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In this work, the main problem considered is the detection and the isolation of the actuator fault. A new formulation of the linear system is generated to obtain the conditions of the actuator fault diagnosis. The proposed method is based on the representation of the actuator as a subsystem connected with the process system in cascade manner. The designed formulation is generated to obtain the conditions of the actuator fault detection and isolation. Detectability conditions are expressed in terms of the invertibility notions. An example and a comparative analysis with the classic formulation illustrate the performances of such approach for simple actuator fault diagnosis by using the linear model of nuclear reactor.

system formulation, actuator fault can be modeled as the parameter changes of the actuator subsystem. In this manner, the dynamic behavior of the faults can be perfectly described and logically explained. The objective is to obtain the condition of actuator fault detection and that is based on the invertibility concept. Moreover, the basic concept of that field, the fault detectability is defined in terms of the invertibility notions.

This work is organized as follows: Section II defines the problem settings and recalls the conventional description of the method used for actuator fault detection and isolation. Section III gives our new system formulation to obtain the condition of the actuator fault detection. In Section IV some notions about the concepts of invertibility and system inversion are studied. Actuator fault detectability conditions are investigated in Section V. The Section VI deals with the actuator fault isolation. A presentation of the nuclear reactor is given in Section VII. In Section VIII, simulation results and a brief comparison are provided to demonstrate the effectiveness of this new proposed approach. Conclusions and perspectives on the future works are given in the last section.

II.ACTUATOR FAULT DETECTION FOR LINEAR SYSTEMS

Different approaches for fault detection using mathematical models have been developed in the last 20 years, see for example [START_REF] Willsky | A Survey of Design Methods for Failure Detection in Dynamic Systems[END_REF]- [START_REF] Kabbaj | Adaptive Observers Based Fault Detection and Isolation for an Alcoholic Fermentation World Academy of Science[END_REF], [START_REF]Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redundancy: A Survey and Some New Results[END_REF]- [START_REF] Patton | Issues of Fault Diagnosis for Dynamic Systems[END_REF]. The task consists of the detection of faults in the processes, actuators or sensors by comparing the measurable outputs with the system's available mathematical model. Fig. 1 shows the general structure of the model based FDI.

Consider the following linear system given by: [START_REF] Isermann | Process Fault Detection Based On Modeling and Estimation Methods -A Survey[END_REF] where: is the dynamic system state vector, is a constant state matrix of the dynamic system, is the dynamic system output vector, is a constant output coefficient matrix of the dynamic system, is the control input coefficient matrix of the dynamic system, is the dynamic system input vector.

We assume that an actuator fault can occur and it is defined as a deviation or a change of matrix parameters. A fault is defined as an unpermitted deviation of at least one characteristic property of the system from an acceptable behavior. Therefore, the fault is a state that may lead to a malfunction or failure of the system. We assume that only actuator fault can occur, that is, for and

, where is a constant and is the actual output of the actuator when it is faulty, while is the expected output when it is healthy. Considering , if the actuator is faulty, the corresponding faulty [START_REF] Fragkoulis | A New Scheme for Detection, Isolation and Identification of Single and Multiple Actuators Faults[END_REF] model is given by the state space model:

(2)

We desire construct an observer to detect the faulty actuator, so by using adaptation technique, the observers [START_REF] Fragkoulis | A New Scheme for Detection, Isolation and Identification of Single and Multiple Actuators Faults[END_REF] for all possible faults are described below:

(3) where is a Hurwitz matrix that it can be chosen freely, is a scalar and is a positive definite matrix. The two matrixes and are calculated by using the following Lyapunov equation: [START_REF] Gertler | Fault Detection and Diagnosis in Engineering Systems[END_REF] where is any positive definite matrix that also can be chosen freely.

The basic idea is to estimate the output and compare it to that generated via the model. The advantage of this proposed method, residual-based FDI, is that it can detect single fault actuator rapidly by using the FDI scheme. The residual is given by: [START_REF] Chen | Robust Model-Based Fault Diagnosis for Dynamic systems[END_REF] Then, when we applied a constant fault in the one of these actuators, the correspondent residual reach zero after a short time. On the other hand the others residuals take a new constant value and remain there.

