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Abstract

Bio-colonisation is  shown to  affect  the  ageing of  materials  and the behaviour  of
offshore structures and consequently their resistance to extreme events or fatigue life
time.  It  was  recognized  in  the  70’s  that  bio-colonisation  might  change  the
hydrodynamic loading due mainly to screen and drag effects. Mooring systems and
umbilicals belong to a family of components sensitive to bio-colonisation in general:
abrasion  of  ropes  by  shells,  change  of  dynamic  behaviour  due  to  shape  and
roughness modifications, added mass. However, this stochastic process with time and
space  is  still  unknown  and  knowledge  through  inspections  and  monitoring  is
mandatory.  This  paper  is  presenting  a  first  spatial  model  of  bio-colonisation
thickness along a mooring line and a method for updating this previous model with
sensors.

Our method shows that in calm sea state (with low wave height, with low wind and
current velocities), the monitoring of mooring lines tension can help to assess and
reduce uncertainty on thickness spatial distribution of bio-colonisation.

This paper deals with a simple assessment of bio-colonisation on a catenary mooring
line by accounting for monitoring of tide level, floater’s buoyancy and local tension
at some points along the mooring line. A first analysis will be performed in order to
estimate influence of distance between sensors using conditional entropy metric.

Keywords: mooring lines, bio-colonisation monitoring, sensing efficiency, conditional
entropy metric. 

1. Introduction

Depending on floater’s type, mooring system’s main function is to handle relative
positioning and/or  stability of the floating wind turbine during all  its  lifetime- 25
years  or  more.  But  from  commissioning  -and  even  before,  to  decommissioning,
sources and factors of premature failure are numerous. Figure 1 reminds that fatigue
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and corrosion are the two main degradation mecanisms that affect service life-time of
a mooring line.

The lifetime consumed during limited events in time such as impacts and storms can’t
be accurately predicted. Therefore the core of scientific and engineering works on
mooring lines is to develop methods to reduce uncertainties on the lifetime consumed
by everyday action of waves, current, wind and bio-colonisation in order to estimate
mooring line’s state before a storm for example. But because of latter actions’ high
variability in time and space, deterministic models fail in accurately predicting their
state.  Monitoring  is  therefore  a  valuable  option  to  update  preferred  probabilistic
models.  This  paper  aims  to  reduce  uncertainties  on  one  of  these  actions’ main
parameters: bio-colonisation, through monitoring.

Bio-colonisation is  defined as aggregates of marine organisms (seaweed, sponges,
mussels, oysters, barnacles, anemones, corals, tubeworms…) on offshore industrial
structures [1].
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Figure 1. Sources and factors of premature failure of a mooring line during its life-time

Commissioning

D
ecom

m
issi oning

Storms

Fatigue damages accumulation + ageing of material’s 
properties (due to continuous action of waves, current, 
wind and bio-colonisation).

Corrosion of chains or wearing of synthetic rope) 

impacts, plastic 
deformations… 
during installation

M
an

uf
ac

tu
ri

ng
 

de
fa

ul
ts

Figure 2. Impacting bio-colonisation macro-parameters (Image from
Biocolmar structure)
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Figure 2 presents a pattern observed after one year of growth on Biocolmar structure
of University of Nantes during its inspection. Bio-colonisation macro-parameters are
its thickness and its density. Both can vary in space and  in time along the line. By
increasing  roughness,  external  diameter  and  added  mass,  bio-colonisation  is
increasing  quasistatic  and  dynamic  loads  of  waves  an  current  on  the  line.  By
increasing line’s weight, bio-colonisation is also changing line’s buoyancy. Different
researches foresee:

• a reduction of mooring line’s minimum tension, leading to an increased risk
of “slacking event”[2] (fast tensioning of the line).

• a reduction of line’s buoyancy, accelerating wearing by rubbing with seabed.
• a shift of natural frequencies towards larger periods at which the floater has

larger response amplitudes [3].
• an increase of effective tension’s variance [3].

All  these  effects  are  leading  to  a  decrease  of  mooring  lines’ lifetime  [4]  and  an
increase of uncertainties on damages [5].      

