Léo Exibard
email: leo.exibard@ulb.ac.be.

Emmanuel Filiot

Pierre-Alain Reynier

On Computability of Data Word Functions Defined by Transducers

Keywords: Data Words, Register Automata, Register Transducers, Functionality, Continuity, Computability

In this paper, we investigate the problem of synthesizing computable functions of infinite words over an infinite alphabet (data ω-words). The notion of computability is defined through Turing machines with infinite inputs which can produce the corresponding infinite outputs in the limit. We use non-deterministic transducers equipped with registers, an extension of register automata with outputs, to specify functions. Such transducers may not define functions but more generally relations of data ωwords, and we show that it is PSpace-complete to test whether a given transducer defines a function. Then, given a function defined by some register transducer, we show that it is decidable (and again, PSpace-c) whether such function is computable. As for the known finite alphabet case, we show that computability and continuity coincide for functions defined by register transducers, and show how to decide continuity. We also define a subclass for which those problems are PTime.

Introduction

Context Program synthesis aims at deriving, in an automatic way, a program that fulfils a given specification. Such setting is very appealing when for instance the specification describes, in some abstract formalism (an automaton or ideally a logic), important properties that the program must satisfy. The synthesised program is then correct-by-construction with regards to those properties. It is 1 particularly important and desirable for the design of safety-critical systems with hard dependability constraints, which are notoriously hard to design correctly.

Program synthesis is hard to realise for general-purpose programming languages but important progress has been made recently in the automatic synthesis of reactive systems. In this context, the system continuously receives input signals to which it must react by producing output signals. Such systems are not assumed to terminate and their executions are usually modelled as infinite words over the alphabets of input and output signals. A specification is thus a set of pairs (in,out), where in and out are infinite words, such that out is a legitimate output for in. Most methods for reactive system synthesis only work for synchronous systems over finite sets of input and output signals Σ and Γ. In this synchronous setting, input and output signals alternate, and thus implementations of such a specification are defined by means of synchronous transducers, which are Büchi automata with transitions of the form (q, σ, γ, q ′), expressing that in state q, when getting input σ ∈ Σ, output γ ∈ Γ is produced and the machine moves to state q ′ . We aim at building deterministic implementations, in the sense that the output γ and state q ′ uniquely depend on q and σ. The realisability problem of specifications given as synchronous non-deterministic transducers, by implementations defined by synchronous deterministic transducers is known to be decidable [START_REF] Büchi | Solving sequential conditions finite-state strategies[END_REF][START_REF] Pnueli | On the synthesis of a reactive module[END_REF]. In this paper, we are interested in the asynchronous setting, in which transducers can produce none or several outputs at once every time some input is read, i.e., transitions are of the form (q, σ, w, q ′) where w ∈ Γ * . However, such generalisation makes the realisability problem undecidable [START_REF] Carayol | Uniformization in Automata Theory[END_REF][START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF].

Synthesis of Transducers with Registers

In the above setting, the set of signals is considered to be finite. This assumption is not realistic in general, as signals may come with unbounded information (e.g. process ids) that we call here data. To address this limitation, recent works have considered the synthesis of reactive systems processing data words [START_REF] Khalimov | Bounded synthesis of register transducers[END_REF][START_REF] Ehlers | Synthesis with identifiers[END_REF][START_REF] Khalimov | Register-bounded synthesis[END_REF][START_REF] Exibard | Synthesis of data word transducers[END_REF]. Data words are infinite words over an alphabet Σ × D, where Σ is a finite set and D is a possibly infinite countable set. To handle data words, just as automata have been extended to register automata, transducers have been extended to register transducers. Such transducers are equipped with a finite set of registers in which they can store data and with which they can compare data for equality or inequality. While the realisability problem of specifications given as synchronous non-deterministic register transducers (NRT syn) by implementation defined by synchronous deterministic register transducers (DRT syn) is undecidable, decidability is recovered for specifications defined by universal register transducers and by giving as input the number of registers the implementation must have [START_REF] Exibard | Synthesis of data word transducers[END_REF][START_REF] Khalimov | Bounded synthesis of register transducers[END_REF].

Computable Implementations In the previously mentioned works, both for finite or infinite alphabets, implementations are considered to be deterministic transducers. Such an implementation is guaranteed to use only a constant amount of memory (assuming data have size O(1)). While it makes sense with regards to memory-efficiency, some problems turn out to be undecidable, as already mentioned: realisability of NRT syn specifications by DRT syn , or, in the finite alphabet setting, when both the specification and implementation are asynchronous. In this paper, we propose to study computable implementations, in the sense of (partial) functions f of data ω-words computable by some Turing machine M that has an infinite input x ∈ dom(f), and must produce longer and longer prefixes of the output f (x) as it reads longer and longer prefixes of the input x. Therefore, such a machine produces the output f (x) in the limit. We denote by TM (for Turing machine) the class of Turing machines computing functions in this sense. As an example, consider the function f that takes as input any data ω-word u = (σ 1 , d 1)(σ 2 , d 2) . . . and outputs (σ 1 , d 1) ω if d 1 occurs at least twice in u, and otherwise outputs u. This function is not computable, as an hypothetic machine could not output anything as long as d 1 is not met a second time. However, the following function g is computable. It is defined only on words (σ 1 , d 1)(σ 2 , d 2) . . . such that σ 1 σ 2 • • • ∈ ((a + b)c *) ω , and transforms any (σ i , d i) by (σ i , d 1) if the next symbol in {a, b} is an a, otherwise it keeps (σ i , d i) unchanged. To compute it, a TM would need to store d 1 , and then wait until the next symbol in {a, b} is met before outputting something. Since the finite input labels are necessarily in ((a + b)c *) ω , this machine will produce the whole output in the limit. Note that g cannot be defined by any deterministic register transducer, as it needs unbounded memory to be implemented.

However, already in the finite alphabet setting, the problem of deciding if a specification given as some non-deterministic synchronous transducer is realisable by some computable function is open. The particular case of realisability by computable functions of universal domain (the set of all ω-words) is known to be decidable [START_REF] Holtmann | Degrees of lookahead in regular infinite games[END_REF]. In the asynchronous setting, the undecidability proof of [START_REF] Carayol | Uniformization in Automata Theory[END_REF] can be easily adapted to show the undecidability of realisability of specifications given by non-deterministic (asynchronous) transducers by computable functions.

Functional Specifications As said before, a specification is in general a relation from inputs to outputs. If this relation is a function, we call it functional. Due to the negative results just mentioned about the synthesis of computable functions from non-functional specifications, we instead here focus on the case of functional specifications and address the following general question: given the specification of a function of data ω-words, is this function "implementable", where we define "implementable" as "being computable by some Turing machine". Moreover, if it is implementable, then we want a procedure to automatically generate an algorithm that computes it. This raises another important question: how to decide whether a specification is functional ? We investigate these questions for asynchronous register transducers, here called register transducers. This asynchrony allows for much more expressive power, but is a source of technical challenge.

Contributions

In this paper, we solve the questions mentioned before for the class of (asynchronous) non-deterministic register transducers (NRT). We also give fundamental results on this class. In particular, we prove that:

1. deciding whether an NRT defines a function is PSpace-complete, 2. deciding whether two functions defined by NRT are equal on the intersection of their domains is PSpace-complete, Finally, we also mention that considering the class of deterministic register transducers (DRT for short) instead of computable functions as a yardstick for the notion of being "implementable" for a function would yield undecidability. Indeed, given a function defined by some NRT, it is in general undecidable to check whether this function is realisable by some DRT, by a simple reduction from the universality problem of non-deterministic register automata [START_REF] Neven | Finite state machines for strings over infinite alphabets[END_REF].

Related Work

The notion of continuity with regards to Cantor distance is not new, and for rational functions over finite alphabets, it was already known to be decidable [START_REF] Prieur | How to decide continuity of rational functions on infinite words[END_REF]. Its connection with computability for functions of ω-words over a finite alphabet has recently been investigated in [START_REF] Dave | Deciding the computability of regular functions over infinite words[END_REF] for one-way and twoway transducers. Our results lift some of theirs to the setting of data words. The model of test-free NRT can be seen as a one-way non-deterministic version of a model of two-way transducers considered in [START_REF] Durand-Gasselin | Regular transformations of data words through origin information[END_REF].

Outline In Section 2, we define register transducers and automata. In Section 3, we study functions defined by NRT: we show that their functionality problem is decidable and that they are closed under composition. In Section 4, we connect computability and continuity for those functions, and prove that these notions are decidable. Finally, we study the test-free restriction in Section 5.

Data Words and Register Transducers

For a (possibly infinite) set S, we denote by S * (resp. S ω) the set of finite (resp. infinite) words over this alphabet, and we let S ∞ = S * ∪ S ω . For a word u = u 1 . . . u n , we denote u = n its length, and, by convention, for u ∈ S ω , u = ∞. The empty word is denoted ε.

For 1 ≤ i ≤ j ≤ u , we let u[i:j] = u i u i+1 . . . u j and u[i] = u[i:i] the ith letter of u. For u, v ∈ S ∞ , we say that u is a prefix of v, written u v, if there exists w ∈ S ∞ such that v = uw.
In this case, we define u -1 v = w. For u, v ∈ S ∞ , we say that u and v mismatch, written mismatch(u, v), when there exists a position i such that 1

≤ i ≤ u , 1 ≤ i ≤ v and u[i] = v[i].
Finally, for u, v ∈ S ∞ , we denote by u ∧ v their longest common prefix, i.e. the longest word w ∈ S ∞ such that w u and w v.

Data Words In the whole paper, Σ and Γ are two finite alphabets and D is a countably infinite set of elements called data. We will use letter σ (resp. γ, d) to denote elements of Σ (resp. Γ, D). We also distinguish an (arbitrary) data value d 0 ∈ D. Given a set R, let τ R 0 be the constant function defined by τ R 0 (r) = d 0 for all r ∈ R. Given a finite alphabet A, a labelled data is a pair x = (a, d) ∈ A × D, where a is the label and d the data. We define the projections lab(x) = a and dt(x) = d. A data word over A and D is an infinite sequence of labelled data, i.e. a word w ∈ (A × D) ω . We extend the projections lab and dt to data words naturally, i.e. lab(w) ∈ A ω and dt(w) ∈ D ω . A data word language is a subset L ⊆ (A × D) ω . Note that in this paper, data words are infinite, otherwise they are called finite data words.

