techniques.

The considered variant of the Unit Commitment Problem is with constraints on the minimum up and down times of each unit. This variant is called the Min-up/min-down Unit Commitment Problem (MUCP) as defined in [START_REF] Rajan | Minimum up/down polytopes of the unit commitment problem with start-up costs[END_REF]. When the MUCP is considered, the integer decomposition property holds for the classical formulation and thus efficient aggregation techniques apply [START_REF] Knueven | Exploiting identical generators in unit commitment[END_REF]. A variant of the MUCP is with constraints limiting power variations, referred to as ramp constraints. When the ramp-constrained MUCP is considered, the integer decomposition property does not hold anymore for the classical formulation, then the corresponding aggregated solutions can no longer be disaggregated. This emphasizes that cases for which such property holds are more the exceptions than the rule. We show that the proposed sub-symmetry-breaking inequalities outperform state-of-the-art symmetry-breaking formulations, such as the aggregated interval MUCP formulation [START_REF] Knueven | Exploiting identical generators in unit commitment[END_REF] as well as the classical MUCP formulation featuring inequalities (1.3). To extend the experimental comparisons, the proposed framework is also shown to be competitive with two state-of-the-art symmetry-breaking techniques based on branching and fixing: Modified Orbital Branching (MOB) [START_REF] Ostrowski | Modified orbital branching for structured symmetry with an application to unit commitment[END_REF] derived from Orbital Branching [START_REF] Ostrowski | Orbital branching[END_REF], and orbitopal fixing for the full (sub)-orbitope [START_REF] Bendotti | Orbitopal fixing for the full (sub-)orbitope and application to the unit commitment problem[END_REF].

Note that an extended abstract of this paper appeared in [START_REF] Bendotti | Sub-symmetry-breaking inequalities for ILP with structured symmetry[END_REF].

In Section 2, the framework is described. In Section 3, an application to the symmetric group case is presented. The framework is applied to derive sub-symmetry-breaking inequalities dedicated to the GCP in Section 4 and to the MUCP in Section 5, together with experimental results.

Sub-symmetry-breaking inequalities

For a given solution subset Q, the symmetry group G Q of the corresponding subproblem is different from G and may contain symmetries not present in G. In practice it is too expensive to compute the symmetry group for every subset Q Ă X . However for many problems, symmetries of G can be deduced from the problem's structure, and so can symmetries of G Q , for some particular solution subsets Q. In this case, symmetries of G Q are a priori known, and thus do not need to be computed. Such symmetries may be handled together with symmetries of G. In this section, we introduce sub-symmetry-breaking inequalities designed to simultaneously handle symmetries and sub-symmetries in symmetric groups. First, we briefly recall the concepts of sub-symmetry in ILP introduced in [START_REF] Bendotti | Orbitopal fixing for the full (sub-)orbitope and application to the unit commitment problem[END_REF].

Background on sub-symmetries

Consider a subset Q Ă X of solutions of pILP q. The sub-symmetry group G Q relative to subset Q is defined as the symmetry group of subproblem mintcx | x P Qu. Permutations in sub-symmetry group G Q are referred to as sub-symmetries.

Let tQ s Ă X , s P t1, ..., quu be a set of solution subsets. To each Q s , s P t1, ..., qu, there corresponds a sub-symmetry group G Qs . Let O s k , k P t1, ..., o s u, be the orbits defined by G Qs on subset Q s , s P t1, ..., qu, and O " tO s k , k P t1, ..., o s u, s P t1, ..., quu. For given x P Ppm, nq, let us define Gpxq " Ť QsQx G Qs , the set of all permutations π in Ť q s"1 G Qs such that π applied to x defines a symmetric solution to x. Matrix x 1 is said to be in relation with x P Ppm, nq if there exist r P N and permutations π 1 , ..., π r such that π k P Gpπ k´1 ˝... ˝π1 pxqq, @k P t1, ..., ru, and x 1 " π r ˝πr´1 ˝... ˝π1 pxq. The generalized orbit O of x with respect to tQ s , s P t1, ..., quu is thus the set of all x 1 in relation with x. By definition, for any generalized orbit O, there exist orbits σ 1 , ..., σ p P O such that O " Y p s"l σ l . To each orbit σ, there corresponds a representative ρpσq. When dealing with sub-symmetries, the representatives should satisfy the following property to make sure they would not be eliminated while breaking symmetries. The set of representatives tρpσq, σ P Ou is said to be orbit-compatible if for any generalized orbit O " Y p l"1 σ l , where σ 1 , ..., σ p P O, there exists j such that ρpσ j q " ρpσ l q for all l verifying ρpσ j q P σ l . Such a solution ρpσ j q is said to be a generalized representative of O.

For each orbit O s k , k P t1, ..., o s u, s P t1, ..., qu, let its representative x s k P O s k be the lexicographically maximal element in O s k .

Lemma 1 ([5])

The set of representatives tx s k , k P t1, ..., o s u, s P t1, ..., quu is orbit-compatible.

Given x P X and sets R Ă t1, ..., mu and C Ă t1, ..., nu, we consider submatrix pR, Cq of x, denoted by xpR, Cq, obtained by considering columns C of x on rows R only. Symmetry group G Q is the sub-symmetric group with respect to pR, Cq if it is the set of all permutations of the columns of xpR, Cq. If G Q is the sub-symmetric group with respect to pR, Cq then subset Q is said to be sub-symmetric with respect to pR, Cq.

Consider a set S of solution subsets Q s , s P t1, ..., qu, such that each subset Q s , s P t1, ..., qu, is sub-symmetric with respect to pR s , C s q. For each orbit O s k , k P t1, ..., o s u of G Qs , s P t1, ..., qu, its representative x s k P O s k is chosen to be such that submatrix x s k pR s , C s q is lexicographically maximal, i.e., its columns are lexicographically non-increasing. Such x s k is said to be the lex-max of orbit O s k with respect to pR s , C s q. The following holds as a direct corollary of Lemma 1.

Lemma 2 ([5])

The set of lex-max representatives tx s k , k P t1, ..., o s u, s P t1, ..., quu is orbit-compatible.

The full sub-orbitope P sub pSq associated to S is the convex hull of binary matrices x such that for each s P t1, ..., qu, if x P Q s then the columns of xpR s , C s q are lexicographically non-increasing.

Definition and validity of sub-symmetry-breaking inequalities

Consider a set S of solution subsets Q s , s P t1, ..., qu, such that each subset Q s , s P t1, ..., qu, is sub-symmetric with respect to pR s , C s q. Consider an integer variable z s , s P t1, ..., qu, such that z s " 0 if variable x P Q s , and such that z s ě 1 if x R Q s . For any x P X , one can define function Z associating x to a vector Zpxq such that z s , s P t1, ..., qu, is the s th component of Zpxq denoted by Z s pxq Note that in many cases, function Z can be chosen to be linear, i.e., each integer variable z s is a linear expression of variables x. In such cases, no additional variable z s is needed, as z s " Zpxq. In some cases where function Z is not linear, variable z s can be linearly expressed from variables x using a few additional inequalities or integer variables.

Given c, c 1 , two consecutive columns in C s such that c ă c 1 , the sub-symmetry-breaking inequality, denoted by pI s pcqq, is defined as follows.

x r1,c 1 ď z s `xr1,c
where r 1 " minpR s q (2.1)

If Q corresponds to a packing problem, i.e., each x P Q features at most one 1-entry in each row, the sub-symmetry-breaking inequality pI s pcqq simplifies to x r1,c 1 ď z s where r 1 " minpR s q (2.

2)

The q sub-symmetric subsets contained in S correspond to known sub-symmetries to be broken. The total number of inequalities (2.1) or (2.2) is Opnqq. Note that this number can be large depending on the choice of S .

For each orbit O s k , k P t1, ..., o s u, of G Qs , s P t1, ..., qu, the chosen representative is the lex-max of orbit O s k with respect to pR s , C s q. Then by Lemma 2, this set of representatives is orbit-compatible. In particular, solution set X can be restricted to the set of representatives by considering its intersection with the full sub-orbitope P sub pSq. If x P Q s , inequality pI s pcqq enforces that the first row of submatrix xpR s , C s q is lexicographically non-increasing, hence the following result.

Lemma 3 (Validity) If x P P sub pSq, then px, Zpxqq satisfies inequality pI s pcqq for each s P t1, ..., qu and c, c 1 P C s such that c ă c 1 .

Note that an inequality similar to (2.1) applied to a row of R s distinct from r 1 may not be valid when used alongside with (2.1), as shown in Example 1.

Example 1 Let S " tQ 1 u, q " 1, where

Q 1 " tx P Pp4, 3q X X | ř 3 c"1 x 2,c
" 3u Let us suppose the symmetry group of Q 1 is the sub-symmetric group with respect to submatrix pt3, 4u, t1, 2, 3uq. Variable z 1 can be defined using equality z 1 " 3 ´ř3 c"1 x 2,c . Note that z 1 " Z 1 pxq " 0 when ř 3 c"1 x 2,c " 3, i.e., x P Q 1 , and is positive otherwise. Here the first row in R 1 is r 1 " minpR 1 q " 3, thus given c, c 1 P t1, 2, 3u, c ă c 1 , inequality pI 1 pcqq is x 3,c 1 ď p3 ´ř3 j"1 x 2,j q `x3,c . This inequality enforces that row 3 of a solution matrix x is lexicographically ordered, i.e., x 3,1 ě x 3,2 ě x 3,3 , whenever ř 3 c"1 x 2,c " 3. Now consider solutions x 1 , x 2 P Q 1 :

x 1 " » - - - 1 0 0 1 1 1 1 0 0 0 1 1 fi ffi ffi fl and x 2 " » - - - 1 0 0 1 1 1 0 0 1 1 1 0 fi ffi ffi fl
Inequality pI 1 pcqq cuts off solution x 2 from the feasible set. Inequality (2.1) applied to row 4 is x 4,c 1 ď p3 ´ř3 j"1 x 2,j q `x4,c This inequality would cut off x 1 . This shows that these two inequalities cannot be used simultaneously.