To  quantify  the  benefit  of  monitoring  and  uncertainty  reduction,  an  “a  priori”
probabilistic model of thickness and density spatial distributions along the line has to
be derived from expert knowledge. Thousands of scenarii, constituting an “a priori”
set, could then be generated to be used as inputs in a reliability analysis of mooring
lines. The first step is therefore to validate an “a priori” model of bio-colonisation
thickness spatial distribution along a mooring line.
This “a priori” set has high entropy, which could be understood as a high variability,
due to uncertainties on its  parameters.  Monitoring’s interest  is  then to reduce this
entropy  by giving  indirect  information  about  the  real  distribution.  Thanks  to  this
information an “a posteriori” set of scenarii, included in the “a priori” one, can be
retained. The reliability analysis is then based on this “a posteriori” set, making it
faster and reducing uncertainties on damages. A natural question comes out: how to
compare sensing network efficiency in reducing information entropy of the “a priori”
set ?
To address these key issues, the paper is organised as follow: a presentation of the
frame of  the  methodology based on qualification  sea  state,  a  presentation  of  our
original  bio-colonisation  thickness  distribution  model,  a  presentation  of  the
assessment of sensing network efficiency using conditional entropy metric, and then
results based on a density of sensors are presented and discussed. 
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2. Methodology based on qualification sea state

Sensing network efficiency study enters into a frame that is hereunder introduced and
described.

Sensors are  evenly distributed along the catenary mooring line,  considering mean

water level  DW on site. Vertical distance between sensors,  I S=
H
N S

is introduced,

where NS is the number of sensors. The first sensor is always located at the fairlead -
top part of the line connecting with the floater. An example with two sensors is drawn
in Figure 3. Each sensor measures local tension. In calm sea state, meaning weak
wind,  almost  no wave and no current,  local  tension in  the catenary mooring line
depends  only  on  line’s  own  weight  and  bio-colonisation  weight.  Line’s  weight
depends directly on floater’s buoyancy and tidal level, which can both be predicted.
Therefore some months after commissioning, local tension due to line’s weight and
pretension  could  be standardised  and bio-colonisation  weight  could  be  known by
differentiation with the reference state. We define thus sea states as one qualification
sea  state  because  the  loading  is  known.  An  estimation  of  bio-colonisation  mass
distribution,  for example [M 1, M2]=M  in Figure 3, could be carried out from
local tensions in calm sea state and mean water level  DW. Even if this estimation is
riddled with uncertainties,  due to  unavoidable environmental  actions  and sensors’
accuracy, this is a rough estimation of bio-colonisation distributed mass that can be
used  to  reduce  uncertainties  on  bio-colonisation  main  parameters  such  as  the
thickness.    
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Figure 3. Adopted configuration for sensors' network (schematic draw of Biocolmar
structure).
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3. “A priori” model of bio-colonisation thickness distribution

Before  introducing  the  stochastic  “a  priori”  model  of  bio-colonisation  thickness
distribution, two essential assumptions are made:

• Bio-colonisation  is  axisymmetric  and  its  coverage  percentage  is  equal  to
100%. It is already known that it is roughly false on field in the first months.
This hypothesis is valid after few years. Thus it does not affect the assessment
of lifetime of mooring lines.

• Bio-colonisation  density  (kg/m³)  is  homogenous  along  the  line.  This
assumption is valid if the type of organisms does not vary with depth and it is
going to be checked in a near future by experimental measurements on field.

To  entirely  defined  bio-colonisation,  a  model  for  bio-colonisation  thickness
distribution with depth, th( z⃗)  is required.
Bio-colonisation thickness distribution along a mooring line can be described by a
combination  of  an  exponential  tendency  decreasing  with  depth  and  a  stationary
gaussian random field:

th( z⃗)∼N (μ ,σ ,∑ (Matérn (ν) , lc))+A . exp(−B . z⃗) (Eq.1)
It has been checked against experimental data from SEM-REV test site.
Thanks to  a  non-linear  Weighted Least-Squares  Method,  a  decreasing exponential
model as introduced in (Eq.1) has been fitted to data. More weights have been given
to data in first layer between 0 to 6 meters in depth, which is assumed to be a zone
almost always colonised by bio-colonisation and so submitted to less variability in
thickness.
Considering both “East” and “West” Moorings (cf. Figure 4), two tendencies have
been obtained giving (Aeast, Beast) and (Awest, Bwest). In the followings, A of (Eq.1) is the
mean value of Aeast and Awest, same for B. A is then equal to 42.3 mm and B is equal to
0.028.

5
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Thanks to the protocol in [6], it has been checked that residuals (differences between
data and fitted tendency, cf. red broken line in Figure 4) distributions are second order
stationary, gaussian with a mean value close to zero and ergodic. 
Using a generation algorithm of Gaussian random fields [7] and generating random
parameters  for   ( μ ,σ , lc ),  an  “a  priori”  set  of  N  bio-colonisation  thickness
distributions can be generated.

Table 1. Range of variation of parameters for the “a priori” set

∀ i∈⟦1 ; N⟧ , thi( z⃗ ' )∼N (μi ,σi ,∑ (Matérn(ν); lci ))+A .exp (−B . z⃗ ' )

A = 42.3 mm.

B = 0.028.