Register Transducers

Register transducers are transducers recognising data word relations. They are an extension of finite transducers to data word relations, in the same way register automata [START_REF] Kaminski | Finite-memory automata[END_REF] are an extension of finite automata to data word languages. Here, we define them over infinite data words with a Büchi acceptance condition, and allow multiple registers to contain the same data, with a syntax close to [START_REF] Libkin | Regular expressions for data words[END_REF]. The current data can be compared for equality with the register contents via tests, which are symbolic and defined via Boolean formulas of the following form. Given R a set of registers, a test is a formula φ satisfying the following syntax: We denote by Tst R the set of (symbolic) tests over R.

φ ::= ⊤ | ⊥ | r = | r = | φ ∧ φ | φ ∨ φ | ¬φ
Definition 1. A non-deterministic register transducer (NRT) is a tuple T = (Q, R, i 0 , F, ∆), where Q is a finite set of states, i 0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, R is a finite set of registers and ∆ ⊆ Q × Σ × Tst R × 2 R × (Γ × R) * × Q is a finite set of transitions. We write q σ,φ|asgn,o ------→ T q ′ for (q, σ, φ, asgn, o, q ′) ∈ ∆ (we omit T when clear from the context).
The semantics of a register transducer is given by a labelled transition system: we define L T = (C, Λ, →), where C = Q × (R → D) is the set of configurations, Λ = (Σ× D)× (Γ× D) * is the set of labels, and we have, for all (q, τ), (q ′ , τ ′) ∈ C and for all (l, w) ∈ Λ, that (q, τ) (l,w) ---→ (q ′ , τ ′) whenever there exists a transition q σ,φ|asgn,o ------→ T q ′ such that, by writing l = (σ ′ , d) and w = (γ ′ 1 , d 1) . . . (γ ′ n , d n):

• (Matching labels) σ = σ ′ • (Compatibility) d satisfies the test φ ∈ Tst R , i.e. τ, d |= φ.
• (Update) τ ′ is the successor register configuration of τ with regards to d and asgn: τ ′ (r) = d if r ∈ asgn, and τ ′ (r) = τ (r) otherwise

• (Output) By writing o = (γ 1 , r 1) . . . (γ m , r m), we have that m = n and for all 1 ≤ i ≤ n, γ i = γ ′ i and d i = τ ′ (r i). Then, a run of T is an infinite sequence of configurations and transitions ρ = (q 0 , τ 0)

(u1,v1) ----→ LT (q 1 , τ 1) (u2,v2) ----→ LT • • • . Its input is in(ρ) = u 1 u 2 . . . , its output is out(ρ) = v 1 • v 2 .
. . . We also define its sequence of states st(ρ) = q 0 q 1 . . . , and its trace tr(ρ

) = u 1 • v 1 • u 2 • v 2 Such run is initial if (q 0 , τ 0) = (i 0 , τ R 0)
. It is final if it satisfies the Büchi condition, i.e. inf(st) ∩ F = ∅, where inf(st) = {q ∈ Q | q = q i for infinitely many i}. Finally, it is accepting if it is both initial and final. We then write (q 0 , τ 0) u|v --→ T to express that there is a final run ρ of T starting from (q 0 , τ 0) such that in(ρ) = u and out(ρ) = v. In the whole paper, and unless stated otherwise, we always assume that the output of an accepting run is infinite (v ∈ (Γ × D) ω), which can be ensured by a Büchi condition.

A partial run is a finite prefix of a run. The notions of input, output and states are extended by taking the corresponding prefixes. We then write (q 0 , τ 0) u|v --→ T (q n , τ n) to express that there is a partial run ρ of T starting from configuration (q 0 , τ 0) and ending in configuration (q n , τ n) such that in(ρ) = u and out(ρ) = v.

Finally, the relation represented by a transducer T is:

T = (u, v) ∈ (Σ × D) ω × (Γ × D) ω | there exists an accepting run ρ of T such that in(ρ) = u and out(ρ) = v
Example 1. As an example, consider the register transducer T rename depicted in Figure 1. It realises the following transformation: consider a setting in which we deal with logs of communications between a set of clients. Such a log is an infinite sequence of pairs consisting of a tag, chosen in some finite alphabet Σ, and the identifier of the client delivering this tag, chosen in some infinite set of data values. The transformation should modify the log as follows: for a given client that needs to be modified, each of its messages should now be associated with some new identifier. The transformation has to verify that this new identifier is indeed free, i.e. never used in the log. Before treating the log, the transformation receives as input the id of the client that needs to be modified (associated with the tag del), and then a sequence of identifiers (associated with the tag ch), ending with #. The transducer is non-deterministic as it has to guess which of these identifiers it can choose to replace the one of the client. In particular, observe that it may associate multiple output words to a same input if two such free identifiers exist.

1 2 3 4 del, ⊤ | r 1 , ǫ ch, ⊤ | ∅, ǫ ch, r = 1 | r 2 , ǫ ch, ⊤ | ∅, ǫ #, ⊤ | ∅, ǫ σ, r = 1 | ∅, (σ, r 2) σ, r = 1 ∧ r = 2 | r 0 , (σ, r 0)
Figure 1: A register transducer T rename . It has three registers r 1 , r 2 and r 0 and four states. σ denotes any letter in Σ, r 1 stores the id of del and r 2 the chosen id of ch, while r 0 is used to output the last data value read as input. As we only assign data to single registers, we write r i for the singleton assignment set {r i }.

Finite Transducers Since we reduce the decision of continuity and functionality of NRT to the one of finite transducers, let us introduce them: a finite transducer (NFT for short) is an NRT with 0 registers (i.e. R = ∅). Thus, its transition relation can be represented as ∆ ⊆ Q×Σ×Γ * ×Q. A direct extension of the construction of [15, Proposition 1] allows to show that: Proposition 1. Let T be an NRT with k registers, and let X ⊂ f D be a finite subset of data. Then, T ∩ (Σ × X) ω × (Γ × X) ω is recognised by an NFT of exponential size, more precisely with O(|Q| × |X| |R|) states.

Technical Properties of Register Automata

Although automata are simpler machines than transducers, we only use them as tools in our proofs, which is why we define them from transducers, and not the other way around. A non-deterministic register automaton, denoted NRA, is a transducer without outputs: its transition relation is

∆ ⊆ Q × Σ × Tst R × 2 R × {ε} × Q (simply represented as ∆ ⊆ Q × Σ × Tst R × 2 R × Q).
The semantics are the same, except that now we lift the condition that the output v is infinite since there is no output. For A an NRA, we denote L(A) = {u ∈ (Σ × D) ω | there exists an accepting run ρ of A over u}. Necessarily the output of an accepting run is ε. In this section, we establish technical properties about NRA. Theorem 2, the so-called "indistinguishability property", was shown in the seminal paper by Kaminski and Francez [15, Proposition 1]. Their model differs in that they do not allow distinct registers to contain the same data, and in the corresponding test syntax, but their result easily carries to our setting. It states that if an NRA accepts a data word, then such data word can be relabelled with data from any set containing d 0 and with at least k + 1 elements. Indeed, at any point of time, the automaton can only store at most k data in its registers, so its notion of "freshness" is a local one, and forgotten data can thus be reused as fresh ones. Moreover, as the automaton only tests data for equality, their actual value does not matter, except for d 0 which is initially contained in the registers.

Such "small-witness" property is fundamental to NRA, and will be paramount in establishing decidability of functionality (Section 3) and of computability (Section 4). We use it jointly with Theorem 3, which states that the interleaving of the traces of runs of an NRT can be recognised with an NRA, and Theorem 4, which expresses that an NRA can check whether interleaved words coincide on some bounded prefix, and/or mismatch before some given position.

Proposition 2 ([15]). Let A be an NRA with k registers. If L(A) = ∅, then, for any X ⊆ D of size |X| ≥ k + 1 such that d 0 ∈ X, L(A) ∩ (Σ × X) ω = ∅.
The runs of a register transducer T can be flattened to their traces, so as to be recognised by an NRA. Those traces can then be interleaved, in order to be compared. The proofs of the following properties are quite straightforward, but are given for the sake of completeness.

Let

ρ 1 = (q 0 , τ 0) (u1,u ′ 1) -----→ LT (q 1 , τ 1) . . . and ρ 2 = (p 0 , µ 0) (v1,v ′ 1)
----→ LT (p 1 , µ 1) . . . be two runs of a transducer T . Then, we define their interleaving ρ

1 ⊗ρ 2 = u 1 •u ′ 1 •v 1 • v ′ 1 • u 2 • u ′ 2 • v 2 • v ′ 2 . . . and L ⊗ (T) = {ρ 1 ⊗ ρ 2 | ρ 1 and ρ 2 are accepting runs of T }. Lemma 3. If T has k registers, then L ⊗ (T) is recognised by an NRA with 2k registers.
Proof. We construct an automaton A with 2k registers which, on an input data word u ∈ ((Σ × D)(Γ × D) *) ω guesses, using non-determinism, a decomposition

u = u 1 • u ′ 1 • v 1 • v ′ 1 • u 2 • u ′ 2 • v 2 • v ′ 2 .
. . as defined before. In particular for all i,

|u i | = |v i | = 1.
The automaton A also maintains two copies of T (that is why A needs 2k registers). The first one makes sure that

u 1 u ′ 1 u 2 u ′ 2 • • • = tr(ρ 1) for some run ρ 1 , the other one checks that v 1 v ′ 1 v 2 v ′ 2 • • • = tr(ρ 2)
for some run ρ 2 . To check those two properties, A simulates T on both decompositions, using the two copies of T . For the input part (when reading u 1 or v 1), A simply makes the same tests as T does. For the output part, if A simulates a transition of T with output o = (σ 1 , r 1) . . . (σ n , r n) on some output v i , it makes n transitions which successively check that r j is equal to the current data, for all 1 ≤ j ≤ n.