Note that in the general case, inequalities (2.1) may only be partial-symmetry-breaking. Indeed, for given s P t1, ..., qu and c, c 1 P C s such that c ă c 1 , inequality pI s pcqq only enforces that the first row of submatrix xpR s , C s q is lexicographically non-increasing when x P Q s . In the case when x r1,c 1 ă x r1,c , then sub-columns xpR s , tc 1 uq ă xpR s , tcuq. Otherwise, when x r1,c 1 " x r1,c , inequality (2.1) is not sufficient to select the lexmax representatives.

To enforce a lexicographical order, subsequent rows of submatrix xpR s , C s q should be considered until a tie-break row is found. It is shown in the next section that inequalities pI s pcqq for all s P t1, ..., qu and c ă c 1 P C s enforce that x P P sub pSq provided a tie-break condition on set S is fulfilled.

Full symmetry-breaking sufficient condition

In this section, we introduce a condition for inequalities (2.1) to be full symmetry-breaking.

For each s P t1, ..., qu, consider R s " tr 

,c s l´1 ě x r s k ,c s l .
The key idea is to exhibit another set Q p P S for quadruple pQ s , k, l, xq, such that Q p contains x and is subsymmetric with respect to pR p , C p q, where the first row of R p is r s k and C p contains columns c s l´1 and c s l . Then inequality pI p pc s l´1 qq will ensure that x r s k ,c s l´1 ě x r s k ,c s l . For each quadruple pQ s , k, l, xq, the existence of such a subset Q p in S will be ensured by tie-break condition pCq, defined as follows: pCq $ & % @s P t1, ..., qu, @k P t2, ..., |R s |u, @l P t2, ..., |C s |u

If x P Q s such that x r s k 1 ,c s l´1 " x r s k 1 ,c s l , @k 1 P t1, .
.., k ´1u, then there exists p P t1, ..., qu such that x P Q p , C p Ě tc s l´1 , c s l u and r s k " minpR p q If tie-break condition pCq holds, inequalities (Q s pc s l´1 , c s l q), @s P t1, ..., qu, @l P t2, ..., |C s |u exactly restrict the solution set to the representative set X XP sub pSq. They are thus full symmetrybreaking, w.r.t. the sub-symmetries defined by S. This gives the proof idea for the following theorem.

Theorem 1 If tie-break condition pCq holds, then: piq px, Zpxqq satisfies (I s pc s l´1 q), @s P t1, ..., qu, @l P t2, ..., |C s |u piiq x P P sub pSq are equivalent.

For general set S, tie-break condition pCq may not hold. Fortunately, it will be shown that we can construct from S another set r S satisfying pCq and such that P sub p r Sq " P sub pSq. The idea is to divide each Q s , s P t1, ..., qu, in smaller subsets such that for each row r s k P R s and each column c s l P C s , l greater than 1, there is a subset Q, which is sub-symmetric with respect to pR, Cq " ptr s k , ..., r We thus have the following result.

Lemma 4 Set r S satisfies pCq and is such that P sub p r Sq " P sub pSq.

Proof The symmetry group of tie-break subset r Q s pk, lq is the sub-symmetric group with respect to pR, Cq " ptr s k , ..., r s |Rs| u, tc s l´1 , c s l uq. Thus if some solution x P Q s is such that columns c s l´1 and c s l are equal from row r s 1 to row r s k´1 , then tie-break subset r Q s pk, lq contains x and is such that C Ě tc s l´1 , c s l u and minpRq " r s k . Tie-break condition pCq is therefore satisfied by r S. It can be readily checked that the full sub-orbitopes defined by r S and S are the same.

[ \ It follows, from Theorem 1, that inequalities (Qpc, c 1 q), c ă c 1 P C, Q P r S are full symmetrybreaking with respect to the sub-symmetries defined by S.

Corollary 1 If for each Q P r S, px, Zpxqq satisfies inequality (Qpc, c 1 q), @c ă c 1 P C, then x P P sub pSq.

Set r S can be considered instead of S to obtain full-symmetry-breaking inequalities. In this case, one inequality (resp. at most one variable) is added per subset Q P r S, i.e., Opqmnq inequalities (resp. variables). 

Partial-symmetry-breaking relaxations

ř k´1 k 1 "1 x r s k 1 ,c s l´1 " 0.
Example 2 Referring to Example 1, r S " r Q 1 p1, lq, r Q 1 p2, lq, l P t2, 3u ( . For each l P t2, 3u, r Q 1 p1, lq " Q 1 as for any s, r Q s pk, lq " Q s whenever k " 1. We also have r Q 1 p2, lq " x P Q 1 | x 3,l´1 " x 3,l ( . For each l P t2, 3u, r z l associated to subset r Q 1 p2, lq can be expressed as follows: r z l " 2z 1 `px 3,l´1 ´x3,l q. Indeed, when z 1 " 0, inequality (2.1) becomes x 3,l´1 ď x 3,l . Thus, r z l " 0 if x 3,l´1 " x 3,l and z l ě 1 otherwise. When z 1 " 1, r z l ě 1. Hence the following inequalities are full symmetry-breaking:

x 3,l´1 ď ´3 ´ř3 j"1 x 2,j ¯`x 3,l @l P t2, 3u

x 4,l´1 ď ´6 `x3,l´1 ´x3,l ´2 ř 3 j"1 x 2,j ¯`x 4,l @l P t2, 3u

Scope extension of sub-symmetry-breaking inequalities

For a given Q s , and c ă c 1 P C s , recall that if x P Q s , then inequality (2.1) enforces that row r 1 " minpR s q is lexicographically ordered on columns c and c 1 . Interestingly it is not necessary that x belongs to Q s to impose this lexicographical order. Indeed, to enforce this lexicographical order, it suffices that x belongs to some set Q s whose symmetry group includes the transposition π defined as: πpr 1 , cq " pr 1 , c 1 q. The idea is then to enforce the lexicographical order for any solution x P Q s , instead of any x P Q s . When Q s is such that Q s Ă Q s , then we say that a scope extension of the corresponding sub-symmetry-breaking inequality is performed, in the sense that the lexicographical order is applied to a larger solution subset. Roughly speaking, we can say that sub-symmetry-breaking inequalities corresponding to Q s have a larger scope than those corresponding to Q s . Thus, considering Q s instead of Q s leads to break more sub-symmetries. Moreover, it may also simplify the expression of variable z s , as done for example in the second case of Section 4.3.

The same argument applies to subsets r Q s pk, lq which can be replaced by r Q s pk, lq such that r Q s pk, lq Ď r Q s pk, lq and transposition π defined as πpr s k , c s l´1 q " pr s k , c s l q is in the symmetry group of r Q s pk, lq.

The proposed framework is applied in the following three sections. Two applications are presented in Sections 3 and 5, where inequalities (2.1) are derived in a straightforward way in the sense that set S already satisfies tie-break condition pCq in both applications. In Section 4, examples of tie-break set r S construction and of scope extensions are given.

Application to the symmetric group case

In this section, we apply the framework of Section 2 to any problem whose symmetry group G is the symmetric group S n acting on the columns. The collection S S of subsets considered will lead to inequalities restricting any solution x P X to be in the full orbitope. These inequalities feature variables z which can be explicitly expressed from x with Opmnq linear inequalities. Here, the sub-symmetries considered are restrictions of symmetries' actions to solution subsets.

A complete linear description of the 2-column full orbitope, featuring additional integer variables, is proposed in [START_REF] Loos | Describing orbitopes by linear inequalities and projection based tools[END_REF]. In the general n-column case, we show that these inequalities can also be derived using the framework described in Section 2, and can be used as full symmetry-breaking inequalities.

We consider S S " " Q i,j , i P t0u Y t1, ..., m ´1u, j P t2, ..., nu * , where Q i,j " " x P X | x i 1 ,j´1 " x i 1 ,j @i 1 P t1, ..., iu * .

Subset Q i,j is the set of feasible solutions such that columns j ´1 and j are equal from row 1 to row i. Note that Q 0,j " X . The symmetry group of Q i,j is then the sub-symmetric group with respect to pR i , tj ´1, juq where R i " ti `1, ..., mu. It can be readily checked that in this case, S already satisfies condition pCq.

Let variable z i,j be such that z i,j " 0 if x P Q i,j and 1 otherwise. Note that for all j P t2, ..., nu, Q 0,j " X , thus z 0,j " 0, @x P X . Note also that X XP sub pS S q is a subset of the full orbitope. Thus, given that the columns of any x P X X P sub pS S q are in a non-increasing lexicographical order, function Z can be chosen such that Zpxq " z, where z satisfies the following linear inequalities.

$ ' ' ' ' ' & ' ' ' ' ' % z 1,j´1 " x 1,j´1 ´x1,j @j P t2, ..., nu (3.1a) 
z i,j´1 ď z i´1,j´1 `xi,j´1 @i P t2, ..., mu, j P t2, ..., nu

z i,j´1 `xi,j ď 1 `zi´1,j´1 @i P t2, ..., mu, j P t2, ..., nu

x i,j´1 ď z i,j´1 `xi,j @i P t2, ..., mu, j P t2, ..., nu

z i´1,j´1 ď z i,j´1 @i P t2, ..., mu, j P t2, ..., nu

Constraint (3.1a) sets variable z 1,j´1 to 1 whenever columns j ´1 and j are different and in a non-increasing lexicographical order on row 1, and to 0 when they are equal. Constraint (3.1b) (resp. (3.1c)) sets variable z i,j´1 to 0 when z i´1,j´1 " 0 and columns j ´1 and j are equal to 0 (resp. 1) on row i. Constraint (3.1d) sets variable z i,j´1 to 1 if columns j ´1 and j are different and in a non-increasing lexicographical order on row i. Constraint (3.1e) sets z i,j´1 to 1 when variable z i´1,j´1 " 1, i.e., when columns j ´1 and j are different from row 1 to i ´1.