Mean: μ∼U [−3;3 ]cm Correlation  length  :
lc∼U [1;5 ]m

Regularity 
parameter:
ν=0,5

Standard deviation :
σ∼U [1; 4 ]cm

Parameters’ range of variation for generating the “a priori” set are based on expert
knowledges and databases. Note that ν is constant and has been set to 0.5, meaning
that  the  covariance  function  modelling  Σ is  exponential  which  agrees  with
experimental covariograms of residuals distributions. This parameter is a parameter
leading trajectory’s regularity.
No  correlation  coefficient  between  μ and  σ has  been  introduced.  One  can
imagine  variability  growing with time,  and so with  μ concluding to  a  positive
correlation.  Whereas  another  can  imagine  a  standardization  with  time  and  so
concluding to a negative correlation.
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Figure 4. Bio-colonisation distributions from ECN database
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4. Sensing Network Efficiency using Conditional Entropy Metric

Having an “a priori” set of bio-colonisation trajectories and information about mass
distribution from monitoring, how to quantify sensing network efficiency ? A sensing
network is said to be efficient when “a posteriori” information after monitoring has
low  variability  compared  to  “a  priori”  information.  Because  unlike  value  of
information metric, conditional entropy metric is “an information theoretic measure
of  the  uncertainty  in  a  set  of  random variables,  conditioned  on  available  sensor
measurements” [9], conditional entropy metric is thus a suitable metric to measure
sensing network efficiency. On that basis, sensing network options such as IS, defined
in Section 2, can be compared.

4.1 Conditional entropy metric

In case of continuous random variable, entropy is better called, differential entropy h.
Its mathematical definition writes:
If X :Ω→D⊂R is a random variable on (Ω , F , P) then 

h(X )=∫
D

f (X ) ln [ f ( x)]dx (Eq.2)

If f is a normal density function with X∼N (μ ;σ) then,

h(X )=ln [σ√2π e ] (Eq.3).
Trajectories are discretised in NX points. At each point, entropy of the “a priori” set

h [th( z⃗)]  is calculated, the same for the “a posteriori” set,  conditional entropy

h [th( z⃗)∣M ] .  Conditional  entropy  metric  is  defined  as:

m z⃗(M (I S))=h [th( z⃗)]−h [th( z⃗)∣M ] . 
 

7
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4.2 Selection of “a posteriori” set using monitoring

Flowchart 1 is  explaining  how  “a  priori”  trajectories  are  selected  to  build  “a
posteriori” sets. As introduced in Flowchart 1, an “a posteriori” set is depending on
Tr,  the  estimated  global  error  of  the  monitoring  process  to  extrapolate  mass

distribution  from local  tension  measurements,  and  on  D,  the  imposed  degree  of

similarity, which is intented to be as high as possible. Note that 
Tr
N S

is representing

the distributed error between each sensor. When IS is decreasing,  Tr should often be
relaxed and increased in order to  select  enough trajectories from “a priori”  set  -a
minimum of  1000  “a  posteriori”  trajectories  satisfies  Monte  Carlo’s  convergence
criterion.  This  is  necessary  to  make  “a  posteriori”   statistics  converge  without
increasing  size  of  “a  priori”  set.  Therefore   it  is  possible  to  interpret  conditional
entropy metric moments – such as its spatial mean.
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Flowchart 1. Selection of "a posteriori" trajectories depending on Tr, D and NS
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5. Results

Inputs from monitoring have been extrapolated from a random mix of two real bio-
colonisation  thickness  distributions,  SEM-REV  “East  Mooring”  and  SEM-REV
“West Mooring” [3] (cf. Figure 4). Mean water level (DW=29 m) is also representative
of water level on SEM-REV test site. For each  IS case, the best solution has been
retained,  maximising  D  and  ensuring  a  sufficient  N2, to  be  sure  that  conditional

entropy metric moments had converged. Finally it has been tried to minimise
Tr
N S

to select most probable scenarii. Note that the size of “a priori” set is N = 107.

Table 2. Selection of the highest spatial mean of m z⃗  for each IS case depending on (Tr, D, N2)

DW,
mean
water
level
(m)

Example of an input from

monitoring M (kg)
NS

IS (m),
distance
between
sensors

Tr
N S

(kg)

D
(%)

Spatial mean of

m z⃗(M (IS))

Number of
“a

posteriori”
trajectories

N2

29

569 1 29 10 100 0,2153 178226

[322; 247] 2 14,5 12,5 100 0,3818 27997

[191; 282; 96] 3 9,67 25 100 0,3453 13060

[153; 169; 193; 54] 4 7,25 18,75 100 0,4935 2267

[153; 65; 182; 119; 50] 5 5,8 25 100 0,4879 1931

[153; 38; 131; 151; 51; 45] 6 4,83 29.17 100 0,4842 1567

Table 2 shows the results for D = 100% and a varying number of sensors.
First comforting result is that m z⃗ seems to be consistent with IS, which is in fact
equivalent to a density of sensors. Indeed between the two highlighted rows, NS has

been doubled so dividing IS by 2, and D and
Tr
NS

between both cases are equal or

almost  equal.  Then,  it  is  noticed  that  spatial  mean  of m z⃗ , E(m z⃗) has  been
almost doubled. It is therefore strengthening the idea that sensing network should be
described in terms of a density of sensors instead of a number of sensors. It is also
confirming that information is increasing when IS decreases and information is always
beneficial. Entropy then decreases.