Lemma 4. Let i, j ∈ N∪{∞}. We define M i j = {u 1 u ′ 1 v 1 v ′ 1 • • • | ∀k ≥ 1, u k , v k ∈ (Σ × D), u ′ k , v ′ k ∈ (Γ × D) * , ∀1 ≤ k ≤ j, v k = u k and u ′ 1 • u ′ 2 • • • ∧ v ′ 1 • v ′ 2 . . . ≤ i}. Then, M i
j is recognisable by an NRA with 2 registers and with

1 register if i = ∞. Proof. Checking that ∀k ≥ 1, u k , v k ∈ (Σ × D), u ′ k , v ′ k ∈ (Γ × D)
* is a regular property, since there are no constraints over the data. Now, checking that ∀1 ≤ k ≤ j, v k = u k requires a j-bounded counter (or no counter if j = ∞) which can be stored in memory, along with one register to store dt(u k). Now,

if i = ∞, there is no additional property to check. If i < ∞, checking that u ′ 1 • u ′ 2 • • • ∧ v ′ 1 • v ′ 2 . . . ≤ i} requires two i-bounded counters to keep track of the respective lengths of the prefixes of u ′ = u ′ 1 •u ′ 2 . . . and v ′ = v ′ 1 •v ′ 2 .
. . which have been read so far, along with one register: the automaton guesses whether the mismatch position first appears in u ′ or v ′ , stores the corresponding data in its additional register, as well as the label in its memory, goes to the corresponding position in v ′ or u ′ with the help of its i-bounded counters and checks that either the data or the label indeed mismatches.

Functionality, Equivalence and Composition of NRT

In general, since they are non-deterministic, NRT may not define functions but relations, as illustrated by Example 1. In this section, we first show that deciding whether a given NRT defines a function is PSpace-complete, in which case we call it functional. We show, as a consequence, that testing whether two functional NRT define two functions which coincide on their common domain is PSpace-complete. Finally, we show that functions defined by NRT are closed under composition. This is an appealing property in transducer theory, as it allows to define complex functions by composing simple ones.

Example 2. As explained before, the transducer T rename described in Example 1 is not functional. To gain functionality, one can reinforce the specification by considering that one gets at the beginning a list of k possible identifiers, and that one has to select the first one which is free, for some fixed k. This transformation is realised by the register transducer T rename2 depicted in Figure 2 (for k = 2).

1 2 3 4 6 7 5 del, ⊤ | r 1 , ǫ ch, r = 1 | r 2 , ǫ ch, r = 1 ∧ r = 2 | r 3 , ǫ #, ⊤ | ∅, ǫ # , ⊤ | ∅ , ǫ σ, r = 2 | ∅, (σ, r 2) σ, r = 1 | ∅, (σ, r 2) σ, r = 1 ∧ r = 2 | r 0 , (σ, r 0) σ, r = 1 | ∅, (σ, r 3) σ, r = 1 ∧ r = 2 ∧ r = 3 | r 0 , (σ, r 0) σ, r = 1 | ∅, (σ, r 3) σ, r = 1 ∧ r = 3 | r 0 , (σ, r 0)
Figure 2: A NRT T rename2 , with four registers r 1 , r 2 , r 3 and r 0 (the latter being used, as in Figure 1, to output the last read data). After reading the # symbol, it guesses whether the value of register r 2 appears in the suffix of the input word.

If not, it goes to state 5, and replaces occurrences of r 1 by r 2 . Otherwise, it moves to state 6, waiting for an occurrence of r 2 , and replaces occurrences of r 1 by r 3 .

Functionality

Let us start with the functionality problem in the data-free case. It is already known that checking whether an NFT over ω-words is functional is decidable [START_REF] Ii | Equivalence problems for mappings on infinite strings[END_REF][START_REF] Gire | Two decidability problems for infinite words[END_REF]. By relying on the pattern logic of [START_REF] Filiot | A pattern logic for automata with outputs[END_REF] designed for transducers of finite words, we can show that it is decidable in NLogSpace.

Proposition 5. Deciding whether an NFT is functional is in NLogSpace.

Proof. Let T be some NFT. By definition, T maps ω-words to ω-words, we have that T is not functional iff there exist three ω-words w, w 1 , w 2 such that (w, w 1) ∈ T , (w, w 2) ∈ T and there is a mismatch between w 1 and w 2 , i.e. a position i such that w

1 [i] = w 2 [i]
. By taking a sufficiently long prefix u of w, the latter is equivalent to the existence of finite runs r 1 : q 1 u|v1 ---→ p 1 and

r 2 : q 2 u|v2
---→ p 2 , where q 1 , q 2 are initial, p 1 , p 2 are co-accessible by the same ω-words (in the sense that there exist two accepting runs from p 1 and p 2 on the same ω-word), and such that there is a mismatch between v 1 and v 2 . This property is expressible in the pattern logic of [START_REF] Filiot | A pattern logic for automata with outputs[END_REF] for transducers of finite words, whose model-checking problem is in NLogSpace. More precisely, we modelcheck against T the following pattern formula (using the syntax of [START_REF] Filiot | A pattern logic for automata with outputs[END_REF]):

∃π 1 : q 1 u|v1 ---→ p 1 ∃π 2 : q 2 u|v2 ---→ p 2 init(q 1) ∧ init(q 2) ∧ coacc(p 1 , p 2) ∧ mismatch(v 1 , v 2)
The predicate coacc(p 1 , p 2) is not directly defined in [START_REF] Filiot | A pattern logic for automata with outputs[END_REF], which is a logic for transducers over finite words, but we show that it is easily definable in the pattern logic. Indeed, the property of (p 1 , p 2) to be co-accessible by the same ω-word is equivalent to asking the existence of finite runs r ′ 1 , r ′ 2 of the following form, where the outputs have not been indicated as they do not matter for this property:

r ′ 1 : p 1 u1 -→ p ′ 1 u2 -→ p ′′ 1 u3 -→ p ′ 1 r ′ 2 : p 2 u1 -→ p ′ 2 u2 -→ p ′′ 2 u3 -→ p ′ 2
such that p ′ 1 , p ′′ 2 are accepting states. Indeed, if (p 1 , p 2) is co-accessible and since we use a Büchi accepting condition, it is co-accessible by a lasso word u 1 (u 2 u 3) ω on which there is a run from p 1 with some accepting states p ′ 1 and a run from p 2 with some accepting state p ′′ 2 , both occurring on the loop of the lasso. Therefore, coacc(p 1 , p 2) holds true iff the following pattern logic formula is true against T (seen as a transducer over finite words):

∃π ′ 1 : p 1 u1 -→ p ′ 1 ∃π ′′ 1 : p ′ 1 u2 -→ p ′′ 1 ∃π ′′′ 1 : p ′′ 1 u3 -→ p ′ 1 ∃π ′ 2 : p 2 u1 -→ p ′ 2 ∃π ′′ 2 : p ′ 2 u2 -→ p ′′ 2 ∃π ′′′ 2 : p ′′ 2 u3 -→ p ′ 2 final(p ′ 1) ∧ final(p ′′ 2)
This concludes the proof.

The following theorem shows that a relation between data-words defined by an NRT with k registers is a function iff its restriction to a set of data with at most 2k + 3 data is a function. As a consequence, functionality is decidable as it reduces to the functionality problem of transducers over a finite alphabet. Theorem 6. Let T be an NRT with k registers. Then, for all X ⊆ D of size |X| ≥ 2k + 3 such that d 0 ∈ X, we have that T is functional if and only if

T ∩ ((Σ × X) ω × (Γ × X) ω) is functional.
Proof. The left-to-right direction is trivial. Now, assume T is not functional. Let x ∈ (Σ × D) ω be such that there exists y, z ∈ (Γ × D) ω such that y = z and (x, y), (x, z) ∈ T . Let i = y∧z . Then, consider the language L = {ρ 1 ⊗ρ 2 | ρ 1 and ρ 2 are accepting runs of T, in(ρ 1) = in(ρ 2) and out(ρ 1) ∧ out(ρ 2) ≤ i}. Since, by Theorem 3, L ⊗ (T) is recognised by an NRA with 2k registers and, by Theorem 4, M i ∞ is recognised by an NRA with 2 registers, we get that

L = L ⊗ (T) ∩ M i
∞ is recognised by an NRA with 2k + 2 registers. Now, L = ∅, since, by letting ρ 1 and ρ 2 be the runs of T both with input x and with respective outputs y and z, we have that

w = ρ 1 ⊗ ρ 2 ∈ L. Let X ⊆ D such that |X| ≥ 2k+3 and d 0 ∈ X. By Theorem 2, we get that L∩(Σ×X) ω = ∅. By letting w ′ = ρ ′ 1 ⊗ ρ ′ 2 ∈ L ∩ (Σ × X) ω , and x ′ = in(ρ ′ 1) = in(ρ ′ 2), y ′ = out(ρ ′ 1) and z ′ = out(ρ ′ 2), we have that (x ′ , y ′), (x ′ , z ′) ∈ T ∩ ((Σ × X) ω × (Γ × X) ω) and y ′ ∧ z ′ ≤ i, so, in particular, y ′ = z ′ (since both are infinite words). Thus, T ∩ ((Σ × X) ω × (Γ × X) ω) is not functional.
As a consequence of Theorem 5 and Theorem 6, we obtain the following result. The lower bound is obtained by encoding non-emptiness of register automata, which is PSpace-complete [START_REF] Demri | LTL with the freeze quantifier and register automata[END_REF].

Corollary 7. Deciding whether an NRT T is functional is PSpace-complete.

Proof. Let T be an NRT with k registers. Choose any X ⊆ D of size 2k + 3 such that d 0 ∈ X. By Theorem 6, T is functional if and only if

T ∩ ((Σ × X) ω × (Γ × X) ω) is. By Theorem 1, T ∩ (Σ × X) ω × (Γ × X) ω is recognisable by an NFT with O(|Q| × |X|
|R|) states, which can be constructed on-the-fly. The functionality problem for data-free transducers is in NLogSpace by Theorem 5, so this yields a PSpace procedure.

For the hardness, it is known that the emptiness problem of a register automaton A is PSpace-hard [START_REF] Demri | LTL with the freeze quantifier and register automata[END_REF]. It can be easily reduced to a functionality problem, by constructing a transducer T which is functional iff its domain is empty, for instance a transducer realising the relation

f 1 ∪ f 2 where f 1 = {(wxw ′ , wxw ′) | w ∈ L(A), w ′ ∈ (Σ × D) ω , x ∈ {#} × D} and f 2 = {(wxw ′ , wx ω) | w ∈ L(A), w ′ ∈ (Σ × D) ω , x ∈ {#} × D}, where # ∈ Σ is a new symbol.
The transducer T can be constructed from A in polynomial time, and is functional iff L(A) = ∅.