For each i P t2, ..., mu and j P t2, ..., nu, sub-symmetry breaking inequality (2.1) for subset Q i´1,j is as follows:

x i,j ď z i´1,j `xi,j´1

It ensures that if columns j ´1 and j of x are equal from row 1 to i, then row i `1 is in a non-increasing lexicographical order. Note that if z i´1,j ´zi,j " ´1 then necessarily x i,j " 0. Thus inequality (3.2) can be lifted to

x i,j ď p2z i´1,j ´zi,j q `xi,j´1 (3.3) 
In the special case when n " 2, by replacing variable z i,j by y i,j where z i,j " 1 ´ři i 1 "1 y i 1 ,j , for each i P t1, ..., mu, j P t1, 2u, inequalities (3.1a)-(3.3) yield the complete linear description of the 2-column full orbitope proposed in [START_REF] Loos | Describing orbitopes by linear inequalities and projection based tools[END_REF]. Note that the latter description is an extended formulation, i.e., not in the original space as additional variables are introduced.

In the general n-column case, inequalities (3.1a)-(3.3) are still full symmetry-breaking (by Theorem 1), and then can be used in practice to restrict the feasible set to any full orbitope. In this case, Opmnq additional variables and constraints are needed. Possible alternatives to using additional variables also exist, see e.g., [5] [26].

Application to the graph coloring problem

In this section, the framework of Section 2 is applied to the graph coloring problem.

Given an undirected graph G " pV, Eq with |V | " n, a vertex coloring of G is an assignment of values t1, . . . , nu, denoted as colors, to the vertices so that no two adjacent vertices receive the same color. The minimum number of colors in a vertex coloring of G is called the chromatic number χpGq of G. The vertex coloring problem is to find a vertex coloring with a minimum number of colors. Let K be an upper bound on χpGq. The classical IP formulation F [START_REF] Coll | Facets of the graph coloring polytope[END_REF] is the following.

min x,y K ÿ k"1 y k s. t. x i,k `xj,k ď y k @ti, ju P E, @k P t1, ..., Ku (4.1) 
K ÿ k"1 x i,k " 1 @i P V (4.2)
x i,k , y k P t0, 1u @i P V, @k P t1, ..., Ku

A solution is a matrix x " px i,k q where each column corresponds to a color and each row corresponds to a vertex. Variable x i,k indicates that color k P t1, ..., Ku is assigned to vertex i P t1, ..., nu, and variable y k indicates that color k is used to color some vertices. The feasible solution set is denoted by X col . Formulation pF q exhibits many symmetries. As pointed out in [START_REF] Kaibel | Packing and partitioning orbitopes[END_REF], symmetries make this formulation difficult to solve in particular because they lead to the feasibility of many fractional vertices, thus resulting in a poor LP-bound.

The symmetry group associated to formulation pF q contains the symmetric group acting on the columns of solution matrices. Indeed, a column corresponds to a color and a new vertex coloring can be obtained from another by permuting color indices. Techniques to break such symmetries have been largely investigated in the literature. One option is to propose alternative formulations. For instance, an extension of the classical formulation has been devised in [START_REF] Burke | A supernodal formulation of vertex colouring with applications in course timetabling[END_REF][START_REF] Figueiredo | Acyclic orientations with path constraints[END_REF] using the notion of representative vertices, i.e., vertices representing a color. Moreover, a column generation based linear program, proposed in [START_REF] Mehrotra | A column generation approach for graph coloring[END_REF], provides very good lower bounds. This approach is also used to come up with exponential size ILPs [START_REF] Gualandi | Exact solution of graph coloring problems via constraint programming and column generation[END_REF][START_REF] Malaguti | An exact approach for the vertex coloring problem[END_REF]. Another option is to add symmetry-breaking inequalities to formulation pF q in order to remove non-representative solutions from the feasible set. For example, the authors of [START_REF] Méndez-Díaz | A polyhedral approach for graph coloring[END_REF] propose the following full-symmetrybreaking inequalities which correspond to column inequalities dedicated to partition problems:

x i,k ď i´1 ÿ i 1 "k´1 x i 1 ,k´1 , @1 ď k ď i
where x i,k " 0 for any k and i such that k ą i.

In [START_REF] Kaibel | Packing and partitioning orbitopes[END_REF], a generalization of such partition-dedicated column inequalities is introduced and is as follows:

minpi,nq ÿ k 1 "k x i,k 1 ď i´1 ÿ i 1 "k´1 x i 1 ,k´1 , @1 ď k ď i (4.4)
It is also shown in [START_REF] Kaibel | Packing and partitioning orbitopes[END_REF] that the partitioning orbitope is completely described by trivial inequalities and shifted column inequalities, defined as:

minpi,nq ÿ k"j x i,k ď i´j`1 ÿ p"1 x p`cp´1,cp (4.5) 
for any pi, jq P pn, Kq and integers c 1 ď ... ď c i´j`1 ď j ´1 such that for p P t1, ..., i ´j `1u, p `cp ´1 P t1, ..., nu.

Sub-symmetries in the graph coloring problem

Formulation pF q features many sub-symmetries. For two colors c 1 and c 2 , a natural sub-symmetry arises from the possibility of permuting colors c 1 and c 2 in a subset R of vertices. This permutation is a symmetry for the colorings such that all neighbors of R are colored neither by c 1 nor by c 2 .

Note that a convenient way to obtain such a subset R is to start selecting two subsets S 1 and S 2 and then choose R non-adjacent to them. Let S 1 and S 2 be two disjoint stable subsets of V and let R Ď V such that any r P R is neither a neighbor of S 1 nor of S 2 . The neighborhood of a set S is denoted by N pSq " tv P V zS : Dtu, vu P E s. t. u P Su Consider solution subset

Q S1,S2,R c1,c2 " " x P X col | x i,c1 " 1 @i P S 1 , x i,c2 " 1 @i P S 2 , x i,c1 " x i,c2 " 0 @i P N pRq * Subset Q S1,S2,R c1,c2
contains all colorings such that S 1 has color c 1 , S 2 has color c 2 , and the neighbors of R are neither colored by c 1 nor by c 2 . Therefore, in general there exists an exponential number of such subsets

Q S1,S2,R c1,c2
. An illustration of columns c 1 and c 2 for the solutions of

Q S1,S2,R c1,c2 is given in Figure 1. The variables that are fixed in Q S1,S2,R c1,c2
are indicated with p0q or p1q, while the others are indicated with symbol p˚q.

Subset Q S1,S2,R c1,c2
is sub-symmetric with respect to pR, tc 1 , c 2 uq. Such sub-symmetries, referred to as 0-neighbor sub-symmetries, correspond to permutations of a set R of vertices between colors c 1 and c 2 , because neighbors of R have any colors but c 1 and c 2 .

c 1 S 1 p1q S 2 p0q R p˚q N pRq p0q U (*) c 2 p0q p1q p˚q p0q (*) Fig. 1: Two columns of Q S1,S2,R c1,c2
where can be linearly expressed in terms of x variables, as follows z "

U " V zpS 1 Y S 2 Y R Y N pRqq
ÿ sPS1 p1 ´xs,c1 q `ÿ sPS2 p1 ´xs,c2 q `ÿ rPN pRqzN pS1q x r,c1 `ÿ rPN pRqzN pS2q x r,c2 (4.6) 
Note that there is no need to check that vertices of N pS 1 q (resp. N pS 2 q) are not colored by color c 1 (resp. c 2 ). This is actually enforced by inequality (4.1) since we impose that all elements of S 1 (resp. S 2 ) are colored by c 1 (resp. c 2 ).

As there is exactly one 1-entry on each solution row, the GCP is a partitioning problem and a fortiori a packing problem. Thus packing-specific sub-symmetry-breaking inequalities (2.2) can be applied:

x r1,c2 ď z, where r 1 " min R. (4.7)

Example 3 Figure 2 gives an example of a graph G " pV, Eq. For S 1 " t2u and S 2 " ∅. Let set R " t6, 7u which does not contain any neighbor of 2. Here N pRq " t4, 5u. For given colors c 1 and

c 2 , set Q S1,S2,R c1,c2
contains all solutions such that vertex 2 is colored by c 1 and such that vertices 4 and 5 are colored neither by c 1 nor by c 2 . Here r 1 " minpRq " 6, thus sub-symmetry-breaking inequality (4.7) writes x 6,c2 ď p1 ´x2,c1 q `x4,c2 `x5,c2 . Note that considering non-empty set S 1 enables us to check that vertex 2 is colored by c 1 without checking that vertices 4 and 5 are not colored by c 1 . Thus the inequality is tighter than the one with S 1 " ∅.

Particular case Note that Q S1,S2,R c1,c2 Ď Q ∅,∅,R c1,c2 " tx P X col | x i,c1 " x i,c2
" 0 @i P N pRqu. Therefore, as Q ∅,∅,R c1,c2 may contain more solutions, the derived sub-symmetry-breaking inequalities will have a larger scope. However, associated variables z may be different: variable z corresponding to Q ∅,∅,R c1,c2 will feature the term

ř vPN pr1q x v,c1
, for a given r 1 P R, while variable z corresponding to

Q S1,S2,R c1,c2
will feature the term ř sPS1XN pr1q p1 ´xs,c1 q `řvPNpr1qzNpS1q x v,c1 instead. The former term may feature much less variables (in particular if N pS 1 q contains a lot of elements of N pr 1 q) but can also lead to weaker sub-symmetry-breaking inequalities.

