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Vortex-induced vibration prediction via an
impedance criterion

D. Sabino1,†, D. Fabre1, J. S. Leontini2 and D. Lo Jacono1

1Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS,
Toulouse, France

2Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia

The vortex-induced vibration of a spring-mounted, damped, rigid circular cylinder, 
immersed in a Newtonian viscous flow a nd c apable o f m oving i n t he direction 
orthogonal to the unperturbed flow i s i nvestigated f or R eynolds n umbers R e i n the
vicinity of the onset of unsteadiness (15 6 Re 6 60) using the incompressible linearised 
Navier–Stokes equations. In a first s tep, w e s olve t he l inear p roblem c onsidering an 
imposed harmonic motion of the cylinder. Results are interpreted in terms of the 
mechanical impedance, i.e. the ratio between the vertical force coefficient a nd the 
cylinder velocity, which is represented as function of the Reynolds number and the 
driving frequency. Considering the energy transfer between the cylinder and the fluid, 
we show that impedance results provide a simple criterion allowing the prediction of 
the onset of instability of the coupled fluid-elastic s tructure c ase. A  g lobal stability 
analysis of the fully coupled fluid/cylinder s ystem i s t hen p erformed. T he instability 
thresholds obtained by this second approach are found to be in perfect agreement 
with the predictions of the impedance-based criterion. A theoretical argument, based 
on asymptotic developments, is then provided to give a prediction of eigenvalues of 
the coupled problem, as well as to characterise the region of instability beyond the 
threshold as function of the reduced velocity U∗, the dimensionless mass m∗ and the 
Reynolds number. The influence o f t he d amping p arameter γ  o n t he i nstability region 
is also explored.

Key words: vortex shedding, parametric instability, flow–structure interactions

1. Introduction
Flows over bluff bodies are often encountered in a natural environment as well

as in many engineering applications. For the canonical flow past a circular cylinder,
it is now well established that the two-dimensional symmetric flow undergoes a
global instability at a critical Reynolds number of Rec ≈ 47, via a supercritical
Hopf bifurcation (Provansal, Mathis & Boyer 1987; Dušek, Le Gal & Frainié 1994).
This bifurcation is at the origin of the onset of the time-periodic vortex shedding
phenomenon.

† Email address for correspondence: diogo.ferreirasabino@imft.fr



One of the consequences of the vortex shedding phenomenon is the dramatic
increase of the drag force, due to the low base pressure on the rear of the body.
The unsteadiness in the wake may excite resonant structural vibrations, thus causing
fatigue failure, early deterioration of the materials and consequent safety problems.
These vibrations are driven by the fluctuations in the lift and drag forces acting on the
body surfaces. Consequently, a coupling between the motion of the structure and the
flow, commonly referred as fluid–structure interaction or flow-induced vibration, must
be taken into account when studying the vortex shedding phenomenon. In particular,
when the coupling between the structure and the flow leads to the cylinder oscillating
with the same frequency as the vortex shedding, high-amplitude vortex-induced
vibration (VIV) occurs. Further details about the VIV phenomenon are given in the
reviews of Griffin, Skop & Koopmann (1973), Parkinson (1989) and Williamson &
Govardhan (2004).

All these features are fundamentally linked to instability mechanisms that arise
above a critical Reynolds number, Rec, denoted as a supercritical regime, where the
coupled fluid–structure system becomes unstable, leading to an unsteady flow.

This instability was previously studied by Cossu & Morino (2000) via a linear
stability analysis (LSA) of a system where the cylinder motion was constrained to
oscillate only transverse to the free stream (1DOF). This study argued that the critical
Reynolds number may decrease to less than a half of the Rec associated with the
fixed-case cylinder, when the mass ratio parameter is small. Subsequently, Buffoni
(2003) carried out an experimental study showing that the unsteady vortex shedding
could be triggered at Reynolds numbers as low as Re = 25 by forcing the cylinder
displacement in the crosswise direction (1DOF) at certain frequencies and amplitudes.
Later, a transverse and in-line vibration (2DOF) was investigated by Mittal & Singh
(2005), showing that vortex shedding and VIV could be found for Reynolds numbers
as low as Re = 20 for certain values of mass ratio and natural frequency of the
coupled spring system. Furthermore, similar conclusions were made by Meliga &
Chomaz (2011) using a 2DOF asymptotic expansion approach and by Zhang et al.
(2015) using a 1DOF reduced-order model approach. Subsequently, a study of the
lock-in regime (match of the wake vortex mode and body oscillation frequencies) was
conducted by Navrose & Mittal (2016) using a 1DOF global LSA, and the subcritical
regime of the 1DOF cylinder was studied by Kou et al. (2017) using a dynamic
mode decomposition.

The forced cylinder configuration, where the motion of the body is externally
controlled, has also been extensively studied. The pioneering work on this area was
first accomplished by Bishop & Hassan (1964) and Feng (1968). This work was
followed by the investigations of Williamson & Roshko (1988) where the ‘lock-in’
regions are studied. Karniadakis & Triantafyllou (1989) also studied a forced cylinder
configuration at low supercritical Reynolds numbers. The connection between the
coupled and forced configuration has also been investigated, for example, in Morse &
Williamson (2006), Morse & Williamson (2009a) and Morse & Williamson (2009b).
A review on vortex-induced vibrations of isolated circular cylinders was presented in
Bearman (2011).

This study is presented in the framework of hydrodynamic instabilities, with
the focus on the characterisation of the flow behaviour by a global linear stability
approach at a Reynolds number, Re, near the bifurcation where the flow transits from
a steady equilibrium state to an unsteady periodic state. When cylinder displacement
is allowed, this phenomenon no longer occurs at Rec ≈ 47. Instead, the bifurcation is
expected to occur at lower Re and can possibly be triggered by a different mechanism
from the classical one encountered in the fixed cylinder case.



