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Controlling an upper-limb exoskeleton by EMG signal while carrying
unknown load

Benjamin Treussart1, Franck Geffard1, Nicolas Vignais2 and Frederic Marin3

Abstract— Implementing an intuitive control law for an
upper-limb exoskeleton dedicated to force augmentation is a
challenging issue in the field of human-robot collaboration.
The aim of this study is to design an innovative approach
to assist carrying an unknown load. The method is based on
user’s intentions estimated through a wireless EMG armband
allowing movement direction and intensity estimation along 1
Degree of Freedom. This control law aimed to behave like a
gravity compensation except that the mass of the load does not
need to be known. The proposed approach was tested by 10
participants on a lifting task with a single Degree of Freedom
upper-limb exoskeleton. Participants performed it in three
different conditions : without assistance, with an exact gravity
compensation and with the proposed method based on EMG
armband (Myo Armband). The evaluation of the efficiency of
the assistance was based on EMG signals captured on seven
muscles (objective indicator) and a questionnaire (subjective
indicator). Results showed a statically significant reduction of
mean activity of the biceps, erector spinae and deltoid by
20%±14, 18%±12 and 25%±16 respectively while comparing
the proposed method with no assistance. In addition, similar
muscle activities were found both in the proposed method
and the traditional gravity compensation. Subjective evaluation
showed better precision, efficiency and responsiveness of the
proposed method compared to the traditional one.

I. INTRODUCTION

Industrial workers are performing repetitive physical tasks,
which expose them to musculoskeletal disorders (MSD) [1].
MSD is a major public health issue, with an impact on work-
ers’ integrity and economics. Indeed, MSD are causing both
loss in productivity and high healthcare costs. According to
[2], MSD have led to the loss of 10 millions work days in
France in 2012, with an average cost of 21 ke per case
of MSD. A way to prevent MSDs could be to assist the
workers during forceful exertions, e.g. load carrying tasks,
thus relieving the strain they endure.

In this context, exoskeletons could become a promising
solution for industrial load carrying. Although exoskeletons
can be backdrivable (see sec. III-A), helping manipulation of
known loads [3], the way they can assist in carrying various
and unknown loads in a efficient manner is yet to be found.
The knowledge of the user’s intention could help in this
matter. Surface electromyography (EMG) signal processing
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Fig. 1: Upper-limb exoskeleton

demonstrated reliability in estimating the muscle force [4],
and, consequently, it may be a relevant bio-signal to capture
the motion intention.

Given a context of industry-oriented application, a control
scheme based on an EMG armband was designed and
evaluated in the present study. This control is initialized with
a specific calibration procedure described in IV-A.

II. RELATED WORKS

A. Human-Robot Interaction

One of the most common type of interaction with a robotic
device is an interaction of a serial-type. The robot acts as a
prolongation of the user (prosthesis [5], teleoperation). But,
recently, the design of active exoskeletons and collaborative
robots (which the user would manipulate an object in coordi-
nation [6] with) have introduced new paradigm of interaction
where the robot acts in parallel with the human. In this case,
the action of the robot not only supports a larger part of the
load, but also interacts with the human who is carrying a
fraction of this load. This is the situation considered in this
study.

In this context, two main approaches may be proposed
to perform the task in an intuitive way, i.e. that does not
require training and/or an important change of behavior.
The first one is to assume prior knowledge of the task to
program the robot accordingly (like with virtual guides [7]
or gravity compensation (CG) [8]). The second approach is
more related to a typical professional environment, in which
the operator does not know the weight of the load she/he is



going to carry. In that case the intention of the user can be
used to control the robot.

In this study, the targeted behavior for the proposed
method is the exact payload gravity compensation [8] under
the constraint of not knowing the mass of the load. This
type of control enables the user to rest their muscles before
the point of interaction. Thus, if an exoskeleton is attached
around the forearm or wrist, then the muscles involved before
this segment, i.e. the biceps or triceps, can be relieved.

B. Muscle activity for intention detection

EMG signals have already been used to control robotic
devices [9], [10]. This biocybernetic approach uses EMG
signals into two different manners: discretely or continu-
ously. The discrete-EMG method uses pattern recognition
based on handcrafted features and a classifier trained with
them [11] or some end-to-end neural networks [12]. The
main inconvenience of this method of intention detection is
its lack of flexibility. Indeed, there is a trade-off between the
panel of actions on one hand and the training required and
reliability of the classification, which depends on the number
of classes, on the other hand. In the case of a directionnal
control, one class may correspond to one direction with an
imposed speed [10].