Condition pCq Since set S contains arbitrary Q S1,S2,R c1,c2
, condition pCq is not necessarily satisfied. For each Q S1,S2,R c1,c2 P S, for any r P t1, ..., |R|u, set r

Q S1,S2,R c1,c2
prq is the tie-break set defined in Section 2.3:

r Q S1,S2,R c1,c2 prq " Q S1,S2,R c1,c2 X x | x i,c1 " x i,c2 , @i P tv 1 , ..., v r´1 u ( where R " tv 1 , ..., v |R| u, v 1 ă ... ă v |R| .
Let us then consider set r S containing the sets in S and sets

r Q S1,S2,R c1,c2
prq, for each r P t2, ..., |R|u. By Lemma 4, set r S satisfies condition pCq and therefore the associated sub-symmetry-breaking inequalities are full symmetry-breaking. As shown in Section 2.3, in the case of packing problems, variable r z associated to r

Q S1,S2,R c1,c2
prq can be expressed as

r z " z `řr´1 i"1 x vi,c1
, where z is the variable associated to set

Q S1,S2,R c1,c2
.

Column inequalities

We can show that partition-dedicated column inequalities (4.4) can also be derived using the proposed framework, by considering solution subsets

Q ∅,∅,V k,k`1 , r Q ∅,∅,V
k,k`1 prq, r P t1, ..., |V |u and associated variables r z " ř r´1 j"k x j,k ´řminpr,Kq k 1 "k`2 x r,k 1 . Recall that these inequalities break all-column-permutation symmetries in partition problems.

Scope extension

There is an exponential number of sub-symmetric subsets

Q S1,S2,R c1,c2
thus in practice one must choose which subsets to consider. An interesting question is how to choose R once S 1 and S 2 are fixed. Indeed, sets R, S 1 and S 2 lead to |R|-symmetry-breaking inequalities for

Q S1,S2,R c1,c2
. One must find a trade-off between the size of Q and the size of R. Moreover, it is possible to apply scope extension as described in Section 2.4.

Cardinality of R For a given set R, one sub-symmetry-breaking inequality per r

Q S1,S2,R c1,c2
prq, r P t1, ..., |R|u, can be added, resulting in a set of |R|-symmetry-breaking inequalities. On the one hand, the larger R, the larger possible set of sub-symmetry-breaking inequalities. Note that the set R with maximum cardinality for fixed S 1 and

S 2 is R max " V zrN pS 1 q Y N pS 2 q Y S 1 Y S 2 s.
On the other hand, a smaller subset R 1 Ă R may lead to a larger subset

Q S1,S2,R 1 c1,c2 : indeed, if N pR 1 q Ď N pRq, then Q S1,S2,R c1,c2 Ď Q S1,S2,R 1 c1,c2
. It means that the derived sub-symmetry-breaking inequalities have a larger scope.

In the experimental results presented in Section 4.5, we chose the following subsets R " V zrN pS 1 q Y N pS 2 q Y S 1 Y S 2 s, where S 1 and S 2 are singletons. The thing is that considering large sets R leads to a large corresponding set of |R|-symmetry-breaking inequalities. It was computationally more efficient to add only the corresponding σ-symmetry-breaking inequalities, where σ was chosen in t1, 2, 3u. Then a large scope seems a better option than a large set of sub-symmetry-breaking inequalities.

Connected components of R Consider the subgraph G R induced by R and its connected components R 1 , ..., R k . Suppose R 1 is the connected component containing r 1 " minpRq. Note that the symmetry group

G Q S 1 ,S 2 ,R 1 c 1 ,c 2
contains the transposition π defined as πpr 1 , c 1 q " pr 1 , c 2 q. Moreover,

Q S1,S2,R c1,c2 Ď Q S1,S2,R1 c1,c2
. Therefore, the scope of the sub-symmetry-breaking inequality associated to row r 1 can be extended to

Q S1,S2,R1 c1,c2
. This simplifies the expression of associated variable z as it only considers the neighbors of R 1 Ď R instead of all neighbors of R. Applying such scope extension for each r P R is equivalent to use sub-symmetry-breaking inequalities corresponding to subsets Q S1,S2,Ri c1,c2

, i P t1, ..., ku and associated tie-break sets. For each tie-break set, scope extension can also be recursively applied to the corresponding sub-symmetry-breaking inequalities. For example, given r 1 , ..., r k1 the vertex indices of R 1 , the tie-break set r

Q S1,S2,R1 c1,c2
p2, 2q associated to row r 2 is sub-symmetric with respect to ptr 2 , ..., r k1 u, tc 1 , c 2 uq (cf. Section 2.3). If the subgraph of G induced by R 1 ztr 1 u, i.e., tr 2 , ..., r k1 u, has multiple

connected components R 1 1 , ..., R 1 k 1 1
, then we can perform a scope extension by considering asso-

ciated subsets Q S1,S2,R 1 k c1,c2 X tx r1,c1 " x r1,c2 " 0u, for each k P t1, ..., k 1 1 u, instead of considering r Q S1,S2,R1 c1,c2
p2, 2q.

Implementation description

Preliminary results lead us to choose the subset of sub-symmetry-breaking inequalities using the following parameters. Note that these parameters are customized automatically with respect to instance characteristics.

Vertex subsets Sets S 1 and S 2 are chosen to be singletons. For each pair of vertices s 1 ă s 2 P V , for each colors c 1 ă c 2 , we consider solution subset

Q ts1u,ts2u,R c1,c2
, where R " V zpts 1 u Y ts 2 u Y N pts 1 uq Y N pts 2 uqq, and minpRq ą 1 as column inequalities (4.4) already break symmetries on row 1.

Pairs of colors

For each triplet pS 1 , S 2 , Rq, all pairs of consecutive colors are considered, except in three particular cases where all possible pairs are considered. The first case is when n is large, n ě 900, and K is small, K ď 10. We consider subsets

Q ts1u,ts2u,R c1,c2
for each pair of vertices s 1 , s 2 and for each pair of colors c 1 ă c 2 . Indeed, when n is large, there are more sub-symmetries to break, and a small K enables to consider all pairs of colors with barely no extra computational time. The second case is when the number of edges is small, |E| ă 300. It proved beneficial to consider all pairs of colors. The third case is when the upper bound K on the chromatic number is large compared to n (but not too large in absolute): n K ă 10 and K ă 100. It is also useful to consider all pairs of colors. Indeed, as a large K compared to n leads to many columns compared to rows, thus many symmetries on the columns arise. Therefore, the columns should be handled pairwise to break such symmetries, provided K is not too large.

Parameter σ For each triplet pS 1 , S 2 , Rq, we consider corresponding tie-break sets r Q to obtain partial σ-symmetry-breaking inequalities, as defined in Section 2. Parameter σ P t1, . . . , |R|u is chosen with respect to the number of vertices n. Indeed, subset R is potentially larger when n gets larger, thus there may be more sub-symmetries. Therefore we increase σ according to n as follows: σ " 1 when n ă 100, σ " 2 when 100 ď n ď 900, and σ " 3 when n ě 900.

Number of variables in z

To prevent too large a processing time, we consider in most cases subsymmetry-breaking inequalities such that the number of variables needed to express z, referred to as size of z, is lower than or equal to 10. In this way, these inequalities are also likely to have a large scope. On the contrary, there are two cases where a larger size for z is considered. When the graph is relatively large and dense, i.e., |E| n ą 10 and n ą 200 (resp. very dense, i.e.,

|E| n ą 100), variables z of size 20 (resp. 30) at most are needed to capture more sub-symmetries as subset R is likely to have many neighbors. Similarly, when the graph is smaller (i.e., n ă 200 and E ă 1000) but with large enough upper bound (i.e., K ą 5) the sub-symmetries captured by variables z of size 20 seem to be quite helpful as well.

Connected components When K is not too large, and when the graph is dense, i.e. |E| n ą 10 and K ă 15 (resp. very dense, i.e. |E| n ą 50 and K ă 100), subset R is likely to be quite small as elements of R are chosen outside the neighborhood of s 1 and s 2 . Therefore R may decompose into connected components. In this case it appears useful to perform the scope extension from Section 4.3, thus replacing R by its connected components.

Limit number on sub-symmetry-breaking inequalities We set the limit on the number of subsymmetry-breaking inequalities to be added to 50.000, except for extremely symmetric instances (i.e., K ě 100) where a (very) large number of sub-symmetry-breaking inequalities proves useful.

Experimental results

Experimental results are performed on DIMACS graph coloring benchmark instances [START_REF]Graph coloring benchmark[END_REF]. These instances are classified according to their difficulty to be solved. In particular, class NP-s stands for instances which are solvable by the best known algorithm in less than a minute, class NP-m in less than an hour, class NP-h in less than a day, class NP-? means the instance is not solved or the time is not known. Note that the best known algorithm is unlikely to be formulation F using default Cplex.

All experiments are carried out using Cplex 12.8 C++ API on 28 threads of a cluster node with a 64 bit Intel Xeon CPU E5-2697 v3 processor running at 2.6GHz, and 64 GB of RAM memory. Instances are solved until optimality, defined within 10 ´7 of relative optimality tolerance, or until the time limit of 7200 seconds is reached.

We compare the following symmetry-breaking techniques applied to the classical GCP formulation F , where the upper bound K on the number of colors is computed as a preprocessing step using DSATUR [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF] algorithm : F -Col formulation pF q with column inequalities (4.4) F -Part formulation pF q with column inequalities (4.4), and shifted column inequalities (4.5) F -Sub formulation pF q with column inequalities (4.4) and the subset of sub-symmetrybreaking inequalities described in Section 4.4. We observed the best performance of shifted column inequalities on the small instances, i.e., n ă 200 and K ă 20. Therefore, we add these inequalities to F -Sub on such instances.

Note that column inequalities and the chosen sub-symmetry-breaking inequalities are initially added, whereas shifted column inequalities are separated using Cplex Generic Callback.