The objective of the present study is to fully characterise this transition for a
spring-mounted cylinder and predict it with an impedance criterion, as well as to
use an asymptotic development based on the forced case to predict the eigenvalue
behaviour of the coupled case for both subcritical and supercritical regimes, i.e. cases
at Re below and above the threshold value. Recently, a similar reasoning based on
the acoustic impedance was also successfully applied to the oscillating flow through
a circular hole in a thick plate Fabre et al. (2020).

The cylinder instability is therefore first investigated by analysing the case where
the cylinder is forced to oscillate sinusoidally transverse to the free stream direction
for Reynolds numbers 15 < Re < 60. The results are then treated in terms of the
impedance, the ratio between the vertical force coefficient and the cylinder velocity.
The impedance is closely related to the definition of energy transfer between the fluid
and the cylinder, enabling the forced and coupled cases to be linked at the marginal
energy transfer point and in its vicinity. Following this, the coupled case is analysed,
by modelling the 1DOF motion with a damped spring–mass equation. Linear stability
analysis is carried out around the steady equilibrium state, and the stability of this
state is determined based on the eigenvalues of the linearised problem for several
(Re, m∗, U∗, γ ) arrangements. The results of the coupled case are then compared
with the impedance-based predictions from the forced case, both for subcritical and
supercritical flow regimes.

2. Mathematical formulation
2.1. Fluid formulation

A Cartesian coordinate system is used with its origin at the centre of the cylinder,
which travels with the cylinder motion. The ı̂-axis is considered parallel to the
streamwise direction, whereas the ̂ -axis points laterally, as depicted in figure 1(a).
The spatial and temporal domains are represented by Ω ∈R2 and [0, T], respectively.
Following the formulation of Mougin & Magnaudet (2002), which consists of
expressing the absolute velocity u in the relative frame moving with the cylinder,
the flow around the cylinder can be described by the non-dimensional laminar
incompressible Navier–Stokes equations, defined as

∂tu+ ((u− ζ̇ ̂) · ∇)u=−∇p+ 2Re−1
∇ · D(u), (2.1a)

∇ · u= 0, (2.1b)

on Ω × [0, T], where D(u) def
= 1/2(∇u+∇uT) is the rate-of-strain tensor, p the static

pressure, ρf the fluid density and ζ the instantaneous cylinder displacement. The
Reynolds number Re is defined as Re = DU∞/ν, where D is the cylinder diameter,
U∞ the upstream unperturbed velocity and ν the kinematic viscosity.

The domain limits are depicted in figure 1(b). To take advantage of the problem’s
symmetry, a half-domain representation is implemented with the proper boundary
conditions on the axis in order to obtain the symmetric or anti-symmetric (periodic)
solutions. The remaining boundary conditions are posed as

u=−ζ̇ ̂ on Γcy, (2.2a)
u=U∞ ı̂ on Γin ∪ Γlat, (2.2b)

[−∇p+ 2Re−1D(u)] · n= 0 on Γout, (2.2c)

with n the outward unit normal to the boundary.





ω is the complex eigenvalue. The base flow qb is the solution of the time-independent
version of the Navier–Stokes equations, which are detailed in appendix B.

Similarly, the cylinder velocity ζ̇ (t) and the dimensionless force Cy(t) will be
expressed under the same ‘eigenmode form’

ζ̇ (t)= ε
ˆ̇ζ e−iωt

+ c.c.
2

, Cy(t)= ε
Ĉy e−iωt

+ c.c.
2

. (2.6a,b)

The eigenmode ansatz (2.5) and (2.6) will be used for both the forced and the
coupled problems, so that a difference in the ω can be interpreted as follows.

(i) For the forced problem, ω is the frequency of the imposed motion of the cylinder
and will generally be considered as real (and noted ω≡ωF).

(ii) For the coupled problem, on the other hand, ω is the eigenvalue and is generally
expected to be a complex number (ω = ωr + iωi). Note that the imaginary part
ωi corresponds to the amplification rate, and its sign defines whether the solution
decays or grows over time, representing a stability criterion of the eigenmode.

2.3.1. Linearised forced problem
For the forced problem, q̂ will be noted q̂F and the linearised Navier–Stokes

equations can be set under the following form:

(Aff − iωFBff )q̂F =
ˆ̇ζFY , (2.7)

where Aff and Bff are the fluid and mass operators and the operator Y represents
the effect of the cylinder motion on the fluid (which appears both as a volumetric
term in the Navier–Stokes equations and in the boundary conditions). The weak form
expressions for these operators are given in appendix B.

Once this problem is solved, the vertical force coefficient can be extracted as Ĉy=

L(q̂F) where L is the ‘vertical force coefficient’ operator, also defined in appendix B.
The mechanical impedance Z(ωF) can now be defined as the ratio between vertical
force coefficient amplitude and the cylinder velocity amplitude

Z(ωF)=−
Ĉy

ˆ̇ζ
=

Ĉy

iωF ζ̂
. (2.8)

As shown in the next sections, the concept of impedance provides a useful way to
characterise the problem in both the forced case and the coupled case. Moreover, it
provides a link with problems in electricity and acoustics where such a concept is
widely used. In particular, the real and imaginary part of the impedance (Z= Zr+ iZi)
can be identified with the resistance and reactance, respectively.

Note that, for the forced case, the mechanical impedance can be formally defined
as Z(ωF) = −L(q̂F)[(Aff − iωFBff )q̂F]

−1 · Y , so the computation of this quantity after
discretisation of the operators is straightforward.