On the other hand, a continuous-EMG method seems
more adequate. However, it also presents disadvantages.
First of all, it is more complex, due to the fact that the
relations between the features of the EMG signals and the
movement are highly non-linear [13]. In [14], a continuous
3D estimation of the position of the hand is performed
with the use of 9 electrodes targeting specific muscles. Such
precise requirements in the placement of the electrodes are
laborious and examiner-dependent. Although these methods
are adapted to teleoperation or prosthesis assistance, using
a continuous-EMG method to control an exoskeleton while
carrying unknown load appears difficult. In that latter situa-
tion, the assistance has to be provided even if the muscle
activity decreases, which can not be considered with the
continuous-EMG method. In the current study, a compromise
between discrete and continuous approaches has been de-
veloped to evaluate the user’s intentions. A low-cost surface
EMG device has been used to foresee a practical use-case. To
summarize, the aim of this study is to assist a user carrying a
load without prior knowledge on the load’s mass, and based
on the user’s muscle activity.

III. SYSTEM SPECIFICATIONS

A. Exoskeleton

The exoskeleton used in this study is an under-actuated
upper-body backdrivable type (figure 1). Each side consists
of two segments (upper-arm and forearm) and four joints.
Two of the joints are passive (θ1 and θ4) and the other two
are proportionally linked and powered by the same actuator
(θ3 = 1.5∗θ2) [15]. The end effector of the exoskeleton, that
pulls the hand upward, is attached to the palm of the user’s
hand by a strap. ”Backdrivable” behavior is ”the nature that
when the force is added to the output axis, the output axis
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Fig. 2: Geometry of the BHV2 exoskeleton

is moved by this force and this motion is conveyed to the
input axis and the input axis is moved by this motion in the
case of actuators or power transmitting mechanism” [16].

During the interaction, human and robotic forearm dynam-
ics are coupled, which can be modeled as follows [17]:

{
JrΘ̈r + brΘ̇r + FNL +Qr(Θr) = τr − τi

JhΘ̈h + J t
hFe + bhΘ̇h +Qh(Θh) = τh + τi

(1)

Where τi is the interaction torque between human and robot
limbs, and J - the moment of inertia, b - the viscosity,
FNL - the non-linear friction and Q the gravity torque. The
subscripts r and h denote similar quantities related to robot
and human systems, respectively. We are considering a quasi
static interaction and we compensate the effect of gravity
on the robot (Backdrivability ensures that FNL is low [3]),
which give us:

τh = −τr + J t
hFe +Qh(Θh) − FNL (2)

B. EMG Measure

The overall intention detection solution is expected to
be functional, easy to deploy, low-cost, operational in real-
time. The Myo-Armband (Thalmic Labs, Ontario) meets
all specifications. The armband was positioned around the
arm to capture biceps and triceps muscle activities, rather



than on the foreman as it was originally designed. Indeed,
because the exoskeleton is tied to the palm of the user’s
hand, the muscle of the forearm will not be relieved by the
assistance of the exoskeleton, unlike the biceps and triceps.
The Armband is composed of eight pairs of dry electrodes.
We optimized the longitudinal placement to maximize the
EMG signal empirically. The raw output of the armband is
a zero-mean signal coded over 8 bit, it has no unit and is
comprised between -126 and +127.

IV. CONTROL SCHEME

A. Intention Estimation
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Fig. 3: Estimation of the user’s intention (IntensityB and
IntensityT correspond respectively to the intensity of the
Biceps activation and Triceps activation)

The objective of the present study is to assist load carrying
by reproducing behavior similar to a gravity compensation.
Our contribution is to do so without prior knowledge of
the object’s mass by exploiting user’s intentions. Intentions
are identified with the procedure presented on figure 3 1

. More precisely, a short calibration step with a 2-minute
EMG recording allowed the definition of the four classes of
action, and the definition of intensity parameters of the model
(equation 3) [18]. The first step to estimate the intensity of
the movement intended is to sum and rectify the signal from
the 8 sensors of the armband, then to filter the result with
a Butterworth filter (order 2 and a 2 Hz cutoff frequency)
and finally to convert filtered value to a torque value using
the calibrated model. And simultaneously, the direction is
estimated using a convolutional neural network.

