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Introduction

The PrandtlPlane (PrP) configuration, shown in Fig. 1, is the engineering application of the so-called "Best Wing System", introduced by L. Prandtl [START_REF] Prandtl | Induced drag of multiplanes[END_REF]: he theorised the existence of a lifting system which, for given wingspan and generated lift, minimises the induced drag. A rigorous mathematical proof of the Prandtl's riddle has been provided many years later [START_REF] Frediani | Best wing system: An exact solution of the prandtl's problem[END_REF]. Although the literature about aerodynamics of the PrP configuration is quite rich, there are few works focusing on the structural analysis, especially for the wing structure.

The only works on this topic consider a now-obsolete PrP configuration and low-fidelity models [START_REF] Canto | The lifting system of a prandtlplane, part 1: Design and analysis of a light alloy structural solution[END_REF][START_REF] Divoux | The lifting system of a prandtlplane, part 2: preliminary study on flutter characteristics[END_REF][START_REF] Frediani | The lifting system of a prandtlplane, part 3: Structures made in composites[END_REF]. Recently, a Finite Element (FE)-based approach for structural analysis of the PrP wing architecture has been proposed in [START_REF] Diolosà | Preliminary studies for the structural optimization of a prandtlplane wing[END_REF], but the analysis was still carried out on an obsolete configuration of the wing. Moreover, a structural optimisation of the spars of an ultra-light PrP seaplane has been recently presented in [START_REF] Nardone | Progetto di ali di velivoli leggeri costruite per saldatura di lamiere sottili di alluminio[END_REF][START_REF] Cipolla | Design, optimization and manufacturing of metallic wings of light aircraft[END_REF]. Paradoxically, in the literature there are more works about PrP aeroelasticity aspects (including non-linear ones) [START_REF] Divoux | The lifting system of a prandtlplane, part 2: preliminary study on flutter characteristics[END_REF][START_REF] Cavallaro | Nonlinear aeroelastic analysis of joined-wing configurations[END_REF][START_REF] Bombardieri | Studies on lateraldirectional coupled flight dynamics and aeroelasticity of a prandtlplane[END_REF][START_REF] Cavallaro | Discrete gust response of a box-wing configuration[END_REF][START_REF] Cavallaro | Prandtlplane joined wing: Body freedom flutter, limit cycle oscillation and freeplay studies[END_REF][START_REF] Cavallaro | Aeroelasticity of the prandtlplane: Body freedom flutter, freeplay, and limit cycle oscillation[END_REF], than works focusing on general structural behaviour of the PrP.

The structural analysis of the PrP aircraft architecture presents many features which make it quite challenging, if compared to a conventional aircraft. Unlike a conventional aircraft architecture, the PrP fuselage and lifting system form an hyperstatic structure.

Therefore, from a theoretical point of view, the structural problem should be faced as a whole. On the contrary, for conventional aircraft, one may separate the fuselage from the wing, the latter roughly considered as a "cantilever beam". This issue implies some important consequences. Firstly, one cannot separately deal with the structural analysis of the fuselage and the lifting system. Secondly, even if under some simplifying hypotheses it is possible to separate the structural analysis of the lifting system from that of the fuselage, the question about the complexity of the FE analysis still remains open. In this case, the complexity of the FE analysis should be intended in terms of model size, i.e. number of degrees of freedom (DOFs), compromise between accuracy and computational cost, choice of the scales of the analysis, choice of the design variables, etc. In this background, the need for suitable global-local (GL) modelling strategies, which may be a reasonable compromise between results accuracy and reduced computational costs, coupled to an efficient optimisation algorithm is of paramount importance.

Although [START_REF] Dababneha | A review of aircraft wing mass estimation methods[END_REF] represents a recent exhaustive overview on methods for estimating lifting systems mass, authors do not cite GL approaches. Indeed, the vast majority of studies dealing with the structural analysis of (conventional) wing-box architectures for preliminary design purposes do not take into account GL approaches [START_REF] Viglietti | Free vibration analysis of variable angle-tow composite wing structures[END_REF][START_REF] Benaouali | Multidisciplinary design optimization of aircraft wing using commercial software integration[END_REF][START_REF] Zhao | Structural design and verification of an innovative whole adaptive variable camber wing[END_REF]. This is manly due to the important computational effort required to perform scale transition between global and local models which is often not compatible with the overall time required to perform the optimisation process [START_REF] Dababneha | Influence of high fidelity structural models on the predicted mass of aircraft wing using design optimization[END_REF]. However, as far as the development of GL strategies for the structural analysis of the lifting system of standard aircraft is concerned, some works can be found in the literature.

In [START_REF] Arrieta | Optimal design of aircraft structures with damage tolerance requirements[END_REF], authors develop a GL strategy dedicated to Damage Tolerance analyses (DTAs), for conventional wings. Of course, DTAs needs a refined models of structural components in order to simulate cracks grow. This represents a first example of the need of changing structural scale in optimisation procedures. A more complete approach is presented in [START_REF] Ciampa | Global local structural optimization of transportation aircraft wings[END_REF]. The global model does not take into account stringers and spar-cap, since stiffened panels are modelled as equivalent shells. Furthermore, only continuous variables are considered, which allow authors to use gradient-based techniques for the solution search. In [START_REF] Chedrik | Two-level design optimization of aircraft structures under stress, buckling and aeroelasticity constraints[END_REF] a GL strategy for a high-speed wing is presented . The main issue is that local models are re-mapped to rectangular plane stiffened plates, loosing geometry effects on instability failures. Furthermore, several constraints are evaluated using analytical formula. In [START_REF] Chedrik | Structural design of aircraft wing based on topology and global-local optimization[END_REF], the same authors extend the GL approach for the topology optimisation; nevertheless, the aforementioned issues remain. More recently, [START_REF] Liu | Integrated global wing and local panel optimization of aircraft wing[END_REF] presents a GL framework for optimisation of curvilinear spars and ribs (SpaRibs). The problem formulation presents a huge issue on computational cost: the framework needs hundreds of software licences and hundreds of cores to find solutions in acceptable time. Finally, in [START_REF] Carrera | Global-local structural analysis of composite wings[END_REF], authors extend the GL approach for a composite material simple wing, in the framework of the Carrera Unified Formulation (CUF).