2.3.2. Linearised coupled problem
In the coupled problem, the one-way coupling between fluid and the cylinder

structure is still represented by (2.7) (with a generally complex ω instead of the real
ωF), but the cylinder displacement ζ̂ is now related to the vertical force coefficient
Ĉy through the dynamical equation (2.3). The whole set of equations can now be



ˆ̇ ˆ̈ζwritten in eigenvalue form considering the state vector q̂CP = (q̂, ζ̂ , ζ , )T as follows:

(A− iωB)q̂CP = 0, (2.9)

with

A=


Aff 0 −Y 0
0 0 1 0
0 0 0 1

2
πm∗

L −

(
2π

U∗

)2

−
4πγ

U∗
−1

 and B=

Bff 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 . (2.10a,b)

3. Energy considerations
3.1. Linking energy transfer and impedance

Following the work done by Morse & Williamson (2009b) and Navrose & Mittal
(2016), the net energy transfer from the fluid to the cylinder, over a period T , can
be defined as

Etransfer =

∫ T

0
[Cy(t)ζ̇ (t)] dt. (3.1)

Considering a forced problem (with a real ωF) with displacement ζ (t) and
dimensionless force Cy(t) given by (2.6), the integration over one period (T = 2π/ωF)
leads to (see appendix A)

Etransfer =−π|ζ̂ |2ωFZr(ωF). (3.2)

The property of Etransfer being positive for some real value of ωF has been proposed
by Morse & Williamson (2009b) as an instability criterion for the fully coupled
problem. This criterion is usually expressed in terms of the phase shift φ between
the vertical force coefficient and the cylinder displacement

Etransfer > 0 ⇐⇒ φ = arg(Ĉy/ζ̂ ) ∈ [0,π]. (3.3)

The concept of impedance introduced in the previous section, allows to express this
instability criterion in an alternative form

Etransfer > 0 ⇐⇒ Zr(ωF) < 0 for some real ωF. (3.4)

This second expression makes sense when recalling that the real part of the impedance
is analogous to an electrical resistance; indeed the possibility of negative resistance
is a well known source of instability in electrical circuits (see Conciauro & Puglisi
1981).

3.2. Link between forced and coupled problems
Although the criterion discussed in the previous section is physically intuitive, it is
not totally rigorous as it uses the impedance computed for some real frequency ωF

to predict an instability, which corresponds to a solution of the coupled problem with
some complex ω. The situation can be clarified when considering the impedance



defined by (2.8) as an analytical function of the complex variable ω. Plugging this
definition into the dynamical equation (2.3) leads to the following expression:

−ω2
−

4πγ iω
U∗

+

(
2π

U∗

)2

−
2iωZ(ω)

πm∗
= 0. (3.5)

Mathematically, the eigenvalues of the coupled problem (2.9) correspond to the
complex zeros of this constitutive relation. The objective of this section is to derive
a prediction of these eigenvalues as a function of the most easily computed and
physically meaningful values of Z along the real ω-axis (i.e. based on the forced
problem).

We first note that a condition for the existence of purely real solutions of the
relation (3.5) is that the damping rate is zero (γ = 0) and the impedance is purely
imaginary (Zr = 0). This leads to the assumption of the existence of nearly real
solutions in the asymptotic limit corresponding to the following hypotheses:

|Zr| � |Zi|, (3.6a)
γ � 1. (3.6b)

Under these hypotheses it is relevant to look for nearly real eigenvalues with the form

ω=ωF +ω
(1), with |ω(1)| � |ωF| and ωF ∈R. (3.7)

Introducing these hypotheses into equation (3.5) and performing a Taylor development
in terms of the quantities assumed small leads to[

−ω2
F +

(
2π

U∗

)2

+
2ωFZi(ωF)

πm∗

]

+

[
−2ωFω

(1)
−

4πγ iωF

U∗
+

2ωF

πm∗

(
−
∂Z
∂ω

∣∣∣∣
ω=ωF

iω(1) − iZr(ωF)+
Zi(ωF)ω

(1)

ωF

)]
+ h.o.t.= 0, (3.8)

where h.o.t. denotes the higher-order terms neglected in the development. Inspection
of this expression leads to the following conclusions.

(i) Firstly, the leading-order term (term in the first line) defines an implicit, and
possibly multivalued expression when considering ωF as a function of U∗ and
m∗. However, it is explicit and particularly simple when solving for U∗ in terms
of ωF and m∗,

U∗ =

√√√√√ 4π2

ωF

(
ωF −

2
πm∗

Zi(ωF)

) . (3.9)

(ii) Secondly, the first-order term (term in the second line) leads to an explicit
expression for the first-order correction to the frequency ω(1) as follows:

ω(1) =−i
Zr(ωF)+

2π2γm∗

U∗

πm∗ −
Zi(ωF)

ωF
+ i

∂Z
∂ω

∣∣∣∣
ω=ωF

. (3.10)



The imaginary part of this expression directly provides an estimation of the
growth rate as function of γ , m∗ and U∗ (using the implicit definition of ωF

given by (3.9)).

The condition on the imaginary part of the frequency, Im(ω(1)) > 0, thus provides
an improved version of the instability criterion compared to the one discussed in
the previous subsection, equation (3.4). One can note that in the absence of damping
(γ = 0), the criterion reduces to Zr(ωF) < 0 provided that the real part of the
denominator is positive. As it will be seen in § 6.3, if this latter term changes sign,
the asymptotic prediction may lead to erroneous predictions, but the latter are easily
identified as being out of the range of application of the asymptotic theory.

4. Numerical formulation

The numerical approach is based on a finite element method. All the equations
solved in the paper are first rewritten in a variational formulation and then spatially
discretised via a Delaunay–Voronoi algorithm, generating an unstructured triangular
mesh, adapted with an automatic procedure to a given field. This adaptation relies on
the AdaptMesh procedure of the FreeFem++ software (see, for instance Hecht (2012)).
An adaptation via the structural sensitivity (Giannetti & Luchini 2007), calculated via
the solutions of the direct and adjoint eigenproblems (see Fabre et al. 2018) was used,
in order to adequately discretise the wake region in the rear of the cylinder. The mesh
validation for the same configuration is detailed in Fabre et al. (2018).

