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A Novel Approach for Ridge Detection and

Mode Retrieval of Multicomponent Signals

Based on STFT
Nils Laurent, Sylvain Meignen

Abstract

Time-frequency analysis is often used to study non stationary multicomponent signals, which can

be viewed as the surperimposition of modes, associated with ridges in the TF plane. To understand

such signals, it is essential to identify their constituent modes. This is often done by performing ridge

detection in the time-frequency plane which is then followed by mode retrieval. Unfortunately, existing

ridge detectors are often not enough robust to noise therefore hampering mode retrieval. In this paper,

we therefore develop a novel approach to ridge detection and mode retrieval based on the analysis of

the short-time Fourier transform of multicomponent signals in the presence of noise, which will prove

to be much more robust than state-of-the-art methods based on the same time-frequency representation.

Index Terms

AM/FM multicomponent signals, Short-time Fourier transform, Ridge detection, Mode retrieval.

I. INTRODUCTION

Many signals such as audio signals (music, speech, bird songs) [1], medical data (electrocardiogram,

thoracic and abdominal movement signals), can be modeled as a superimposition of amplitude- and

frequency-modulated (AM-FM) modes [2], [3], and are therefore called multicomponent signals (MCSs).

Time-frequency analysis is often used to deal with such signals [4]–[6], since their modes are associated

with curves in the time-frequency (TF) plane, called ridges. To extract these ridges is essential when

one is interested in separating a MCS into its constituent modes [7]. For that purpose, several TF-based

techniques were developed [8] [9] using the idea that the ridges correspond to local maxima along the

frequency axis of the modulus of some time-frequency representation (TFR). Indeed, it was shown in

[10], [11] that these maxima approximate the instantaneous frequency (IF) of the modes, the quality of

approximation depending on the noise level and on the length of the analysis window. This concept has
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then been used on various types of TFRs such as for instance the short-time Fourier transform (STFT)

[12], [13], or synchrosqueezed transforms either based on the continuous wavelet transform [14] or STFT

[15]–[17]. TF ridges are also used in demodulation approaches still developed for the purpose of mode

retrieval (MR) [18], [19]. An alternative TF-based MR technique, not explicitly using ridge detection,

consists of finding locally the linear chirp that fits the best the STFT of the signal [20].

The main limitation of the above techniques is that at high noise level, the local maxima along the

frequency axis that define the ridges in the noiseless case may no longer exist. In this regard, the analysis

of these maxima proposed in [10] assumes a low noise level. In case of high noise level, a study was

carried out on the TFR associated with the Wigner-Ville distribution (WVD) in [21], basically remarking

that peak searching based techniques are not able to cope with multicomponent or monocomponent

signals contaminated by strong noise. The key ideas of the algorithm proposed in [21] were first that,

if the WVD maximum at the considered time instant is not at the IF point, there is a high probability

that the IF is at a point having one of the largest WVD values. The second argument was based on the

assumption that the IF variations between two consecutive points is not extremely large.

Following [21], it seems to be possible to follow the ridges by considering local maxima and then

by chaining them using some proximity criterion in the TF plane. However, as we will see, when one

considers STFT as TFR, the noise can generate zeros in the vicinity of true IF location splitting the ridge

into two chains of local maxima. It is therefore illusory to try and build the ridges by simply chaining

local maxima in the TF plane. The second argument used in [21] is however very interesting in that even,

at a high noise level, the local maxima associated with the signal components are close in the TF plane.

Though there exist many different techniques to extract the ridges in the TF plane, mainly using

optimization procedures as in [9], [22], they rely on an initial so-called skeleton of the transform which

is usually not available in heavy noise situations. Indeed, to reconstruct the modes, these approaches use

modified versions of least-square minimizations in which the data terms are ridge points, supposed to

be reliable enough otherwise the algorithms fail. However, to assign a TF point to a specific ridge is

probably one of the most complicated aspect of RD and should be handled with care. To perform this

kind of initial estimation of ridge points, one needs to carefully analyze the behavior of the coefficients

of the TFR in the vicinity of local maxima. In the present paper, to accurately assign a TF point to a

ridge, we will make the assumption that the modes are not crossing, our goal being to improve RD in

the TF plane in very noisy situations in a fully adaptive way. It is however possible to deal with crossing

modes by imposing regularity constraints on the extracted modes in the TF plane [8], [9], [15], or by

analyzing the signal in the time domain using a parametric approach [23], but this is not the scope of

the present paper.
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Indeed, we aim to propose a fully adaptive RD that is very competitive in noisy situations. For that

purpose, we will first analyze carefully the energy in the TF plane in the vicinity of local maxima. In

particular, we will see that some of these local maxima can be gathered into so-called relevant ridge

portions (RRPs) that will be the basis to our new approach. As already mentioned in the context of WVD

[21], the effect of noise on TF ridges is to split them into ridge portions that need to be identified and

then gathered together when they correspond to the same mode. This is in essence the goal we pursue

in the present paper. The paper is organized as follows: in Section II, we recall basic notations regarding

STFT and MCSs as well the most commonly used TF-based RD technique. Since the latter depends on

several arbitrary parameters, we recall in Section III, how it can be made more adaptive by using a local

chirp rate estimate, as recently proposed in [13]. Then, taking into account that, in noisy situations, a

mode cannot be associated with a single ridge computed from chaining local maxima in the TF plane,

we alternatively consider that it corresponds to a set of so-called relevant ridge portions (RRPs), which

are defined in Section IV. This helps us define a new RD technique in Section V. Section VI is then

devoted to the comparison of the proposed new technique to state-of-the-art TF-based methods for RD

and MR, highlighting the improvement brought by the former especially in the presence of heavy noise.