Since we use Cplex 12.8 C++ API with default setting, Cplex's internal symmetry-breaking techniques are turned on by default. To assess the impact of such techniques over the compared inequalities, we also include experiments where Cplex's internal symmetry-breaking techniques are turned off. In particular, we deactivate the latter techniques in formulations F and F -Sub, which are respectively denoted by F -S0 and F -Sub-S0. Since the performances of F and F -Col are similar, and since F -Col and F -Part handle the same symmetries, it does not appear useful to include F -Col-S0 and F -Part-S0 variants in the tables. CPU time in seconds, including the time spent to generate sub-symmetrybreaking inequalities The number of column inequalities (4.4) is not indicated in the tables as it is in OpnKq.

To keep the focus on the most interesting instances, the results are presented for relatively hard instances only, i.e., instances for which Cplex needs at least 50 seconds to solve with formulation F . Moreover we report results as soon as a difference appears among some considered techniques with respect to either upper or lower bounds or CPU time.

In general, the performances of F -S0, F , F -Col are surprisingly similar, indicating that neither Cplex's internal symmetry-breaking techniques nor column inequalities lead to significant CPU time reduction. There are still some instances where F and F -Col slightly improve F -S0, for example "FullIns" instances (from NP-m and NP-?).

As for NP-s instances in Table 1, there is one instance (queen9-9) on which no sub-symmetrybreaking inequality is found. The time spent to search for sub-symmetry-breaking inequalities appears to be significant and could not be compensated for by any symmetry breaking. On 1-Insertions-4 instance, F -Part converges faster. On all other instances, F -Sub is the most efficient technique. For example, on school1 instance, F -S0, F and F -Col (resp. F -Part) terminate in about 2500 seconds (resp. 6500 seconds), while F -Sub finishes in around 1000 seconds. Interestingly, F -Sub and F -Sub-S0 perform similarly except on 1-Insertions-4 instance.

Among NP-m instances in Table 2, there is one instance (ash608GPIA) where, surprisingly, F -S0 is the most efficient. On le450-15a instance, none of the techniques is able to reach optimality Table 1: Experimental results on NP-s graph coloring DIMACS instances within time limit but F -Part seems slightly better as the upper bound found is tighter. On all other instances, F -sub or F -sub-S0 outperforms the other techniques. For example on wap05a instance, other techniques need around 800 seconds to reach optimality while F -Sub and F-Sub-S0 need only 400 seconds. Similarly, on school1-nsh instance, the other techniques do not converge within 7200 seconds while F-Sub and F-Sub-S0 do in 1700 seconds. Interestingly, on 4-Insertions-3 instance, F-Sub-S0 is better than F-Sub, suggesting that Cplex's internal symmetry-breakingtechniques are computationally expensive compared to the amount of symmetries broken when sub-symmetry-breaking inequalities are used. None of the techniques converged on NP-h instances in Table 3, but the lower bounds obtained after 7200 seconds are different depending on the technique used. On r250.5 instance, the best lower bound (61.33) is obtained by F , F -S0 and F -Col, while F -Part and F -Sub (resp. F -Sub-S0) only obtain a bound of respectively 58 and 60. On flat300-28-0 instance, F -Part provides the best lower bound (9.82062) while other techniques only obtain 9.81756. On DSJC125.5 instance, this is the other way around as F , F -S0, F -Col, F -Sub and F -Sub-S0 all obtain the same lower bound and F -Part does not as good. On remaining instances, F -Sub and F -Sub-S0 are able to obtain a better lower bound than the other techniques. It is particularly the case on DSJR500.5 instance, where F -Sub and F -Sub-S0 are able to reach a bound of 114, while other techniques provide a bound of 117.

For NP-? instances in Table 4, only two instances are solved to optimality. On some instances (2-Insertions-4, flat300-20-0 and flat300-26-0), F -Sub shows no improvement compared to the other techniques. On 3-FullIns4 instance, F -Col is the most efficient as it converges in 2598 

Table 3: Experimental results on NP-h graph coloring DIMACS instances

All in all on DIMACS instances, sub-symmetry breaking appears to significantly improve on only symmetry breaking.

Application to the Unit Commitment Problem

The framework of Section 2 is now applied to the Unit Commitment Problem, which features many sub-symmetries undetected by symmetry group G.

Given a discrete time horizon T " t1, ..., T u, a demand for electric power D t is to be met at each time period t P T . Power is provided by a set N of n production units. At each time period, unit j P N is either down or up, and in the latter case, its production is within [P j min , P j max ]. Each unit must satisfy minimum up-time (resp. down-time) constraints, i.e., it must remain up (resp. down) during at least L j (resp. j ) periods after start up (resp. shut down). Each unit j also features three different costs: a fixed cost c j f , incurred each time period the unit is up; a start-up cost c j 0 , incurred each time the unit starts up; and a cost c j p proportional to its production. The Min-up/min-down Unit Commitment Problem (MUCP) is to find a production plan minimizing Table 4: Experimental results on NP-? graph coloring DIMACS instances the total cost while satisfying the demand and the minimum up and down time constraints. The MUCP is strongly NP-hard [START_REF] Bendotti | On the complexity of the unit commitment problem[END_REF].

In the real-world Unit Commitment Problem (UCP), some more technical constraints have also to be taken into account, such as ramp constraints or reserve requirement constraints, and the start-up costs are an exponential function of the unit downtime. From a combinatorial point of view, the MUCP is the core structure of the UCP. In this section, we study the MUCP with and without ramp constraints.

For each unit j P N and time period t P T , let us consider three variables: x t,j P t0, 1u indicates if unit j is up at time t; u t,j P t0, 1u whether unit j starts up at time t; and p t,j P R is the quantity of power produced by unit j at time t. Without loss of generality we consider that L j , j ď T . Formulation F px, uq for the MUCP is as follows [START_REF] Rajan | Minimum up/down polytopes of the unit commitment problem with start-up costs[END_REF][START_REF] Ostrowski | Modified orbital branching for structured symmetry with an application to unit commitment[END_REF][START_REF] Bendotti | The min-up/min-down unit commitment polytope[END_REF].

min x,u,p n ÿ j"1 T ÿ t"1 c j f x t,j `cj p p t,j `cj 0 u t,j s. t. t ÿ t 1 "t´L j `1 u t 1 ,j ď x t,j
@j P N , @t P tL j , ..., T u (5.1) t ÿ t 1 "t´ j `1 u t 1 ,j ď 1 ´xt´ j ,j @j P N , @t P t j , ..., T u

(5.2) u t,j ě x t,j ´xt´1,j @j P N , @t P t2, ..., T u (5.3) P j min x t,j ď p t,j ď P j max x t,j @j P N , @t P T (5.4)

n ÿ j"1
p t,j ě D t @t P T (5.5)

x t,j , u t,j P t0, 1u @j P N , @t P T (5.6)

For convenience, we will also use variable w t,j " x t´1,j ´xt,j `ut,j , indicating whether unit j shuts down at time t.

Symmetries and sub-symmetries in the UCP

Symmetries in the MUCP (and in the UCP) arise from the existence of groups of identical units, i.e., units with identical characteristics (P min , P max , L, , c f , c 0 , c p ). The instance is partitioned into types h P t1, ..., Hu of n h identical units. The unit set of type h is denoted by N h " tj h 1 , ..., j h n h u. The solutions of the MUCP can be expressed as a series of binary matrices. For a given type h, we introduce matrix x h P PpT, n h q such that entry x h t,k corresponds to variable x t,j h k , where j h k is the index of the k th unit of type h, k P t1, ..., n h u. Column j of matrix x h corresponds to the up/down plan relative to the j th unit of type h. Similarly, we introduce matrices u h and p h .

The set of all feasible x " px t,j q tPT ,jPN is denoted by X M U CP . Note that any solution matrix x (resp. u, p) can be partitioned in H matrices x h (resp. u h , p h ). Since all units of type h are identical, their production plans can be permuted, provided that the same permutation is applied to matrices x h , u h and p h . Thus, the symmetry group G contains the symmetric group S n h acting on the columns of x h , for each unit type h. Consequently, for each type h, feasible solutions x h can be restricted to be in the T ˆnh full orbitope. As binary variables u are uniquely determined by variables x, breaking the symmetry on x variables will break the symmetry on u variables. Note that this restriction to the T ˆnh full orbitope for each type h can possibly be done using inequalities from Section 3 featuring z variables.

There are also other sources of symmetry, arising from the possibility of permuting some subcolumns of matrices x h . For example, consider two identical units. Suppose at some time period t, these two units are down and ready to start up. Then their plans after t can be permuted, even if they do not have the same up/down plan before t.

More precisely, a unit j P N is ready to start up at time t P t1, ..., T u if and only if @t 1 P tt ´ j , ..., t ´1u, x t 1 ,j " 0. Similarly, a unit j P N k is ready to shut down at time t P t1, ..., T u if and only if @t 1 P tt ´Lj , ..., t ´1u, x t 1 ,j " 1.

Sub-symmetry-breaking inequalities for the MUCP

For each time period t P t1, ..., T u and any two consecutive units j h k , j h k`1 of type h, k P t1, ..., n h 1u, consider the following subsets of X M U CP :

q Q t k,h " x P X M U CP | x t 1 ,j " 0, @t 1 P tt ´ h , ..., t ´1u, t ě h `1, @j P tj h k , j h k`1 u ( p Q t k,h " x P X M U CP | x t 1
,j " 1, @t 1 P tt ´Lh , ..., t ´1u, t ě L h `1, @j P tj h k , j h k`1 u ( where h (resp. L h ) is the minimum down (resp. up) time of units of type h.

Note that q Q t k,h and p Q t k,h are different from subsets Q i,j defined in Section 3. Actually, Q t,j h k`1 Ă q Q t k,h and Q t,j h k`1 Ă p Q t k,h . Let G q Q t k,h and G p Q t k,h
be the sub-symmetry groups associated to q Q t k,h and p Q t k,h , t P t1, ..., T u, h P t1, ..., Hu, k P t1, ..., n h ´1u. The sub-symmetries in G

q Q t k,h (resp. G p Q t k,h
) are called start-up sub-symmetries (resp. shut-down sub-symmetries). Most of these sub-symmetries are not detected in the symmetry group of the MUCP.