As it can be inferred from this literature survey, GL modelling strategies are quite commonly used in the structural analysis of the wing-box structure of conventional aircraft.

However, such strategies are rarely coupled to optimisation methods due to three main issues: (a) the high computational costs related to such an approach; (b) the lack of pertinent criteria to identify the zones of interest (ZOIs) within the global FE model (GFEM); (c) the lack of suitable modelling strategies to automatically build the local FE models (LFEMs) by extracting pertinent information from the GFEM and by taking into account for variable geometry and mesh.

In this scenario, a multi-scale optimisation (MSO) approach integrating an efficient GL modelling strategy [START_REF] Izzi | Multi-scale optimisation of thin-walled structures by considering a global/local modelling approach[END_REF][START_REF] Izzi | A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures[END_REF][START_REF] Panettieri | Multi-scale least-weight design of a wing-box through a global/local modeling approach[END_REF] to evaluate all the necessary structural responses (at each pertinent scale) is applied to the PrP lifting system. The least-weight design of the PrP wing-box is stated as a classical constrained non-linear programming problem (CNLPP).

The physical responses, evaluated by means of both GFEM and LFEMs, are integrated into the CNLPP formulation as optimisation constraints. The exchange between GFEM and LFEMs and the extraction of LFEMs from the GFEM are realised in a completely automatic way, without the user's intervention. The solution search for the CNLPP at hand is carried out by means of the ERASMUS (EvolutionaRy Algorithm for optimiSation of ModUlar Systems) algorithm developed by Montemurro [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF], which is a special genetic algorithm (GA) able to deal with CNLPPs characterised by a variable number of design variables. This GA has been successfully used in other real-world engineering problems [START_REF] Montemurro | A multi-scale approach for the simultaneous shape and material optimisation of sandwich panels with cellular core[END_REF][START_REF] Montemurro | A new paradigm for the optimum design of variable angle tow laminates[END_REF][START_REF] Costa | A general hybrid optimization strategy for curve fitting in the non-uniform rational basis spline framework[END_REF][START_REF] Montemurro | On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates[END_REF][START_REF] Montemurro | Least-weight composite plates with unconventional stacking sequences: Design, analysis and experiments[END_REF][START_REF] Panettieri | Blending constraints for composite laminates in polar parameters space[END_REF][START_REF] Montemurro | A general multi-scale two-level optimisation strategy for designing composite stiffened pan-els[END_REF][START_REF] Cappelli | Characterisation of composite elastic properties by means of a multi-scale two-level inverse approach[END_REF][START_REF] Audoux | A surrogate model based on non-uniform rational b-splines hypersurfaces[END_REF][START_REF] Audoux | Non-uniform rational basis spline hypersurfaces for metamodelling[END_REF][START_REF] Audoux | A metamodel based on non-uniform rational basis spline hyper-surfaces for optimisation of composite structures[END_REF].

The paper is structured as follows. In Section 2 the design problem is presented together with the main hypotheses and the determination of the most relevant loading conditions. Section 3 is dedicated to the mathematical formulation of the problem: optimisation variables are introduced and constraints discussed. Some details about the numerical strategy are also presented. Section 4 presents the adopted GL modelling strategy by putting the accent on the details for automatically identifying and extracting the ZOI. Section 5 discusses the numerical results, whilst Section 6 ends the paper with some meaningful conclusions and perspectives.

Least-weight design of a PrandtlPlane wing-box: problem description

The PrP lifting system considered in this work is the result of a preliminary aerodynamic study presented in [START_REF] Frediani | Preliminary design of the reference prandtlplane[END_REF][START_REF] Salem | Parsifal project: a breakthrough innovation in air transport[END_REF]. The PrP lifting system can be ideally split into three Due to the symmetry of the structure with respect to the aircraft longitudinal plane X B -Z B , the structural analysis is limited to the left-side part.

Geometry and material

In this study, the PrP wing-box architecture is optimised in the framework of the preliminary design phase of the aeronautic industry. During this phase, several loading conditions are considered to properly design the main components of the structure in order to respect certification specifications [START_REF] Easa | Certification specifications and acceptable means of compliance for large aeroplanes[END_REF]. Such load cases (LCs) result from the combination of basic loading conditions (BLCs) of different nature, e.g. flight loads due to symmetrical and asymmetrical manoeuvres or to gusts, ground loads, pressurisation, etc.

In this work, only a sub-set of these LCs is considered, as explained in Section 2.3.

For each wing of the PrP configuration, the external geometry is assigned in terms of the leading edge (LE) coordinates of three fundamentals sections, i.e. root, kink and tip, as well as the chord length at each of the three locations. The geometrical features affecting the out-plane shape of the wing, i.e. dihedral and twist angles, are also taken into account. All of the aforementioned quantities, which are summarised in Table 1, are known at the three sections (only two for the VW, which does not present a kink section), and linearly vary between them.

For the sake of simplicity, a polynomial interpolation of the dorsal and ventral edges of the supercritical aerofoil F15 -11, illustrated in Fig. 3 and taken from [START_REF] Ceras | Ceras-csr01: Short range reference aircraft[END_REF], is considered.

A polynomial of degree five constitutes a good approximation of the actual profile. This profile is used to describe the shape of the wing sections parallel to the free-stream direction. As for the wing-box, its position, in chord percent, is fixed apriori. According to [43], a span-wise linear behaviour of both front and rear spars, for each wing, is adopted.

The position of spars, with respect to the considered wing planform, is shown in Fig. 4 and reported in Tab. 2.

