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1. Radiomic feature values obtained using different MR scanners or imaging protocols can be harmonized by combining off-the-shelf image standardization and feature realignment procedures. 2. Harmonized radiomic features enable one to pool data from different scanners and centers without substantial loss of statistical power caused by intra-and inter-center variability. 3. The proposed realignment method is applicable to radiomic features from different MR sequences and tumor types and does not rely on any phantom acquisition.

Introduction

Radiomics faces the critical issue of lack of reproducibility that still hampers the successful translation of radiomic model discovery into better diagnosis, patient classification or monitoring radiomicsbased tools. Indeed, radiomic features values are significantly affected by the technical settings of the imaging devices and protocols, as demonstrated in Positron Emission Tomography (PET), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI) [START_REF] Yan | Impact of image reconstruction settings on texture features in 18F-FDG PET[END_REF][START_REF] Berenguer | Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters[END_REF][START_REF] Goya-Outi | Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma[END_REF]. To tackle the variability of radiomic features induced by different technical settings, radiomic models can be designed using a wide variety of images encompassing most technical settings, or image or radiomic feature values have to be harmonized before designing models. Ignoring the center effect, as is often observed in many papers, results in lack of generalization of the radiomic models [START_REF] Reuzé | Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners[END_REF].

In prospective studies, imaging protocols could be harmonized upstream between centers to minimize the impact of imaging protocols on feature values [START_REF] Boellaard | FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0[END_REF][START_REF] Clarke | The Quantitative Imaging Network: NCI's historical perspective and planned goals[END_REF], although harmonizing between machines of different generations often comes with degrading the image quality achieved by the most recent scanners [START_REF] Boellaard | FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0[END_REF]. In retrospective studies, this approach is not an option. Several groups have proposed to reduce the variability by resampling the images to a common voxel size or by filtering the images to match spatial resolution [START_REF] Shafiq-Ul-Hassan | Voxel size and gray level normalization of CT radiomic features in lung cancer[END_REF][START_REF] Mackin | Harmonizing the pixel size in retrospective computed tomography radiomics studies[END_REF]. However, this requires accessing the images retrospectively and the filtering procedure reduces the quality of images acquired using the most recent devices. Others apply a z-score transformation [START_REF] Chatterjee | Creating robust predictive radiomic models for data from independent institutions using normalization[END_REF] to each feature value based on mean and standard deviations measured in each center for that feature, but this assumes that images produced by the different centers have been obtained in similar patient samples (eg, same proportion of advanced and early stage tumors), which is sometimes difficult to achieve.

In genomics, researchers face a similar problem called batch effect and caused by the handling of samples by different laboratories, different technicians, on different days that can obscure individual variations. To deal with that problem in genomics, Johnson et al [START_REF] Johnson | Adjusting batch effects in microarray expression data using empirical Bayes methods[END_REF] introduced the ComBat realignment method. The method realigns all data in a single space in which the batch effect is discarded without altering the biological information. This approach has already been successfully validated for radiomic features measured from PET [START_REF] Orlhac | A postreconstruction harmonization method for multicenter radiomic studies in PET[END_REF] and CT [START_REF] Orlhac | Validation of a method to compensate multicenter effects affecting CT radiomics[END_REF][START_REF] Mahon | ComBat harmonization for radiomic features in independent phantom and lung cancer patient computed tomography datasets[END_REF] images of patient or phantom data in studies supporting the relevance of harmonization.

In MR, the challenge is even more difficult as, unlike in PET and CT where images are expressed in kBq/mL and Hounsfield Units respectively, there is no standard MR intensity grey scale, implying the lack of a tissue-specific absolute intensity numeric meaning, even within the same MR imaging protocol, for the same body region, for images obtained on the same scanner, for the same patient.

The standardization of image intensities among patients is therefore absolutely needed for comparing values of intensity-based features. In brain MR, standardization approaches have been proposed to correct for the intensity variability [START_REF] Goya-Outi | Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma[END_REF][START_REF] Zhuge | Intensity standardization simplifies brain MR image segmentation[END_REF][START_REF] Ge | Numerical tissue characterization in MS via standardization of the MR image intensity scale[END_REF][START_REF] Nyúl | On standardizing the MR image intensity scale[END_REF]. In particular, the hybrid white stripe (hWS) method proved to be successful in the context of neurodegenerative diseases and cancer [START_REF] Shinohara | Statistical normalization techniques for magnetic resonance imaging[END_REF][START_REF] Kickingereder | Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features[END_REF]. ComBat has been validated in MRI for the harmonization of cortical thickness measurements across scanners [START_REF] Fortin | Harmonization of cortical thickness measurements across scanners and sites[END_REF].