Unfortunately, due to a high threshold
Tr
NS

in order to ensure a sufficient N2 with a

high degree of similarity D, both cases NS = 5 and NS = 6 suffer from the size of ‘a
priori’ set. However, even if the decrease of entropy is consitent with an increasing
density  of  sensors,  there  is  no  proportionality  and  conditional  entropy  metric  is
bounded.     

9
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Secondly, a sensitivity analysis has been carried out in order to estimate (
Tr
NS

, D,

NX)  influence  on  E(mz⃗) .  A “One At  a  Time” (OAT) sensitivity  analysis  was
choosen. The reference case is NS= 4, DW=29m, Tr = 75kg, D = 50%, NX = 60, and
ν=0.5 . OAT Sensitivity Indices presented in Figure 5 are equal to the standard

deviation  of E(m z⃗) in  Figure  5 (respectively σ(mz⃗) in  Figure  6,  the  spatial

standard deviation of m z⃗ ), obtained by varying the considered parameter, divided

by E(m z⃗) (respectively σ(mz⃗) ) at the reference point. For such a study, it is

very  important  to  be  sure  that E(mz⃗) (respectively σ(mz⃗) )  had  converged.
Otherwise,  a  part  of  indices’  magnitude  could  be  attributed  to  a  problem  of
convergence.
As illustrated  in  Figure  5,  all  parameters  have  a  relative  influence.  But  the  most
influencing  parameters  is  D.  It  is  then  important  to  be  demanding  in  terms  of

similarity as it can be seen in Table 2. 
Tr
NS

  is showed to be less influencing, which

is confirming that even if this parameter had been lower, and N2 had been sufficent to
ensure metric’s convergence, E(m z⃗) would not have been significantly higher. The
conditional entropy metric is bounded. Note that as expected, discretisation is not an
influencing parameter.   

A similar sensitivity analysis, with the same reference point,  has been carried out in

order to estimate (
Tr
N S

,  D, NX) influence on spatial standard deviation of m z⃗ ,

σ(mz⃗) , confirming that  D is the most influencing parameters of the metric and
should therefore be carefully considered. 
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Figure 5. OAT Sensitivity Analysis on Spatial Mean of the metric
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The most interesting result of Table 2 is that because of the non-linear increase of

E(m z⃗) with NS, then when taking into account price P in metric: 
E(m z⃗)

P(I S)
, an

optimal  density  of  sensors  can  be  highlighted.  Therefore,  given  a  minimum
E(mz⃗) , a threshold required to significantly  reduced the choice of probable and

fatigue impacting scenarii of bio-colonisation in “a posteriori” set, a low density of
sensors, every fifteen meters for example if threshold is considered around 0.40, is
economically more valuable than a high density of sensors. Moreover a high density
of sensors also means a higher cost for maintening sensing network. This result is
balanced  by  the  fact  that  financial  profit  of  an  increase  of E(mz⃗) can’t  be
estimated yet and that high density of sensors is requiring a higher size of “a priori”

set to make E(m z⃗) converging with high D and low
Tr
N S

.

6. Conclusion & Discussion

To the  best  of  our  knowledge,  it  is  a  first  step  in  modelling  probabilistic  spatial
distribution of bio-colonisation thickness on mooring lines. 
Then,  a  low  density  of  sensors  seems  enough  to  significantly  and  economically
reduce “a priori” set entropy. Indeed, lifetime of sensors is often shorter than lifetime
of the structure. Therefore too many sensors could turn out to be very expensive in
time, without being worth from an uncertainty reduction point of view. But this result
should  be  balanced  since financial  profit  of  an  increase  of E(m z⃗) can’t  be
estimated yet.
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Figure 6. OAT Sensitivity Analysis on Spatial Standard Deviation of the metric
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Then some questions still remain. Could density be considered homogenous along the
line  ?  Is  density  largely  varying  in  a  year  ?  In  fact,  mooring  lines’ inspection
campaigns, which are the opportunity to calibrate density, are likely to be only done
every  4  or  5  years  and  only  thickness  would  be  measured.  An  academic  and
experimental campaign is forecasted in 2019 in order to gain data about density’s
homogeneity and density’s variations.
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