Regarding the modelling of the structural components, the following simplifications are introduced:

1. only major structural components are modelled (i.e. skin, stringers, ribs and spars); 2. the interfaces between the structural components are perfect (i.e. the perfect bonding condition applies); 3. connection zones and opening/cut-out are neglected and not considered into the preliminary design phase. For both FW and RW, ribs are parallel to the free stream direction between root and kink sections, whilst they are perpendicular, respectively, to the rear and front spar between kink and tip sections (see Figs. 5 and8). For the VW, ribs are perpendicular to both front and rear spars. However, in order to ensure a gradual change in the orientation between root-kink and kink-tip sectors, some transition ribs at intermediate angles are introduced, as illustrated in Figs. 5 and8. Inasmuch as the goal of the proposed methodology is the preliminary optimisation of the PrP wing-box architecture, a simplified rib geometry is considered, as shown in Fig. 6, with a constant thickness equal to 4 mm, as often done in the literature [START_REF] Zuddas | Sviluppo di metodi per il progetto ottimizzato di strutture alari[END_REF][START_REF] Liu | Global/local optimization of aircraft wing using parallel processing[END_REF][START_REF] Stanford | Optimal topology of aircraft rib and spar structures under aeroelastic loads[END_REF]. Stringers have a T-shaped cross-section, while spar caps have a L-shaped cross-section, as illustrated in Fig. 7. Their geometric parameters represent some of the variables of the PrP wing-box least-weight design problem and will be discussed in Section 3.1. It is noteworthy that both GFEM and LFEM, presented in Section 4, do not take into account for explicit modelling of shear tie, stringer-tie and tear-strap. In particular, in the LFEM these features are implicitly modelled by means of suitable interface elements, as discussed in Section 4.2.

The material behaviour for each structural element constituting the PrP wing-box is assumed to be linear elastic homogeneous isotropic. Two alloys have been used: an AA2024-type for shell-like components (i.e. skin, ribs and spar web) and an AA7075-type for stiffener-like components (i.e. stringers and spar caps). The elastic properties for both alloys are resumed in Tab. 3. Figure 8 gives an overview of the resulting PrP wing-box 

Design criteria

Three main families of design criteria can be identified for aeronautic structures, i.e. criteria related to: (a) static loads, (b) fatigue loads and (c) aeroelasticity phenomena.

As far as static loads are concerned, certification specifications [START_REF] Easa | Certification specifications and acceptable means of compliance for large aeroplanes[END_REF] identify two types of loading conditions: limit loads (LLs) and ultimate loads (ULs). LLs are the maximum loads expected in service that the structure must be able to support without detrimental permanent deformations. ULs are equal to limit loads multiplied by a prescribed safety factor (usually 1.5). The structure must withstand ULs without failure for at least 3 seconds. For instance, for civil aircraft, LLs in symmetrical manoeuvres occur at load Regarding fatigue loads, the design of the structure should be performed in such a way that "catastrophic failure due to fatigue, manufacturing defects, environmental deterioration, or accidental damage, must be avoided throughout the operational life of the aeroplane" [START_REF] Easa | Certification specifications and acceptable means of compliance for large aeroplanes[END_REF]. To achieve this goal, two approaches are possible. On the one hand, in the framework of the durability approach, a component should be designed to last the whole operational life. On the other hand, according to the damage tolerance approach, a potential damage in the structure should not become critical before the next planned inspection. In this work, only a fatigue design criterion in the context of the durability approach is employed in terms of an equivalent static check (more details are given in the followings).

Finally, no aeroelastic criteria are considered.

The following set of design criteria (DCs) is integrated in the formulation of the multiscale optimisation problem.

• DC1: The global stiffness of the structure must be greater than a predefined reference value.

• DC2: The average equivalent stress in skin, stringers and spars, multiplied by a safety factor F S = 1.5 (see CS 25.303 [START_REF] Easa | Certification specifications and acceptable means of compliance for large aeroplanes[END_REF]), must not exceed the yielding stress of the material under LLs.

• DC3: The average equivalent stress in skin, stringers and spars should not exceed the ultimate strength of the material when ULs are considered.

• DC4: No buckling must occur in the stiffened panels when ULs are applied (nobuckling design approach).

• DC5: No critical fatigue failure must occur when a suitable Ground-Air-Ground (GAG) load spectrum is applied.

• DC6: Only manufacturable solutions should be considered.

DC1 is expressed in terms of maximum tip displacement of the lifting system in the flight envelope. DC2 and DC3 are expressed in terms of the average equivalent stress in order to neglect the effects of local stress concentrations that could affect the solution, because of the limited degree of accuracy of the FE models used during the preliminary design phase.

Indeed, these criteria are rigorously checked (by means of refined 3D FE models) during the subsequent detailed design phase. DC4 is expressed in terms of no-buckling condition for the most critical stiffened panels identified into the lifting system by means of suitable criteria (discussed in Section 4.2). Of course, the evaluation of the first buckling load of each stiffened panel is done through LFEMs (see Section 4.2).

DC5 is expressed by means of the so-called detail fatigue rating (DFR) method [START_REF] Goranson | Fatigue issues in aircraft maintenance and repairs[END_REF]:

σ alt = 0.47 DFR (σ m0 -σ avg ) σ m0 -0.53 DFR S 5-log N w , (1) 
where DFR is a parameter depending on the geometry and it corresponds to a fatigue life of 10 5 cycles based on a reliability level of 0.95 for a particular structural component.

Under the hypothesis that the recommended DFR of a structural detail is independent of the aircraft class, in this study its value have been set to DFR = 138 MPa. σ m0 and S w are properties depending upon the considered material (σ m0 = 310 MPa and S w = 2 for an aluminium alloy [START_REF] Longchao | An extended method of estimating the fatigue performance of mechanical structures with fasteners subject to shear loads[END_REF]), whilst σ alt is the equivalent stress amplitude of the load cycle which causes failure of the structural element at N cycles, σ avg is the average stress of the load cycle. Using a target life of 75000 flights [START_REF]Federal register, aging airplane program: Widespread fatigue damage[END_REF], and the load spectrum of a commercial A320 reported in [START_REF]Statistical loads data for the airbus a-320 aircraft in commercial operations[END_REF], the cumulative damage can be evaluated by the well-known Miner formula [START_REF] Miner | Cumulative damage in fatigue[END_REF].

DC6 is expressed in terms of minimum thickness and relative geometrical proportions of components, as discussed in Section 3.1.