Although it has been used in MR radiomic studies [START_REF] Lucia | External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy[END_REF][START_REF] Whitney | Harmonization of radiomic features of breast lesions across international DCE-MRI datasets[END_REF][START_REF] Wang | Preoperative MRI-based radiomic machine-learning nomogram may accurately distinguish between benign and malignant soft-tissue lesions: a two-center study[END_REF][START_REF] Zhang | Pretreatment MRI radiomics analysis allows for reliable prediction of local recurrence in non-metastatic T4 nasopharyngeal carcinoma[END_REF], it has never been validated in that highly challenging context.

Here, we extend this approach to provide a harmonization procedure applicable to any radiomic feature. We demonstrate that by combining the image standardization (such as hWS) with ComBat realignment, MR radiomic features can be pooled without being adversely impacted by multiple sources of variability, ensuring higher sensitivity and specificity of multicenter MR radiomic studies.

Materials and Methods

The study was carried out in accordance with the World Medical Association's Declaration of Helsinki.

For experiment 2 involving MRI brain studies, the institutional review board of the Fondation Ophtalmologique A. Rothschild approved the study (IRB No. 1512-016-726), and the requirement to obtain written informed consent was waived because of the retrospective nature of the study. For experiment 3 using MRI prostate studies, all patient data are publicly available in https://datadryad.org/resource/doi:10.5061/dryad.b3d257g and were initially studied in [START_REF] Penzias | Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: preliminary findings[END_REF]. All patient data were anonymized. All authors had control of the data and information submitted for publication.

Experiment 1: phantom studies

The phantom data used in this study have been extracted from the RIDER Phantom MRI study [START_REF] Jackson | Magnetic resonance assessment of response to therapy: tumor change measurement, truth data and error sources[END_REF] and are publicly available in the TCIA platform [START_REF] Clark | The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository[END_REF]. The phantom consists of 19 doped gel filled tubes containing a gadolinium-based contrast agent. We used the T1 acquisitions obtained with a 1.5T scanner and a 3T scanner (respectively scanners B and D in [START_REF] Jackson | Magnetic resonance assessment of response to therapy: tumor change measurement, truth data and error sources[END_REF], details in Supplemental data 1). For each image, 19 spherical Volumes of Interest (VOI) of 3.5 mL centered on each tube were drawn. We computed 42 radiomic features (Supplemental data 2) using LIFEx freeware [START_REF] Nioche | LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity[END_REF] (www.lifexsoft.org), including an open-source radiomic protocol compliant with the Image Biomarker Standardisation

Initiative guidelines [START_REF] Zwanenburg | The Image Biomarker Standardization Initiative: standardized quantitative radiomics for high throughput image-based phenotyping[END_REF]. Radiomic features were calculated using a fixed bin size [START_REF] Goya-Outi | Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma[END_REF][START_REF] Orlhac | 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer[END_REF] set to the average standard-deviation of the signal intensity, between the minimum and the maximum intensity measured in all VOI. This discretization step is required to set voxels with similar intensity to the same value hence to reduce the impact of noise.

Experiment 2: MRI brain studies

For experiment 2, we retrospectively selected 18 patients (13 men; mean age, 50±18 years; age range, 26-85 years; Table 1) with grade III and IV glial tumors from January 2017 to May 2018 from an institutional database. All patients underwent two MRI scans using the same protocol: one on a at 1.5T scanner (Philips Achieva, Philips Medical Systems) and the other one on a 3T scanner (Philips Ingenia). The median delay between the two scans was 30 days (range: [4-93 days]) without chemotherapy, surgery, radiotherapy and any visual evolution of the tumor and tumor heterogeneity between the scans. Two MR sequences (details in Supplemental data 1) were acquired: a 3D FLAIR ( 17patients) and a 3D contrast enhanced T1-weighted (CE-T1w) scan (14 patients).