Equivalence

As a consequence of Theorem 7, the following problem on the equivalence of NRT is decidable: Theorem 8. The problem of deciding, given two functions f, g defined by NRT, whether for all

x ∈ dom(f) ∩ dom(g), f (x) = g(x), is PSpace-complete. Proof. The formula ∀x ∈ dom(f) ∩ dom(g) • f (x) = g(x) is true iff the relation f ∪ g = {(x, y) | y = f (x) ∨ y = g(x)
} is a function. The latter can be decided by testing whether the disjoint union of the transducers defining f and g defines a function, which is in PSpace by Theorem 7. To show the hardness, we reduce the emptiness problem of NRA A over finite words, just as in the proof of Theorem 7. In particular, the functions f 1 and f 2 defined in this proof (which have the same domain) are equal iff L(A) = ∅.

Note that under the promise that f and g have the same domain, then the latter theorem implies that it is decidable to check whether the two functions are equal. However, checking dom(f) = dom(g) is undecidable, as the language-equivalence problem for non-deterministic register automata is undecidable, since, in particular, universality is undecidable [START_REF] Neven | Finite state machines for strings over infinite alphabets[END_REF] and the universal language (Σ × D) ω is trivially NRA-definable.

Closure under composition

Closure under composition is a desirable property for transducers, which holds in the data-free setting [START_REF] Berstel | Transductions and Contextfree Languages[END_REF]. We show that it also holds for functional NRT.

Theorem 9. Let f, g be two functions defined by NRT. Then, their composition f • g is (effectively) definable by some NRT.

Sketch. We first give a sketch of the proof. Then, the rest of this section is devoted to the details of the proof.

By f • g we mean f • g : x → f (g(x)). Assume f and g are defined by

T f = (Q f , R f , q 0 , F f , ∆ f) and T g = (Q g , R g , p 0 , F g , ∆ g
) respectively. Wlog we assume that the input and output finite alphabets of T f and T g are all equal to Σ, and that R f and R g are disjoint. We construct T such that T = f • g. The proof is similar to the data-free case where the composition is shown via a product construction which simulates both transducers in parallel, executing the second on the output of the first. Assume T g has some transition p σ,φ|{r},o ------→ q where o ∈ (Σ × R g) * . Then T has to be able to execute transitions of T f while processing o, even though o does not contain any concrete data values (it is here the main important difference with the data-free setting). However, if T knows the equality types between R f and R g , then it is able to trigger the transitions of T f . For example, assume that o = (a, r g) and assume that the content of r g is equal to the content of r f , r f being a register of T f , then if T f has some transition of the form p ′ a,r =

f |{r ′ f },o ′ --------→ q ′ then T can trigger the transition (p, q) σ,φ|{r}∪{r ′ f :=rg},o ′ -------------→ (p ′ , q ′)
where the operation r ′ f := r g is a syntactic sugar on top of NRT that intuitively means "put the content of r g into r ′ f ". In the following, we show that it is indeed syntactic sugar (Theorem 10) and provide more details on the construction.

NRT with reassignments

An NRT with reassignments is defined as an NRT where operations on registers are of the form r := curr to assign the current data read, or r := r ′ to assign to r the value of r ′ . It is required that each register r appears at most once as the lefthand-side of an assignment r := curr or r := r ′ . Given a configuration (q, τ) and some transition realising a set of instructions I and going to some state q ′ , the new register configuration τ ′ is defined as follows. First, instructions r := curr are executed, giving a new register configuration τ ′′ (s) = τ (s) if s has not been assigned the current data, and τ ′′ (s) = d otherwise, if d is the current data. Then, instructions r := r ′ are executed, so we let τ ′ (r) = τ ′′ (r ′) whenever there is an instruction r := r ′ , otherwise τ ′ (r) = τ ′′ (r).

We show in Theorem 10 that this feature does not add expressive power to the model.

NRT with explicit tests

First, to ease the construction, we need to explicit the tests, showing the equivalence with register automata as defined in [START_REF] Segoufin | Automata and logics for words and trees over an infinite alphabet[END_REF]. Indeed, in our setting, they are represented using logical formulas, which allows for a more compact representation, but prevents us from keeping track of the equality relations between the different registers, which will be needed in the construction. For instance, after a transition q a,r1∨r2|{r3},r1 ----------→ q ′ is taken, we do not know whether we have r 1 = r 3 or r 2 = r 3 , since it depends whether the current data is equal to the content of r 1 or of r 2 . To explicit these two cases, such transition can thus be split into two distinct transitions, q a,r1|{r3},r1 -------→ q ′ and q a,r2|{r3},r1 -------→ q ′ . Moreover, we also ignore whether such data is equal to some content of some other register r 4 , which could entail additional equalities between registers. The two cases (d = r 4 and d = r 4) should thus yield two different transitions. Such operations can be generalised, allowing for all tests to be of the form φ E = r∈E r = ∧ r / ∈E r = , where E ⊆ R is a set of registers, meant to be exactly the set of registers to which the current data is equal. Thus, when a data is read, it satifies at most one test, and the equality relations between the registers can be updated.

Formally, a transition q σ ,φ|σÓ,asgn,r ---------→ T q ′ is replaced by all the transitions q σ ,φE |σÓ,asgn,r ----------→ T q ′ for all E ⊆ R k such that φ E ⇒ φ is true. Note that in general, such operation adds exponentially many transitions (but does not affect the number of states). In the rest of this section, we assume that all transducers are in this normal form, and simply write E for φ E . Now, we can move to the removal of reassignments:

Theorem 10. For all NRT with reassignment T , one can construct an NRT T ′ such that T = T ′ .

of T , we let R ′ = R ∪ {s} where s is some extra register. The states of T ′ maintain substitutions λ of type R → R ′ , where the initial substitution λ 0 is the identity on R. Hence, the set of states of T ′ are pairs (q, λ) where q is a state of T ′ . Moreover, the reached substitution λ only depends on the sequence of transitions taken by T , so that we have a bijection between runs of T and that of T ′ . The transducer T ′ has the following invariant: for all runs of T over some finite prefix u reaching some configuration (q, τ), there exists a run of T ′ on u with the same sequence of T -states, reaching a configuration ((q, λ), τ ′) such that for all r ∈ R, τ (r) = τ ′ (λ(r)). The converse also holds.

Formally, T ′ is constructed as follows: from any T -transition q

σ,E|asgn,o ------→ T q ′
we create the T ′ -transitions (q, λ)

σ,E ′ |{r0},o ′ --------→ T ′ (q ′ , λ ′) (1)
for all substitutions λ : R → R ′ , such that the following conditions hold:

1.

E ′ = {λ(r) | r ∈ E} 2. r 0 ∈ λ(R) (it exists since |R ′ | > |R|).
3. Let λ ′′ such that λ ′′ (r) = r 0 if (r := curr) ∈ asgn, and λ ′′ (r) = λ(r) otherwise. Then, for all (r := r ′) ∈ asgn, we let λ ′ (r) = λ ′′ (r ′), and if r does not occur in some assignment r := r ′ , then we let λ ′ (r) = λ ′′ (r).

4. if o = (σ 1 , r 1) . . . (σ k , r k), then o ′ = (σ 1 , λ ′ (r 1)) . . . (σ k , λ ′ (r k)).
Let us show that the invariant is preserved. It is obviously true for runs of length 0. Now, let r be a run of T on a word u ∈ (Σ × D) * , such that the last transition is (q, τ) σ,E|asgn,o ------→ T (q ′ , τ ′). By induction hypothesis there exists a run of T ′ on u 1 . . . u n-1 reaching a configuration ((q, λ), γ) such that τ = γ • λ. We show that we can extend this run with a T ′ -transition from (q, λ) as defined in Equation 1, towards a configuration ((q ′ , λ ′), γ ′) such that τ ′ = γ ′ • λ ′ . Let d ∈ D the last data of u. We know that τ (r) = d for all r ∈ E. We have to show that γ(r ′) = d for all r ′ ∈ E ′ , i.e. γ(λ(r)) = d for all r ∈ E, by definition of E ′ . This is immediate as τ = γ • λ. Hence, the test is satisfied and the T ′ -transition defined in Equation 1 can be triggered. Now, let us show that τ ′ = γ ′ • λ ′ . Let r ∈ R. First, note that γ ′ (r) = γ(r) for all r = r 0 . Then, let us consider several cases:

• if r has been untouched by asgn, then λ ′ (r) = λ ′′ (r) = λ(r) and τ ′ (r) = τ (r), hence τ ′ (r) = τ (r) = (γ • λ)(r) = (γ • λ ′)(r) = (γ ′ • λ ′)(r)
. The latter equality holds since γ ′ (λ ′ (r)) = γ(λ ′ (r)), because λ ′ (r) = r 0 (since r has been untouched by asgn).

• if (r := curr) ∈ asgn, then λ ′′ (r) = r 0 and since (r := r ′) ∈ asgn for all r ′ ∈ R (by our assumption that r only occurs at most once in the lhs of assignments), we also have λ

′ (r) = λ ′′ (r) = r 0 . Hence γ ′ • λ ′ (r) = γ ′ (r 0) = d and τ ′ (r) = d since (r := curr) ∈ asgn, hence τ ′ (r) = γ ′ • λ ′ (r).
• if (r := r ′) ∈ asgn, then λ ′ (r) = λ ′′ (r ′). Then there are again several cases:

1. (r ′ := curr) ∈ asgn, then λ ′′ (r ′) = r 0 and therefore γ ′ • λ ′ (r) = γ ′ (r 0) = d. Moreover, since T first executes r ′ := curr and then r := r ′ , we get τ

′ (r) = τ (r) = d, so that γ ′ • λ ′ (r) = τ ′ (r) 2. (r ′ := curr) ∈ asgn, then λ ′′ (r ′) = λ(r ′). So, γ ′ • λ(r) = γ ′ • λ(r ′).
Necessarily, λ(r ′) = r 0 by definition of r 0 , which must satisfy r 0 ∈ λ(R). Therefore, λ(r ′) is not assigned the current data value by T ′ , hence γ ′ (λ(r ′)) = γ(λ(r ′)). Finally, we have:

γ ′ • λ ′ (r) = γ ′ • λ ′′ (r ′) = γ ′ • λ(r ′) = γ • λ(r ′) since γ ′ (λ(r ′)) = γ(λ(r ′)) = τ (r ′)
by induction hypothesis = τ ′ (r) since (r := r ′) ∈ asgn So, we have shown that the invariant is preserved. We have left to show that

γ ′ (o ′) = τ ′ (o), in the sense that if r is the ith register in o, then τ ′ (r) = γ ′ (r ′) where r ′ is the ith register of o ′ . By definition of o ′ , we have r ′ = λ ′ (r). By the invariant, τ ′ (r) = γ ′ • λ ′ (r), hence τ ′ (r) = γ ′ (r ′).
Overall, for all runs of T , there exists a run of T ′ simulating it in the sense that it follows the same sequence of T -states and produces the same output. This allows one to conclude that T ⊆ T ′ . The other inclusion, T ′ ⊆ T also holds. It can be shown similarly by induction on the length of runs. If T ′ can trigger some transition, this transition has been obtained from a transition t of T , and one can show using the same equalities and reasoning as above that t can also be triggered and that the same invariant as above is satisfied, concluding the proof.