III. SYSTEM STRUCTURE WITH RESPECT TO THE ACTUATOR SUBSYSTEM

In a practical engineering control system, an actuator is a device with its interior structure and dynamic characteristic. In most cases, it cannot be simply approximated as constant coefficients. We think that this kind of actuator formulation is not effective to describe the nature of actuator faults. Different from this kind of formulation, we consider actuator as a subsystem connected with the process system by cascade manner. Using this system formulation, actuator faults can be modeled as the interior parameter changes of the actuator subsystem. The dynamic temperaments of the faults can be perfectly described and logically explained. On the contrary, in the conventional formulation the dynamic temperaments of the faults cannot be well formulated. They are usually brutally supposed as some time functions, and even constants.

Considering the system given by Fig. 2, it consists of two subsystems, i.e. the process subsystem and the actuator subsystem. We assume that the process subsystem is described by the same system [START_REF] Isermann | Process Fault Detection Based On Modeling and Estimation Methods -A Survey[END_REF], where is the process subsystem input vector, also it is the output vector of actuator subsystem. The actuator subsystem is given by: [START_REF] Willsky | A Survey of Design Methods for Failure Detection in Dynamic Systems[END_REF] where:

is the state vector of the actuator subsystem. is a constant state matrix of the actuator subsystem, is a constant input coefficient matrix of the actuator subsystem, is the control input variable vector of the actuator subsystem, it is the output variable vector of the controller, is a constant output coefficient matrix of the actuator subsystem. As is the process subsystem input vector and the output vector of actuator subsystem, we assume .

In this new formulation, our objective is the fault detection in the actuator subsystem. We consider the fault in actuator subsystem as the changes of the actuator parameters, that is to say the changes of the elements of the matrix , and . We assume that the actuator output cannot be measured, so we get information of actuator fault only by the output variable of the process system. This consideration comes from the practice application in process control systems. Usually, the actuators are far from the central control room, we cannot set measuring cable from the central control room to each actuator to measure the actuator output signal because, on one hand, it is not necessary for the control, and on the other hand, it will increase the cost of the system. From the point of view of academic research, if we can get the measurement data of the output of the actuator subsystem, the fault diagnosis problem of the actuator subsystem is degenerated as the general fault diagnosis problem when the actuator subsystem is considered as a dynamic system.

In order to study the actuator fault detection problem, the actuator subsystem ( 6) is rewritten as: When the fault does not occur, is identically zero. we can see [START_REF] Jones | Failure Detection in Linear Systems[END_REF] and [START_REF] Massoumnia | A Geometric Approach to Failure Detection and Identification in Linear Systems[END_REF] for the detail of this problem. With (4), the system structure with respect to actuator fault detection is given in Fig. 3.

The effects of actuator faults may be propagated with the control variable . As is inaccessible, we diagnose the faults using the data of the process subsystem output . In other words we observe using , then observe the faults using , what is related to the concept of system invertibility. In simple terms, an invertible system is the system in which different input produces different output. We will see later, if the actuator subsystem is invertible with respect to a fault, and if the process subsystem is invertible with respect to , then this actuator fault can be detected using .

IV. INVERTIBILITY OF DYNAMIC SYSTEM An inverse function is a function that undoes another function: If an input into the function produces an output

, then putting into the inverse function produces the output , and vice versa. i.e., , and . A function that has an inverse is called invertible (Fig. 4). The inverse function is then uniquely determined by and is denoted by . Not all functions have an inverse. For this rule to be applicable, each element must correspond to no more than one ; a function with this property is called injective.

From the view of set theory, let and are two linear inner product spaces, and are two linear mappings.

Definition 2. Considering a linear mapping , for any two points and , if:

it is said that the linear mapping is injective. If for any , we have , such that: [START_REF] Li | A New Fault Isolation and Identification Method for Nonlinear Dynamic Systems: Application to a Fermentation Process[END_REF] It is said that is surjective, or a full mapping from to . Lemma 1. A linear mapping is invertible, if and only if is injective and surjective. That is to say:

Proof: 1) "=>".
is invertible, therefore exists. For any two points , if , then: Therefore is injective. For , let , then , and , therefore is surjective. 2) " ", if is injective and surjective, therefore each point in corresponds an unique point in , therefore the inverse mapping of exists. It is obvious that the inverse mapping of is also a linear mapping , and , where, is unite mapping, therefore is invertible, and .

