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Abstract. Extraction of semantic information from real-life speech, such
as emotions, is a challenging task that has grown in popularity over the
last few years. Recently, emotion processing in speech moved from dis-
crete emotional categories to continuous affective dimensions. This trend
helps in the design of systems that predict the dynamic evolution of affect
in speech. However, no standard annotation guidelines exist for these di-
mensions thus making cross-corpus studies hard to achieve. Deep neural
networks are nowadays predominant in the task of emotion recognition.
Almost all systems use recurrent architectures, but convolutional net-
works were recently reassessed as they are faster to train and have less
parameters than recurrent ones. This paper aims at investigating pros
and cons of the aforementioned architectures using cross-corpus exper-
iments to highlight the issue of corpus variability. We also explore the
best suitable acoustic representation for continuous emotion, together
with loss functions. We concluded that recurrent networks are robust
to corpus variability and we confirm the power of cepstral features for
continuous Speech Emotion Recognition(SER), especially for satisfaction
prediction. A final post-treatment applied on prediction brings very nice
result (ccc = 0.719) on AlloSat and achieves new state of the art.

Keywords: Continuous Speech Emotion Recognition ·Deep Neural Net-
works · Acoustic features

1 Introduction

Semantic information extraction from real-life human-human conversations, such
as concepts, emotions or intents, is a major topic for speech processing re-
searchers and companies, especially in call-center related activities. In this con-
text, Speech Emotion Recognition (SER) remains unsolved while being a re-
search field of interest for many years. Predicting naturalistic emotions is a chal-
lenging task, especially if the scope is to capture subtle emotions characterizing
real-life behaviors.

In the discrete theory [3], emotion categories are usually defined on a word,
a segment or a conversation level. However, this approach does not permit to



2 M. Macary, M. Lebourdais, M. Tahon et al.

extract the evolution of affect along a conversation. In the continuous theory,
the complex nature of emotion in speech is described with continuous dimen-
sions, notably arousal and valence [15], but also dominance, intention, conduc-
tive/obstructive axis [16]. As of now, there are only a few available realistic SER
corpora, as they need to respect strong ethical and legal issues and collecting
emotional speech demands tremendous efforts. Among these, very few has been
annotated continuously according to emotional dimensions because it is a diffi-
cult and expensive task. Among the most popular, we can cite SEMAINE [11]
(English interactions with virtual agent), RECOLA [12] (on-line conversations).
The cross-cultural emotion database (SEWA) [8] (human-human conversations)
was presented for the 2018 Audio/Visual Emotion Challenge [13] which aimed
to retrieve arousal, valence and liking dimensions across different cultures. Re-
cently, AlloSat [10] (French call-centers telephone conversations) was annotated
along the satisfaction dimension. The present study aims at continuously pre-
dicting affect in naturalistic speech conversations: this explains why we focus on
the SEWA and AlloSat databases.

In SER, speech signals are traditionally represented with acoustic vectors
which represent the entire emotional segment. Finding the better acoustic fea-
ture set is still an ongoing active sub-field of research in the domain [7]. Most of
existing sets intend to describe prosody in the signal, with low level descriptors
capturing intensity, intonation, rhythm or voice quality. These features have the
advantage of being easily interpretable, however their extraction in degraded
signals are error-prone. The HUMAINE association also took an inventory of
acoustic features in the CEICES initiative [1] which conducts to a set of a hun-
dred of descriptors selected over several corpora with various techniques [5]. An-
other option is to extract spectral features; mel frequency cepstral coefficients
(MFCCs) are clearly the most often used as they are robust to noisy signals. Pre-
vious studies have shown that some implementations of these MFCCs perform
better than others for SER [18].

To perform SER tasks, deep neural networks are more and more used, espe-
cially for continuous emotion recognition. Recurrent neural networks (RNNs),
especially long short term memory (LSTM)-based architectures, are particularly
convenient thanks to their memory properties, enabling to retrieve the evolution
of long-term time series [6] such as emotions or intents. Convolutional neural
networks (CNNs) are widely used in image recognition as they are designed to
exploit spatially local correlations. This type of network has not been used in
continuous SER to the best of the author’s knowledge, until [17] in which the
authors conclude to the advantage of CNNs over RNNs to continuously predict
arousal and valence in SEWA. As CNNs are faster to train and have less pa-
rameters to optimize, they could be interesting to use for continuous SER tasks
instead of RNNs.