Proof of Theorem 9, continued

In the following construction, we first assume that T g produces at most one letter at a time, i.e., the output o ∈ (Σ × D) * on all its transitions is such that |o| = 1. We explain later on how to generalise it to an arbitrary length. Under this assumption, we let Q = Q g × Q f × 2 Rg×R f be the set of states of T and R = R g ⊎R f its set of registers. Our construction satisfies the following invariant: if after reading a prefix x, T is in some configuration ((p, q, C), τ), then T g is in state p, T f is in state q after reading the output of T g on x, and (r g , r f) ∈ C iff τ (r g) = τ (r f). The constraints C are thus used to keep track of the equality relations between the registers of T f and T g , a standard technique in the setting of register automata. We now define the set of transitions. (p, q, C) σ,E|asgn,o ------→ (p ′ , q ′ , C ′) if the following conditions hold:

1. there exists a transition p σ,Eg|asgn g ,(σ ′ ,rg) -----------→ Tg p ′ , 2. there exists a transition q

σ ′ ,E f |asgn f ,o f ---------→ T f q ′ ,
3. let C ′′ be the intermediate equality type defined as the equalities (r 1 , r 2) when (r 1 , r 2) were already equal and r 1 has not be reassigned the current data value, or r 1 has be reassigned the current data value, but this data value is equal to some r ′ 1 ∈ R g (i.e. r ′ 1 ∈ E g) and r ′ 1 was known to be equal to r 2 . Formally:

C ′′ = {(r 1 , r 2) | (r 1 , r 2) ∈ C ∧ r 1 ∈ asgn g } ∪ {(r 1 , r 2) | r 1 ∈ asgn g ∧ ∃r ′ 1 ∈ E g • (r ′ 1 , r 2) ∈ C}
Then, we require that for all

r f ∈ R f , r f ∈ E f iff (r g , r f) ∈ C ′′
4. asgn = asgn g ∪ {r := r g | r ∈ asgn f } (we assume that the instructions r := r g are executed after the assignments of the current data value)

5. o = o f 6. (r 1 , r 2) ∈ C ′ iff (r 1 , r 2) ∈ C ′′ and r 2 ∈ asgn f , or r 2 ∈ asgn f and r 1 = r g
Finally, let us explain informally how to generalise this construction to outputs o of arbitrarily lengths. Assume that o = (σ 1 , r 1 g)(σ 2 , r 2 g) . . . (σ n , r n g). Note that n is bounded and depends only on T f . The difference is at point 2 where instead we require the existence of a sequence of n transitions

q 0 σ1,E 1 f |asgn 1 f ,o 1 f ---------→ T f q 1 σ2,E 2 f |asgn 2 f ,o 2 f ---------→ T f q 2 . . . q n-1 σn,E n f |asgn n f ,o n f ----------→ T f q n
such that q 0 = q and q n = q ′ , and it satisfies some additional conditions that we now explain. First of all, starting from C ′′ , since those transitions performs a series of assignments, the equality types between the registers of T g and T f may change along executing those transitions, which gives a series of equality types C 1 , . . . , C n where C i is the equality type before executing the ith transition (with C 1 = C ′′ as defined above). Then, we require that for all

r f ∈ R f , r f ∈ E i f iff (r i g , r f) ∈ C i .
From C n and the last transition, we get a new equality type required to be equal to C ′ . We require that asgn = asgn g ∪ {r := r i g | r ∈ asgn i f and step i is the last time r is assigned in the sequence of transitions}. Regarding the output, we cannot just require that o = o 1 f . . . o n f as the values of the registers in T f change along the sequence of transitions. However, for all i, the registers of T f are necessarily equal to some register of T g , i.e. for all r ∈ R f , there exists r ′ ∈ R g such that (r ′ , r) ∈ C i . This is due to the fact that each assignment asgn i assigns the value of r i g to the registers in asgn i (assuming that the assignment of T f are always non-empty, which can be ensured wlog, modulo adding some register that always receives the current data value). Hence, in the end we require that o

= α(C 1 , o 1 f) . . . α(C n , o n f) where α(C i , o i f) substitutes in o i f any register r f ∈ R f by some register r ∈ R g such that (r, r f) ∈ C i , concluding the proof.
Remark 1. The proof of Theorem 9 does not use the hypothesis that f and g are functions, and actually shows a stronger result, namely that relations defined by NRT are closed under composition.

Computability and Continuity

We equip the set of (finite or infinite) data words with the usual distance: for

u, v ∈ (Σ × D) ω , d(u, v) = 0 if u = v and d(u, v) = 2 -u∧v otherwise.
A sequence of (finite or infinite) data words (x n) n∈N converges to some infinite data word x if for all ǫ > 0, there exists N ≥ 0 such that for all n ≥ N , d(x n , x) ≤ ǫ.

In order to reason with computability, we assume in the sequel that the infinite set of data values D we are dealing with has an effective representation. For instance, this is the case when D = N.

We now define how a Turing machine can compute a function of data words. We consider deterministic Turing machines, which three tapes: a read-only oneway input tape (containing the infinite input data word), a two-way working tape, and a write-only one-way output tape (on which it writes the infinite output data word). Consider some input data word x ∈ (Σ × D) ω . For any integer k ∈ N, we let M (x, k) denote the output written by M on its output tape after having read the k first cells of the input tape. Observe that as the output tape is write-only, the sequence of data words (M (x, k)) k≥0 is non-decreasing. Definition 2 (Computability). A function f : (Σ × D) ω → (Γ × D) ω is computable if there exists a deterministic multi-tape machine M such that for all x ∈ dom(f), the sequence (M (x, k)) k≥0 converges to f (x).

Definition 3 (Continuity). A function

f : (Σ × D) ω → (Γ × D) ω is continuous at x ∈ dom(f) if (equivalently):
(a) for all sequences of data words (x n) n∈N converging towards x, where for all i ∈ N,

x i ∈ dom(f), we have that (f (x n)) n∈N converges to f (x). (b) ∀i ≥ 0, ∃j ≥ 0, ∀y ∈ dom(f), x ∧ y ≥ j ⇒ f (x) ∧ f (y) ≥ i.
Then, f is continuous if and only if it is continuous at each x ∈ dom(f). Finally, a functional NRT T is continuous when T is continuous.

Example 3. We give an example of a non-continuous function f . The finite input and output alphabets are unary, and are therefore ignored in the description of f . Such function associates with every sequence

s = d 1 d 2 • • • ∈ D ω the word f (s) = d ω 1 if d 1 occurs infinitely many times in s, otherwise f (s) = s itself. The function f is not continuous. Indeed, by taking d = d ′ , the sequence of data words d(d ′) n d ω converges to d(d ′) ω , while f (d(d ′) n d ω) = d ω converges to d ω = f (d(d ′) ω) = d(d ′) ω .
Moreover, f is realisable by some NRT which non-deterministically guesses whether d 1 repeats infinitely many times or not. It needs only one register r in which to store d 1 . In the first case, it checks whether the current data d is equal the content r infinitely often, and in the second case, it checks that this test succeeds finitely many times, using Büchi conditions.

One can show that the register transducer T rename2 considered in Example 2 also realises a function which is not continuous, as the value stored in register r 2 may appear arbitrarily far in the input word. One could modify the specification to obtain a continuous function as follows. Instead of considering an infinite log, one considers now an infinite sequence of finite logs, separated by $ symbols. The register transducer T rename3 , depicted in Figure 3, defines such a function. We now prove the equivalence between continuity and computability for functions defined by NRT. One direction, namely the fact that computability implies continuity, is easy, almost by definition. For the other direction, we rely on the following lemma which states that it is decidable whether a word v can be safely output, only knowing a prefix u of the input. In particular, given a function f , we let f be the function defined over all finite prefixes u of words in dom(f) by f (u) = (f (uy) | uy ∈ dom(f)), the longest common prefix of all outputs of continuations of u by f . Then, we have the following decidability result: Lemma 11. The following problem is decidable. Given an NRT T defining a function f , two finite data words u ∈ (Σ × D) * and v ∈ (Γ × D) * , decide whether v f (u).

1 2 3 4 7 6 5 del, ⊤ | r 1 , ǫ ch, r = 1 | r 2 , ǫ ch, r = 1 ∧ r = 2 | r 3 , ǫ #, ⊤ | ∅, ǫ # , ⊤ | ∅ , ǫ σ, r = 2 | ∅, (σ, r 2) σ, r = 1 | ∅, (σ, r 2) σ, r = 1 ∧ r = 2 | r 0 , (σ, r 0) σ, r = 1 | ∅, (σ, r 3) σ, r = 1 ∧ r = 2 ∧ r = 3 | r 0 , (σ, r 0) σ, r = 1 | ∅, (σ, r 3) σ, r = 1 ∧ r = 3 | r 0 , (σ, r 0) $, ⊤ | ∅ , ǫ $, ⊤ | ∅, ǫ
Proof. We decide the negation, i.e., whether there exists some continuation y such that uy ∈ dom(f) and v f (uy). Since f (uy) is infinite, it is equivalent to asking whether there is a mismatch between v and f (uy

) (a position i such that v[i] = f (uy)[i]
). We reduce this test to the language emptiness test of some NRA A. The language defined by A is the set of data words x 1 y 1 x 2 y 2 . . . such that:

1. for all i ≥ 1, x i ∈ Σ × D, i.e. x i is some input 2. for all j ≥ 1, y j ∈ (Γ × D) * , i.e. y j is some output data word 3. x 1 . . . x k = u for some k ≥ 1 4. y 1 . . . y ℓ mismatches with v for some ℓ 5. there exists an accepting run of T of the form:

(q 0 , τ 0) x1|y1 ---→ T (q 1 , τ 1) x2|y2 ---→ T (q 2 , τ 2) . . . Note that L(A) = ∅ iff v f (u).
It remains to show how to construct A. We construct A by taking the intersection of three NRA A 3 , A 4 and A 5 which checks conditions 3, 4, 5 (NRA are closed under language intersection). To construct A 3 , since u is given, we can use as many registers as |u| to store the data of u in some initial register configuration, used to check condition 3, by performing equality tests (the finite labels of u can be dealt with by storing them in the states of A 3). This automaton needs O(|u|) states. We can proceed similarly for A 4 , with the difference that at some point, A 4 has to guess the existence of some mismatch and perform some disequality test. Finally, A 5 just simulates T over x 1 y 1 Since NRA emptiness is decidable [START_REF] Demri | LTL with the freeze quantifier and register automata[END_REF] (even with some arbitrary initial configuration), this entails our result.