It is well known that a mapping can be represented by a corresponding matrix, the study of mapping is usually transformed to the study of the corresponding matrix, we give following matrix version statements about invertibility to subdivided it as left invertibility and right invertibility [START_REF] Bernstein | Matrix Mathematic, Theory, Facts, and Formulas with Application to Linear Systems Theory[END_REF] We consider the linear dynamic system given as follows:

(11) are the matrices with appropriate dimensions. For the faults affecting on the system [START_REF]Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redundancy: A Survey and Some New Results[END_REF], after appropriate modeling, can be considered as the additive terms in the input and output of the system equations, that is to say from the view of fault diagnosis can be considered as the system's inputs

. We concern such a question that can we get the information of the faults by the measured data of the system output ? If no, it implies that we cannot implement fault diagnosis procedure. This property of the system is related to the concept of invertibility [START_REF] Szigeti | System Inversion and Fault Detection: The Failure Affine Nonlinear Case[END_REF].

The needed system invertibility in our study is essentially the "left invertibility", or "input observability". In [START_REF] Sain | Invertibility of Linear Time-Invariant Dynamical Systems[END_REF], the input observability is defined as the naturally dual property of output controllability. Output controllability is a pointwise property, i.e. it is concerned with the existence of an input function that drives the output to a specified point in output space at a specified time. The concept of functional reproducibility, or output functional controllability, is a functional property concerned with the existence of an input which produces a specified output function. It is obvious that left invertibility is a functional property naturally dual to output functional controllability. The term input functional observability is thus an appropriate alternative to left invertibility. Left invertibility or input observability is shown as Fig. 5, from the right side of the system equation, i.e. the input , the information propagates along with left direction until output , then at the left side, the measured data is used to reconstruct the input . As the considered system is a linear system, it follows the superposition principle, therefore we can study the invertibility of and of respectively. Firstly, we consider the invertibility of and we define linear mapping:

, and write for the state at , when at time , the system in the zero state, [START_REF] Isermann | On the Applicability of Model-Based Fault Detection for Technical Processes[END_REF] and the [START_REF] Balle | Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes[END_REF] The exponential may be represented in terms of its Taylor series; doing this we find, [START_REF] Patton | Issues of Fault Diagnosis for Dynamic Systems[END_REF] We see that the terminal output variable is in the linear subspace spanned by the column vectors of the infinite sequence of matrices . According to Cayley-Hamilton theorem, for a order matrix , any order power of can be expressed by the sum of its lower order powers with order respectively. So each term with type as can be expressed by the sum of . Consequently output variable is in the linear subspace spanned by the column vectors of . That is to say the output space is spanned by these column vectors. The number of linear independent column vectors of is the dimension of the spanned subspace. Recall that denotes the mapping from , obviously, the rank of the mapping is decided by this number, therefore:

If we denote by the corresponding matrix of the mapping , then,

According to Lemma 2, if has full column rank, i.e.

, the matrix is left invertible, the input and output of the mapping is injective, the system is left . In this case, we get the output as:

(18)

Along with the way above, we can get the condition of the dynamic system being left invertible is:

(19)
This is the result in [START_REF] Isermann | Process Fault Detection Based On Modeling and Estimation Methods -A Survey[END_REF].

2)

In this case, the output caused by is:

(20)

Similar to the previous cases, the condition of the dynamic system being left invertible is:

(21)
That is to say the number of linear independent column vectors of is .

V. ACTUATOR FAULT DETECTABILITY

The fault detectability is the property which indicates if the fault in the system can be detected or in other word can be observed by using the system output data. Using the results of previous sections, it is easy to discuss the fault detectability of the system [START_REF] Jones | Failure Detection in Linear Systems[END_REF].

Consider the fault in the system (7), let as the matrix in the system [START_REF]Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redundancy: A Survey and Some New Results[END_REF], according to (17) the condition of fault detectable for the fault is obtained:

(22)
where is the dimension of .

Similarly, for the fault in the system (7), according to (21) the condition of fault detectable is:

(23)
where is the dimension of .

The invertibility of the process subsystem in our fault detection frame is the dynamic property which indicates whether all the information of can pass through the process subsystem, therefore the fault information carried by can completely pass through the process subsystem. From previous discussion it can be known that if the process subsystem is left invertible, then the information in the input of this subsystem can be "injective" mapped to its output. Therefore the fault information carried by can completely passed through the process subsystem.

Comparing the system (1) and the system [START_REF]Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redundancy: A Survey and Some New Results[END_REF], and according to [START_REF] Kallol | Application of Fault Detection and Identification (FDI) Techniques in Power Regulating Systems of Nuclear Reactors[END_REF], the left invertible condition for the process subsystem is obtained as:

(24)
where is the dimension of the vector .