Groups

G q Q t k,h and G p Q t k,h
contain the sub-symmetric group associated to the submatrix defined by rows and columns ptt, ..., T u, tj h k , j h k`1 uq. Applying results from Section 2, variables q z t k,h and p z t k,h , indicating whether x P q Q t k,h and x P p Q t k,h respectively, can be directly derived from variables x and u:

q z t k,h " x t´ h ,j 1 `t´1 ÿ t 1 "t´ h `1 u t 1 ,j 1 `xt´ h ,j `t´1 ÿ t 1 "t´ h `1 u t 1 ,j t ě h `1 p z t k,h " 1 ´xt´L h ,j 1 `t´1 ÿ t 1 "t´L h `1 w t 1 ,j 1 `1 ´xt´L h ,j `t´1 ÿ t 1 "t´L h `1 w t 1 ,j t ě L h `1
where j " j h k and j 1 " j h k`1 for sake of clarity. Consider S M U CP " q Q t k,h , p Q t k,h , t P t1, ..., T u, h P t1, ..., Hu, k P t1, ..., n h ´1u ( . In this case, set S M U CP directly satisfies condition C. Note that |S M U CP | " Op2T nq thus leading to Op2T nq inequalities.

For each h P t1, ..., Hu, k P t1, ..., n h ´1u and t P t1, ..., T u, inequalities p q Q t k,h pj, j 1 qq and p p Q t k,h pj, j 1 qq, where j " j h k and j 1 " j h k`1 , are as follows.

x t,j 1 ď

" x t´ h ,j 1 `t´1 ÿ t 1 "t´ h `1 u t 1 ,j 1  `"x t´ h ,j `t´1 ÿ t 1 "t´ h `1 u t 1 ,j  `xt,j t ě h `1 x t,j 1 ď " 1 ´xt´L h ,j 1 `t´1 ÿ t 1 "t´L h `1 w t 1 ,j 1  `"1 ´xt´L h ,j `t´1 ÿ t 1 "t´L h `1 w t 1 ,j  `xt,j t ě L h `1
Strengthening symmetry-breaking inequalities Inequalities p q Q t k,h pj, j 1 qq and p p Q t k,h pj, j 1 qq can be further strengthened, using the relationship between variables x and u.

First note that by definition of variables w:

x t,j 1 ´"x t´ h ,j 1 `t´1 ÿ t 1 "t´ h `1 u t 1 ,j 1  " u t,j 1 ´t ÿ t 1 "t´ h `1 w t 1 ,j 1 t ě h `1 x t,j `"1 ´xt´L h ,j `t´1 ÿ t 1 "t´L h `1 w t 1 ,j  " ´wt,j `1 `t ÿ t 1 "t´L h `1 u t 1 ,j t ě L h `1
Note that if u t,j 1 " 1 (resp. w t,j " 1), then ř t t 1 "t´ h `1 w t 1 ,j 1 " 0 (resp. ř t t 1 "t´L h `1 u t 1 ,j " 0). Replacing the previous two equalities into inequalities p q Q t k,h pj, j 1 qq and p p Q t k,h pj, j 1 qq yields the following valid and stronger Start-Up-Ready and Shut-Down-Ready inequalities.

u t,j 1 ď " x t´ h ,j `t´1 ÿ t 1 "t´ h `1 u t 1 ,j  `xt,j t ě h `1 (5.7) 
w t,j ď " 1 ´xt´L h ,j 1 `t´1 ÿ t 1 "t´L h `1 w t 1 ,j 1  `1 ´xt,j 1 t ě L h `1 (5.8) 
Note that for any h P t1, ..., Hu and k P t1, ..., n h ´1u, q

Q 1 k,h " p Q 1 k,h " X M U CP .
As condition pCq is satisfied by S M U CP , any x " px 1 , ..., x H q satisfying inequalities (5.7) and (5.8) is such that x h is in the T ˆnh full orbitope, h P t1, ..., Hu. Hence inequalities (5.7) and (5.8) ensure in particular that any solution x h is in the full orbitope.

Sub-symmetry-breaking inequalities for the ramp-constrained MUCP

In the real-world UCP, each unit j must also feature ramp-up (resp. ramp-down) constraints, i.e., the maximum increase (resp. decrease) in generated power from time period t to time period t `1 is RU j (resp. RD j ). Moreover, if unit i starts up at time t (resp. shuts down at time t `1), its production at time t cannot be higher than SU j (resp. SD j ).

For each unit j P N and time period t P t2, ...T u, ramp constraints can be formulated as follows:

p t,j ´pt´1,j ď RU j x t´1,j `SU j u t,j

p t´1,j ´pt,j ď RD j x t,j `SD j w t,j

The MUCP formulation including ramp constraints can be further strengthened with valid inequalities as proposed in [START_REF] Ostrowski | Tight mixed integer linear programming formulations for the unit commitment problem[END_REF][START_REF] Pan | A polyhedral study of the integrated minimum-up/-down time and ramping polytope[END_REF]. As the aim of this article is to compare symmetry-breaking techniques, we will only consider the classical MUCP formulation (5.1) -(5.6) with ramp-constraints (5.9) -(5.10), as done in [START_REF] Ostrowski | Modified orbital branching for structured symmetry with an application to unit commitment[END_REF][START_REF] Knueven | The ramping polytope and cut generation for the unit commitment problem[END_REF]. When ramp-constraints are considered, the symmetry group of set q Q t k,h still contains the subsymmetric group associated to the submatrix defined by rows and columns ptt, ..., T u, tj h k , j h k`1 uq. Therefore, inequalities (5.7) can still be used.

However the symmetry group of set p Q t k,h no longer contains the sub-symmetric group associated to the submatrix defined by rows and columns ptt, ..., T u, tj h k , j h k`1 uq. Indeed, if two identical units have been up for at least L h time periods at time t ´1, they may produce distinct power values at time t ´1 and thus, because of ramp constraints, their up/down trajectories from time t to T cannot be permuted. Therefore, inequalities (5.8) can no longer be used.

Note that when two identical ramp-constrained units are ready to shut down, there still exist some sub-symmetries that could be exploited. These sub-symmetries are more intricate because they depend, for example, on the quantity of power produced by both units, or on the time of their last start-up.

Experimental results

In this section, we compare various (sub-)symmetry-breaking techniques for the MUCP with or without ramp constraints. Some of these techniques operate during the branching process, while the others are compact or exponential symmetry-breaking MIP formulations.

Aggregated formulations for the UCP

In [START_REF] Knueven | Exploiting identical generators in unit commitment[END_REF], the authors propose to break symmetries of the UCP by aggregating variables corresponding to identical units. This method is shown to outperform existing symmetry-breaking inequalities whenever the integer decomposition property holds [START_REF] Baum | Integer rounding and polyhedral decomposition for totally unimodular systems[END_REF], i.e., any integer solution of the aggregated formulation can be disaggregated into an integer solution of the disaggregated formulation.

' Aggregated px, uq formulation In the case of the MUCP, variables x, u of formulation (5.1-5.6) are aggregated into variables r

x t,h " ř jPN h x t,j P t0, ..., n h u (resp. r u t,h " ř jPN h u t,j P t0, ..., n h u) indicating how many units of type h are up (resp. start up) at time t. Variables r p t,h " ř jPN h p t,j P R is the total amount of power produced at time t by units of type h. Aggregated px, uq formulation, denoted by A-pr x, r uq, is formulation Fpx, uq where variables px, u, pq are replaced by pr x, r u, r pq. When aggregating variables corresponding to h identical units, one must ensure that the aggregated production plan can be disaggregated into h feasible production plans satisfying. Inequalities (5.1)-(5.4) have the integer decomposition property, i.e., any integer solution pr x, r u, r pq of aggregated px, uq formulation can be disaggregated into an integer solution px, u, pq of formulation (5.1)- (5.6). A disaggregation algorithm for the MUCP is proposed in [START_REF] Knueven | Exploiting identical generators in unit commitment[END_REF].

When ramp constraints are considered in formulation (5.1)-(5.6), the integer decomposition property is lost. Examples of aggregated solutions which cannot be disaggregated are given in [START_REF] Knueven | Exploiting identical generators in unit commitment[END_REF].

' Aggregated interval formulation As the integer decomposition property depends on the formulation considered, an interval-based formulation is introduced in [START_REF] Knueven | Exploiting identical generators in unit commitment[END_REF] for the ramp-constrained MUCP. For each unit j P N , for each interval tt 0 , ..., t 1 ´1u of size t 1 ´t0 ě L j , variable y t0,t1 j " 1 if and only if unit j starts up at time t 0 , remains up on interval tt 0 , ..., t 1 ´1u and shuts down at time t 1 . For each time period t P T , variable p t0,t1 t,j represents the quantity of power produced by unit j at time t if y t0,t1 j " 1, and p t0,t1 t,j " 0 otherwise. To each interval tt 0 , ..., t 1 ´1u is associated a production polytope giving the feasible domain of variable p t0,t1 t,j . The interval formulation consists in finding, for each unit i, a set of compatible intervals (i.e., non-overlapping intervals such that the minimum down time is satisfied) in order to satisfy the demand. Such a formulation has the integer decomposition property, thus variables y t0,t1 j (resp. p t0,t1 t,j ) can be replaced by aggregated variables r y t0,t1 h " ř jPN h y t0,t1 j and r p t0,t1 t,h " ř j P N h p t0,t1 t,j , leading to aggregated formulation Intpr yq.