The main difficulty encountered in SER is due to the task itself: emotions are
complex, subtle and subjective thus making the reproduction of the results and
standardization very hard. Cross-corpus approaches imply to compare automatic
predictions given by a single system on different corpora. This task has already
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been investigated to retrieve emotion categories [2, 4, 18], but as far as we know,
not to retrieve continuous affective dimensions. The standardization problem is
addressed by AVEC challenges [13, 14] which aim at defining standard models
and evaluations metrics for continuous SER tasks.

A first goal is to estimate in what extent the experiments realised by [17]
are consistent on other data. To do so, the two studied datasets SEWA and
AlloSat are introduced in section 2. Section 3 compares system architectures
(CNN or RNN) while section 4 explores the impact of input acoustic features on
performances. In section 5 we also discuss on results and on the introduction of
post-treatment applied to the neural network output.

2 Emotional data and acoustic features

2.1 AlloSat

AlloSat [10] is composed of 303 call-centers telephone real-life conversations.
Speakers are French native adult callers (i.e. customer) asking for information
such as contract information, complaints on multiple domain company (energy,
insurance, etc.). Each signal contains only the caller’s speech as the part of the
receiver (i.e agent) has been discarded from the corpus for ethical and commercial
reasons. A continuous annotation among the satisfaction dimension was realized
by 3 annotators on all conversations with a time step of 250 ms. The unique gold
reference is the mean of each annotator’s values. The corpus is divided into train,
development and test sets as shown in Table 1 totalling 37h17’ of conversations.
For each conversation the speaker is different, ensuring a speaker independent
partition.

Table 1: Number of mono speaker conversations (and duration) in AlloSat and
the two configurations of SEWA (German only or German and Hungarian), in
train, development and test sets.

Corpus Language Train Dev Test

AlloSat French 201 (25h26’) 42 (5h55’) 60 (5h58’)
SEWA German 34 (1h33’) 14 (37’) 82 (3h)

SEWA Ger + Hun 68 (2h41’) 28 (1h05”) 104 (4h40’)

2.2 SEWA

The cross-cultural Emotion Database (SEWA) [8] consists of 48 audiovisual
recordings of elicited reactions between unique pairs of subjects. Pairs are dis-
cussing for less than 3 minutes about an advert seen beforehand. The database
is now a reference in the community, as it has been used in the two last Au-
dio/Visual Emotion Challenges (AVEC). In this study, only a subset of the
database, containing German and Hungarian records, is investigated according
to the guidelines of AVEC 2018 and 2019 workshop [13, 14]. A continuous an-
notation among three dimensions (arousal, valence and liking) was made by 6
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annotators and a unique gold reference has been computed, for every 100 ms.
The additional liking axis describes how much the subjects liked the commercial.
The corpus is divided into train, development and test sets as shown in Table 1.
Test gold references are not distributed. Predictions have to be sent to AVEC
organizers to get the final performances.

2.3 Acoustic features

This paper mainly tries to reproduce the experiments from AVEC challenges
and Schmitt et al.[17] with different data, to analyze the robustness to corpus
variability. To do so, the acoustic feature sets used in these challenges are used
as well as an additional feature set. In the end, either hand crafted expert fea-
tures or Mel Frequency Cepstral Coefficients (MFCC) are used in the following
experiments. First, low-level descriptors (LLD) are extracted directly from the
speech signal, each 10 ms. These LLDs are then summarized over a fixed time
window of 100 ms for SEWA and 250 ms for AlloSat.

• eGeMAPS-88 contains 88 features from the extended Geneva Minimalistic
Acoustic Parameter Set [5]. This set consists of LLDs capturing spectral,
cepstral, prosodic and voice quality information from the speech signal, which
are then summarised over the time window with a set of statistical measures.
This feature set has been extensively used for SER, especially thanks to
AVEC challenges. This feature set is extracted with the toolkit OpenSmile1.