For each patient and each sequence, the 3T images were coregistered to the 1.5T images using rigid transformations in FSL-FLIRT [START_REF] Jenkinson | Improved optimization for the robust and accurate linear registration and motion correction of brain images[END_REF]. Field inhomogeneity was corrected using the N4 algorithm [START_REF] Tustison | N4ITK: improved N3 bias correction[END_REF] owing to the publicly available ANTs software (http://stnava.github.io/ANTs) with the standard setting of hyper-parameters.

For each sequence, the tumor lesions were manually segmented based on a consensus of two radiologists (A.L. and L.D. with 9 and 2 years of experience, respectively) on the 1.5T images and the resulting regions were copied on the 3T images. Three slices (top, middle, bottom) were selected in each tumor to obtain three 2D-regions of interest (ROI) per tumor, yielding a total of 54 tumor ROI for FLAIR images (=3x18 tumors; one patient had two distinct lesions) and 51 tumor ROI for CE-T1w images (=3x17 tumors; one patient had two distinct lesions and another had three). In addition, in each patient, 6 regions of 0.5 mL each were drawn in the white matter (WM), yielding 102 WM VOI for FLAIR images and 84 WM-VOI for CE-T1w images that were copied onto the 3T images.

Each patient image volume was standardized irrespective of the other patients using the hWS method [START_REF] Shinohara | Statistical normalization techniques for magnetic resonance imaging[END_REF] as previously described [START_REF] Goya-Outi | Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma[END_REF]. The hWS method applies a z-score transformation to the brain voxel values based on the normal-appearing WM intensities distribution.

For each ROI and VOI based on native and hWS-standardized images resampled at 1x1x1 mm 3 , we computed 42 radiomic features using LIFEx. Radiomic features were calculated using a fixed bin size [START_REF] Goya-Outi | Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma[END_REF][START_REF] Orlhac | 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer[END_REF] set to the average standard-deviation of the WM signal intensity, between the minimum and the maximum intensity measured in all WM and tumor VOI for each sequence separately (details in Supplemental data 1).

Experiment 3: MRI prostate studies

Two prostate cancer patient databases (D1 and D2; Table 1) with publicly available radiomic features were used [START_REF] Penzias | Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: preliminary findings[END_REF]. These two databases have been initially entirely studied by an independent team to investigate the relationship between features computed from MR images and from digitized tissue images in order to discriminate between prostate cancer grades, without taking into account that MRI scans were acquired in two different centers [START_REF] Penzias | Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: preliminary findings[END_REF]. Here, we precisely investigate how accounting for the center effect actually changes the ability of each MRI feature to distinguish between tumor grades. 1). Based on a co-registration with histology images, the corresponding tumor regions were manually segmented by a radiologist. MR images were standardized to a template distribution based on the per-patient median of intra-prostatic pixel intensities of D1 [START_REF] Nyúl | New variants of a method of MRI scale standardization[END_REF]. For each region, 2379 radiomic features were computed using a home-made software (details of feature calculation described in [START_REF] Penzias | Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: preliminary findings[END_REF]) and we selected the 2326 features available for all patients for our analysis.

Realignment method

To correct for the scanner effect, the ComBat realignment method was used [START_REF] Johnson | Adjusting batch effects in microarray expression data using empirical Bayes methods[END_REF]. In the context of radiomics, ComBat has already been validated for PET [START_REF] Orlhac | A postreconstruction harmonization method for multicenter radiomic studies in PET[END_REF] and CT features [START_REF] Orlhac | Validation of a method to compensate multicenter effects affecting CT radiomics[END_REF][START_REF] Mahon | ComBat harmonization for radiomic features in independent phantom and lung cancer patient computed tomography datasets[END_REF]. The method directly applies to the radiomic feature values and estimates the scanner-effect by matching the statistical distributions of the feature values measured in VOI j for each scanner i:

y ij =α+𝑋 𝑖𝑗 β+ γ i +δ i ε ij
where α is the average value for feature y ij , 𝑋 is a design matrix for the covariates of interest; 𝛽 is the vector of regression coefficients corresponding to each covariate, γ i is an additive scanner effect, and δ i is a multiplicative protocol effect affected by an error term (ε ij ). The model parameters α, 𝛽, γ i and δ i are estimated using a maximum likelihood approach based on the set of available observations from the two scanners in experiments 1 and 2 and based on the two patient databases for experiment 3.