An application to the analysis of gravitational-wave concludes the paper.

II. DEFINITIONS AND NOTATIONS

A. Short-Time Fourier Transform

Let f̃ be a discrete signal of length L altered by an additive noise ε, and such that f̃ [n] = f̃(nL):

f̃ := f + ε, (1)

and g a discrete real window supported on [−M
L ,

M
L ]. In that context, we define the short time Fourier

transform (STFT) as follows:

V g

f̃
[m, k] :=

N−1∑
n=0

f̃ [n+m−M ]g[n−M ]e−2iπ k

N
(n−M), (2)

with 2M+1 ≤ N , where N is the number of frequency bins, the index k corresponding to the frequency

k LN . The STFT of the signal f̃ is invertible, provided g[0] 6= 0, since one has:

f̃ [n] =
1

g[0]N

N−1∑
k=0

V g

f̃
[n, k]. (3)
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B. Multicomponent Signal Definition

In this paper, we will intensively study MCSs defined as a superimposition of AM-FM components or

modes:

f [n] =

P∑
p=1

fp[n] with fp[n] = Ap[n]ei2πφp[n], (4)

for some finite P ∈ N, Ap[n] and φ′p[n] being respectively the instantaneous amplitude (IA) and frequency

(IF) of fp satisfying: Ap[n] > 0, φ′p[n] > 0 and φ′p+1[n] > φ′p[n] for each time index n.

We also assume that Ap is differentiable with |A′p[n]| small compared with φ′p[n], that the modes are

separated with resolution ∆ and their modulations are bounded by Bf , i.e. for each time index n,

∀ 1 ≤ p ≤ P − 1, φ′p+1[n]− φ′p[n] > 2∆

∀ 1 ≤ p ≤ P, |φ′′p[n]| ≤ Bf .
(5)

C. Classical Ridge Detection

A commonly used RD approach was originally proposed in [8], and then used in [14]. The goal is to

compute an integer estimate ϕp[n] of φ′p[n]N/L by extracting, on the spectrogram, a ridge corresponding

to mode p. This is actually done by computing

max
ϕ

∑
1 ≤ p ≤ P

0 ≤ n ≤ L− 1

|V g
f [n, ϕp[n]] |2 − α(

∆1ϕp[n]L2

N
)2−β(

∆2ϕp[n]L3

N
)2, (6)

with ϕ = (ϕp)p=1,··· ,P where ϕp : {0, · · · , L − 1} 7→ {0, · · · , N − 1}, α and β both positive, and in

which ∆1ϕp[n]L2

N = (ϕp[n+1]−ϕp[n])L2

N and ∆2ϕp[n]L3

N = (ϕp[n+1]−2ϕp[n]+ϕp[n−1])L3

N , are approximations of

φ′′p[n] and φ′′′p [n].

Taking into account that regularization terms associated with α and β are not relevant when a ridge

is associated with a local maximum of the STFT magnitude and that to consider such penalization

parameters in noisy situations leads to inaccurate IF estimation [19], one can alternatively put a bound

on the frequency modulation allowed while extracting the ridges, and then replace (6) by a peeling

algorithm where a first mode is extracted as follows [13]:

max
ϕ1

L−1∑
n=0

|V g
f [n, ϕ1[n]] |2, s.t. |∆1ϕ1[n]|L

2

N
≤ Bf . (7)

Then, after ϕ1 is computed, one defines V g
f,0 := V g

f , and RD continues replacing V g
f,0 by:

V g
f,1[n, k] :=

 0, if ϕ1[n]− d∆N
L e ≤ k ≤ ϕ1[n] + d∆N

L e

V g
f,0[n, k], otherwise,

(8)
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in which dXe is the smallest integer larger than X . This then enables the computation of ϕ2 replacing

V g
f by V g

f,1 in (7), and then the definition of V g
f,2 from V g

f,1 the same way as V g
f,1 from V g

f,0. Such a

procedure is iterated until P ridges (ϕp)p=1,··· ,P are extracted.

In practice, to compute a candidate for ϕ1, one first fixes an initial time index n0, computes

k0 := argmax
0≤k≤N−1

|V g
f [n0, k]|, (9)

and puts ϕ1[n0] := k0. Then, to define ϕ1 on {n0 + 1, · · · , L − 1}, one uses the following recurring

principle starting from n = n0:

ϕ1[n+ 1] := argmax
k

{
|V g
f [n+ 1, k]|, ϕ1[n]− d

NBf
L2
e ≤ k ≤ ϕ1[n] + d

NBf
L2
e
}
. (10)

The same principle is applied on {0, · · · , n0 − 1}, again starting from n = n0 but replacing n + 1 by

n− 1 in (10). Finally, other initialization time indices than n0 are considered to define other candidates

for ϕ1, the ridge finally kept being the one among all candidates, maximizing the energy in the TF plane,

i.e.
∑
n
|V g
f [n, ϕ1[n]]|2. This RD will be called Simple Ridge Detection (S-RD) in the sequel.