• eGeMAPS-47 is a subset of GeMAPS which includes 23 LLDs. Mean and
standard deviation of these 23 LLDs are computed over the time window.
This feature set is extracted with the toolkit OpenSmile. An additional bi-
nary feature denoting speaker presence extracted from speech turns, is also
included.

• Mfcc-Os consists of MFCC1-13, and their first and second derivatives, also
extracted with the toolkit OpenSmile. Mean and standard deviation are
computed on these 39 features over the time window. In total, we use a
78-dimensional feature vector.

• Mfcc-lib is an alternative implementation of cepstral coefficients from li-
brosa2 that is used in many speech processing experiments. In this set, 24
MFCCs are extracted each 10 ms on a 30 ms window and summarized with
mean and standard deviation over the time window. In total, we use a 48-
dimensional feature vector.

In SER, acoustic representation of emotion usually tends to capture prosody.
That is the reason why expert features are more often used than single MFCC.
However, in the context of telephone conversations, the audio signal is severely
degraded and expert features can not avoid estimation errors. Therefore MFCC
features can be more robust and reliable than expert features and thus gives us
better performance in this context. Experiments are conducted in Section 4 to
analyze the impact of the features set chosen.

1 http://audeering.com/technology/opensmile/
2 https://librosa.github.io/librosa/
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3 Convolutional or recurrent models ?

To estimate in what extent the experiments published in [17, 13, 14] are consis-
tent on different corpus, we decided to reproduce them on SEWA and compare
them to those obtained on AlloSat.

3.1 Network architectures

In Schmitt et al. [17], CNN and RNN architectures are investigated. The CNN
is composed of 4 convolutional layers with a ReLU activation. The RNN is
composed of 4 bidirectional Long Short Term Memory (biLSTM-4) layers of
respectively 200, 64, 32 and 32 units, and a tanh activation. A single output
neuron is used to predict the regression samples each 250 ms for AlloSat, re-
spectively 100 ms for SEWA. In addition, a second RNN with 2 bidirectional
LSTM (biLSTM-2) layers of respectively 64 and 32 units, with a tanh activation,
proposed in AVEC 2018 and 2019 challenge [13, 14], is experimented. In the end
3 different networks are tested as shown in Fig. 1.

(a) CNN (b) biLSTM-4

(c) biLSTM-2

Fig. 1: Description of the models used: units are in red and filter span in blue.

3.2 Protocol

The networks, summarized in Fig. 1, are implemented with the Keras framework3

using the Tensorflow backend4. The learning rate has been empirically set to
0.001, the number of epochs is fixed to 500 and ADAgrad optimiser is used. The
Concordance Correlation Coefficient (CCC) [9] was established as a standard
metric in the two last AVEC challenges and is generally used to compute the
network loss function. As the random initialization of the system can alter the
prediction, each network is trained five times with different seeds and all following
results represent the average of these 5 systems and the best score. Table 2
reports the reproduction results in terms of CCC, obtained with the following
configurations:

3 https://keras.io
4 https://www.tensorflow.org/
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• AVEC 2018 (green): network: biLSTM-2; features: Mfcc-Os, eGeMAPS-88;
train/dev: SEWA (Ger), AlloSat

• AVEC 2019 (purple): network: biLSTM-2; features: Mfcc-Os, eGeMAPS-88;
train/dev: SEWA (Ger+Hun), AlloSat

• Schmitt et al. (pink): networks: CNN, biLSTM-4; features: eGeMAPS-47;
train/dev: SEWA (Ger), AlloSat

3.3 Cross-corpus experiments: CNN vs. RNN

Table 2: Comparison of averaged CCC scores of AlloSat and SEWA development
sets on the 4 dimensions: satisfaction, arousal, valence and liking with CCC as
loss function. Reports of the results from [13, 14, 17] are also included. *Train
and prediction has been made on the concatenation of German and Hungarian
SEWA conversations.
Models Features AlloSat SEWA

satisfaction arousal valence liking

Our systems

CNN eGeMAPS-47 .178 (.458) .528 (.541) .515 (.527) .304 (.321)
biLSTM-4 eGeMAPS-47 .437 (.458) .487 (.527) .428 (.468) .258 (.346)
biLSTM-2 eGeMAPS-88 .480 (.564) .280 (.357) .174 (.212) .095 (.171)
biLSTM-2 Mfcc-Os .364 (.439) .395 (.438) .325 (.373) .158 (.208)
biLSTM-2 eGeMAPS-88* .480 (.564) .244 (.273) .118 (.155) .082 (.132)
biLSTM-2 Mfcc-Os* .364 (.439) .325 (.326) .186 (.192) .125 (.126)
biLSTM-4 eGeMAPS-88 .564 (.634) .316 (.429) .237 (.309) .119 (.188)