The unknown velocity and pressure fields (u, p) were spatially discretised using
the classical Taylor–Hood basis (P2, P2, P1) in order to satisfy the Ladyzhenskaya–
Babuška–Brezzi (known as LBB) condition (see, for instance, Brezzi & Fortin (1991)).
All the discrete matrices resulting from the projection of the variational formulations
onto the basis of finite elements were built with the FreeFem++ software and
handled using the MUMPS library, performing a direct LU inversion. The loop over
the parameters and data treatment were performed using the Matlab drivers of the
StabFem project (https://gitlab.com/stabfem/StabFem).

For the forced regime system described in (2.7), the solution is readily computed by
inverting the matrix system and multiply it by the forcing term. On the other hand,
the linear stability problem results in a generalised eigenvalue problem, which was
solved via a shift-and-invert method, a particular case of the Arnoldi method. This
strategy allows eigenvalues to be obtained in the vicinity of some given complex
shift. Influence of the choice on the adaptation field (and therefore spatial resolution),
confinement due to the domain size and sensitivity to the boundary conditions has
already been reported in Fabre et al. (2018).

5. Linear forced results
5.1. Validation

The results for the linear forced case, described in the following, are treated in terms
of the real and imaginary parts of the impedance Z(ωF) as a function of the prescribed
oscillation frequency represented by the Strouhal number StF = ωFD/(2πU∞) (see
figure 2). For validation the linear forced results are compared to fully nonlinear direct
numerical simulations (DNS) performed using a spectral-element code. This method
is described in detail in Karniadakis & Sherwin (2005), and the implementation used
here follows that described in Thompson, Hourigan & Sheridan (1996). Previous
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FIGURE 2. Components of the impedance as a function of the imposed oscillation
frequency for (a) Re= 15, (b) Re= 25 and (c) Re= 35. Linear forced results are shown
with a solid black line (——), as well as DNS results for |ζF| = 0.2 (dotted-dashed blue
line - · - · -), |ζF| = 0.02 (dashed blue line – – –) and |ζF| = 0.002 (dotted red line · · · · · ·).
The convergence of the DNS results to the linear results with decreasing amplitude is clear
for the Re= 25 case shown in (b). The light and dark grey zones represent the first and
second instability zones, respectively, according to the Nyquist arguments.

studies using this code for oscillating and coupled vibrating cylinders include Leontini
et al. (2006a), Leontini, Thompson & Hourigan (2006b) and Leontini et al. (2018).

The main parameter that dictates the validity of the comparison between the linear
and nonlinear results is the amplitude of the imposed oscillation, which must be
small enough to respect the linear hypothesis. The comparison between different
imposed amplitudes for the same range of StF at Re= 25 is presented in figure 2(b),
for Zr(ωF) and Zi(ωF). As the amplitude decreases, the DNS solution approaches the
linear solution. The results for the two smaller amplitudes give almost the same results,
confirming that the considered displacement amplitude is small enough. Another two
DNS simulations were carried out at Re= 15 and Re= 35 for |ζF| = 0.002. Further,
one can see from the plotted data that as Re increases, the DNS results tend to more
accurately match the linear forced results.

5.2. Instability thresholds established using linear forced oscillations
A presentation of the main results for the linear forced case can be seen in figures 2
and 3(a). The latter sketches the results in a Nyquist diagram (Zr versus Zi). Two
instability zones are highlighted and discussed in the following paragraphs.

The first interesting phenomenon occurs at Re=Rec1=19.915 (shown with the solid
green curve, figure 3a) where the sign of Zr first becomes negative at StF,c1 = 0.104,
indicating a positive energy transfer from the fluid to the cylinder. The limit condition
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FIGURE 3. (a) A Nyquist diagram plotting the real and imaginary components of the
impedance for the forced results. Each curve represents a constant Re, StF progresses along
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violet line ——); Re= 55 (dotted-dashed blue line - · - · -). The light and dark grey zones
represent the first and second instability zones, respectively. (b) A comparison of the
eigenvalues calculated from the coupled case for the fluid mode (FM) for U∗ → 0 at
m∗= 1000, and those from the fixed-case cylinder (from Giannetti & Luchini (2007) noted
GL07). The grey zone represents the unstable region.

can be written as

At Re= Rec1, ∃ StF ∈R+ | Zr(StF)= 0, (5.1)

and this is represented on the plot as the lighter grey region.
The second interesting phenomenon occurs at Re= Rec2 = 30.349 (shown with the

dashed red curve, figure 3a) with the curve that passes exactly through the origin of
the Nyquist diagram, indicating that a forcing frequency exists where the impedance
is exactly zero. The limit condition for this point can be written as

At Re= Rec2, ∃ StF ∈R+ | Z(StF)= 0, (5.2)

and the region where simultaneously Zr is negative and Zi is positive is represented
by the darker grey region. The classical Nyquist criterion then states that this value
of Rec2 presents a lower bound for values of Re that can produce a positive value
of Zi – for values of Re beyond this, the Nyquist curve will encircle the origin in
an anticlockwise direction. An upper bound exists for this behaviour, Rec3, which
is explained below. Physically, the condition Z(StF) = 0 implies that there exists a
solution of the linearised problem in which the value of Cy,F is zero and therefore,
following equation (3.1), the energy transfer between the forced case cylinder and the
flow will also be zero.

The third critical phenomenon occurs at Re= Rec3 = 46.766 (shown with the solid
purple curve, figure 3a). At this Re the steady base flow becomes hydrodynamically
unstable. This means that perturbations are expected to grow even in the absence of
any forcing, i.e. at a certain StF one will have Z(StF)→∞ and therefore ˆ̇ζ→ 0. One
observes that the curve tends to infinity, with the limit condition written as

at Re= Rec3, ∃ StF ∈R+ | Z(StF)=∞. (5.3)



For Re> Rec3, the flow is predicted to be unsteady, regardless of the frequency and
energy transfer characteristics of a small-amplitude harmonic forcing.