τ = ua ∗ e(c−b∗u) (3)

τ being the modeled torque, u the EMG signal and a,b
and c the parameters to be determined for the biceps and
triceps from calibration.

Thus, an objective value of the user’s intentions as a
torque is determined. This approach allows tuning a control
scheme independently from the user’s EMG specificity. In
this context the intention of the user is considered to be a
signed value of torque.

1The design and evaluation of the module of intention detection and its
calibration is currently under review

B. Control

The main motivation to design a type of control law
close to a gravity compensation, rather than some type of
proportional control [19], [20] is to allow a full support
by the exoskeleton without specific muscle activity of the
operator.

A schematic representation of the control loop was repre-
sented in figure 4 showing a torque control loop where the
muscle relaxation objective was represented by the human
elbow torque setpoint τdes that was constantly set to 0.
τcons was the control torque applied to the exoskeleton (ide-
ally the torque really provided by the exoskeleton). Finter

corresponded to part of the interaction wrench between
the exoskeleton and the operator. Vmuscles corresponded to
the muscular myoelectric signal that could be measured by
the Myo ArmBrand. The system to be controlled was the
exoskeleton/operator pair in which the weight of the load
was carried by the operator. The integral corrector is widely
used in torque control, allowing both the cancellation of
gravity and friction, as well as the reduction of inertia [21],
[22]. In the present study, this integral corrector was used
to control the torque, not of the robot, but of the operator’s
elbow through the exoskeleton.

Although often present in torque control, the dead zone
block is generally not represented. Nevertheless, in the
present study, this dead zone block was represented because
it provided a crucial adjustment parameter, allowing a more
efficient use of EMGs with integral corrector (later called
DZ-I corrector for Dead Zone Integral corrector). In addition
to the characteristics mentioned above, the DZ-I corrector
also has the advantage of filtering errors in the intention
detection system. This is of crucial interest in our case, since
the direction estimated by the module described in figure 3
is less reliable at low intensity. The dead zone first allows to
cancel the impact of such errors. In addition, even isolated
errors at higher intensities would be absorbed by the fact that
an integrator was used. This usually needs to be solved by a
harsh low-pass filtering in the case of the purely proportional
approach, introducing phase lag and thus low bandwidth.

The DZ-I corrector is particularly interesting when han-
dling loads with a backdrivable robotic device. Indeed, once
the weight of the load is compensated, since the frictions
forces are very small by design, it only leaves the inertial
forces. So, if the threshold of the dead zone is set to a high
enough value, the load can be moved without changing the
assisting torque, thus yielding a behavior similar to a CG
algorithm.

In figure 4, there are two parameters to tune: K for the
integrator and threshold, for the dead zone. Also, the inte-
gration was calculated with (intensity − threshold) rather
than intensity alone in order to have a more progressive
evolution of the assisting torque. threshold is the second
parameter to tune, it influences the limite-cycle oscillation
around null torque but also the potential static error.

The proposed control was tuned for and by an expert, i.e.
someone who is trained on this approach, and the resulting
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*block containing figure 3

parameters were used for all the participants in section V.

V. EXPERIMENTAL PROTOCOL

To evaluate the proposed control law, an experimental
protocol has been conducted. 10 subjects participated to this
study (8 men and 2 women, aged 27.8 ± 11.6, 176 ± 8cm
and 78±17kg). All participants gave their informed consent
to take part to this study. The participants had to lift and
put down a load of 5 kg repeatedly at natural speed and in
three different situations : without assistance (No-Exo), with
our proposed control (DZ-I), and with gravity compensation
(CG).

The participants were equipped with seven EMG sensors
(DataLite, Biometrics Ltd, Newport, UK) targeting muscles
relevant for biomechanical analysis during load carrying:
biceps, triceps, deltoid, trapezius, erector spinae, soleus,
tibialis anterior. The sensors were placed only on the left
side, as the movement was performed in the sagittal plane.
Moreover, the right arm was already equipped with the Myo
Armband. The goal of these measurements was to have an
objective evaluation of the muscle activity during different
situations. The EMG sensors were placed according to the
SENIAM recommandations [23], and the sample frequency
was fixed to 1000Hz.