The corrected values are obtained using:

y ij ComBat = y ij -α ̂-𝑋 𝑖𝑗 𝛽 ̂-γ i δi ̂+α ̂
where α ̂, 𝛽 ̂, γ i ̂ and δ i ̂ are estimators of α, 𝛽, γ i and δ i .

The non-parametric form of the model was used, with no assumption regarding the statistical laws followed by the features and a transformation determined for each feature separately. For experiments 1 and 2, no biologic covariate was used (i.e. 𝑋=0) since the data came from the same patients or phantom scanned on 1.5T and 3T machines, and we realigned feature values computed from WM and tumor regions in patient data separately. For experiment 3, we introduced the Gleason grade as a binary covariate since the proportion of low vs intermediate/high-risk regions was very different between the 2 databases (32% low-risk VOI in D1, 68% in D2, Table 1).

To facilitate the access to the ComBat method for medical imaging professionals, we provide a free on-line application (available at https://forlhac.shinyapps.io/Shiny_ComBat/), named ComBaTool, with example input files (Supplemental data 3-4) and a step-by-step tutorial (Supplemental data 5). This application embeds a free function called ComBat [START_REF] Fortin | Harmonization of cortical thickness measurements across scanners and sites[END_REF] (https://github.com/Jfortin1/ComBatHarmonization) based on the R software but running the application does neither require R or any third-party software to be installed, nor to have any programming skills.

Statistical analysis

Statistical analysis was performed with the R software (version 3.6.1).

In experiment 1, we performed univariate two-sided Friedman tests before and after ComBat realignment between the two phantom scans. In experiment 2, we used two-sided Friedman tests for each radiomic feature to test whether the values derived from the 1.5T and 3T scans were significantly different both in the WM and in the tumor regions in three configurations: C1) native images without ComBat realignment; C2) hWS-standardized images without realignment; C3) hWS-standardized images with realignment. The Benjamini-Hochberg procedure was used to control the false discovery rate [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. P values less than 0.05 were interpreted as statistically significant. Bland-Altman graphs were plotted to demonstrate the differences in feature values calculated from the 1.5T and 3T scans.

In 

Results

Patient characteristics are shown in Table 1.

Experiment 1

In ), demonstrating that the scanner effect was no longer detectable for the vast majority of radiomic features. Figure 1 shows the evolution of the distribution of the Correlation radiomic feature calculated from the gray-level co-occurrence matrix (GLCM) . On native FLAIR images, the plot shows a shift in distribution with greater values for WM-VOI and tumor lesions for 3T scans compared to 1.5T scans. After hWS standardization and realignment, the distributions between the two scanners better overlap. To clarify the respective role of hWS and ComBat, Figure 2 shows the Bland-Altman plots of the mean value measured in WM-VOI for FLAIR images based on 3T scans and 1.5T scans. The hWS standardization within each patient rescaled the values to make them similar between the two scans. The realignment reduced the systematic difference between the two.

The same trends were observed for CE-T1w images (Table 2; Supplemental data 7).

Experiment 3

On T2w prostate images after standardization performed by [START_REF] Penzias | Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: preliminary findings[END_REF], 461 out of 2326 radiomic features had P values of Wilcoxon tests less than 0.05 for distinguishing between low and intermediate/high risk when pooling the two patient cohorts (D1+D2). After ComBat without any co-variate, 460 out of 2326 P values were less than 0.05. Using the Gleason grade co-variate in ComBat, 636 out of 2326 P values were less than 0.05. Figure 3 demonstrates a better alignment of radiomic feature values extracted from low-risk VOI and intermediate/high-risk VOI separately between the two patient groups after using ComBat with a co-variate accounting for the recruitment specificity of each center.

When a risk (low or moderate/high) was randomly assigned to each VOI, no P value was less than 0.05 before and after ComBat without and with a co-variate representing the Gleason grade.

The multivariate radiomic model identified using LDA on the D1 data to distinguish low versus intermediate/high risk was applied to D2 patients, yielding a Youden Index of 0.12 (Sensitivity=19%, Specificity=93%) before ComBat. After ComBat, the Youden Index increased to 0.20 (Sensitivity=27%, Specificity=93%) and to 0.43 (Sensitivity=58%, Specificity=86%) using the Gleason grade as co-variate in ComBat.