The fault detectability of the system in Fig. 2 represents the system property that if the faults in the actuator subsystem can be detected? According to Corollary 1, if the actuator subsystem is left invertible for the specified fault, and the process subsystem is left invertible, then the entire system is left invertible for this fault, which therefore can be detected. Consequently we get the conditions of fault detectable as follows:

Theorem 1. Consider the system in Fig. 2 which consists of the process subsystem (1) and the actuator subsystem [START_REF] Jones | Failure Detection in Linear Systems[END_REF], then the conditions of faults detectable are: We defined the actuator fault isolability term as the property of the system indicating the possibility to locate the fault in the system, more precisely, to isolate the actuator causing the error.

Fault isolation has been investigated using many techniques such as the adaptive observer approach [START_REF] Fragkoulis | A New Scheme for Detection, Isolation and Identification of Single and Multiple Actuators Faults[END_REF], the geometric approach [START_REF] Massoumnia | A Geometric Approach to Failure Detection and Identification in Linear Systems[END_REF], and the interval based approach [START_REF] Li | A New Fault Isolation and Identification Method for Nonlinear Dynamic Systems: Application to a Fermentation Process[END_REF]. The choice of a method depends basically on the given situation such as the kind and the number of faults to be detected, the demands for the fault isolation, the robustness and the available measurements.

In our considered system, the actuator fault can be isolated. Of course, the fault information should be well transferred to the system output. Therefore the two subsystems should be left invertible and they verify the theorem 1 as mentioned in the previous section.

In this work, we will use the interval based approach in which a partition notion of each actuator parameter and the technique of monotonicity are used in order to locate and to determine the values of the faulty parameters in the actuator subsystem. The proposed method proves to be effective in the actuator fault isolation.

In parameter intervals based fault isolation approach, the isolation principle is not based on fault decoupling on space direction, while it based on the consistency test of the dynamic model function. That is to say, even with a same mapping matrix , two faults and can be separated each other if the fault mode and are different functions of the time. If the information of these two faults can be "injective" transferred through the process subsystem to the output of the system, so that it can be separated. As we have studied that if the process subsystem is left invertibility, the information of these two faults can be "injective" transferred to the process subsystem output. We recall quickly the main points of the parameter interval based fault isolation method, for more details, the reader is refereed to [START_REF] Li | A New Fault Isolation and Identification Method for Nonlinear Dynamic Systems: Application to a Fermentation Process[END_REF].

In the parameter interval based method, the domain of each parameter is partitioned into a certain number of intervals and a parameter filter is built for each interval. The parameter filter consists of two isolation observers which correspond to two bounds of the interval of the parameter.

After the fault occurrence, the faulty parameter value must be in one of the parameter intervals. Considering the model represented by: (29) where , and are the parameter vectors used to study the faults caused by the changes of the elements of the matrices , or respectively. We consider, for example, the case of the dynamic fault in the actuator subsystem i.e. the fault caused by the changes of the elements of the matrix . For (29) the parameter filter with respect to the dynamic fault can be built with the two correspondent isolation observers that constitute the actuator parameter filter for interval of actuator parameter:

(30) (31) 
where and are the parameters vectors of the observers corresponding the parameter vector . We also assume that the fault is caused by the change of a single It is assumed that the cascade observers which are built by using the actuator input and the fault parameter as input data and, using process subsystem output as output data, satisfy following assumption 1 and assumption 2. Using Assumption 2, the monotonicities of of and of , we can obtain the rule of the interval verification as follows:

Rule1 After the fault occurrence, if the i th interval of the j th parameter contains the faulty parameter value, then we have:

. Otherwise , then it can be concluded that this interval does not contain the faulty parameter value. If all the intervals of a parameter, after the fault occurrence, are excluded from containing the faulty parameter value, the fault is excluded from this parameter. If all the parameters except one are excluded from the fault, the fault is isolated. The parameter which is not excluded corresponds to the fault.