There are however two strong limitations to S-RD. The first one is that, in a noisy context, each mode

cannot be associated at each time instant with a local maximum of |V g

f̃
| along the frequency axis. As a

result, S-RD enforces the extraction of P ridges even when these are not associated with modes. This is

illustrated in Fig. 1, in which we first display, in Fig. 1 (a), the magnitude of the STFT of a linear chirp

along with the three largest local maximum along the frequency axis at each time instant: we see that

these maxima are not chained in the TF plane. To have a clearer view of the effect of noise on the ridge

we display in Fig. 1 (b), a zoom on a region containing the expected ridge location and corresponding

to the situation where a global maximum along the frequency axis is split into two local maxima. In

such a case, it transpires that the noise generates a zero of the STFT close to the location of the IFs of

the modes, surrounded by two local maxima. This is the reason why any technique defining the ridge by

following the local maxima along the frequency axis will result in poor IF estimation. Such a paradigm is

however the basis to RD technique like S-RD, and one of the goal of the present paper is to circumvent

this limitation. Note that this figure also illustrates the dependency of RD techniques such as S-RD on

the initialization time n0. The second important drawback of S-RD is that the upper bound Bf for the

modulation is fixed a priori: S-RD does not take into account the value of the modulation and even not

its sign. To deal with this issue is also one of the aim of the present paper. In this regard, we first recall

in the following section how to introduce some kind of adaptivity in RD by removing the dependence

of S-RD on upper frequency bound Bf , as proposed in [13].
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Fig. 1. (a): Magnitude of the STFT of a noisy linear chirp along with its maxima along the frequency axis; (b): Zoom on the

effect of noise on local maxima; Cyan coefficients are among the two largest coefficients along the frequency axis, red ones

correspond to the third largest along the frequency axis.

III. FULLY ADAPTIVE RIDGE DETECTION

To circumvent the lack of adaptivity in S-RD, a novel approach called modulation based ridge detection

(MB-RD) was proposed in [13]. In a nutshell, this approach considers the complex approximation of the

modulation of the mode used in the definition of the second order synchrosqueezing transform and defined

as [17]:

q̃f [n, k] =
1

2iπ

V g′′

f [n, k]V g
f [n, k]− (V g′

f [n, k])2

V tg
f [n, k]V g′

f [n, k]− V tg′

f [n, k]V g
f [n, k]

, (11)

in which V g′

f , V
tg
f , V g′′

f , V tg′

f are respectively STFTs of f computed with windows n 7→ g′[n], (tg)[n], g′′[n]

and (tg′)[n]. In that context, q̂f [n, k] = <{q̃f [n, k]} consists of an estimate of the modulation of the

closest mode to [n, k] in the TF plane. To extract the first ridge MB-RD uses the same recurring principle

as S-RD introduced in Section II-C, but, instead of defining ϕ1 with Bf as upper bound for the modulation,

MB-RD uses q̂f and a constant C > 0, meaning (10) is replaced by:

ϕ1[n+ 1] :=

argmax
k

{
|V g
f [n+ 1, k]|, ϕ1[n] + dq̂f [n, ϕ1[n]]

N

L2
c − C ≤ k ≤ ϕ1[n] + dq̂f [n, ϕ1[n]]

N

L2
c+ C

}
,

(12)

in which dXc is the closest integer to X , the user-defined constant C compensating for potential estimation

errors. The motivation for (12) lies in the fact that q̂f is a first order estimate of φ′′1 corresponding to the

local orientation of the ridge.

Though MB-RD improves S-RD in that it is more adaptive, both techniques are based on the assumption

that a mode generates a significant local maximum along the frequency axis at each time instant, which
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is not the case in heavy noise situations. Another limitation is that since the ridges are extracted one

after the other using a peeling algorithm [13], if RD fails for one mode then the detection process will

also most probably fail for the next ones. To deal with this issue, we propose, in the following section,

to introduce the concept of relevant ridge portions (RRPs) that will be subsequently used to define our

new RD technique. It will consist in computing all the ridges simultaneously, thus getting rid of the

traditional peeling algorithm.