Participants were also asked to fill up a questionnaire for
subjective analysis [24]. This questionnaire assessed how the
user perceived the different situations and if the perception
was in accordance with the objective evaluation.

One move set of the task was to lift a load up to a high
mark, bring it down to a middle mark, high up again and
finally put the load down (figure 5). For each situation the
participants had to perform 6 repetitions of this move sets.
Before starting the recordings the participants were allowed
to make at most two complete movements in order for them
to have an idea of how the different control laws would react.

As mentioned in section IV-B, the proposed control law
was tuned with two parameters. The gain was set to get
the fastest response time without causing stability issues and
the threshold high enough to enable low dynamics up and
down movements without triggering a change in the assisting
torque.

Fig. 5: Experimental set up

VI. RESULTS

To give an overview of the results, figure 6 shows the
recordings of one participant’s move set for each situation.
Only EMG signals of the triceps and biceps have been
displayed for reading purposes.

A. Control Performance

The torque of reference was considered as the torque
that compensates gravity when the user is lifting the object.
On figure 7, the average RMS error per move set for
each participant, and the average difference between the
torque output and the torque of reference were presented.
The second value was calculated in order to observe if the
proposed control approach had a tendency to undershoot or
overshoot. The values were calculated between the moment
when the object was lifted up and the moment it was put
down. It can be seen that, except for the first participant,
the RMS error is 0.038 ± 0.012N.m on average, which is
equivalent to 6.99 ± 2.27N at the hand of the users. The
first participant has been identified as an outlier following
the quartile analysis. It could be explained by the fact that
the participant had a stiff and tensed behavior that made it
difficult for the proposed method to operate. Such an issue
could be solved by according a proper training time to the
users.

By examining the average differences, it was observed
that the proposed control did not systematically overshoot
or undershoot in the same way for each participant. Based
on these results, the existence of a user-specific parameters
can be suggested. This parameter would influence the gain of
the integrator and could be determined from the participant’s
reaction time. It may also correspond to interindividual
differences when discovering a new paradigm of assistance.
These differences might be investigated by designing an
experiment with a high number of repetitions in order to
analyze the participants’ adaptation.

B. Muscle Activity

The situations without assistance and with gravity com-
pensation assistance were performed by the participants in
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Fig. 6: Recordings of one move set in each situation for one
participant. In red, the elbow angle is displayed (right ordi-
nate axis, degrees), in blue the assisting torque (left ordinate
axis, N.m) and the two green curves are the level of activation
of the biceps and triceps (light and dark respectively, left
ordinate axis, normalized with the RMC (see section VI-B)).
The different key moments of a move set are highlighted on
the graphs : in blue the load is released, in orange the load
is lifted up to the high mark and in light orange the load is
at the medium mark.

Fig. 7: Precision of the proposed method compared to gravity
compensation

Fig. 8: Comparison of muscle activation between the three
conditions (∗p < 0.05, ∗ ∗ ∗p < 0.001)

order to provide baselines to evaluate the performances of the
proposed control law regarding the physical relief brought to
the user. The processing of the raw EMG sensors followed
the recommandations of [25] and [26], a band-pass filter (bi-
directionnal 7th order Butterworth [30Hz, 200Hz]) was first
applied, then centered and rectified and finally low-passed.
The signal was then normalized with the maximum value
measured over all the situations and move sets for every
respective muscle and participant (RMC, relative maximum
contraction). The signal was parsed and down-sampled to
calculate the average muscle activation during each move
set. On figure 8, the average activation of each muscle is
displayed. While comparing the proposed method with no
assistance, results showed a statically significant reduction
of mean activity of the biceps, erector spinae and deltoid by
20± 14%, 18± 12% and 25± 16% respectively (p < 0.001,
p < 0.05, and p < 0.001 respectively). Previous studies from
the literature reported a decrease in muscle activation of the
biceps brachii superior to 20% when using an active upper-
limb exoskeleton [27]–[30], thus reducing the physical load
on the operator’s arm during manual tasks [31]. Concerning
erector spinae muscle, a reduction between 10 to 25% have
been showed during asymmetric lifting tasks with an ex-
oskeleton [32]–[34], confirming the capacity of these devices
to prevent back injuries. Although the highest decrease in
muscle activation was obtained from the deltoid muscle,
comparable values were obtained in previous studies [29].
Similar muscle activities were found both in the proposed
method and the traditional gravity compensation for the other
muscles.