So, the results presented in the Nyquist diagram of figure 3(a) can be interpreted as
follows. For Re>Rec1= 19.915, there is a range of forcing frequencies which results
in a positive energy transfer to the cylinder and therefore the flow is predicted to be
unstable. For Re>Rec2=30.349, there is a range of forcing frequencies that produce a
positive imaginary component of the impedance Zi within the unstable zone Zr<0. For
Re> Rec3 = 46.766, the flow is unstable regardless of the form of any linear forcing.

6. Linear results for the coupled problem

The results for the coupled problem, described in the following, are analysed
in terms of the eigenvalue ω and its variation with the problem’s parameters,
(Re, m∗, U∗, γ ). The value of the damping ratio γ will be considered to be zero
throughout the following analysis, with the exception of § 6.6. The impedance-based
predictions from the forced case at the leading order and at the first order are
compared with the results of the LSA both for subcritical and supercritical regimes.

6.1. Eigenmode classification and behaviour

As reported in Cossu & Morino (2000), Meliga & Chomaz (2011) and Navrose
& Mittal (2016) (the latter will hereinafter be denoted as NM16), the coupled
transverse cylinder motion introduces two complex-conjugate eigenvalues to the
physical spectrum and therefore two eigenmodes, referred to as a fluid mode and a
structural mode (EM), as proposed in NM16. This is in contrast to the fixed case,
where only FM can be found.

The classification of the two modes found in the coupled moving cylinder case
is divided according to their nature and relation. This identification is based on the
eigenmode characteristics in the limit of very large m∗ since for this case, the flow-
induced vertical force becomes very small compared with the structural ones and the
fluid–structure interaction drops to negligible levels (Meliga & Chomaz 2011).

On one hand, the real part of the eigenvalue associated with the EM tends to the
natural angular frequency of the cylinder system, i.e. 2π/U∗ ≡ ωN and the mode
behaves similarly to a cylinder oscillating in vacuo. Further, the imaginary part of the
eigenvalue tends to zero, matching this latter behaviour.

On the other hand, the eigenvalue associated with the FM tends to the leading
eigenvalue computed for the fixed case, i.e. the mode behaves similarly to the modes
in the fixed cylinder case.

However, for relatively low m∗ the distinction between FM and EM is not possible,
since eigenvalues may coalesce for certain combinations of (Re, U∗, m∗), especially
for lower m∗ or when Re → 46.7. The two leading eigenmodes do not exhibit a
clear distinction in terms of their affiliation to being either a FM or a EM. They
are therefore referred as coupled modes and, following NM16 nomenclature, they are
denoted as fluid-elastic mode 1 (FEM1) and fluid-elastic mode 2 (FEM2). Further at
Re>Rec3, for small U∗, the FEM1 resembles to the FM, whereas the FEM2 is similar
to the EM. However, for large U∗, the characteristics of FEM1 and FEM2 resemble
the EM and the FM, respectively. For Re6Rec3, the inverse reasoning can be applied
and can easily be confirmed in the figures of the following sections.
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6.2. Validation
The validation of the results is first done by comparing the results with the fixed-case
cylinder, a classical case of hydrodynamic instability. For that purpose, results are
obtained for U∗→ 0. This asymptotic approach constrains the spring stiffness to
large values, k → ∞ while m∗ remains finite. It is first noted that the real part
of the eigenvalue associated with the EM tends to infinity, for all Re, as expected
for the natural frequency of the structure-only system, 2π/U∗. These singularity
configurations were intensively studied in Fabre, Assemat & Magnaudet (2011).
The attention of the present study is rather focused on the behaviour of the FM.
The imaginary and real parts of the eigenvalue associated with the FM show a good
agreement when compared with the fixed case results, reported in Giannetti & Luchini
(2007), as shown in figure 3(b).

The results are also compared with data from NM16 and from Zhang et al. (2015)
(hereinafter denoted as ZLYJ15). Figure 4 shows the real and imaginary parts of the
eigenvalue variation as a function of U∗ = [3, 11] for Re = 60 and m∗ = {5, 20}.
Real parts are sketched in terms of StLSA = ωr/2π. One can notice that the StLSA
associated with the FM remains nearly constant, similar to the StLSA associated with
the fixed case, for all values of U∗. Further, one notes that the growth rate of the most
unstable mode is maximum within the U∗ range where the frequencies of the two
modes are close to each other. This is observed both in this case as in the following
ones in the next sections. While the real part presents no difference when comparing
the present study and the cited references, the imaginary part of the eigenvalue shows
a discrepancy between all sources. Although there is a qualitative match of the results,
their values do not agree. However, the present study shows an ωi at U∗ = 3 that
is close to the fixed-case cylinder value for the same Re, depicted in figure 3(b),
although this is not verified by the values from NM16 or ZLYJ15. Further, the present



LSA results are compared with the impedance-based predictions in the next section,
showing a good agreement where the asymptotic theory is valid.

One of the possible causes associated with these differences could be the
computational resolution. On one hand, NM16 used a stabilised finite element
method based on streamline-upwind/Petrov–Galerkin (known as SUPG) and pressure-
stabilizing/Petrov–Galerkin (known as PSPG) techniques (Navrose & Mittal 2016). On
the other hand, ZLYJ15 used a reduced-order model of the unsteady Navier–Stokes
equations in a finite-volume formulation coupled with the structural motion equations.
Both methods differ from that implemented here and could be the cause of the
discrepancy. Since the influence of the mesh refinement, boundary conditions and
domain size was already explored in the present investigation (see Fabre et al. 2018),
the latter does not seem to be the source of error.

It is clear that, for Re= 60, an eigenvalue for which ωi is positive will always exist
at any reduced velocity. For the purpose of identifying the stable and unstable zones,
a different analysis was carried out at lower Re values which is explored in §§ 6.4
and 6.5.