Load cases

Aerodynamic loads are derived from an in-house algorithm, developed at University of Pisa [START_REF] Rizzo | Optimization methods applied to the preliminary design of innovative, non conventional aircraft configurations[END_REF][START_REF] Rizzo | Application of optimisation algorithms to aircraft aerodynamics[END_REF]. This algorithm, called AEROSTATE (AERodynamic Optimisation with STAtic stability and Trim Evaluator), is based on the AVL (Athena Lattice Vortex) method [START_REF] Drela | Avl overwiew[END_REF] as a solver, and it has been used for the preliminary study for the reference configuration definition, together with medium and high fidelity corrections. For more details, the reader is addressed to [START_REF] Salem | Parsifal project: a breakthrough innovation in air transport[END_REF][START_REF] Cipolla | Preliminary transonic cfd analyses of a prandtlplane transport aircraft[END_REF][START_REF] Frediani | Conceptual design of prandtlplane civil transport aircraft[END_REF]. The resulting lift distribution is interpolated and decomposed into a set of point forces and moments (applied to the ribs of each wing) to obtain a statically-equivalent system of forces. The aerodynamic loads are evaluated for a Mach number of 0.79, altitude of 11000 m, adopting the Standard Atmosphere model, in cruise condition. These loads define the fundamental BLC used in this study which is denoted as BLC 1g . It is noteworthy that the loads resulting from AEROSTATE code are trimmed with respect to an estimate of aircraft weight and center of gravity position, performed in the algorithm (the resulting configuration is stable in the longitudinal plane from flight mechanics point of view) [START_REF] Salem | Parsifal project: a breakthrough innovation in air transport[END_REF][START_REF] Cipolla | Preliminary transonic cfd analyses of a prandtlplane transport aircraft[END_REF][START_REF] Frediani | Conceptual design of prandtlplane civil transport aircraft[END_REF].

For the sake of simplicity, five LCs have been considered. The first one (LC1) corresponds to a load factor n z = 2.5 (pull-up manoeuvre), whilst the second one (LC2) is characterised by n z = -1 (push-down manoeuvre), according to the flight envelope for civil transport aircraft. Furthermore, third (LC3) and fourth (LC4) loading conditions correspond to n z = 3.75 and n z = -1.5, respectively. The lift distribution for all the previous cases is obtained by a simple scaling of the BLC 1g which has been calculated for n z = 1. The fifth loading condition (LC5) is devoted to fatigue strength calculation and it is obtained through a suitable scaling of BLC 1g by applying the spectrum of load factors taken from [START_REF]Statistical loads data for the airbus a-320 aircraft in commercial operations[END_REF].

It is noteworthy that the proposed strategy allows the user to provide as many load conditions as needed. Moreover, the five considered LCs are commonly used in the preliminary design of civil aircraft wing-box structures at the boundary of the flight envelope [START_REF] Stanford | Optimal topology of aircraft rib and spar structures under aeroelastic loads[END_REF][START_REF] Niu | Airframe Structural Design[END_REF].

Table 4 summarises the LCs together with the relative DCs. Firstly, the design variables related to the components of the VW are not independent and are obtained as the average of their counterparts for both FW and RW. Secondly, for each wing, different design variables are affected to the components located in the dorsal and ventral region of the wing. The description of the geometric design variables is given in the followings, component by component.

Stringers and skin

For each wing, stringers and skin have different size for dorsal and ventral regions. In particular, as shown in Fig. 7, the generic stringer has a T-shaped cross-section and two variables are needed, at each location along the wing span, to fully describe its geometry, i.e.

t j b (y) , w ij b (y) , i = top, bot, j = FW, RW. (2) 
In the above equation, y is the Cartesian coordinate defined along the wing span, t i b is the thickness, whilst w ij is the flange width. Conversely, the skin needs only one geometric variable, i.e. the thickness, to be characterised:

t ij s (y) , i = top, bot, j = FW, RW. (3) 
A further variable, characterising the skin-stringers assembly, is the stringer pitch, which can be different between dorsal and ventral regions, i.e.

p ij , i = top, bot, j = FW, RW. (4) 

Spars and spars caps

As illustrated in Fig. 7, the spar geometry is relatively simple, and it is composed of a web and two spar caps with a L-shaped cross-section. In particular, the geometric parameters of the spar caps are not independent and are related to those of the stringers as follows:

w j spc (y) = w topj (y) + w botj (y) 2 , t j spc (y) = t topj b (y) + t botj b (y) 2 , j = FW, RW, (5) 
where w j spc (y) and t j spc (y) are the width and the thickness of the spar cap flanges at a given location y along the wing span, for each wing, see Fig. 7. As it can been inferred from the above relationships, each quantity is evaluated as the average of the respective counterpart of the stringers. Regarding the spar web, its thickness varies along the wingspan as follows:

t j web (y) , j = FW, RW. (6) 

Ribs

As discussed in Section 2.1, a simplified rib geometry is considered in this work, as shown in Fig. 6, with a constant thickness equal to 4 mm. Of course, the rib in-plane shape is scaled according to its position and orientation along the wing span. Since the geometric variables of the ribs are kept constant, as usually done in the literature [START_REF] Zuddas | Sviluppo di metodi per il progetto ottimizzato di strutture alari[END_REF][START_REF] Liu | Global/local optimization of aircraft wing using parallel processing[END_REF][START_REF] Stanford | Optimal topology of aircraft rib and spar structures under aeroelastic loads[END_REF] during the preliminary design phase, only the pitch between adjacent ribs (for each wing) is included among the design variables, i.e.

p j r , j = FW, RW.

Among the aforementioned design variables, those varying along the wing span abscissa can be expressed as:

ξ ij (y) = ξ ij (y root ) + ξ ij (y root )(α j -1) y tip -y root (y -y root ), i = top, bot, j = FW, RW, (8) 
with

α j =        α j s , if ξ ij (y) = t ij s (y), t j web (y), α j b if ξ ij (y) = w ij b (y), t j b (y), w j spc (y), t j spc (y), i = top, bot, j = FW, RW. (9) 
In the above equation, α j s and α j b are further design variables defining the linear scaling of the relative geometric variables along the wing span. As it can be easily inferred from Eq. ( 8), the generic geometric design variable of each component linearly varies along the wing span. Therefore, the independent design variables are the geometric parameters characterising the structural elements at the root section (for each wing) and the scaling parameters. Accordingly, all the independent design variables can be collected into the vector of design variables ξ as follows:

ξ T = α j s , α j b , t ij s (y root ), t j b (y root ), w ij b (y root ), t j web (y root ), p j r , p ij , i = top, bot, j = FW, RW. (10) 
The design variables together with their lower and upper bounds are summarised in Tab. 5 (i = top, bot, j = FW, RW). Stringers pitch 100 140 10

Objective and constraint functions

The goal of the MSO strategy is the minimisation of the total mass of the PrP wingbox architecture which represents the objective function Φ (ξ) for the problem at hand, i.e.