One of the advantages of the proposed method compared
to the gravity compensation is that the assistance torque is
based on the effort made by the participant. Thanks to that,
the torque is reduced when the object is released, unlike with
a regular gravity compensation (behavior similar to passive
exoskeleton) where the torque is maintained. To evaluate
this difference, the maximum activations during the last part
of the movement between the two types of assistance are
compared in table 9. For half of the participants there is a



Participant 1 2 3 4 5 6 7 8 9 10
DZI (% of RMC) 61 23 49 56 31 25 18 28 59 47
CG (% of RMC) 20 24 85 48 36 73 69 73 53 77

Difference -41 01 37 -08 05 48 51 45 -07 30

Fig. 9: Maximum activation of the triceps during the last part
of the move set

notable decrease in the maximum contraction of the triceps
while releasing the object. Excluding the first participant,
considered as an outlier in section VI-A, the average differ-
ence obtained was 22±24% of RMC. After close observation
of each move set it was noticed that the participants did
not always released the object at the end of the move set.
Despite this fact, it could still be noticed that our proposed
method tends to put less strain on the triceps compared to
the compensation of gravity.

C. Questionnaire

The participants answered questions after performing the
tasks. The questionnaire was divided in three parts. The
first one was about general perception. The second one was
related to the comparison of the situation without assistance
and the situation with the DZ-I control. And the last one was
related to the comparison of the two type of control (DZ-I
and CG) (Figure 10). The form used a Likert scale.

The general feedback from the participants was that, even
though the CG control was easy to anticipate and required
less concentratrion because of its consistency, they felt more
efficient with the DZ-I control. This was highlighted by
comparing the feeling of control with each method on figure
10a.

Nine participants felt that the proposed method success-
fully reduced the efforts made by their arms compared to
the situation without assistance, and seven felt a relief in
their shoulders. When comparing both algorithms (CG and
DZ-I), participants felt mostly no difference for some of
the inquired areas (cervical area, back, lower limbs). Seven
participants felt a greater relief in their arms when comparing
our proposed method to the gravity compensation, and five a
greater relief in the shoulders (Figure 10b). It is worth noting
that one participant felt more strain in the back.

VII. CONCLUSIONS AND FUTURE WORK

In the present study, a method to assist a user while
carrying a load was designed and evaluated. It was based on
the EMG signals measured on the arm with a low cost EMG
recording system. An experimental protocol was conducted
with the help of 10 participants in order to evaluate the
proposed method and compare it to a situation without
assistance and to a gravity compensation assistance. It was
observed that the proposed method was able to approach
the ideal torque with an error of 0.038 ± 0.012N.m on
average, which is equivalent to 6.99 ± 2.27N at the end
effector. Thus, the DZ-I control may be used to assist load
carrying during industrial manual tasks. It remains to be seen
if the torque assistance is accurate enough, considering that
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Fig. 10: (a) Feeling of control with the two methods of
assistance
(b) Compared muscle strain with DZI relatively CG
(c) Compared impressions about performances of the CG
and DZI : Precision = Feeling of a better accuracy during
the move sets, Efficiency = Feeling of a suitable assistance,
Speed = Feeling of a better reaction. The answers were given
considering DZI relatively to CG.

this new method bypasses the need of information about the
weight of the load (unlike the gravity compensation).

It was also shown that the assistance was effectively
reducing the physical strain on the participant (erector spinae,
biceps, deltoid muscles). Even though the exoskeleton was
attached to a support pole and not carried by the user, those
results might be transferred to applications with a lower-
body exoskeleton or to a robot attached to a manipulator as
in [35]. In addition, the questionnaire enabled to evaluate the
perception of the participants.

The proposed control is more suited for tasks that require
carrying various heavy loads and often putting them down;
compared to a gravity compensation that is particularly suited
for handling a given tool for long periods of time.

As mentioned in section VI, the results were collected
from non-expert users. The next step is to extend the number
of repetitions in order to observe to observe an adaptation
of the human behavior and a subsequent improvement of the
subjective feeling. In addition, exploring ways to tune the
parameters of the control to different users and their expertise
could enhance its ease of use. Another important aspect that
will be investigated is the calibration. For now the calibration
is entirely user specific, but for deployment purposes it would
be interesting to exploit the data from previous users in order
to reduce the time spent on calibration.
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