6.3. Comparison with impedance-based asymptotic predictions
The eigenvalues computed by resolution of the coupled eigenvalue problem are
compared with the asymptotic predictions of § 3.2 in figure 5. Figure 5(a) considers
the case Re = 60, m∗ = 20. In this case, already considered in figure 4(a,c), the
FM and the EM are distinct, and the asymptotic prediction accurately follows the
eigenvalue of the EM. For Re = 60, m∗ = 5 (figure 5b), a situation close to that in
figure 4(b,d) and characterised by coupled modes FEM1 and FEM2, it is observed that
the asymptotic prediction first follows the FEM2 branch and then abruptly switches
to the FEM1 branch. The same pattern is observed for Re= 60,m∗ = 0.1 (figure 5c),
but the asymptotic prediction displays an abrupt behaviour at the transition, which
does not fit with the stability results. Still, the prediction correctly reproduces the
behaviour in the vicinity of the thresholds.

Consider now the situation for Re = 42, a value located below the threshold
Rec3 ≈ 46.7. In this case, numerical results only provide a single unstable eigenmode
(noted EM or FEM2), and a stable mode (noted FM, when corresponding to the fluid,
or FEM1). For m∗ = 20 (figure 5d), the impedance-based prediction asymptotically
fits the EM branch around the linearisation value. Note that in this case, the ωF −U∗
relation defined by (3.9) is multivalued in the range U∗ ∈ [9.640− 9.729]. The zoom
detail in the figure shows that the asymptotic prediction still correctly fits in the
vicinity of the neutral curve but quickly departs from it.

The case Re = 42, m∗ = 5 (figure 5e) is even more complicated. In this case, the
asymptotic prediction is multivalued in the range U∗ ∈ [10.478 − 16.147] and the
corresponding amplification rate crosses the horizontal axis four times (identified with
circles in the figure). The results obtained by resolution of the coupled eigenvalue
problem are comparatively much simpler, with a single unstable FEM2 branch in the
range U∗ ∈ [5.304 − 11.043]. Note that both these values are correctly predicted by
the asymptotic analysis. On the other hand, the thresholds predicted by the asymptotic
prediction at U∗ = 10.539 and U∗ = 16.110 do not fit with any results. Inspection
shows that these values correspond to a change of sign of the real part of the
denominator in (3.10), while the numerator Zr is large. Hence, in these ranges the
asymptotic prediction is used far away from its starting hypothesis in (3.6), which
explains why it does not fit with any physical results.
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Finally, for Re= 42, m∗ = 0.1 (figure 5f ) the numerically computed branch FEM2
is unstable in the range U∗ ∈ [1.270 −∞]. Note that in this case there is no upper
threshold for restabilisation. The asymptotic prediction displays the same behaviour,
but the predictions does not fit at all with stability results for large U∗. Again this
range is far from the range of application of the asymptotic theory. Note finally that
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the asymptotic prediction is multivalued in the range U∗= [1.304− 1.355]. The zoom
detail in the plot shows that the threshold obtained at U∗= 1.270 (which corresponds
to a zero of Zr) matches with the lower threshold of the stability results, while the
two others (which correspond to a change of sign of the real part of the denominator
in (3.10)) are incorrect predictions.

6.4. Instability map: Re–U∗ plane
The goal of the following section is to identify the stable and unstable zones in the
Re–U∗ plane, for a fixed mass ratio. By determining the limiting curve where the
amplification rate is zero, the region of the parameter space where the cylinder is
predicted to vibrate (unstable) can be delineated from the region where the flow is
predicted to be steady (stable).

For this purpose, an LSA was carried out over a wide range of reduced velocity
U∗, for several values of Re and at a fixed m∗. The values of U∗ for which ωi = 0,
for different values of Re, for constant values of m∗ = 50 and m∗ = 4.73 are first
plotted in figures 6(a) and 6(b), respectively. The results are compared with those from
Kou et al. (2017) and the impedance-based predictions at the leading order, observing
a very good agreement between results. The unstable zone starts at Rec3 for lower
U∗ values and tends to a fixed value when U∗→∞. This asymptotic value tends to
decrease as m∗ decreases. Therefore, for high values of m∗, the curve will tend to Rec3

(figure 6a), whereas for low values of m∗, the curve tends to Rec2 (figure 6b).
This behaviour is confirmed in figure 7, where the instability threshold is plotted for

a very low mass ratio of m∗= 0.1. Again, a very close match is observed between the
predictions from the linear stability analysis and the impedance-based criterion from
the forced case. Also marked on the plot with a dashed line is the value of Rec2,
which shows that the threshold for instability approaches this value as U∗ increases.

This can be explained by considering that for high masses, the oscillation frequency
will be similar to the natural structural frequency, and the imaginary component of the
impedance Zi will have little effect on the value of U∗ (as shown in (3.9)) and on the
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growth. Conversely for lower m∗, Zi will impact the dynamics, hence the threshold
Rec2 where the change of sign of Zi plays a role. A similar reasoning can be used to
explain the influence of the damping ratio γ presented below in § 6.6.

Lastly, the instability threshold curves for the limit cases m∗ →∞ and m∗ → 0
were computed using the impedance arguments at the leading order and are depicted
in figure 8. One can see that for high values of mass ratio, the instability threshold
curve tends to be the same in the Re–U∗ plane (figure 8a). On the other hand, as m∗

tends to zero, a relation in the plane Re−U∗/
√

m∗ is found (figure 8b).
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6.5. Instability threshold at Re≈ 20
The following analysis is carried out at lower Re, fixing m∗ and varying U∗.
When decoupled, the eigenvalues associated with the FM always present a negative
amplification rate. When coupled, the eigenvalues of one of the modes also obeys
this observation (namely the FEM1). The objective is then to determine for which Re
the EM (or the other coupled mode, FEM2) presents an eigenvalue with a positive
amplification rate and the value of U∗ at which this occurs.