Φ (ξ) = 2 Ne e=1 V e (ξ) ρ e , (11) 
where V e (ξ) and ρ e are the volume and the density of the e-th element, whilst N e is the total number of elements composing the GFEM of the left wing (due to the symmetry with respect to the aircraft longitudinal plane).

Let Ω be the geometrical domain of the (semi) model of the PrP lifting system. According to Fig. 8, it can be split as: Ω = Ω FW ∪ Ω RW ∪ Ω VW , where each sub-set is related to the corresponding wing. Furthermore, as stated above, the geometrical variables of the VW depend upon those of both FW and RW, thus they are not included among the design variables. It is noteworthy that the geometric set of each wing can be decomposed as

Ω j = Ω ij s ∪ Ω ij b ∪ Ω j web ∪ Ω ij spc ∪ Ω j r , i = top, bot, j = FW, RW. (12) 
Therefore, the geometric domain of each wing is composed of external skin, stringers, spar webs, spar caps (for both dorsal and ventral regions) and ribs.

Before illustrating the problem formulation, it is useful to introduce two further subsets.

Ω c-GFEM ⊂ Ω j is a subset of Ω FW ∪ Ω RW belonging to the GFEM which identifies the checking zone, i.e. that zone where stresses get meaningful values to be considered within the DCs. Conversely, Ω c-LFEM ⊂ Ω c-GFEM is a sub-region of the GFEM checking zone used to build the LFEM representing the most critical stiffened panel (within FW and RW).

Taking into account the previous notation, DC1 is formulated as follows [START_REF] Dababneha | Influence of high fidelity structural models on the predicted mass of aircraft wing using design optimization[END_REF]:

g 1 := max LC={1,2} |δ tip-FW | b -0.15 ≤ 0, in Ω FW , ( 13 
)
where b is the nominal semi-span, δ tip-FW is the vertical displacement at the tip, conventionally measured at the FW, under either LC1 or LC2.

DC2 is formulated by imposing that the Von-Mises equivalent stress in skin, stringers and spars, within the checking zone of the GFEM Ω c-GFEM , must be lower than the yielding stress of the material. For LC1 and LC2, skin must not reach the yielding stress (considering a safety factor of 1.5), i.e.

g 2 := max LC={1,2} σ VM σ y 2024 - 1 1.5 ≤ 0, in Ω ij s ∩ Ω c-GFEM , i = top, bot, j = FW, RW. (14) 
g 3 := max LC={1,2} σ VM σ y 7075 - 1 1.5 ≤ 0, in Ω ij b ∩ Ω c-GFEM , i = top, bot, j = FW, RW, (15) 
g 4 := max LC={1,2} σ VM σ y 7075 - 1 1.5 ≤ 0, in Ω j web ∩ Ω c-GFEM , j = FW, RW, (16) 
where σ VM is the Von-Mises equivalent stress and σ y2024 and σ y7075 are the yielding stresses for AA2024 and AA7075, respectively, reported in Tab. 3.

As far as DC3 is concerned, it is formulated by imposing that the Von-Mises equivalent stress must be lower than the ultimate stress of the material for skin, stringers and spars within the checking zone of the GFEM:

g 5 := max LC={3,4} σ VM σ u 2024 -1 ≤ 0, in Ω ij s ∩ Ω c-GFEM , i = top, bot, j = FW, RW. (17) 
g 6 := max LC={3,4} σ VM σ u 7075 -1 ≤ 0, in Ω ij b ∩ Ω c-GFEM , i = top, bot, j = FW, RW, (18) 
g 7 := max LC={3,4} σ VM σ u 7075 -1 ≤ 0, in Ω j web ∩ Ω c-GFEM , j = FW, RW, (19) 
where σ u2024 and σ u7075 are the ultimate stresses for AA2024 and AA7075, respectively, as reported in Tab. 3.

Regarding DC4, it involves an eigenvalue buckling analysis performed on the most critical stiffened panel extracted from the checking zone belonging to the GFEM, i.e. it is checked on Ω c-LFEM . It is expressed through the following inequality:

g 8 := max LC={3,4} 1 - λ 1.05 ≤ 0, in Ω c-LFEM , ( 20 
)
where λ is the first buckling factor resulting from the LFEM.

DC5 is formulated as follows:

g 9 := 7.5 p i=1 n i N i - 1 4 ≤ 0, (21) 
where n i are the occurrences of the i-th out of p type of cyclic loads (defined as variations of n z and characterised by average and amplitude stresses), whilst N i is the number of cycles to get failure evaluated by means of Eq. ( 1). Since the target life is 75000 flights [START_REF]Federal register, aging airplane program: Widespread fatigue damage[END_REF], and since the load spectrum in [START_REF]Statistical loads data for the airbus a-320 aircraft in commercial operations[END_REF] contains 10066 flights, a correction factor equal to 7.5 has been added.