Discussion

The scanner effect affects the radiomic feature values extracted from MR images, introducing major confounding factors in multicentric or multi-protocol studies. Here, we validated a harmonization procedure combining ComBat realignment with MR-image standardization to co-analyze MR radiomic features extracted from different scanners. Using phantom data and brain scans acquired for the same patients (without any tumor evolution detected visually between the two scans) with 1.5T and 3T scanners, we showed that this harmonization procedure realigns radiomic feature distributions and removes the scanner effect for T1, FLAIR and CE-T1w images. The goal was not to test our ability to reproduce feature values measured in 3T MR images from 1.5T images, since we expect different signals from the two devices with more details in the 3T images (cf Figure 1). Yet, in the context of radiomics, pooling images acquired using different devices, different acquisition and reconstruction protocols is often needed to increase the size of cohort. In that context, we demonstrated that ComBat could realign feature values so that all data could be analyzed together, even if images had been acquired with different magnetic fields. It is important to underline that a different ComBat transformation is estimated for each sequence and each tissue type independently because imaging protocols do not have the same effect on each tissue. Using the prostate scans acquired in different patients from two centers, we confirmed the effectiveness of the harmonization for T2w images and demonstrated that harmonization did not alter the discriminant information conveyed by the features. This experiment also shows that pooling data corrected for the scanner effect could increase the statistical power, identify more radiomic features able to distinguish between the low-risk and intermediate/high-risk regions in prostate lesions and yield a more discriminant multivariate model.

Importantly, we showed that when no difference between groups was expected, here between the sham low-risk and intermediate/high-risk VOI, ComBat did not introduce any false positive differences.

The ComBat realignment method is fast, easy to use and operates directly on radiomic feature values (no training set needed, no phantom acquisition, no need to access images). It is applicable to radiomic features extracted from different MR sequences after a first step of image standardization, as previously described [START_REF] Goya-Outi | Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma[END_REF]. We also demonstrated the added value of the covariate in the realignment process when patient characteristics are different between centers (here Gleason grade) for univariate and multivariate analyses. To deal with the center effect, other authors reported the potential of Generative Adversarial Networks (GANs) to transform images from one imaging protocol (or a domain) to another [START_REF] Qu | Wavelet-based semi-supervised adversarial learning for synthesizing realistic 7T from 3T MRI[END_REF]. Although promising results have been reported in the literature [START_REF] Zhong | Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development[END_REF][START_REF] Modanwal | MRI image harmonization using cycleconsistent generative adversarial network[END_REF], these techniques require access to the images, unlike ComBat. The ComBat realignment method has been previously used in MR radiomic studies [START_REF] Lucia | External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy[END_REF][START_REF] Whitney | Harmonization of radiomic features of breast lesions across international DCE-MRI datasets[END_REF][START_REF] Wang | Preoperative MRI-based radiomic machine-learning nomogram may accurately distinguish between benign and malignant soft-tissue lesions: a two-center study[END_REF][START_REF] Zhang | Pretreatment MRI radiomics analysis allows for reliable prediction of local recurrence in non-metastatic T4 nasopharyngeal carcinoma[END_REF] without any explicit validation or investigation of the respective role of the image standardization and of the scanner/protocol effect compensation as studied here (Figures 1 and2). In [START_REF] Lucia | External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy[END_REF], authors reported an increased accuracy of Entropy extracted from apparent diffusion coefficient MR images to predict the locoregional control in cervical cancer after ComBat, fully consistent with our findings.

Our study has some limitations. We could only include 18 patients in Experiment 2 because it is very uncommon for patients to undergo MR both on 1.5 and 3T scanners within a time lapse during which the tumor has not visually evolved. Still, this small sample allowed us to confirm results obtained using the phantom data. In addition, such a small number allowed us to demonstrate that ComBat performed well even with a limited number of cases, confirming results published in genomic applications [START_REF] Johnson | Adjusting batch effects in microarray expression data using empirical Bayes methods[END_REF]. Another limitation is that our findings should still be validated for other cancer types, MR sequences and devices.

In conclusion, we demonstrated that the ComBat realignment method in combination with intrapatient image standardization could efficiently remove the scanner/protocol effect while preserving the individual variations in phantom, brain and prostate MR scans. This approach enables large MR multicentric studies to investigate the added value of radiomic analysis in patient management. To facilitate large multicenter/multi-protocol radiomic studies, we provide the ComBat method as an online ComBaTool application. 