Schmitt et al. : Train and Dev on German conversations

CNN eGeMAPS-47 .571 .517
biLSTM-4 eGeMAPS-47 .568 .561

AVEC 2018 : Train and Dev on German conversations

biLSTM-2 eGeMAPS-88 .124 .112 .001
biLSTM-2 Mfcc-Os .253 .217 .136

AVEC 2019 : Train and Dev on German and Hungarian conversations

biLSTM-2 eGeMAPS-88* .371 .286 .159
biLSTM-2 Mfcc-Os* .326 .187 .144

According to Table 2, our models perform in average slightly better than
AVEC 2018 baseline on all SEWA dimensions. Although our performances are
in average almost below AVEC 2019 baseline, our best models trained with
Mfcc-Os features are in the range of the baseline results. This underlines the
importance of initialization and seed choice. The comparison with Schmitt et
al. shows that we did not managed to reproduce the published results on both
arousal and valence dimensions except on the prediction of valence with CNN.
We also report the results obtained on liking which are better than the ones
obtained with AVEC systems.

Comparison of average and best performances allows us to find the sys-
tems which have low dependency with weight initialization, which are biLSTM-
2 trained with Mfcc-Os on SEWA Ger+Hun (purple) and CNN trained with
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eGeMAPS-47 on SEW Ger (pink). Generally, the best performances seem to be
more difficult to reproduce on liking than arousal or valence.

The performances on satisfaction prediction are comparable to those obtained
on other dimensions when using biLSTM. However, the results with CNN com-
pletely differ. More precisely, with 5 different seeds, 3 models diverged, while all
biLSTM converged to satisfactory results. It shows that satisfaction prediction
performs better with RNNs than CNNs. Therefore, continuous SER does require
a biLSTM architecture to be competitive on multiple dimensions and resolve the
corpus variability issue.

We noticed that satisfaction (resp. liking) varies very slowly (resp. slowly) in
time in comparison to arousal and valence. This can be due to the annotation
protocol (mouse vs. joystick) and the affective content. To investigate if the
dynamics in annotation was responsible for poor results on satisfaction, we run
additional experiments with smoothed references. The results (not reported here)
show that smoothing the reference up to 1 s helps in increasing performances
on AlloSat (average ccc = 0.185, best ccc = 0.475) with the systems which
were already converging. To conclude, CNN can not be used on every kind of
speech data as their convergence is not straightforward, probably because of
their dependency on filter initialization.

Focusing on satisfaction prediction , eGeMAPS-88 (ccc = 0.480) appears to
perform better than MFcc-Os (ccc = 0.364) with 2 biLSTM layers in the net-
work. However, eGeMAPS-47 with 4 biLSTM layers also reaches good results
(ccc = 0.437). To conclude on the best number of layers, we run a final experi-
ment with 4 biLSTM layers and eGeMAPS-88 (ccc = 0.564) which achieves our
best result.

This first experiment concludes that biLSTM-4 is the best architecture re-
garding variability robustness over different emotion corpora. However, the struc-
ture of the network is not the only component implicated in a SER module. The
representation of the speech data in input and the loss function are also cru-
cial. The following section explores acoustic features and loss functions, using
biLSTM-4 models.

4 Impact of input features and loss function

In this section, we study the impact of the acoustic representation of speech in
input together with loss functions used during the training phase.

4.1 Loss functions

Traditionally in continuous emotion prediction, the loss function is computed
with the CCC as this metric was established as a standard metric in the two
last AVEC challenges. However, the pertinence of the CCC as loss function is
reassessed in our experiments. CCC is given by equation 1, where x and y are
two variables, µx and µy are their means and σx and σy are the corresponding
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standard deviations. ρ is the correlation coefficient between the two variables.