So we can prove that for the case where the interval contains the faulty parameter value, when , it will be:

(42) And for the case where the interval does not contain the faulty value, it exists that:

(43)

VII. NUCLEAR REACTOR

To show the isolation ability of the parameter intervals approach in the new formulation, this method was applied to a one group reactor model and many simulations were carried out. residuals leave zero at but after a very short period, that corresponds to the 1 st input return to its initial value. While we observe that the 2 nd residual take new values for a many time and then converges to zero. It is assumed that the fault is caused at by the variation of , its value changes from to , while the parameter maintains its nominal value . We also note that this actuator subsystem fault has the same effect on the output of the process subsystem that affects the control variable in the first case. Fig. 8 shows the result of parameter filter of , that is the case where . After these two observers estimation errors have the same sign, so this interval does not contain the faulty parameter value. Simulation runs have been used to compare the actuator fault isolation using observers based method and which use parameter intervals based method. In [START_REF] Li | A New Fault Isolation and Identification Method for Nonlinear Dynamic Systems: Application to a Fermentation Process[END_REF] it is shown that the 2 nd proposed method is faster than the 1 st one, so will apply our new formulation with using the parameter intervals based.

Fig. 11 shows the isolation time of the actuator fault in these two previous different approaches.

We can conclude that these experimental results using the new formulation and based on parameter intervals are more realistic and faster than those based on classical adaptive observers.

Fig. 11 parameter filter Though it is not so accurate as the detection and isolation results based on the method, but it requires less computation and it is effective for linear systems diagnosis.

The use of an interval notion contributes to the fault detection speed in a positive way and it is also fits large kind of linear dynamics systems. The only required conditions for the type of the linear system are that the dynamic of the system is a monotonous function [START_REF] Li | A New Fault Isolation and Identification Method for Nonlinear Dynamic Systems: Application to a Fermentation Process[END_REF] with respect to the considered parameter. This method does not need any parameter identification procedure. It is proven that if the parameter intervals are small enough the isolation speed will be fast enough.

IX. CONCLUSION

In this paper, a new system formulation with respect to actuator fault detection is built. The new formulation is closer to practical system, can more clearly describe actuator faults. The new formulation is very useful for the further study of actuator fault The actuator and isolability based on the new system formulation are studied, and the obtained conditions can be used to verify if the actuator faults can be detected and isolated. A comparative analysis of classical formulation of the actuator fault diagnosis and our contribution using two model based methods is given.

Experimental results show that the two detection and isolation methods are both effective and more accurate than others methods.

In the first method using adaptive observers the isolation can be carried out, but the isolation speed is not ideal due the parameter identification which lasts a long time. However the second one which is based on parameter intervals can solve this problem. Some simulation results illustrate these advantages.

In our work we only focus on the simple actuator fault, that is why one interesting future research direction is to extend this new formulation to multiple faults problem for linear dynamic systems.
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As seen in Fig. 6 the closed-loop control action in a vertical tank-type moderator level control reactor is based on variation of the level of the heavy water in the reactor vessel by altering the outflow (by varying the port openings of a set of control valves), while maintaining the inflow constant (fixed pumping rate). The core reactivity is dependent on the moderator level (reactivity change is proportional to moderator level change). The Reactor dynamics can be approximated by the point kinetic equations [START_REF] Kallol | Application of Fault Detection and Identification (FDI) Techniques in Power Regulating Systems of Nuclear Reactors[END_REF]:

where, is the density of the neutrons, is the reactivity, is the effective delayed neutron fraction. is the effective fractional yield of the group of delayed neutrons, is the prompt neutron lifetime, is the decay constant of the precursor group, is the concentration of the precursor group.

The linearization of the point kinetics equations around an equilibrium operation level using of the one-group approximation permits the model to be expressed in matrix form as:

(45)

We assume that and the effective decay constant is . We use the delayed neutron a constant and we normalize the neutron and precursor density based on the initial neutron density . The process subsystem matrices are:

We consider the transfer function [START_REF] Kallol | Application of Fault Detection and Identification (FDI) Techniques in Power Regulating Systems of Nuclear Reactors[END_REF] given by, that is present the relationship between the reactivity and the valve opening:

(47) By differentiating the above equation, we obtain:

where is the diaphragm area of the tank, is the outflow, is the valve opening and is the moderator level. Therefore the state representation is given by: (49) where , and .

We assume that and . The actuator subsystem matrices are:

(50)

VIII.SIMULATION RESULTS

To show in detail the actuator fault isolation algorithm in the first formulation, we have chosen the example where the faulty actuator parameter is .

We have applied a fault at time in the first actuator parameter . In Fig. 7, we presented the two residuals associated to the two observers. We can see that