Finally, DC6 is expressed by means of a set of explicit inequalities on the design variables. Let t min = 1.3 mm be the minimum admissible thickness; the skin thickness at the tip section must be greater than or equal to t min :

g 10-13 := 1 - t ij s (y root )α j s t min ≤ 0, i = top, bot, j = FW, RW. (22) 
Similar relationships apply for stringers and spar webs thickness at the tip section:

g 14-15 := 1 - t j b (y root )α j b t min ≤ 0, j = FW, RW, (23) 
g 16-17 := 1 - t j web (y root )α j s t min ≤ 0, j = FW, RW. ( 24 
)
The ratio of the stringer flange width (at the root section) to the stringer pitch must be lower than 0.5, i.e.

g 18-21 := w ij b (y root ) p ij -0.5 ≤ 0, i = top, bot, j = FW, RW. ( 25 
)
The minimum width of the stringer flanges (at the tip section for both wings) must be greater than or equal to w min = 32 mm (this constraint is related to rivet joints).

g 22-25 := 1 - w ij b (y root )α j b w min ≤ 0, i = top, bot, j = FW, RW. (26) 
Finally, stringers thickness must not be too much different from the skin thickness:

g 26-29 := 0.8 - t j b (y root )α j b t ij s (y root )α j s ≤ 0, i = top, bot, j = FW, RW. ( 27 
)
Formally, the least-weight design problem of the PrP lifting system can be stated as a classical CNLPP as follows:

minimize ξ Φ(ξ), subject to g i (ξ, LC) ≤ 0, i = 1, . . . , 29, lb ≤ ξ ≤ ub, (28) 
where lb and ub are, respectively, the lower and upper bound vectors (see Table 5).

Numerical strategy

Problem ( 28) is a non-convex CNLPP. The total number of design variables is 22, whilst the number of optimisation constraints is 29. For the resolution of problem [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF] the GA ERASMUS [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF] coupled with both GFEM and LFEMs of the structure has been utilised as optimisation tool to perform the solution search, according to the flowchart illustrated in Fig. 9. The GA ERASMUS has already been successfully applied to solve different kinds of engineering problems, see for example [29, 31-37, 58, 59].

For each individual, at each iteration, the numerical tool performs global and local The GA elaborates the results provided by the GFEM and the LFEMs in order to execute the genetic operations and generate new individuals. These operations are repeated until the GA meets the user-defined convergence criterion.

The generic individual of the GA ERASMUS represents a potential solution for the problem at hand. The genotype of the individual for problem [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF] is characterised by only one chromosome composed of 22 genes, each one coding a component of the vector of design variables ξ.

The global-local finite element modelling approach

As stated above, the FE models integrated in the optimisation process are based on a GL modelling approach. In particular, two different models are created. The GFEM is used to assess the macroscopic behaviour of each wing, whilst refined LFEMs are generated to properly evaluate local responses of the most critical stiffened panels for each region of both FW and RW.

Of course, LFEMs are created only at the critical ZOIs identified during the global analysis, thus suitable criteria must be developed to accomplish this task. Both GFEM and LFEMs are fully parametric and are built using the commercial FE code ANSYS R .

The global finite element model

As stated in the previous Section, the geometry of each wing is generated by means of the executable PYTHONEVAL.EXE. In particular, the executable returns a file containing the coordinates of the points at the intersection between skins and stiffeners. These information are passed to the APDL script which builds the GFEM. An overview of the GFEM is given in Fig. 8.

Skin, ribs and spar webs are modelled with 4-node SHELL181 elements (Reissner-Mindlin kinematics), while stringers and spar caps are modelled with 2-node BEAM188 elements (Timoshenko's beam model). Beam and shell elements are connected together by node merging. To take into account for the actual position of the beam cross-section with respect to the skin, a section offset is applied to beam elements. Shear-tie components are not modelled, but their mechanical effect (the transfer of shear load from ribs to skin) is ensured by the direct connection between ribs and skin elements.

When generating the mesh of the whole wing-box, a correction must me introduced, due to the stringers runout. In the GFEM, stringer runouts occur at ribs, as illustrated in Fig. 10. Therefore, as shown in Fig. 11, there would be many 5-Lines clusters which ANSYS R is not able to fill-in with an Area, unless lines lie in the same plane. To The generation of the wing geometry through a dedicated Python routine, as discussed in Section 3.3, is mainly due to the possibility of performing such a correction. Another reason to generate the geometry externally from ANSYS R is is related to the fail of Boolean operations, which may occur for particular configurations. One can create the net representing the intersection of skin with ribs and stringers through intersection of the skin (Area component) with working planes (or other similar methods available in ANSYS R ). However, this strategy reveals, often, unstable: the intersections may not be created, depending on the internal tolerance values related to Boolean operations. As a consequence, the geometry is not correctly generated, and this jeopardises the overall optimisation run.

The element type (linear or quadratic) and the mesh size have been chosen after performing a sensitivity analysis, not reported here for the sake of brevity. An automatic check has been implemented to prevent the generation of highly distorted shell elements with a threshold aspect ratio equal to three. The mesh of shell elements is composed mainly of quadrangular elements. Of course, triangular elements may occur in the 5-node areas where stringer runouts take place.

As shown in Fig. 8, fillets connecting FW and RW to VW are not explicitly modelled;

MPC184 (multi-point constraint) elements with "rigid beam" behaviour (master-slave approach) are used to link extremal ribs nodes with the central master node, as illustrated in Fig. 12. Aerodynamic forces and moments are applied to a reference node which, for the sake of simplicity, is created at the centroid of each rib; the master node is then linked to the boundary nodes of each rib via RBE3 elements, as shown in Fig. 13. Since AEROSTATE- Furthermore, the two closest areas to the front and rear spar caps are not included for each bay; similarly, bays having less then five stringers are not considered. As an example, Fig. 15 shows the checking zone for the dorsal skin of the FW. Of course, the checking zone for stringers and spar webs is generated in a similar way. The union of all these checking Results provided by the GFEM are used for the evaluation of the objective function and all the constraint functions except that related to buckling requirement, i.e. g 8 of Eq.

(20).

The local finite element model

LFEMs are generated in order to evaluate structural phenomena which typically appear at a smaller scale with respect to the GFEM one. In this work, the LFEMs are used to assess the first buckling load of the most critical stiffened panel Ω c-LFEM , as discussed in Section 3.

The automatic generation of LFEMs is anything but trivial, and it is characterised by two issues which can be described through the following questions:

• How can one automatically identify the most critical stiffened panels, i.e. the ZOIs, within the check zone of the GFEM?

• How can one automatically generate a refined FE model (i.e. the LFEM) integrating the neighbourhood of the ZOI and able to describe both primary and secondary buckling modes? In particular, this algorithm must be position-agnostic: the ZOIs can be situated anywhere in Ω c-GFEM .