Theorem 12. Let f be a function defined by some NRT T . Then f is continuous iff f is computable.

Proof. ⇐ Assuming f = T is computable by some Turing machine M , we show that f is continuous. Indeed, consider some x ∈ dom(f), and some i ≥ 0. As the sequence of finite words (M (x, k)) k∈N converges to f (x) and these words have non-decreasing lengths, there exists j ≥ 0 such that |M (x, j)| ≥ i. Hence, for any data word y ∈ dom(f) such that |x ∧ y| ≥ j, the behaviour of M on y is the same during the first j steps, as M is deterministic, and thus |f (x)∧f (y)| ≥ i, showing that f is continuous at x.

⇒ Assume that f is continuous. We describe a Turing machine computing f ; the corresponding algorithm is formalised as Algorithm 1. When reading a finite prefix x[:j] of its input x ∈ dom(f), it computes the set P j of all configurations (q, τ) reached by T on x[:j]. This set is updated along taking increasing values of j. It also keeps in memory the finite output word o j that has been output so far. For any j, if dt(x[:j]) denotes the data that appear in x, the algorithm then decides, for each input (σ, d) ∈ Σ × (dt(x[:j]) ∪ {d 0 }) whether (σ, d) can safely be output, i.e., whether all accepting runs on words of the form x[:j]y, for an infinite word y, outputs at least o j (σ, d). The latter can be decided, given T , o j and x[:j], by Theorem 11. Note that it suffices to look at data in dt(x[:j]) ∪ {d 0 } only since, by definition of NRT, any data that is output is necessarily stored in some register, and therefore appears in x[:j] or is equal to d 0 .

Let us show that M f actually computes f . Let x ∈ dom(f). We have to show that the sequence (M f (x, j)) j converges to f (x). Let o j be the content of variable o of M f when exiting the inner loop at line 8, when the outer loop (line Algorithm 1: Algorithm describing the machine M f computing f . 2) has been executed j times (hence j input symbols have been read). Note that o j = M f (x, j). We have o 1 o 2 . . . and o j f (x[:j]) for all j ≥ 0. Hence, o j f (x) for all j ≥ 0. To show that (o j) j converges to f (x), it remains to show that (o j) j is non-stabilising, i.e. o i1 ≺ o i2 ≺ . . . for some infinite subsequence i 1 < i 2 < First, note that f being continuous is equivalent to the sequence (f (x[:k])) k converging to f (x). Therefore we have that f (x) ∧ f (x[:k]) can be arbitrarily long, for sufficiently large k. Let j ≥ 0 and (σ,

Data: x ∈ dom(f) 1 o := ǫ ; 2 for j = 0 to ∞ do 3 for (σ, d) ∈ Σ × (dt(x[:j]) ∪ {d 0 }) do
d) = f (x)[|o j | + 1]
. By the latter property and the fact that o j .(σ, d) f (x), necessarily, there exists some k > j such that o j .(σ, d) f (x[:k]). Moreover, by definition of NRT, d is necessarily a data that appears in some prefix of x, therefore there exists k ′ ≥ k such that d appears in x[:k ′] and o j .(σ, d)

f (x[:k] f (x[:k ′]
. This entails that o j .(σ, d) o k ′ . So, we have shown that for all for all j, there exists k ′ > j such that o j ≺ o k ′ , which concludes the proof. Now that we have shown that computability is equivalent with continuity for functions defined by NRT, we exhibit a pattern which allows to decide continuity. Such pattern generalises the one of [START_REF] Dave | Deciding the computability of regular functions over infinite words[END_REF] to the setting of data words, the difficulty lying in showing that our pattern can be restricted to a finite number of data.

Theorem 13. Let T be a functional NRT with k registers. Then, for all X ⊆ D such that |X| ≥ 2k + 3 and d 0 ∈ X, T is not continuous at some x ∈ (Σ × D) ω if and only if T is not continuous at some z ∈ (Σ × X) ω .

Proof. The right-to-left direction is trivial. Now, let T be a functional NRT with k registers which is not continuous at some x ∈ (Σ × D) ω . Let f : dom(T) → (Γ × D) ω be the function defined by T , as: for all u ∈ dom(T), f (u) = v where v ∈ (Γ × D) ω is the unique data word such that (u, v) ∈ T . Now, let X ⊆ D be such that |X| ≥ 2k + 3 and d 0 ∈ X. We need to build two words u and v labelled over X which coincide on a sufficiently long prefix to allow for pumping, hence yielding a converging sequence of input data words whose images do not converge, witnessing non-continuity. To that end, we use a similar proof technique as for Theorem 6: we show that the language of interleaved runs whose inputs coincide on a sufficiently long prefix while their respective outputs mismatch before a given position is recognisable by an NRA, allowing us to use the indistinguishability property. We also ask that one run presents sufficiently many occurrences of a final state q f , so that we can ensure that there exists a pair of configurations containing q f which repeats in both runs.

On reading such u and v, the automaton behaves as a finite automaton, since the number of data is finite ([15, Proposition 1]). By analysing the respective runs, we can, using pumping arguments, bound the position on which the mismatch appears in u, then show the existence of a synchronised loop over u and v after such position, allowing us to build the sought witness for non-continuity.

Relabel over X Thus, assume T is not continuous at some point x ∈ (Σ×D) ω . Let ρ be an accepting run of T over x, and let q f ∈ inf(st(ρ))∩F be an accepting state repeating infinitely often in ρ. Then, let i ≥ 0 be such that for all j ≥ 0, there exists y ∈ dom(f) such that x ∧ y ≥ j but f (x) ∧ f (y) ≤ i. Now, define K = |Q| × (2k + 3) 2k and let m = (2i + 3) × (K + 1). Finally, pick j such that ρ[1:j] contains at least m occurrences of q f . Consider the language:

L = ρ 1 ⊗ ρ 2 in(ρ 1) ∧ in(ρ 2) ≥ j, out(ρ 1) ∧ out(ρ 2) ≤ i and
there are at least m occurrences of q f in ρ 1 [1:j] By Theorem 3, L ⊗ (T) is recognised by an NRA with 2k registers. Additionnally, by Theorem 4, M i j is recognised by an NRA with 2 registers. Thus, L = L ⊗ (T)∩ O q f m,j ∩ M i j , where O q f m,j checks there are at least m occurrences of q f in ρ 1 [1:j] (this is easily doable from the automaton recognising L ⊗ (T) by adding an mbounded counter), is recognisable by an NRA with 2k + 2 registers.

Choose y ∈ dom(f) such that x ∧ y ≥ j but f (x) ∧ f (y) ≤ i. By letting ρ 1 (resp. ρ 2) be an accepting run of T over x (resp. y) we have

ρ 1 ⊗ ρ 2 ∈ L, so L = ∅. By Theorem 2, it means L ∩ ((Σ × X) ω × (Γ × X) ω) = ∅. Let w = ρ ′ 1 ⊗ ρ ′ 2 ∈ L ∩ ((Σ × X) ω × (Γ × X) ω), u = in(ρ ′ 1) and v = in(ρ ′ 2)
. Then, u ∧ v ≥ j, f (u) ∧ f (v) ≤ i and there are at least m occurrences of q f in ρ 1 [1:j]. Now, we depict ρ ′ 1 and ρ ′ 2 in Figure 4, where we decompose u as u = u 1 . . . u m • s and v as v = u 1 . . . u m • t; their corresponding images being respectively

u ′ = u ′ 1 . . . u ′ m • s ′ and u ′′ = u ′′ 1 . . . u ′′ m t ′′ .
We also let l = (i + 1)(K + 1) and l ′ = 2(i + 1)(K + 1). Since the data of u, v and w belong to X, we know that τ i , µ i : R → X. Proof. Let X ⊆ D be a set of size 2k + 3 containing d 0 . By Theorem 13, T is not continuous iff it is not continuous at some z ∈ (Σ × X) ω , iff T ∩ (Σ × X) ω × (Γ × X) ω is not continuous. By Theorem 1, such relation is recognisable by a finite transducer T X with O(|Q| × |X| |R|) states, which can be built on-the-fly. By [START_REF] Dave | Deciding the computability of regular functions over infinite words[END_REF], the continuity of functions defined by NFT is decidable in NLogSpace, which yields a PSpace procedure.

q l′ , τ l′ . . . qm, τm u1 | u ′ 1 ul | u ′ l ul+1 | u ′ l+1 ul′ | u ′ l ′ ul′+1 | u ′ l ′ +1 um | u ′ m s|s ′ u1 | u ′′ 1 ul | u ′′ l ul+1 | u ′′ l+1 u′ | u ′′ l ′ ul′+1 | u ′′ l ′ +1 um | u ′′ m t|t ′′
For the hardness, we reduce again from the emptiness problem of register automata, which is PSpace-complete [START_REF] Demri | LTL with the freeze quantifier and register automata[END_REF]. Let A be a register automaton over some alphabet Σ × D. We construct a transducer T which defines a continuous function iff L(A) = ∅ iff the domain of T is empty. Let f be a non-continous function realised by some NRT H (it exists by Example 3). Then, let # ∈ Σ be a fresh symbol, and define the function g as the function mapping any data word of the form w(#, d)w ′ to w(#, d)f (w ′) if w ∈ L(A). The function g is realised by an NRT which simulates A and copies its inputs on the output to implement the identity, until it sees #. If it was in some accepting state of A before seeing #, it branches to some initial state of H and proceeds executing H. If there is some w 0 ∈ L(A), then the subfunction g w0 mapping words of the form w 0 (#, d)w ′ to w 0 (#, d)f (w ′) is not continuous, since f is not. Hence g is not continuous. Conversely, if L(A) = ∅, then dom(g) = ∅, so g is continuous.