IV. DEFINITION OF RELEVANT RIDGE PORTIONS

Let us consider, for the sake of simplicity that g is the Gaussian window g[n] = e−π
n2

σ2L2 , for which

it can be shown that if f is a linear chirp with constant amplitude A, i.e. f [n] = Ae2iπφ[n] with φ′′ a

constant function, one has [17]:

|V g
f [n, k]| ≈ ALσ(1 + σ4φ′′[n]2)−

1

4 e
−π σ

2(k L
N
−φ′[n])2

1+σ4φ′′[n]2 , (13)

whose standard deviation is:

1√
2πσ

√
1 + σ4φ′′[n]2 ≈ stdLC [n, ϕ[n]] :=

1√
2πσ

√
1 + σ4q̂f [n, ϕ[n]]2. (14)

We then define an interval corresponding to this standard deviation around ϕ[n], the global maximum of

|V g
f | along the frequency axis at time index n, namely:

ILC [n, ϕ[n]] =

[
bϕ[n]− stdLC [n, ϕ[n]]

N

L
c, dϕ[n] + stdLC [n, ϕ[n]]

N

L
e
]
. (15)

For a MCS defined as in (4), at each time instant n, |V g
f | admits P local maxima along the frequency

axis, and for each of them, one can define an interval ILC by considering that each mode can be locally

approximated by a linear chirp. Now, if some noise is added to f to obtain f̃ , some other local maxima

not associated with a mode arise in the TF plane. As the magnitude of |V g

f̃
| at a local maximum is usually

larger when it corresponds to a mode rather than to noise, we strengthen these maxima by first computing

at each local maximum [n, k0], the interval ILC [n, k0], and then by defining the auxiliary variable:

SLC [n, k0] =
∑

k∈ILC [n,k0]

|V g

f̃
[n, k]|2. (16)

Using the variable SLC , we then construct P ridge portions starting at time index n0, by considering

(ϕp[n0])p=1,··· ,P such that (SLC [n0, ϕp[n0]])p=1,··· ,P are the P largest local maxima at time index n0.

From each of these points, we define ridge portions using a variant of (12), by introducing first ψp[n0 +

1] := ϕp[n0] + dq̂f̃ [n0, ϕp[n0]] NL2 c, and then

ϕp[n0 + 1] := argmin
k
{|k − ψp[n0 + 1]|, s.t. SLC [n0 + 1, k] is a local maximum} . (17)
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The differences with (12) is that we use SLC instead of V g

f̃
and that, for mode p, we look for the closest

maximum to ψp[n0 + 1] along the frequency axis of SLC , thus avoiding the use of an extra parameter

C. Then [n0 + 1, ϕp[n0 + 1]] belongs to the ridge starting at [n0, ϕp[n0]] only if SLC [n0 + 1, ϕp[n0 + 1]]

is among the 2P + 1 largest maxima of SLC at time index n0 + 1, otherwise the ridge construction is

stopped. To consider the 2P + 1 largest maxima is motivated by the fact that when a local maximum

corresponding to a ridge is destroyed by the noise it often gives rise to two maxima as illustrated in

Fig. 1 (b), therefore the 2P . largest maxima not to miss any information. Then, we add one to take into

account the fact that locally some maxima related to noise may be larger than some others related to

signal.

The procedure is then iterated forward and backward (from n0) until the construction of each of the

P ridge portions is stopped. Thus, with such a formulation, each initialization point n0 leads to P ridge

portions, with a priori different lengths. It is important to mention that, contrary to MB-RD and S-RD,

we do not construct the ridges one by one using a so-called peeling algorithm as in [13], [14], [17], [20],

but alternatively construct P ridge portions at a time, and do not impose that the ridge portions starting

at time n0 last for the whole time span.

Now, investigating the stability of these ridge portions with respect to the initialization point n0, we

consider other initialization points around n0, and compute the associated P ridge portions using the just

described procedure. If a ridge portion computed at time index n0 is present in the set of the P ridge

portions for s successive initialization time indices including n0, the latter consists of a relevant ridge

portion (RRP) at scale s.

V. RD BASED ON RRPS

In this section, we are going to build a new RD technique based on RRPs. For that purpose, we first

introduce a procedure to gather the RRPs associated with the same mode, and then explain how to build

RD from these gathered RRPs.

A. Gathering RRPs Based on TF Location

Our motivation to gather RRPs is that though heavy noise splits the ridge associated with a mode in

many different RRPs, these remain close to each other in the TF plane, following [21] in that matter.

Our goal is thus to associate to a mode a set of RRPs by defining the notion of intersection for RRPs.

For that purpose, let us denote (Rj)j∈J the set of RRPs. For each Ri, we denote [n0, k0] and [n1, k1]
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9

the beginning and the end of Ri, then define IPH [k] =
[
bk − 3N

L
√

2πσ
c, dk + 3N

L
√

2πσ
e
]

(PH standing for

pure harmonic). Using these notations, we define the neighborhood of Ri, as follows:

NRi = {[n, l], n ∈ [n0 −∆t, n0], l ∈ IPH [k0]}
⋃
{[n, l], [n, k] ∈ Ri and l ∈ IPH [k]}⋃

{[n, l], n ∈ [n1, n1 + ∆t], l ∈ IPH [k1]} .
(18)

At each location on a RRP, the frequency neighborhood consists of the interval corresponding to 3 times

the standard deviation computed assuming no modulation (because to take into account the modulation

in that context may lead to instabilities), and at each end of an RRP we extend this neighborhood using

the time parameter ∆t, which corresponds to the maximal time distance, measured in number of time

bins, between successive RRPs associated with the same mode.