Figure 1 :

 1 Figure 1: Experiment 2: 18 patients with brain lesions were scanned on both 1.5T and 3T scanners.Based on native or for hybrid White Stripe (hWS)-standardized, 42 radiomic features were computed in a tumor region and in a white matter region. As an example, the probability density function (%) of the Correlation radiomic feature calculated from the gray-level co-occurrence matrix (GLCM) on FLAIR images is plotted here without and with ComBat realignment (ComBaTool was applied separately on the two tissue types: white matter and tumor) for 1.5T MRI (in orange) and 3T MRI (in blue). P values are for Friedman tests of each tissue between the two MRI devices.

Figure 2 :

 2 Figure 2: Experiment 2: Bland-Altman plots of the mean value computed in white matter regions based on 1.5T and 3T scans for FLAIR native images (A), for hybrid White Stripe (hWS)-standardized images (B) and for hWS-standardized images with ComBat realignment (C).

Figure 3 :

 3 Figure 3: Experiment 3: boxplots of Feature #20 (called Gabor:cos:theta=0:lambda=2:Standard Deviation in [24]) for low-risk VOI and intermediate/high-risk VOI, before ComBat realignment (A, D), after ComBat realignment without covariate (B, E) and after ComBat realignment with covariate (C, F) for the prostate patient cohorts D1 and D2 separately (A, B, C) or together (D, E, F). P values are from Wilcoxon tests.

  experiment 3, we performed Wilcoxon tests with the Benjamini-Hochberg procedure for all

	radiomic features to distinguish between low and intermediate/high-risk groups when pooling
	patients from D1 and D2, without ComBat realignment, with realignment and with realignment
	including the Gleason grade as a covariate of interest. To show that ComBat does not create false
	positive results, we repeated these tests after randomly assigning a label to each VOI to get 53 sham
	low-risk VOI and 52 sham intermediate/high-risk VOI. To identify the risk group, we built a multivariate
	signature by means of a Linear Discriminant Analysis (LDA) using D1 dataset as a training set and
	including only the features with a p-value of univariate Wilcoxon test less than 5%. We tested the
	classification performance on D2 data by calculating the Youden Index (=Sensitivity+Specificity-1). We
	repeated this procedure in three configurations: without ComBat realignment, with realignment and
	with realignment including the Gleason grade as a covariate of interest.

Table 1 :

 1 patient characteristics. Mean age of patients is not reported in [Penzias et al. PlosOne 2018]. CE-T1w = Contrast Enhanced T1-weighted; D1 = prostate dataset 1; D2= prostate dataset 2; T2w = T2-weighted.

	Parameter	MRI brain studies	MRI prostate studies
	Sex		
	Men	13	D1 = 23; D2 = 13
	Women	5	0
	Mean age (y)	50±18	Not reported
	No. of tumor regions		
	FLAIR images	18 3D-regions (54 2D-regions)	-
	CE-T1w images	17 3D-regions (51 2D-regions)	-
	T2w images	-	D1 = 65; D2 = 40
	Gleason grade		
	Low risk	-	D1 = 21(32%); D2 = 26 (65%)
	Intermediate/high risk	-	D1 = 44 (68%); D2 = 14 (35%)
	Note. --		

Table 2 :

 2 significant Friedman tests (P<0.05) without and with hybrid White Stripe (hWS) standardization and/or ComBat realignment for brain scans.

		w/o hWS	with hWS	with hWS
		standardization	standardization	standardization
		w/o ComBat	w/o ComBat	with ComBat
	FLAIR images			
	WM	37/42 (88)	29/42 (69)	0/42 (0)
	Tumor lesions	41/42 (98)	25/42 (60)	1/42 (2)
	CE-T1w images			
	WM	37/42 (88)	27/42 (64)	0/42 (0)
	Tumor lesions	36/42 (86)	2/42 (5)	0/42 (0)

Note. --Data are numerator/denominator; data in parentheses are percentage. WM = White Matter. CE-T1w = Contrast Enhanced T1-weighted. w/o = without.

Supplemental data legends

Supplemental data 1: MR acquisition and radiomic analysis parameters for experiments 1 and 2. 

Supplemental