Modified Orbital Branching

In [START_REF] Ostrowski | Modified orbital branching for structured symmetry with an application to unit commitment[END_REF] the authors present the Modified Orbital Branching (MOB) technique which operates at each node of the branching tree. The idea is to branch on a subset of symmetric variables instead of a single one. They apply MOB alongside with several complementary branching rules to break symmetries of the MUCP with additional technical constraints. Among the proposed branching rules, the most flexible one ensuring full-symmetry breaking is called Relaxed Minimum-Rank Index (RMRI). Note that sub-symmetries are not exploited in practice. Different approaches are compared experimentally: Default Cplex, Callback Cplex, OB (orbital branching), MOB with no branching rules enforced (Cplex is free to choose the next branching variable), and MOB with RMRI. It is shown that MOB with RMRI is more efficient than MOB, OB and Callback Cplex in terms of CPU time. The difference of (geometric) average CPU time speed-up between using MOB with RMRI and MOB alone is 1.098.

In this paper, we choose to compare our methods to MOB, even though MOB with RMRI is shown to perform slightly better than MOB with no branching rules [START_REF] Ostrowski | Modified orbital branching for structured symmetry with an application to unit commitment[END_REF]. The rationale behind is that its implementation is straightforward, thus leaving no room to interpretation.

Orbitopal fixing for the full orbitope

In [START_REF] Bendotti | Orbitopal fixing for the full (sub-)orbitope and application to the unit commitment problem[END_REF], a variable fixing algorithm, called Orbitopal fixing for the full (sub-)orbitope, is proposed in order to enumerate only solutions in full (sub-)orbitopes from the B&B tree. A dynamic version of the orbitopal fixing algorithm is proposed, where the lexicographical order at node a is defined with respect to the branching decisions leading to a. Experimental results on MUCP instances show that the dynamic variant of the algorithm performs much better than the static variant. Moreover, it is clear that sub-symmetries greatly impair the solution process for MUCP instances, since dynamic orbitopal fixing for both full orbitope and full sub-orbitope performs even better than dynamic orbitopal fixing for the full orbitope. The experiments show also that the approach is competitive with commercial solvers like Cplex and state-of-the-art techniques like MOB.

Experimental settings

In this section, we compare various symmetry-breaking formulations for the MUCP with or without ramp constraints.

Each experiment is carried out using Cplex 12.8 C++ API on only 1 thread of a cluster node with a 64 bit Intel Xeon CPU E5-2697 v3 processor running at 2.6GHz, and 64 GB of RAM memory. The UCP instances are solved until optimality (defined within 10 ´7 of relative optimality tolerance) or until the time limit of 3600 seconds is reached.

As shown in [START_REF] Ostrowski | Modified orbital branching for structured symmetry with an application to unit commitment[END_REF], neither Friedman inequalities (1.1) nor column inequalities (1.2) are competitive with respect to the classical UCP formulation when solved by Cplex.

On the opposite, the weaker form of Friedman inequality (1.3) has been shown in [START_REF] Lima | Symmetry breaking in MILP formulations for Unit Commitment problems[END_REF] to outperform Default Cplex.

Hence the following symmetry-breaking techniques are compared:

-F px, uq: px, uq-formulation (5.1)-( 5 As for graph coloring experiments, we also include experiments where Cplex's internal symmetrybreaking techniques are turned off. We deactivate the latter techniques for F px, uq, W px, uq, F px, u, zq and LF px, uq, which are respectively denoted by F px, uq-S0, W px, uq-S0, F px, u, zq-S0 and LF px, uq-S0. Due to the use of Cplex BranchCallback in MOB and Fixing, the Cplex's internal symmetry-breaking techniques are already turned off. For A-pr x, r uq and Intpr yq, no change has been detected with or without the latter techniques. It does not appear useful to include their S0 variant in the tables.

Formulation F px, u, zq is obtained from the classical MUCP formulation F px, uq by a direct use of the inequalities given in Section 3. As seen in Section 5, taking into account sub-symmetries in the MUCP leads to formulation LF px, uq featuring lifted symmetry breaking-inequalities (5.7) and (5.8), namely Start-up-ready and Shut-down-ready inequalities, in place of inequalities (3.1a)- (3.3). Note that the start-up and shut-down sub-symmetries of the MUCP are not handled by formulations F px, uq, W px, uq and F px, u, zq.

Formulations F px, uq, W px, uq, F px, u, zq and LF px, uq feature OpnT q variables while formulation A-pr x, r uq (resp. Intpr yq) features OpHT q (resp. OpT 2 Hq) variables, where H is the number of groups of identical units.

For the ramp-constrained MUCP, inequalities (5.9)-(5.10) enforcing ramp constraints are added to formulations F px, uq, W px, uq, F px, u, yq and LF px, uq. Aggregated formulation Apr x, r uq can no longer be used, as its solutions cannot be disaggregated [START_REF] Knueven | Exploiting identical generators in unit commitment[END_REF]. Note also that in this context, Start-up-ready inequalities are adjoined to LF px, uq, but Shut-down-ready inequalities cannot.

Instances

We generate MUCP instances as follows.

For each instance, we generate a "2-peak per day" type demand with a large variation between peak and off-peak values: during one day, the typical demand in energy has two peak periods, one in the morning and one in the evening. The amplitudes between peak and off-peak periods have similar characteristics to those in the dataset from [START_REF] Carrion | A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[END_REF].

We consider the parameters (P min , P max , L, , c f , c 0 , c p ) of each unit from the dataset presented in [START_REF] Carrion | A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[END_REF]. We draw a correlation matrix between these characteristics and define a possible range for each characteristic. In order to introduce symmetries in our instances, some units are randomly generated based on the parameters correlations and ranges. Each unit generated is duplicated d times, where d is randomly selected in r1, n F s in order to obtain a total of n units. The parameter F is called symmetry factor, and can vary from 2 to 4 depending on the value of n. Note that these instances are generated along the same lines as literature instances considered in [START_REF] Bendotti | The min-up/min-down unit commitment polytope[END_REF], but with different F factors.

In order to determine which symmetry-breaking technique performs best with respect to the number of rows and columns of matrices in feasible set X , we consider various instance sizes n P t20, 30, 60u and T P t48, 60u, and various symmetry factors F P t2, 3, 4u. For each size pn, T q and symmetry factor F , we generate a set of 20 instances. Symmetry factor F " 4 is not considered for instances with a small number n of units (n " 20 or 30), as it leads to very small sets of identical units.

Table 5 provides some statistics on the instances characteristics. For each instance, a group is a set of two or more units with the same characteristics. Each unit which has not been duplicated is a singleton. The first and second entries column-wise are the number of singletons and groups. The third entry is the average group size and the fourth entry is the maximum group size. Each entry row-wise corresponds to the average value obtained over 20 instances with same size pn, T q and same symmetry factor F . 6 and7 are relative to large instances, i.e., with pn, T q " p60, 48q and pn, T q " p60, 96q. Smaller instances for the non-ramp-constrained MUCP can be solved quite efficiently, thus making the comparison of the different techniques in terms of performance not meaningful. The corresponding results are not reported in the enclosed tables.

From Tables 6 and7, two extreme cases stand out of the comparison. On the one hand, aggregated px, uq formulation A-pr x, r uq outperforms by far all the other techniques. This could be explained by the reduced size of aggregated formulation A-pr x, r uq, but also by the good performance of Cplex on ILP featuring integer variables (with bounds greater than 1). This efficiency will certainly be preserved any time the integer decomposition property holds for an px, uq formulation of the UCP. On the other hand, aggregated interval formulation Intpr yq is in average one or even two orders of magnitude slower than the other techniques, except F px, uq-S0.

Obviously turning off Cplex's symmetry-breaking techniques in F px, uq-S0 leads to poor performance compared to that obtained with F px, uq. As no symmetries at all are handled in F px, uq-S0, this highlights the impact symmetries can have on the difficulty to solve an MUCP instance. For other techniques, the "S0" variant does not seem worse than the original. On the contrary, on many instances, deactivating Cplex's internal symmetry-breaking techniques helps improving the computational time for many techniques. It is the case for example on pn, T q " p60, 48q, F " 4 instances, where W px, uq-S0 (resp. LF px, uq-S0) CPU time is 58 (resp. 29) seconds on average while W px, uq's (resp. LF px, uq's) is 209 (resp. 61) seconds. It shows that the impact of Cplex's internal symmetry-breaking techniques is limited compared to the time it takes to detect and handle symmetries in these cases. On the most symmetric instances pn, T q " p60, 96q, F " 2, however, W px, uq-S0 performs not as well (2374 seconds) as W px, uq (1914 seconds). In this case, Cplex's internal symmetry-breaking techniques come in useful to compensate for W px, uq being only partial-symmetry-breaking. For the other techniques, the S0 variant does not seem to significantly impact the CPU time on these instances.

On very symmetric pn, T q " p60, 48q instances, i.e., when F " 2, the second best technique after aggregation is Fixing, which solves all instances to optimality with the second best CPU time. On less symmetric pn, T q " p60, 48q instances, i.e., when F " 3 (resp. F " 4), the second best technique after aggregation is LF px, uq (resp. LF px, uq-S0), which solves all instances to optimality with the second best CPU time.

On pn, T q " p60, 96q instances, the second best technique after aggregation is clearly LF px, uq as it solves many more instances to optimality compared to any other techniques.

In order to complete the results provided in Tables 6 and7, Table 8 provides, for each considered size pn, T q and factor F , average results for subset I of instances on which both F px, uq and LF px, uq terminate within time limit: #I cardinality of instance subset I CPU F px, uq|I average CPU time of F px, uq, in seconds, on instance subset I CPU LF px, uq|I average CPU time of LF px, uq, in seconds, on instance subset I Interestingly, for pn, T q " p60, 48q and F " 3, F px, uq converges faster on the subset of instances where both formulations finish, even if the average CPU time of LF px, uq (67 seconds) is better than that of F px, uq (545 seconds). Since LF px, uq solves 3 more instances to optimality than F px, uq, this shows that even if F px, uq is on average slightly faster on the remaining 17 instances, LF px, uq performs really well on the 3 instances not solved at all by F px, uq. The same applies to pn, T q " p60, 96q and F " 2.

The techniques breaking sub-symmetries, i.e. Fixing, A-pr x, r uq, and LF px, uq, perform better on all instances than techniques breaking symmetries only, thus showing the impact of subsymmetry breaking.