In that context, we say that Ri and Rj are intersecting if NRi
⋂
NRj 6= ∅. All the intersecting RRPs

are then gathered together to obtain a set (Mq)q∈Q, that is each Mq is the union of some RRPs, and

we then define the energy of Mq as:

R(Mq) =
∑

[m,l]∈Mq

SLC [m, l]. (19)

All the points in Mq are then given the energy R(Mq). Finally, we only keep in Mq only one TF point

per time index: if there are several TF points in Mq associated with one time index we only keep in

Mq the one associated with the most energetic RRP (the energy of Ri being defined as R(Ri)).

B. Definition of New RD Technique

For the sake of simplicity let us now assume that the set M = (Mq)q∈Q is ranked according to

decreasing energies. Starting from q = 0, we consider the first index q0 such that P elements in

(Mq)q=0,··· ,q0 contains some points associated with the same time index. Let us denote (M0
p)p=1,··· ,P , the

corresponding elements ofM, ranked according to increasing frequencies. To obtain a first approximation

of the pth ridge, we compute the following polynomial approximation:

D0
p = argmin

D

∑
[n,k]∈M0

p

|k −D(
n

L
)|2R(M0

p)
2, p = 1, · · · , P, (20)

where D is some polynomial of degree d. We then associate with each polynomial D0
p a TF region

defined as:

T FD0
p

=
{

[n, k], 0 ≤ n ≤ L− 1, k ∈ IPH(D0
p(
n

L
)),
}

(21)

in which IPH(D0
p(
n
L)) corresponds to the definition given in the previous section except we use round

brackets instead of square brackets since D0
p(
n
L) is not located on the frequency grid.
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If the TF regions (T FD0
p
)p=1,··· ,P intersect some elements in M other than (M0

p)p=1,··· ,P then

the corresponding RRPs are added, with the corresponding energy, in minimization (20), and updated

approximation polynomials are computed. Such a procedure is iterated until no new elements in M are

intersected by the updated (T FD0
p
)p=1,··· ,P ( for the sake of simplicity, we still denote by (D0

p)p=1,··· ,P

the set of polynomials obtained after these iterations). Finally, we define the energy corresponding to

these polynomial approximations as follows:

E0 :=

P∑
p=1

L−1∑
n=0

SLC(n,D0
(

n

L
)), (22)

in which the round brackets are used to mean D0
p(
n
L) is not necessarily on the frequency grid. The set

(D0
p)p=1,··· ,P consists of a first approximation for the P ridges. Then, we consider the next index q1

larger than q0 such that there exists a subset (M1
p)p=1,··· ,P of (Mq)q=0,··· ,q1 having one time index in

common and different from (M0
p)p=1,··· ,P . Solving the updated optimization problem for each p:

D1
p = argmin

D

(
R(M0

p)
)2 ∑

[n,k]∈M0
p

|k −D(
n

L
)|2 +

(
R(M1

p)
)2 ∑

[n,k]∈M1
p

|k −D(
n

L
)|2, (23)

and then iterating as explained before, we get an updated set of approximation polynomials which we call

(D1
p)p=1,··· ,P , to which we associate the energy E1 following (22). If E1 > E0, then the approximation

polynomials become the set (D1
p)p=1,··· ,P , otherwise one keeps the original set (D0

p)p=1,··· ,P . Such a

procedure is iterated until all the elements in M have been considered, and we end up with a set of

polynomials called (Dfin
p )p=1,··· ,P . We finally rerun this procedure starting with (Dfin

p )p=1,··· ,P as initial

polynomials values and replacing IPH(D0(nL)) by ĨLC(n,Dfin
p (nL)), defined by:

ĨLC(n,Dfin
p (

n

L
)) =

[
bDfin

p (
n

L
))− 3stdLC(n,Dfin

p (
n

L
))
N

L
c, dDfin

p (
n

L
)) + 3stdLC(n,Dfin

p (
n

L
))
N

L
e
]
,

(24)

with stdLC(n,Dfin
p (nL)) := 1√

2πσ

√
1 + σ4(Dfin

p )′(nL)2. This post-processing step enables to take into

account some ridge portions that were wrongly left apart. Note that if the final set of polynomials obtained

at the end the procedure is such that the polynomials are intersecting, we consider instead the set of non

intersecting polynomials obtained with the just described procedure and associated with the largest energy.

For the sake of simplicity, we still denote by (Dfin
p )p=1,··· ,P this final set of approximation polynomials.

In the sequel, we denote [F−p [n], F+
p [n]] := ĨLC(n,Dfin

p (nL)), and we omit p in the case of a

monocomponent signal. Furthermore, the set of RRPs used in the construction of (Dfin
p )p=1,··· ,P are

denoted by (Mfin
p )p=1,··· ,P . From now on, the proposed RD method is called RRP-RD. Note that for

particular applications, in particular when the phases of the modes contain fast oscillations, polynomial

approximation may be replaced by spline approximation, as illustrated in Section VI-C on a gravitational

wave signal.
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Fig. 2. (a): STFT of a noisy linear chirp (SNR = -10 dB); (b): STFT of a noisy mode with cosine phase (SNR = -10 dB); (c):

STFT of a noisy mode with exponential phase (SNR = -10 dB); (d): ridge Dfin detected for the signal displayed in (a), with

the set of RRPs Mfin used in the computation of the ridge Dfin, along with F−[n] and F+[n] for each n; (e): same as (d)

but for the signal whose STFT is displayed in (b); (f): same as (d) but for the signal whose STFT is displayed in (c)