Instead of creating a LFEM for each ZOI of each wing, for every LC, in this study only one LFEM is created for the most critical ZOI and for the most critical LC. The user can define apriori the number of stringers to be included in the LFEM. For this study, this number has been set equal to five, as shown in Fig. 16. The LFEM considers the portion Linear buckling analysis is performed on the LFEM, and the resulting first positive eigenvalue λ(ξ) is used for the evaluation of constraint g 8 of Eq. ( 20).

Criteria to identify the zones of interest

To keep computational times as low as possible, specific criteria have been implemented

in the presented MSO strategy, in order to reduce the number of LFEMs. As stated beforehand, only one LFEM is created, for the most critical area in Ω c-GFEM , for the most critical LC.

To automatically identify the ZOI, an approximated buckling factor is evaluated for each skin panel delimited by two consecutive ribs and two consecutive stringers. The approximation is based on an analytical formula for simply-supported rectangular plates (having, in the considered case, dimensions p j r and p ij ), undergoing constant membrane loads per unit width N s 11 and N s 22 (positive if tensile), where axis x 1 is stringer-wise, whilst axis x 2 is normal to x 1 and to the panel medium-plane outward normal. In order to consider the presence of stringers, the normal force per unit length along x 1 axis is evaluated as:

N 11 := N s 11 + P 11 b p ij , (29) 
where P 11 b is the resultant (averaged) force of the two stringers delimiting the generic plate.

The approximation of the buckling factor, for isotropic material, reads (see [START_REF] Vinson | The behavior of structures composed of composite materials[END_REF][START_REF] Leissa | Buckling of laminated composite plates and shell panels[END_REF][START_REF] Narita | Buckling studies for simply supported symmetrically laminated rectangular plates[END_REF] for the mathematical derivation):

λ := min m,n   π 2 D m p j r 4 + n p ij 4 + 6 m n p ij p j r 2 -N 11 n p ij 2 -N 22 m p j r 2    , ( 30 
)
where D is the bending stiffness of the plate having thickness equal to t ij s +

A ij b p ij , Young's modulus and Poisson's ratio equal to the average of those reported in Tab. 3. A ij b is the averaged cross-section area of stringers delimiting the plate. Eq. ( 30) is meaningful only for plates where N 11 and/or N 22 are negative (compressive).

Finally, the most critical plate is identified by the Area ID number where min LCs (λ) , with λ ≥ 0 occurs (i.e. the minimum value of λ for each skin panel among all the considered LCs). A dedicated algorithm generates the neighbourhood of such an area: the result is the LFEM, as shown in Fig. 16.

Results

The parameters of the GA ERASMUS, used to solve problem [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF], are listed in Tab.

6; selection is performed by the roulette-wheel operator. Optimisation constraints are As shown in Tab. 7, with respect to Tab. 5, some variables lie on the upper bound of the corresponding range; in particular, the rib pitches assume the largest possible values.

Furthermore, the optimised solution is characterised by a value of parameter α j s near to -0.057 the lower bound, which means that quantities which scale span-wise with these parameters tend to be as tapered as possible.

It is noteworthy that stringers geometrical dimensions and pitches are almost similar between dorsal and ventral side of both FW and RW. This fact can be justified as follows:

for a PrP lifting system, there exist changes in bending curvature in proximity of the wing tips, as shown in Fig. 14. For a given LC, it means that there is no more a single side withstanding tension loads, whilst the other subjected to compression ones, as in conventional wings. This fact implies that both dorsal and ventral regions of each wing must be checked for buckling and static failures, and that both compressive and tension loading conditions are of paramount importance for each region of the structure. The choice of a non-rigid link between FW-VW and RW-VW may alleviate this tendency.

As far as constraints and the final wing-box mass are concerned, Tab. 8 shows that the solution lies on the boundary of static requirements g 2 , g 4 and g 9 . Buckling is not an active constraint in the optimal solution. This can be explained with the aforementioned fact that the change of curvature in the deformed wing does not give rise to a dramatic compressed zone in proximity of root sections, as expected for conventional wings.

Although a different PrP geometry, in [START_REF] Canto | The lifting system of a prandtlplane, part 1: Design and analysis of a light alloy structural solution[END_REF] authors obtain a structural mass of 22034 Kg for a MTOW of 230000 Kg (9.58 % of MTOW), for a formulation of problem [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF] similar (though simpler) to the one considered in this paper. It must be stressed that the optimised solution obtained in the present study has been searched by means of a more rigorous multi-scale approach, if compared to the problem formulation in [START_REF] Canto | The lifting system of a prandtlplane, part 1: Design and analysis of a light alloy structural solution[END_REF]. Furthermore, considering additional mass due to systems and other non-structural components, the mass of the complete lifting system, in percentage of MTOW, is close to that of a conventional aircraft. Hence, one may conclude the optimised configuration presented in this paper is likely to be aligned to this trend.

Conclusions

A multi-scale optimisation strategy for designing the PrandtlPlane lifting system architecture, by integrating a dedicated global-local modelling approach, has been presented in this work.

The problem has been formulated as a CNLPP, involving constraints of different nature. The formulation of the numerous design requirements needs the assessment of the structure response, at each pertinent scale, under various load cases. To this purpose, fully-parametric scripts have been developed to build global and local FE models in a commercial FE software. The LFEM is automatically generated only for the most critical ZOI, which is identified by means of a suitable criterion, during the GFEM post-processing phase. The solution search has been performed via the GA ERASMUS developed at the I2M laboratory in Bordeaux.

Both the problem formulation and the MSO strategy avoid the introduction of simplifying hypotheses, which may dramatically affect the design space, so preventing the possibility to find a true global optimum solution. Moreover, by employing a global-local FE modelling approach, more accurate and trustworthy results are obtained, with respect to those found by means of simplified models. Finally, the whole process is fully-automated and does not need the user intervention.

The effectiveness of the proposed MSO strategy is proven on a meaningful design case:

the structural optimisation of a metallic wing-box of a PrP aircraft. However, the strategy can be easily extended to conventional wing-boxes. The optimised configuration for the presented design case seems to be realistic: results are in agreement with the up-to-date knowledge of PrP aircraft.