ρ =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
(1)

Actually, when the reference is constant over time, (σy = 0), CCC is zero.
More generally, when the reference varies slowly, CCC will be almost zero. Con-
sequently, the loss function penalizes conversations where the reference varies
slowly (σy ' 0), and the trained network will have difficulties to predict cor-
rectly such references. We decided to use the root mean square error (RMSE)
(see eq. 2 where xi is a prediction, yi a reference and n the number of values),
as loss function to neutralize this effect.

RMSE =

√
1

n
Σn

i=1

(
yi − xi

)2
(2)

4.2 Cross-corpus experiments: acoustic features and loss functions

Table 3: Average CCC scores on AlloSat and SEWA dev sets with 4 acoustic
feature sets and 2 loss functions (l-ccc and l-rmse). The network is a biLSTM-4.
Training and predictions on SEWA has been made on the German conversations.
Features AlloSat SEWA

satisfaction arousal valence liking
l-ccc l-rmse l-ccc l-rmse l-ccc l-rmse l-ccc l-rmse

eGeMAPS-47 .437 .381 .487 .438 .428 .404 .258 .252
eGeMAPS-88 .564 .514 .316 .201 .237 .211 .119 .077
Mfcc-lib .675 .698 .258 .222 .192 .103 .180 .192
Mfcc-Os .382 405 .394 .377 .373 .357 .221 .234

In this experiment, the 4 acoustic feature sets described in section 2 are ex-
plored as inputs of a biLSTM-4 network. The results are consigned in Table 3.
Clearly, and whatever the loss is, eGeMAPS-47 performs better on SEWA di-
mensions, following by Mfcc-Os. At the other end, Mfcc-lib performs better on
AlloSat satisfaction, followed by eGeMAPS-88. This is probably due to the fact
that AlloSat contains telephone conversations with diverse background noises,
which can alter the extraction of fine-tuned features present in eGeMAPS sets.
Moreover, RMSE loss increases performance only when combined with Mfcc fea-
tures, for satisfaction and liking. Interestingly, these two dimensions are the ones
that vary the less according time, consequently have the lowest σy. Mfcc-lib with
RMSE loss achieve new state-of-art performance on AlloSat.

5 Analysis of the results and post-processing

Even if the score achieved by the best model on satisfaction is high (ccc = 0.698),
we can observe that predictions vary rapidely with time (see Fig. 2).
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Fig. 2: Evolution of reference satisfaction (red) and its prediction (gray) in two
conversations from AlloSat test subset. ccc(A) = 0.564, ccc(B) = 0.903.

We propose to post treat the prediction with Savistky-Golay smoothing al-
gorithm and polynomial degree of 0. Table 4 confirms that this post-treatment
improves the results, achieving new state-of-art results on the satisfaction di-
mension.

Table 4: CCC scores without and with a smoothing function computed on
development and test set of AlloSat on our best model: biLSTM-4, Mfcc-lib
features and RMSE loss function.

Features Dev Test
Raw Smoothed Raw Smoothed

Mfcc-lib (l-rmse) .698 .719 .513 .570

6 Conclusion

In this paper, we estimate how much continuous SER is robust to variability
issues with cross-corpus experiments.

CNN and RNN were evaluated in the continuous SER task and we conclude
that RNNs are robust to cross-corpus conditions and achieve the best results on
satisfaction. CNNs perform better on arousal, valence and liking but seem to be
very sensitive to filter initialization. We also show that the best feature set (and
its implementation) depends on the studied dimension and/or corpus: satisfac-
tion is better represented by MFCCs (ccc = 0.698) while arousal, valence and
liking are better represented by eGeMAPS-47 features. Indeed, the extraction
of fine-tuned features as those in eGeMAPS is probably very sensitive to noisy
signals such as telephone. All these results highlight the issue of variability ro-
bustness as performances are corpus-dependant. To go further, a post-treatment
has been applied on satisfaction predictions showing a significant improvement.
The very nice result (ccc = 0.719) obtained on AlloSat achieves new state of the
art.
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