We display in Fig. 2 an illustration of the proposed RD on a noisy linear chirp, a noisy mode with

cosine phase, and a noisy mode with exponential phase (displayed on the first row of that figure). In each

case, the noise is a complex Gaussian noise and the noise level corresponds to an input SNR of −10 dB

(the input SNR is defined as SNR(f, f̃) = 20 log10

(
‖f‖2
‖f̃−f‖2

)
). On the second row of Fig. 2, we display

Dfin along with the RRPs used for its construction, namely Mfin, and also the interval [F−[n], F+[n]]

for each n. These first illustrations show that the proposed procedure seems to be efficient in very noisy

situations ; this will be further quantified in Section VI. We also illustrate the procedure on the two

mode signals of Fig. 3, which consist either of two linear chirps, two modes with cosine phase, and a

last signal made of a linear chirp plus an exponential chirp. The input SNR is still fixed to −10 dB. We

again notice that RRP-RD seems to be well adapted to deal with MCS in the presence of heavy noise,

regardless of the modulation of the modes.
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Fig. 3. (a): STFT of two noisy linear chirps (SNR = -10 dB); (b): STFT of two noisy modes with cosine phases, with different

modulation (SNR = -10 dB); (c): STFT of a signal made of a linear chirp and a mode with exponential phase (SNR = -10

dB); (d): ridges (Dfin
p )p=1,2 detected for the signal displayed in (a), along with (Mfin

p )p=1,2. We also display the interval

[F−p [n], F+
p [n]], for each n and p; (e): same as (d) but for the signal whose STFT is displayed in (b); (f): same as (d) but for

the signal whose STFT is displayed in (c).

C. Mode Reconstruction

Having defined RRP-RD, we explain how we proceed with mode reconstruction. A simple strategy

consists of summing the coefficients in [F−p [n], F+
p [n]] for each n, namely

fp[n] ≈ 1

g[0]N

∑
k∈[F−p [n],F−p [n]]

V g

f̃
[n, k]. (25)

To take into account the fact that the intervals [F−p [n], F+
p [n]] and [F−p+1[n], F+

p+1[n]] may intersect for

some time index, in such instances these intervals are replaced by [F−p [n],
F+
p [n]+F−p+1[n]

2 ] and [
F+
p [n]+F−p+1[n]

2 , F+
p+1[n]]

respectively. This reconstruction procedure is denoted by RRP-MR in the sequel.

An alternative technique for mode reconstruction was recently proposed in [24], and is based on a

linear chirp approximation for the mode. In our context, the technique proposed in [24] would consider

k0 := bDfin
p [n]NL e, and then the following approximation for the STFT of fp (see [24] for details):

V g
fp

[n, k] ≈ V g

f̃
[n, k0]e

πσ2(1+i(D
fin
p )′( n

L
)σ2)

1+(D
fin
p )′( n

L
)2σ4

[L(k0−k)
N

(
L(k0+k)

N
−2Dfin

p ( n
L

))]
. (26)
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If one denotes Ṽ g
fp

the estimation of V g
fp

given by (26), the retrieval of fp can be carried out through:

fp[n] ≈ 1

g(0)N

N−1∑
k=0

Ṽ g
fp

[n, k]. (27)

This technique applied to RRP-RD will be denoted by RRP-MR-LCR (LCR standing for linear chirp

reconstruction).

To compare RRP-MR to reconstruction based on S-RD and MB-RD, it is natural to consider for each

time n the interval:

ĪLC [n, ϕp[n]] =

[
bϕp[n]− 3stdLC [n, ϕp[n]

N

L
c, dϕp[n] + 3stdLC [n, ϕp[n]]

N

L
e
]

:= [F
−
p [n], F

+
p [n]],

(28)

which is the same as (24), except that Dfin
p is replaced by ϕp, and that the modulation is estimated

by q̂f̃ [n, ϕp[n]] instead of (Dfin
p )′. Then the reconstruction of mode p is carried out by means of the

formula:

fp[n] ≈ 1

g[0]N

∑
k∈[F

−
p [n],F

+

p [n]]

V g

f̃
[n, k]. (29)

For the sake of a fair comparison with RRP-MR, if [F
−
p [n], F

+
p [n]] intersects [F

−
p+1[n], F

+
p+1[n]] these are

replaced by [F
−
p [n],

F
+

p [n]+F
−
p+1[n]

2 ] and [
F

+

p [n]+F
−
p+1[n]

2 , F
+
p+1[n]] respectively. This type of reconstruction

technique used with S-RD or MB-RD are called S-MR and MB-MR respectively.

VI. NUMERICAL APPLICATIONS

In this section, we first investigate the quality of RRP-RD compared with S-RD and MB-RD on

multicomponent simulated signals, in Section VI-A. Then, we assess the quality of the just described

mode reconstruction techniques in Section VI-B, on the same simulated signals. We finally investigate the

behavior of RRP-RD on a gravitational-wave signal in Section VI-C (all the Matlab programs enabling the

figures reproduction is available at https://github.com/Nils-Laurent/RRP-RD). Note that to compute the

STFT in all cases, we use a Gaussian window such that its standard deviation corresponds to the minimal

Rényi entropy [25], which is proved to be a good trade-off minimizing interference between the modes

in the TF plane [26]. We are aware of recent works on adaptive window determination as developed in

[27], [28], but though to choose the window adaptively may ease ridge determination, adaptation require

the knowledge of a rough version of the ridges, which is very critical in noisy situations.