The first value of Re for which a positive amplification rate ωi occurs is Re=Rec1=

19.946. Note that this value is very close to the value of Rec1 = 19.915 predicted
via the impedance-based analysis of the linear forced case presented above in § 5.2.
Figure 9(a) shows the amplification rate ωi as a function of U∗ for a series of values
of m∗ for a fixed value of Re=Rec1. It is clear that regardless of m∗, there is a value
of U∗ at the turning point of each curve where the amplification rate is positive and
the flow is predicted to be unstable. It is also clear that the value of U∗ – here dubbed
U∗crit – increases with the increase of the mass ratio. The variation of U∗crit with m∗ is
compared in figure 9(b) with the impedance-based predictions as defined in (3.9) – the
match is almost perfect. Further, the value of U∗c1 tends to U∗c1 = 9.605 as m∗→∞,
which approaches the value predicted for the natural shedding frequency fN of the
fixed cylinder. Indeed, from figure 3(b) one can see that fN = 0.71921/(2π)= 0.1145
at Re= 40, which is close to the present critical frequency f ∗c1 = 1/9.6048= 0.1041.

6.6. Damping factor effect
To this point, all the discussion has been made by supposing γ = 0. This assumption
intuitively sets the amplification rate of the eigenmodes to their highest values, i.e. for
the same set of (Re,m∗,U∗) values, the most linearly unstable mode will be the one
with γ = 0. Any value of γ different from zero will damp the system and render it
‘more stable’.

Here this effect is explicitly investigated by examining the effect of the damping
factor on the first instability threshold, Rec1. A relationship exists between a mass-
damping parameter (the product γm∗) and Rec1 for m∗�1. This relation is sketched in
figure 10 for several mass ratios. For γ = 0 (or zero damping), all the curves converge
to the Rec1 discussed in the previous sections. For high values of γ (or γm∗), the



101100 10210-110-2

40

50

47

30

20

©m*

Rec1

Unstable
region

for m* ≫ 1

m* = 0.1
m* = 10

m* = 1
m* = 100

FIGURE 10. The LSA results on the variation of Rec1 with the product γm∗ for several
values of m∗. The grey zone represents the unstable region for m∗ � 1. The horizontal
dashed lines indicate the Rec2 and Rec3.

threshold tends to a different value of Re depending on the mass ratio, in a similar
way as shown for increasing m∗ for zero damping as presented in § 6.4. For m∗� 1,
the threshold tends to the value of the fixed-case cylinder, i.e. Rec1→ Rec3. As the
mass ratio decreases, the asymptotic value of Rec1 also decreases until it reaches the
value of Rec2 for m∗ � 1, i.e. Rec1 → Rec2. In conclusion, it can be said that the
damping removes energy from the system, and hence the instability is only triggered
at a higher Re.

7. Conclusions
This paper describes the stability of the flow past an elastically mounted cylinder,

focussing on the transition from a steady flow to an unsteady one. Two methods have
been described and compared, one using a linear stability analysis of the fully coupled
fluid–structure system, and another investigating the energy transfer and its link to
impedance when the cylinder motion is harmonically forced.

It has been shown that these two cases are intrinsically linked. The fully coupled
system and the harmonically forced system result in the same flow and cylinder
motion only when there is zero energy transfer from the flow to the structure and
the steady flow is marginally stable. Therefore, the direction of the energy transfer
which is linked to the impedance in the forced case can be related to the stability of
the flow in the coupled case.

The results show that the instability could be triggered as low as Rec1 ≈ 20 for a
specific set of parameters. As Re increases, the unstable zone became wider in terms
of U∗ range. For low mass ratios, this range had a branch tending to infinity when
passing Rec2≈ 30. For high mass ratio the singularity appears only at Rec3≈ 47. These
critical values are well-predicted by the impedance-based analysis. The same reasoning
is able to explain the variation of the stability threshold with the damping ratio.

In the vicinity of the marginally stable configurations, the results from the coupled
eigenvalue problem can be predicted by an asymptotic development at first order,
based on the impedance results from the forced case, either at subcritical or
supercritical regimes.



Appendix A. Derivation of the impedance energy relation

This appendix shows the deduction of (3.2). The non-dimensional energy transfer
(or mechanical work) from the fluid to the cylinder, over a time interval [t1 − t2] can
be defined as

Etransfer(t1, t2)=

∫ t2

t1

[Cy(t)ζ̇ (t)] dt, (A 1)

where Cy(t) is the vertical force coefficient and ζ̇ (t) the instantaneous cylinder vertical
velocity. Suppose a normal form for Cy(t) and ζ (t) as presented in (2.6). Let (|ζ̂ |, θ)
and (|Ĉy|, θ + φ) represent the magnitude and argument of ζ̂ and Ĉy, respectively,
where θ is the phase of ζ (t) and φ is the phase angle between the vertical force
coefficient and the cylinder vertical displacement. Equation (2.6) can be rearranged
and written as

Cy(t)=Cy,h(t) eωit with Cy,h(t)= |Ĉy| cos(ωrt+ θ + φ), (A 2a)

ζ (t)= ζh(t) eωit with ζh(t)= |ζ̂ | cos(ωrt+ θ), (A 2b)

where the (•h) subscript identifies the sinusoidal component of the instantaneous signal.
Using the former expressions of Cy(t) and ζ (t), the energy equation (A 1) can be
expanded as

Etransfer(t1, t2)=

∫ t2

t1

[Cy,h(t) eωit(ζ̇h(t) eωit + ζh(t)ωi eωit)] dt, (A 3)

or

Etransfer(t1, t2) = −

∫ t2

t1

[|Ĉy| |ζ̂ |(ωr cos(ωrt+ θ + φ) sin(ωrt+ θ)) e2ωit] dt

+

∫ t2

t1

[|Ĉy| |ζ̂ |(ωi cos(ωrt+ θ + φ) cos(ωrt+ θ)) e2ωit] dt. (A 4)