Results for the ramp-constrained MUCP

Recall that aggregated formulation A-pr x, r uq can no longer be used in this context. Tables 9 to 11 provide, for each formulation and each group of 20 instances, the exact same column entries as those in Tables 6 and7.

First note that the ramp constraints make the MUCP instances much harder to solve by Cplex in general, as the CPU times in Table 11 relative to pn, T q " p60, 48q ramp-constrained MUCP instances are much larger than those in Table 6 relative to the corresponding non-constrained MUCP instances. For example, the integrality gap is in average more than 10 times larger for On the other test sets, i.e., pn, T q " p20, 48q, p20, 96q and pn, T q " p30, 48q, p30, 96q and pn, T q " p60, 96q, LF px, uq is more efficient than all considered techniques. For example, on pn, T q " p20, 96q and F " 3 instances, LF px, uq solves to optimality 13 instances with an average CPU time of 1679, while the second best technique on this instance set, F px, u, zq, solves only 7 instances to optimality, and the average CPU time is 2549 seconds. On pn, T q " p30, 96q and F " 2 instances, LF px, uq solves to optimality 9 instances and has an average CPU time of 2091, while F px, u, zq, F px, u, zq-S0, LF px, uq-S0, and W px, uq-S0 solve only 5 instances to optimality on this instance set, and the average CPU time is around 2800 seconds. Other techniques solve less than 5 instances to optimality on this test set, and their average CPU time is higher than 3000 seconds. Interestingly on these instances, LF px, uq performs much better than LF px, uq-S0. It seems that sub-symmetry breaking enhances Cplex's internal symmetry-breaking techniques. A guess is that there remains some symmetries after applying sub-symmetry-breaking inequalities, for example "shut-down" sub-symmetries, that Cplex is able to partially break once "start-up" sub-symmetries are broken. On the largest instances (pn, T q " p60, 96q), LF px, uq manages to solve to optimality two instances, while other formulations do not reach optimality on any of these instances. Note that the table corresponding to pn, T q " p60, 96q is not included as too few instances terminate within time limit.

Recall that W px, uq is only partial symmetry-breaking. Thus, when T is smaller, the number of feasible columns featuring a given number of 1-entries is also smaller. On the opposite, when T " 96, the number of one-entries is not a very discriminating indicator among symmetric columns. Therefore W px, uq is not able to break as much symmetries, and LF px, uq globally performs better. Similarly, when T is larger the number of sub-symmetries also increases. As F px, u, zq only handles symmetries, it performs not as well in this context as LF px, uq, which is able to handle both symmetries and sub-symmetries.

In order to complete the results provided in Tables 9, 10 and 11, Table 12 compares the CPU times of formulations F px, uq and LF px, uq for the subset of instances on which both formulations terminate within time limit, for each size pn, T q and factor F . Column labels of Table 12 are the same as in Table 8. The table shows that even when considering an instances subset where both formulations terminate, LF px, uq remains much faster than F px, uq.

Conclusion and perspectives

We propose a framework to build sub-symmetry-breaking inequalities, in order to handle the symmetries arising from a collection of sub-symmetric solution subsets. These inequalities may require to introduce one additional integer variable z per solution subset considered. Depending on the subset structure, variable z could be a linear expression of variables x, and therefore would not need to be introduced in the model as an additional variable. The derived sub-symmetrybreaking inequalities are full symmetry-breaking under a mild condition. Even if this condition is not satisfied, a new collection of sub-symmetric subsets can be polynomially constructed such that the derived inequalities are full symmetry-breaking.

The framework is applied to two problems: the GCP and the MUCP with or without ramp constraints.

It is well known that the classical GCP formulation is rife with symmetries. Experimental results highlight that when sub-symmetries have a significant impact on the resolution process, such sub-symmetries can be handled using appropriate subsets of inequalities derived from the proposed framework. Perspectives are to find other types of sub-symmetries in the classical formulation of the GCP to derive new sub-symmetry-breaking inequalities from the proposed framework. Another perspective is to apply the framework to other GCP formulations.

Experimental results for the MUCP show that aggregation of the classical formulation is a very efficient technique to handle symmetries and sub-symmetries arising in the MUCP. When ramp constraints are taken into account in the MUCP, disaggregation is no longer possible. Sub-symmetry-breaking inequalities can still be used and are competitive with state-of-the-art symmetry-breaking techniques. In particular, sub-symmetry-breaking inequalities outperform all other techniques on instances with a large number of time steps, i.e., T " 96. One perspective is to use the proposed framework to derive new sub-symmetry-breaking inequalities for "shut down" sub-symmetries in the ramp-constrained MUCP.

Aggregation techniques appear to work well for cases when the decomposition property holds. Such cases are more the exceptions than the rule. Sub-symmetry-breaking inequalities are always Table 12: For each triplet pn, T, F q, comparison of formulations F px, uq and LF px, uq on the subset of ramp-constrained MUCP instances that are solved within the time limit in both settings
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  for the full (sub-)orbitope -A-pr x, r uq: Aggregated pr x, r uq-formulation (only when disaggregation applies) -Intpr yq: Aggregated interval formulation -W px, uq: px, uq-formulation (5.1)-(5.6) with weaker Friedman inequalities (1.3) -F px, u, zq: px, uq-formulation (5.1)-(5.6) with variables z, inequalities (3.1a)-(3.1e) and sub-symmetry-breaking inequalities (3.3) -LF px, uq: px, uq-formulation (5.1)-(5.6) with sub-symmetry-breaking inequalities (5.7)-(5.8). Symmetry-breaking techniques MOB and Fixing are implemented within Cplex C++ API using the BranchCallback feature.

  s 1 , ..., r s |Rs| u and C s " tc s 1 , ..., c s |Cs| u, where r s 1 ă ... ă r s |Rs| and c s 1 ă ... ă c s |Cs| . For given s P t1, ..., qu and any two columns c s l´1 , c s l P C s , if there is a solution x P Q s such that columns c s

	l´1 and c s l are equal from row r s 1 to row r s k´1 , it must k is lexicographically non increasing, i.e., x r s be ensured that row r s k

  If for each Q s P S, set r S contains sets r Q s pk, lq for each l P t2, ..., |C s |u and for each k P t1, ..., σu, where σ P t1, ..., |R s |u, then the corresponding subsymmetry-breaking inequalities are not full-symmetry-breaking anymore. In this case we say that they are σ-symmetry-breaking.

	Variables r z Even if problem-specific variables r z could be more efficient, for each s P t1, ..., qu
	and l P t2, ..., |C s |u, variables r z s pk, lq associated to subsets r Q s pk, lq, k P t2, ..., |R s |u, can always
	be inductively defined as	
	r z s p2, lq " z s `xr s 1 ,c s l´1 ´xr s 1 ,c s l
	r z s pk, lq " r z s pk ´1, lq `xr s k´1 ,c s l´1 ´xr s k´1 ,c s l , k P t3, ..., |R s |u
	Indeed, for any x P P sub pSq, we have that x r s k´1 ,c s l´1 ě x r s k´1 ,c s l if r z s pk ´1, lq " 0.
	For packing problems, variables r z can be straighforwardly defined as:
	r z s pk, lq " z s	`řk´1 k 1 "1 x r s k 1 ,c s l´1 , k P t2, ..., |R s |u
	Indeed, for x P P sub pSq, for each k 1 P t1, ..., k ´1u, x r s k 1 ,c s l cannot be 1 if

Table 5 :

 5 Instance characteristicsThe ramp-constrained MUCP instances considered are the same as in the non-ramp-constrained case, with additional ramp characteristics RU j "

	P j max	´P j min 3	, RD j "	P j max	´P j min 2	and SU j "

Table 9 :

 9 Performance indicators relative to the comparison of symmetry-breaking techniques for ramp-constrained MUCP instances with n " 20 solves 17 instances to optimality while LF px, uq only solves 15, the best average CPU time (962 seconds) is still achieved by LF px, uq, as average F px, u, zq CPU time is 1262 seconds.

Table 10 :

 10 Performance indicators relative to the comparison of symmetry-breaking techniques for ramp-constrained MUCP instances with n " 30

the ramp-constrained problem on pn, T q " p60, 48q and F " 2 instances. Thus, smaller instances with pn, T q " p20, 48q, p20, 96q and pn, T q " p30, 48q, p30, 96q, respectively, are also presented in Tables 9 and10.

Formulation Intpr yq is still the less efficient formulation. It does not solve to optimality any instance with n ą 20 except one. Moreover, on n " 30 instances, and on pn, T q " p60, 96q instances, the root node cannot be processed at all within the time limit for formulation Intpr yq; the number of nodes explored is 0 and the optimality gap is 100%.

On instances of size pn, T q " p60, 48q, formulation F px, u, zq is the most efficient, as it solves to optimality a larger number of instances than the other techniques do. Formulations LF px, uq and W px, uq performs also well in this context. For example, for F " 3, F px, u, zq (resp. LF px, uq, resp. W px, uq), solves 14 (resp. 8) instances to optimality, while formulations F px, uq and Intpr yq only solve 1 to optimality. Interestingly on pn, T q " p60, 48q, F " 4 instances, even if F px, u, zq Table 8: For each triplet pn, T, F q, comparison of formulations F px, uq and LF px, uq on the subset of non-ramp-constrained MUCP instances that are solved within the time limit in both settings applicable as the solution subsets considered can capture the specific conditions under which the symmetries hold. Experimental results on MUCP and GCP instances show that sub-symmetrybreaking significantly improves on symmetry-breaking only. Thus, perspectives are to apply the proposed framework to other problems featuring subsymmetric solution subsets such as covering problems, or bin packing variants where one item can be placed in multiple bins.

Last but not least, it would be useful to study how the presented framework could be automated, so that sub-symmetric subsets are automatically detected and variables z automatically constructed. 

Instances