September 25, 2020 DRAFT



14

A. Comparison on RRP-RD, S-RD and MB-RD on Simulated Signals

Our goal in this section is to show that RRP-RD is much more relevant in noisy situations than S-RD

and MB-RD. For that purpose we compute RD results for the signals of Fig. 3, when the input SNR

varies between -10 dB and 4 dB. We choose to consider only low input SNRs because at higher SNRs

the modes are associated with a local maximum at each time instant, and the ridge detection is less

challenging.

When the signal is made of two linear chirps as in Fig. 3 (a), the detection results depicted in Fig.

4 (a) tell us that RRP-RD performs much better than S-RD and MB-RD. Note that the approximation

polynomials used in RRP-RD are both with degree 5 (to reduce their orders does not significantly change

the results). For that example L = 4096 and ∆t is set to 20, meaning the maximal time between two

ridge portions associated with the same mode is 20
4096 seconds and s defining the RRPs is set to 8.

Comparing the results associated with S-RD and MB-RD, we notice that the former behaves better than

the latter at low noise level and similarly at a higher noise level. Such a behavior is related to the fact

that the modulation operator q̂f̃ is not accurate at locations where the ridge is split, and MB-RD fails

to follow the different ridge portions corresponding to a mode (in these simulations, C is set to 2). On

the contrary, since S-RD uses the fixed modulation parameter Bf (here set to 10), it is able to follow

ridge portions that are not necessarily connected which explains why it works better that MB-RD at high

noise level. On that example, for positive input SNRs, since S-RD and MB-RD lead to the same results,

local maxima along the frequency axis of the spectrogram associated with each mode exist at each time

instant: the gain in output SNR brought by RRP-RD arises from polynomial approximation. For negative

input SNRs, such maxima no longer exist for each time instant and the gain brought by RRP-RD is

related to the relevance of the grouping of RRPs.
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Fig. 4. (a): Comparison between S-RD, MB-RD and RRP-RD, for the signal of Fig. 3 (a): for each mode p = 1, 2, computation

of output SNR between IF φ′p and estimated IF with respect to input SNR (the results are averaged over 30 realizations of the

noise); (b): same as (a) but for the signal of Fig. 3 (b); (c): same as (a) but for the signal of Fig. 3 (c)
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Now, analyzing RD results for the signal of Fig. 3 (b), we remark that the conclusions for mode f2

are similar to those for linear chirps. Indeed, at low input SNRs RRP-RD performs much better than the

other two techniques since it better copes with the absence of a local maximum along the frequency axis

close to the IF locations of the modes. On the contrary, when such maxima exist, namely for input SNRs

such that S-RD and MB-RD coincide, the gain in terms of output SNR with RRP-RD is less important

than in the case of linear chirps since to approximate a cosine phase with a polynomial of degree 5 leads

to larger errors. As for mode f1, which is much more modulated that f2, we see that at a high noise

level, RRP-RD is still much better than the other two techniques, but when the noise level decreases,

S-RD behaves better than RRP-RD due to inaccuracy in IF approximation using a polynomial of degree

5. In such a case, since the modulation operator q̂f̃ is more sensitive to noise when the mode is more

modulated, MB-RD behaves worse than the other two techniques.

Finally, regarding the signal of Fig. 3 (c), we only comment on the results related to the mode with

exponential phase, for which we again notice that RRP-RD behaves much better than the other two tested

methods at low input SNR, meaning the grouping of RRPs is still performing well in that case. When

the noise level decreases, namely when f2 generates a local maximum along the frequency axis at each

time instant, RRP-RD and S-RD behaves similarly (an exponential phase can be accurately approximated

by a polynomial with degree 5). On the contrary, the modulation operator q̂f̃ is not accurate enough to

follow the local maxima along the frequency axis of the spectrogram of f2.
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Fig. 5. (a): For each mode p = 1, 2, output SNR between mode fp of signal of Fig. 3 (a) and reconstructed mode for each

methods, namely S-MR, MB-MR, RRP-MR, and RRP-MR-LCR (the results are averaged over 30 noise realizations); (b): same

but with signal of Fig. 3 (b); (c): same but with signal of Fig. 3 (c);

B. Comparison of the Mode Reconstruction Techniques

In this section, we investigate the quality of mode reconstrutcion techniques S-MR, MB-MR, RRP-

MR, and RRP-MR-LCR still for the signals of Fig. 3. Looking at the results of Fig. 5 (a) related to the
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signal of Fig. 3 (a), it transpires that while the RRP-RD is much better than S-RD and MB-RD at high

noise levels this is not reflected in mode reconstruction. This is due to the fact that too much noise is

included in intervals [F−p [n], F+
p [n]] and [F

−
p [n], F

+
p [n]] for each n, and consequently the coefficients

used for reconstrution are not relevant. Alternatively, when one considers RRP-MR-LCR, the results are

significantly improved, meaning that at low SNR one had rather use the information on the ridge to

reconstruct rather than summing the coefficients in the vicinity of the ridge. Such a conclusion remains

true for the mode f2 of the signal of Fig. 3 (b), and also for the mode f1 of that signal, but only at low input