In [START_REF] Dave | Deciding the computability of regular functions over infinite words[END_REF], non-continuity is characterised by a specific pattern (Lemma 21, Figure 1), i.e. the existence of some particular sequence of transitions. By applying this characterisation to the finite transducer recognising T ∩ ((Σ × X) ω × (Γ × X) ω), as constructed in Theorem 1, we can characterise non-continuity by a similar pattern, which will prove useful to decide (non-)continuity of test-free NRT in NLogSpace (cf Section 5):

Corollary 15 ([3]

). Let T be an NRT with k registers. Then, for all X ⊆ D such that |X| ≥ 2k + 3 and d 0 ∈ X, T is not continuous at some x ∈ (Σ × D) ω if and only if it has the pattern of Figure 5. In [START_REF] Exibard | Synthesis of data word transducers[END_REF], we introduced a restriction which allows to recover decidability of the bounded synthesis problem for specifications expressed as non-deterministic register automata. Applied to transducers, such restriction also yields polynomial complexities when considering the functionality and computability problems. An NRT T is test-free when its transition function does not depend on the tests conducted over the input data. Formally, we say that T is test-free if for all transitions q σ,φ|asgn,o ------→ T q ′ we have φ = ⊤. Thus, we can omit the tests altogether and its transition relation can be represented as f can be implemented using a test-free NRT with one register: it initially guesses whether there are infinitely many a in x, if it is the case, it stores d 1 in the single register r, otherwise it waits for the next input to get d 2 and stores it in r. Then, it outputs the content of r along with each σ i . f is not continuous, as even outputting the first data requires reading an infinite prefix when

∃u, v ∈ (Σ × X) * , ∃u ′ , u ′′ , v ′ , v ′′ ∈ (Γ × X) * , ∃w ∈ (Σ × X) ω , ∃w ′′ ∈ (Γ × X) ω , ∃q ∈ Q, ∃q f ∈ F, ∃µ, τ : R → X, mismatch(u ′ , u ′′) ∨ v ′′ = ε ∧ mismatch(u ′ , u ′′ w ′′) i0, τ0 qf , µ i0, τ0 q, τ u | u ′ u | u ′′ v | v ′ v | v ′′ w | w ′′
∆ ′ ⊆ Q × Σ × 2 R × (Γ × R) * × Q. Example 4. Consider the function f : (Σ × D) ω → (Γ × D) ω associating, to x = (σ 1 , d 1)(σ 2 , d 2) . . . ,
d 1 = d 2 .
Note that when a transducer is test-free, the existence of an accepting run over a given input x only depends on its finite labels. Hence, the existence of two outputs y and z which mismatch over data can be characterised by a simple pattern (Figure 6), which allows to decide functionality in polynomial time: Theorem 16. Deciding whether a test-free NRT is functional is in PTime.

Proof. Let T be a test-free NRT such that T is not functional. Then, there exists x ∈ (Σ × D) ω , y, z ∈ (Γ × D) ω such that (x, y), (x, z) ∈ T and y = z. Then, let i be such that y[i] = z[i]. There are two cases. Either lab(y[i]) = lab(z[i]), which means that the finite transducer T ′ obtained by ignoring the registers of T is not functional. By Theorem 5, such property can be decided in NLogSpace, so let us focus on the second case: dt(y

[i]) = dt(z[i]).
We first give an outline of the proof: observe that an input x admits two outputs which mismatch over data if and only if it admits two runs which respectively store x[j] and x[j ′] such that x[j] = x[j ′] and output them later at the same output position i; the outputs y and z are then such that dt(y[i]) = dt(z[i]). Since T is test-free, the existence of two runs over the same input x only depends on its finite labels. Then, the registers containing respectively x[j] and x[j ′] should not be reassigned before being output, and should indeed output their content at the same position i (cf Figure 6). Besides, again because of test-freeness, we can always assume that x is such that x[j] = x[j ′]. Overall, such pattern can be checked by a 2-counter Parikh automaton, whose emptiness is decidable in PTime [START_REF] Figueira | Path logics for querying graphs: Combining expressiveness and efficiency[END_REF] (under conditions that are satisfied here). Now, we move to the detailed proof. The case where the mismatch is over the labels reduces to deciding the functionality of an NRT, which is in NLogSpace by Theorem 5. Let us thus move the case where the mismatch occurs over the data.

x y z j j'

r ′ ∈ asgn ′ j ′ r ∈ asgn j l r ∈ o l l' r ′ ∈ o ′ l ′ i i r is not reassigned y [i] = x [j] z[i] = x[j ′] o u t p u t y [i] o u tp u t z [i]
Figure 6: A situation characterising the existence of a mismatch over data. Since acceptance does not depend on data, we can always choose x such that dt(x[j]) = dt(x[j ′]). Here, we assume that the labels of x, y and z range over a unary alphabet; in particular y

[i] = x[j] iff dt(y[i]) = dt(x[j]
). Finally, for readability, we did not write that r ′ should not be reassigned between j ′ and l ′ . Note that the position of i with regards to j, j ′ , l and l ′ does not matter; nor does the position of l w.r.t. l ′ .

Characterising a Mismatch Let us show that there exists an input x ∈ (Σ×D) ω , two outputs y, z ∈ (Γ×D) ω such that dt(y) = dt(z) if and only if there exists two finite sequences of transitions ν : q 0 σ1|asgn 1 ,o1

-------→ . . .

σn|asgn n ,on -------→ q n and ν ′ : q ′ 0 σ ′ 1 |asgn ′ 1 ,o ′ 1 -------→ . . . σ ′ n |asgn ′ n ,o ′ n -------→ q ′
n , two registers r and r ′ , an (output) position i and (input) positions j = j ′ , n ≥ l ≥ j and n ≥ l ′ ≥ j ′ such that:

1. The input labels are the same: for all 1 ≤ k ≤ n, σ k = σ ′ k 2. ν and ν ′ can yield accepting runs: q n and q ′ n are coaccessible with the same data word 3. l and l ′ are the respective input positions at which the output data at position i is produced: o

1 . . . o l-1 < i ≤ o 1 . . . o l and o ′ 1 . . . o ′ l-1 < i ≤ o ′ 1 . . . o ′ l 4.
r and r ′ are the registers whose content is output at that moment: by denoting

w = o 1 • o 2 . . . and w ′ = o ′ 1 • o ′ 2 . . . , we have that w[i] = (σ i , r) and w ′ [i] = (σ ′ i , r ′)
5. r and r ′ are assigned at a different position, respectively j and j ′ : r ∈ asgn j , r ′ ∈ asgn j ′ 6. r and r ′ are not reassigned before being output: ∀j < k ≤ l, r / ∈ asgn k , ∀j ′ < k ≤ l ′ , r / ∈ asgn ′ k ; in other words, j and j ′ are the respective origins of the output at position i over ρ and ρ ′ , in the sense of [START_REF] Exibard | Synthesis of data word transducers[END_REF] ⇐ Choose x = (σ 1 , d 1) . . . (σ n , d n)(σ n+1 , d n+1) . . . , such that d j = d j ′ . Then, since T is test-free, by items 1 and 2, ν and ν ′ both yield accepting runs of T , that we respectively denote ρ and ρ ′ . We then let y = out(ρ) and z = out(ρ ′). Now, let (q j , τ j) be the configuration of T at position j. Since r ∈ asgn j , we have that τ j (r) = d j . Then, by item 6, since for all j < k ≤ l, r / ∈ asgn k , we get that τ l (r) = d j . Then, by items 3 and 4, we get that dt(y[i]) = d j . Similarly, we have that dt(z[i]) = d ′ j . Overall, we get that x, y and z are such that (x, y), (x, z) ∈ T and dt(y) = dt(z).

⇒ Now, let x ∈ (Σ×D) ω , y, z ∈ (Γ×D) ω be such that (x, y), (x, z) ∈ T and dt(y) = dt(z). Let i ∈ N be such that dt(y[i]) = dt(z[i]). Let ρ and ρ ′ be two accepting runs of T such that in(ρ) = in(ρ ′) = x and out(ρ) = y, out(ρ ′) = z. Then, let l and l ′ be such that o

1 . . . o l-1 < i ≤ o 1 . . . o l and o ′ 1 . . . o ′ l-1 < i ≤ o ′ 1 . . . o ′ l , and define n = max(l, l ′). Let ν = q 0 σ1|asgn 1 ,o1 -------→ q 1 . . . σn|asgn n ,on -------→ q n and ν ′ = q ′ 0 σ ′ 1 |asgn ′ 1 ,o ′ 1 -------→ q ′ 1 . . . σ ′ n |asgn ′ n ,o ′ n
-------→ q n be their respective sequences of transitions, truncated at length n.

First, for all 1

≤ k ≤ n, σ k = σ ′ k = x[k],
and σ n+1 σ n+2 . . . indeed yiels a final run from q n and q ′ n since ρ and ρ ′ are accepting. Now, let r and r ′ be such that, by denoting w

= o 1 • o 2 . . . and w ′ = o ′ 1 • o ′ 2 . . . , we have w[i] = (σ i , r) and w ′ [i] = (σ ′ i , r ′). Then, define j = max{k ≤ l | r ∈ asgn k } and j ′ = max{k ′ ≤ l ′ | r ′ ∈ asgn k ′ } (
with the convention that max ∅ = 0). By definition, item 6 then holds and l ≥ j, l ′ ≥ j ′ . Finally, by denoting d j = dt(x[j]) and d j ′ = dt(x[j ′]) (with the convention that dt(x[0]) = d 0), we have that τ j (r) = d j and τ j ′ (r ′) = d j ′ . Since r and r ′ are not reassigned before position l and l ′ respectively, we get that τ l (r) = d j and τ

l ′ (r ′) = d j ′ , so d j = dt(y[i]) and d j ′ = dt(z[i]), which means that d j = d j ′ , so j = j ′ .
Recognising the Pattern Now, checking those properties can be done by a 2counter Parikh automaton. A Parikh automaton is a finite automaton equipped with a finite number of counters that it can increment and decrement, and which take their values in Z (i.e. they are allowed to go below zero). There are no tests over the counters during the run, but, to determine acceptance, at the end of the run, the automaton checks whether its counters satisfy a given Presburger formula, or, equivalently, belong to some semi-linear set. When increments and decrements are encoded in unary, the semi-linear set is given explicitly, and the dimension (i.e. the number of counters) is fixed, emptiness of Parikh automata is in PTime. This is the case here: there are only increments, which can be given in unary as they correspond to the length of the output words in the transitions, and at the end of the run, we only need to check that the two counters are equal, i.e. belong to the diagonal c 1 = c 2 .