If the non-dimensional energy transfer over a time period of the cylinder oscillation
Tcycle = 2π/ωr is now considered, then t2 = t1 + Tcycle. If one excludes the exponential
growth/decay of the eigenmode, characterising only a harmonic motion, equation (A 4)
is reduced to

Etransfer,h ≡ Etransfer(t1, t1 + Tcycle)≡

∫ t1+Tcycle

t1

[Cy,h(t)ζ̇h(t)] dt=−π|Ĉy| |ζ̂ | sin(φ). (A 5)

The latter equation shows the important role of the phase angle φ in the control of
the energy transfer between the fluid and the structure. When the coupled cylinder
oscillations have achieved a fully developed state, the energy transferred from the
fluid to the cylinder matches the energy dissipated by the structural damping. If one
considers the structural damping to be zero, energy transfer in the limit cycle is also
zero. Thus, the value of φ can either be 0◦ or 180◦ for the coupled case cylinder
(Morse & Williamson 2009b; Navrose & Mittal 2016).

The impedance concept, introduced in § 2.3.1 and applied to a general case, reads
Z = −Ĉy/

ˆ̇ζ . Developing the former formula, one arrives to a real and an imaginary
part of the impedance given by

Zr=−
|Ĉy|

(ω2
i +ω

2
r )|ζ̂ |

(ωi cosφ−ωr sinφ) and Zi=−
|Ĉy|

(ω2
i +ω

2
r )|ζ̂ |

(ωi sinφ+ωr cosφ).

(A 6a,b)



For a harmonic motion, where ωi = 0, one will have ωr ≡ωF and

Zr(ωF)=
|Ĉy|

ωF|ζ̂ |
sin φ and Zi(ωF)=−

|Ĉy|

ωF|ζ̂ |
cos φ. (A 7a,b)

Introducing the Zr(ωF) expression on (A 5), one arrives at the expression for the
energy transfer over one cycle of oscillation of the purely harmonic case

Etransfer,h =−π|ζ̂ |2ωFZr(ωF), (A 8)

as presented in (3.2) of the present manuscript.

Appendix B. Detail on the linearised Navier–Stokes equations
B.1. Base flow equations

The equations for the base flow are obtained by inserting time-independent state
variable qb = (ub, pb)

T into the Navier–Stokes equations

−
1
2C(ub, ub)−∇pb + 2Re−1

∇ · D(ub)= 0, (B 1a)
∇ · ub = 0, (B 1b)

where C(ub, •) := (ub · ∇) • +(• · ∇)ub is the convection operator. For this problem,
the boundary conditions are defined as

ub = 0 on Γcy, (B 2a)
ub =U∞ ı̂ on Γin ∪ Γlat, (B 2b)

[−∇pb + 2Re−1D(ub)] · n= 0 on Γout, (B 2c)
ub · ̂ = 0∧∇ub · ̂ = 0 on Γaxis. (B 2d)

B.2. Perturbation equations

The equations governing the perturbation q̂ are obtained by setting q = qb +

ε(q̂ exp(−iωt)+ c.c.)/2 in the Navier–Stokes equations and linearising. The cylinder
motion is also taken as ζ̇ = ε( ˆ̇ζ exp(−iωt)+ c.c.)/2. This leads to

−iωû+ C(ub, û)− 2Re−1
∇ · D(û)+∇p̂= ( ˆ̇ζ ̂ · ∇)ub, (B 3a)

∇ · û= 0, (B 3b)

with boundary conditions

û=−ˆ̇ζ ̂ on Γcy, (B 4a)
û= 0 on Γin ∪ Γlat, (B 4b)

[−∇p̂+ 2Re−1D(û)] · n= 0 on Γout, (B 4c)
û · ı̂ = 0 on Γaxis. (B 4d)



B.3. Weak formulation
To set these equations to a form amenable to numerical resolution using a finite-
element method, the test functions uo, po are introduced, associated with the velocity
and pressure. Equations (B 3a) and (B 3b) are multiplied by uo and po, respectively,
and integrated over the domain. The Dirichlet boundary conditions are incorporated by
penalisation, i.e. by multiplying uo · û by 1/ε and integrating along the corresponding
boundaries. The Neumann boundary conditions are naturally taken into account by the
finite-element formulation. After integration by parts of the pressure and viscous stress
terms, this leads to a weak form of the equations that can be defined, for the forced
problem, as

∀ qo
= (uo, po)T, Aff (q̂F, qo)− iωFBff (q̂F, qo)= ˆ̇ζFY (qo), (B 5)

where the bilinear operators Aff and Bff and the linear operator Y are defined as
follows:

Aff (q̂F, qo) =

∫
Ω

[C(ub, ûF) · uo
+ 2Re−1D(ûF) : D(uo)− p̂F∇ · uo

+ p0
∇ · ûF] dΩ

+
1
ε

∫
Γcy∪Γin∪Γlat

uo
· ûF d(Γcy ∪ Γin ∪ Γlat)

+
1
ε

∫
Γax

uo
x ûx,F dΓax, (B 6a)

Bff (q̂F, qo)=

∫
Ω

ûF · uo dΩ, (B 6b)

Y (qo)=

∫
Ω

u0
y ̂ · ∇ub −

1
ε

∫
Γcy

uo
y ̂ . (B 6c)

These operators are also used for defining the coupled problem, as presented in (2.9)
and (2.10). This is followed by the spatial discretisation, described in § 4.

Finally, the ‘vertical force coefficient’ operator is defined as

L(q̂)= 4
∫
Γcy

{(−pn+ 2Re−1D(u) · n) · ̂} dΓcy. (B 7)
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