SNRs. Indeed, at high input SNRs, RRP-MR-LCR is hampered by inaccuracy in phase approximation

with a polynomial of degree 5, which entails larger errors in IF and CR estimations in the linear chirp

approximation involved in this technique. Finally, for the signal of Fig. 3 (c), the reconstruction results are

always much better with RRP-MR-LCR than with the other tested techniques (the ridge approximation

provided by RRP-RD for the exponential chirp being of good quality). To conclude on that part, we

should say that to reconstruct the modes in very noisy scenarios, one had rather use the information on

the ridge to construct a linear chirp approximation than sum the coefficients in the TF plane.

C. Application to Gravitational-Wave Signals

In this section, we investigate the applicability of RRP-RD and RRP-MR-LCR to a transient gravitational-

wave signal, generated by the coalescence of two stellar-mass black holes. This event, called GW150914,

was detected by the LIGO detector Hanford, Washington and closely matches the waveform Albert

Einstein predicted almost 100 years ago in his general relativity theory for the inspiral, the merger of a

pair of black holes and the ringdown of the resulting single black hole [29]. The observed signal has a

length of 3441 samples in T = 0.21 seconds.
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Fig. 6. (a): STFT of the Hanford signal; (b): Spline associated with RRP-RD (tol = 3) along with the ridge portion Mfin; (c):

Denoised STFT used by RRP-MR-LCR technique; (d): Signal reconstructed using RRP-MR-LCR along with the one predicted

by numerical relativity.
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We first display in Fig. 6 (a), the STFT of such a signal. Since the latter is first very slightly

modulated during the inspiral phase, then behaves like an exponential chirp during the merging and

as a fast decreasing phase during the ringdown, to try to approximate the instantaneous frequency with

a polynomial in RRP-RD is not appropriate. Therefore, keeping the same formalism we use spline

approximation instead. This means that, after the merging step, we consider the cubic spline s0

s0 = argmin
s∈SM0

∫ T

0
(s′′(t))2dt, (30)

in which SM0 is the spline space defined at the knots M0 (here we omit the subscript p because we

look for a single mode), under the constraints:∑
[n,k]∈M0

|k − s(n
L

)|2R(M0)2 ≤ D, (31)

where D is a tolerance parameter that can easily related to a number of frequency bins: tol = 1
R(M0)

√
D

#M0 ,

where #M0 denotes the cardinal ofM0, should be of the order of a few frequency bins. Then, the same

type of approach as in the polynomial approximation is carried out, integrating new ridge portions in

the minimization process, to obtain in the end the spline sfin corresponding to the set of ridge portions

Mfin. The spline obtained using RRP-RD along with the set Mfin corresponding to the STFT of Fig.

6 (a) is displayed in Fig. 6 (b). Then, at each point on the spline, one can define a denoised STFT based

on the linear chirp approximation following (26) in which Dfin
p is replaced by sfin. Such a STFT is

displayed in Fig. 6 (c). Finally, the signal reconstructed with RRP-MR-LCR is displayed in Fig. 6 (d)

along with the signal given by the numerical relativity [30], showing a great similarity between the two

signals. In this respect, to investigate the quality of mode reconstruction, we compute the SNR between

the signals obtained with the different reconstruction techniques and that given by the numerical relativity.

The results are displayed in Table I, showing that RRP-MR-LCR behaves slightly better than RRP-MR,

and that each method is only slightly sensitive to the parameter tol.

tol 1 2 3

RRP-MR 7.6097 7.6403 7.6669

RRP-MR-LCR 8.4620 8.6645 8.7498
TABLE I

SNR BETWEEN THE SIGNALS OBTAINED WITH RRP-MR OR RRP-MCR-LR AND THE SIGNAL GIVEN BY THE NUMERICAL

RELATIVITY

The results obtained here are interesting in that they reflect that RRP-RD enables the detection of the

ringdown. Similar results were obtained using higher order syncrosqueezed STFT [31] or second order
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synchrosqueezed continuous wavelet transform [32], but we here show that if one uses a robust ridge

detector as RRP-RD, it is not necessary to reassign the transform to detect the ringdown.

VII. CONCLUSION

In this paper, we have introduced a novel technique to detect the ridges made by the modes of a

multicomponent signal in the time-frequency plane. Our focus was to design the technique in such

a way that it enables the computation of the ridges in very noisy situations. For that purpose we have

brought about the notion of relevant ridge portions, which we subsequently used in our ridge detector. The

proposed technique show significant improvements over state-of-the-art methods based on time-frequency

representations on simulated signals, and is also interesting to analyze gravitational-wave signals. Some

remaining limitations of the present work that it cannot deal with crossing modes and requires that the

number of modes is fixed for the whole signal duration. In a near a future, we will investigate how to

adapt our algorithm to such situations.
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