Let us describe the automaton: initially, it guesses the finite labels of ν and ν ′ . Then, there are two phases: it first simulates the two partial runs in parallel, only with regards to input labels. Formally, in this phase it can take a transition q σ -→ q ′ if and only if there exists some transition q σ|asgn,o -----→ q ′ in T . All the while, it keeps track of the length of the output which has been produced by each run using its two counters c 1 and c 2 : c 1 is each time incremented by o 1 (resp. c 2 by o 2). It then guesses position j and j ′ , and the corresponding registers r and r ′ . Afterwards, it keeps simulating both runs, but additionnally checks that r (resp. r ′) is not reassigned after position j (resp. j ′). To that end, it avoids all transitions q σ|asgn,o -----→ q ′ such that asgn ∋ r (resp. asgn ∋ r ′). Then, it guesses positions l and l ′ which are the respective origins of the mismatch. At this point, it increments c 1 (resp. c 2) by w , where w is such that o l = w 1 rw ′ 1 (resp. w 2 , where w 2 is such that o l ′ = w 2 rw ′ 2) and then stops counting the length of the corresponding outputs until the end of the run, i.e. it stops incrementing c 1 (resp. c 2). Finally, at the end of the run, it checks that c 1 = c 2 , and that q n and q ′ n are co-accessible with the same ω-word (here, the registers do not matter anymore). This is doable in polynomial time: precompute all pairs (q n , q ′ n) such that coacc(q n , q ′ n) hold, such predicate being computable in NLogSpace as demonstrated in Theorem 5.

Then, such automaton is polynomial in the size of T . Since emptiness of such automaton is in PTime, we can decide the above properties, i.e. whether T is functional, in PTime. Now, let us move to the case of continuity. Here again, the fact that testfree NRT conduct no test over the input data allows to focus on the only two registers that are responsible for the mismatch, the existence of an accepting run being only determined by finite labels.

Theorem 17. Deciding whether a test-free NRT defines a continuous function is in PTime.

Proof. Let T be a test-free NRT.

A simpler pattern Let us first show that T is continuous if and only if T has the pattern of Figure 7, where r is coaccessible (since acceptance only depends on finite labels, T can be trimmed1 in polynomial time). By Theorem 13, we Configurations are not depicted, as there are no conditions on them. We unrolled the loops to highlight the fact that they do not necessarily loop back to the same configuration.

∃u, v ∈ (Σ × D) * , ∃u ′ , u ′′ , v ′ , v ′′ ∈ (Γ × D) * , ∃z ∈ (Σ × D) ω , ∃z ′′ ∈ (Γ × D) ω , ∃q, r ∈ Q, ∃q f ∈ F, mismatch(u ′ , u ′′) ∨ v ′′ = ε ∧ mismatch(u ′ , u ′′ z ′′) i0 qf qf i0 q q r u | u ′ u | u ′′ v | v ′ v | v ′′ z | z ′′
already know that T is not continuous if and only if it has the pattern of Figure 5.

Now, the left-to-right direction is quite direct, since the pattern of Figure 7 is simpler: assume T is not continuous. Then it has the pattern of Figure 5. Thus, if mismatch(u ′ , u ′′), by picking w = w ′′ = ε and r = q, we get the pattern of Figure 7. Otherwise, choose two finite data words z and z ′′ and r such that z ≺ w, z ′′ ≺ w ′′ , q z|z ′′ ---→ q ′ and mismatch(u ′ , u ′′ z ′′). Such finite words exist because the mismatch between u ′ and u ′′ w ′′ happens at some finite position, and it suffices to truncate w and w ′′ up to such position. Conversely, assume T has the pattern of Figure 7. Then, let x = uv ω , and define (y n) n∈N as y n = uv n wz for all n ∈ N, where z ∈ (Σ × ω) is such that there is a final run over z from r. Such z exists since r is coaccessible; in the following we denote z ′′ its corresponding image. Then, y n ----→ n→∞ x; however, for all n ∈ N, f (y n) = u ′′ (v ′′) n w ′′ z ′′ , so f (x) ∧ f (y n) ≤ u ′ , since either v ′′ = ε and then there is a mismatch between u ′ and u ′′ , or there is a mismatch between u ′ and u ′′ w ′′ , which means that T is not continuous.

Checking the pattern Now, it remains to show that such simpler pattern can be checked in PTime. We treat each part of the disjunction separately:

(a) there exists u, u ′ , u ′′ , v, v ′ , v ′′ such that i 0 u|u ′ --→ q f v|v ′ --→ q f and i 0 u|u ′′ ---→ q v|v ′′ ---→ q, where q f ∈ F and mismatch(u ′ , u ′′). Then, as shown in the proof of Theorem 16, there exists a mismatch between some u ′ and u ′′ produced by the same input u if and only if there exists two runs and two registers r and r ′ assigned at two distinct positions, and later on output at the same position. Such pattern can be checked by a 2-counter Parikh automaton similar to the one described in the proof of Theorem 16; the only difference is that here, instead of checking that the two end states are coaccessible with a common ω-word, we only need to check that q f ∈ F and that there is a synchronised loop over q f and q, which are regular properties that can be checked by the Parikh automaton with only a polynomial increase.

(b) there exists u, u ′ , u ′′ , v, v ′ , z, z ′′ such that i 0 u|u ′ --→ q f v|v ′ --→ q f and i 0 u|u ′′ ---→ q v|ε --→ q z|z ′′ ---→ r, where q f ∈ F and mismatch(u ′ , u ′′ z ′′). By examining again the proof of Theorem 16, it can be shown that to obtain a mismatch, it suffices that the input is the same for both runs only up to position max(j, j ′). More precisely, there is a mismatch between u ′ and u ′′ z ′′ if and only if there exists two registers r and r ′ and two positions j, j ′ ∈ {1, . . . , u } such that j = j ′ , r is stored at position j, r ′ is stored at position j ′ , r and r ′ are respectively output at input positions l ∈ {1, . . . , u } and l ′ ∈ {1, . . . , uz } and they are not reassigned in the meantime. Again, such property, along with the fact that q f ∈ F and the existence of a synchronised loop can be checked by a 2-counter Parikh automaton of polynomial size.

Overall, deciding whether a test-free NRT is continuous is in PTime.

 where r ∈ R. Given a valuation τ : R → D, a test φ and a data d, we denote by τ, d |= φ the satisfiability of φ by d in valuation τ , defined as τ, d |= r = if τ (r) = d and τ, d |= r = if τ (r) = d. The Boolean combinators behave as usual.

Figure 3 :

 3 Figure 3: A register transducer T rename3 . This transducer is non-deterministic, yet it defines a continuous function.

4 5 o 6 output

 56 if o.(σ, d) f (x[:j]) then // such test is decidable by Theorem 11 := o.(σ, d);

Figure 4 :

 4 Figure 4: Runs of f over u = u 1 . . . u m • s and v = u 1 . . . u m • t.

Figure 5 :

 5 Figure 5: A pattern characterising non-continuity of functions definable by an NRT

Figure 7 :

 7 Figure7: A pattern characterising non-continuity of functions definable by an NRT. Configurations are not depicted, as there are no conditions on them. We unrolled the loops to highlight the fact that they do not necessarily loop back to the same configuration.

 3. the class of functions defined by NRT is effectively closed under composition, 4. computability and continuity are equivalent notions for functions defined by NRT, where continuity is defined using the classical Cantor distance, 5. deciding whether a function given as an NRT is computable is PSpace-c,

6. those problems are in PTime for a subclass of NRT, called test-free NRT.

 the value (σ 1 , d 1)(σ 2 , d 1)(σ 3 , d 1) . . . if there are infinitely many a in x, and (σ 1 , d 2)(σ 2 , d 2)(σ 3 , d 2) . . . otherwise.

Proof. The idea is to keep in memory (in the states of T ′) substitutions λ of registers by other registers, and define tests and outputs modulo those substitutions. We also add one extra register in T ′ . So, if R is the set of registers

We say that T is trim when all its states are both accessible and coaccessible.

Funded by a FRIA fellowship from the F.R.S.-FNRS.

† Research associate of F.R.S.-FNRS. He is supported by the ARC Project Transform Fédération Wallonie-Bruxelles and the FNRS CDR J013116F and MIS F451019F projects.

‡ Partly funded by the DeLTA project (ANR-16-CE40-0007).

Repeating configurations First, let us observe that in a partial run of ρ ′ 1 containing more than |Q|×|X| k occurrences of q f , there is at least one productive transition, i.e. a transition whose output is o = ε. Otherwise, by the pigeonhole principle, there exists a configuration µ : R → X such that (q f , µ) occurs at least twice in the partial run. Since all transitions are improductive, it would mean that, by writing w the corresponding part of input, we have (q f , µ)

This partial run is part of ρ ′ 1 , so, in particular, (q f , µ) is accessible, hence by taking w 0 such that (i 0 , τ 0)

0 , which is a finite word, contradicting our assumption that all accepting runs produce an infinite output. This implies that, for any n

Locate the mismatch Again, upon reading u l+1 . . . u l ′ , there are (i + 1)(K + 1) occurrences of q f . There are two cases:

(a) There are at least i + 1 productive transitions in ρ ′ 2 . Then, we obtain that

and they are respectively prefixes of f (u) and f (v), both of length at least i + 1. Afterwards, upon reading u l ′ +1 . . . u m , there are K + 1 > |Q| × |X| 2k occurrences of q f , so, by the pigeonhole principle, there is a repeating pair: there exist indices p and p ′ such that l ′ ≤ p < p ′ ≤ m and (q f , µ p) = (q f , µ p ′), (q p , τ p) = (q p ′ , τ p ′). Thus, let z P = u 1 . . . u p , z R = u p+1 . . . u p ′ and z C = u p ′ +1 . . . u m •t (P stands for prefix, R for repeat and C for continuation; we use capital letters to avoid confusion with indices). By denoting

(b) Otherwise, by the same reasoning as above, it means there exists a repeating pair with only improductive transitions in between: there exist indices p and p ′ such that l ≤ p < p ′ ≤ l ′ , (q f , µ p) = (q f , µ p ′), (q p , τ p) = (q p ′ , τ p ′), and (q f , µ p)

-------→ (q p ′ , τ p ′). Then, by