As far as perspectives of this work are concerned, the formulation of the problem will be enhanced by taking into account the compliance of the fuselage, for a more realistic design. A preliminary research action is conducted in this sense and aims at developing suitable (i.e. optimised) superelements integrating the fuselage stiffness. In this case, a two-way MSO approach should be realised on both wing and fuselage of the PrandtlPlane in order to obtain a true optimal configuration. Moreover, research is ongoing in order to extend the MSO strategy to the case of structures made of composite materials, in particular considering blending constraints. Of course, in this case, the design problem formulation must integrate requirements pertinent to composite solutions, e.g. suitable failure criteria at each scale (lamina-level and constitutive phases-level), delamination criteria, manufacturing requirements, etc.
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 1 Figure 1: PrandtlPlane PARSIFAL MS1 rendering

  (semi-)wings: the front wing (FW), the rear wing (RW) and the vertical wing (VW), as shown in Fig. 2. In the same picture, the global Body reference frame T B (CG; X B , Y B , Z B ), centred at the aircraft center of mass (CG), is illustrated.
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 2 Figure 2: PrP aircraft rendering
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 3 Figure 3: Aerofoil F15-11
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 4 Figure 4: Planform of the PrP lifting system, with wing-box position
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 5 Figure 5: Ribs orientation (detail of the FW architecture)
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 6 Figure 6: Rib simplified geometry (FW root section)

  (a) Stringer and skin (b) Spar and spar caps

Figure 7 :

 7 Figure 7: Stringer-skin assembly and spar geometry.

Figure 8 :

 8 Figure 8: Overview of the PrP wing-box architecture

FE analyses to calculate

  the objective function and the optimisation constraints. In particular, ERASMUS generates an input file (INPUT ANSYS.TXT) containing the current values of the design variables, i.e. the components of ξ. Then, ERASMUS invokes the macro ANSYS.MAC, i.e. the main macro implemented in ANSYS R Parametric Design Language (APDL), which creates both GFEM and LFEMs. This macro invokes the executable file PYTHONEVAL.EXE, which is responsible for the wings geometry description.In particular, the executable file contains several Python scripts which, starting from ξ and the external frozen geometry of the wing, are able to find the 3D-coordinates of the intersection points between skins and stiffeners. Moreover, the executable decomposes the lift distribution into as many forces and moments as many are the ribs, for each of the three wings. Finally, PYTHONEVAL.EXE returns to ANSYS.MAC the updated values of variables p j r , p ij : nominal pitch values are modified to ensure equidistant and homogeneously-distributed ribs and stringers.
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 9 Figure 9: Numerical strategy
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 10 Figure 10: FW kink (particular) and stringers runout.
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 11 Figure 11: Runout 5-point face
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 12 Figure 12: Connection between FW and VW
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 13 Figure 13: Force and moment application to ribs

(a) nz = 2. 5 (b) nz = - 1 Figure 14 :

 5114 Figure 14: Deformed shapes (frontal view)
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 15 Figure 15: Reading set for FW dorsal skin
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 16 Figure 16: Typical LFEM with 5 stringers (view and dimensions)
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 17 Figure 17: LFEM particular

  . The load transfer from skin edges (where BCs are applied) to stringer edges (located at the same value of the x coordinate) makes use of RBE3 elements, assuming as master the overlying node of the skin, as clearly shown in Fig.17

  .
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 18 Figure 18: Convergence history

Table 1 :

 1 Wing geometry

		LE coordinates	Chord Twist angle
		[mm]	[mm]	[deg]
	Front Wing			
	Root	(0, 0, 2350)	7287	3.05
	Kink	(1932, 200, 4661)	5350	3.9
	Tip	(12820, 810, 17500)	1949	1.5
	Rear Wing			
	Root	(26138, 7926, 0)	5295	3.7
	Kink	(23955, 7926, 5400)	4276	2.99
	Tip	(19064, 7926, 17500) 1991	1.4
	Vertical Wing			
	Root	(13623, 1310, 18000) 1852	1.5
	Tip	(18261, 7426, 18000) 1922	1.4

Table 2 :

 2 Wing-box position (reported in chord percent, refer to the planform of Fig.4)

		Root Kink Tip
	Front Wing	11% 15% 25%
		57% 70% 75%
	Rear Wing	15% 15% 15%
		70% 70% 70%
	Vertical Wing 20%	-	20%
		80%	-	77%

Table 3 :

 3 Material properties

	Material	Young's	Poisson's	Density	Yielding	Ultimate
		modulus	ratio		stress	stress
	AA2024 72.4 [GPa]	0.33	2780 [Kgm -3 ] 290 [MPa] 434 [MPa]
	AA7075 71.0 [GPa]	0.33	2810 [Kgm		

-3 

] 450 [MPa] 500

[MPa] 

geometry.

Table 4 :

 4 Load cases definition and associated design criterion

	LC	BLC 1g factor	DC
	1	2.5	1,2,6
	2	-1	1,2,6
	3	3.75	3,4,6
	4	-1.5	3,4,6
	5	variable for each cycle,	
		taken from [50]	

5 3. Mathematical formulation of the optimisation problem 3.1. Design variables Only geometrical design variables have been considered in this study. They can be grouped with respect to the component they are referred to. Moreover, these variables are related to the components of each wing, i.e. FW, RW and VW.

Table 5 :

 5 Lower and upper bounds of the design variables

	Variable	Description	Lower bound	Upper bound	Sampling
	α j s [-]	Scaling param-	0.1	1	0.01
		eter			
	α j b [-]	Scaling param-	0.1	1	0.01
		eter			
	t ij s (y root ) [mm]	Skin thickness	1.3	15	0.1
		(root)			
	t j b (y root ) [mm]	Stringers thick-	1.3	15	0.1
		ness (root)			
	w ij b (y root ) [mm] Stringers flange	32	70	1
		length (root)			
	t j web (y root )	Spar web thick-	1.3	15	0.1
	[mm]	ness (root)			
	p j r [mm]	Ribs pitch	300	600	50
	p ij [mm]				

Table 6 :

 6 GA ERASMUS parameters

	Parameter	Description	Value
	n pop	N. of populations	1
	n ind	N. of individuals	220
	n max gen	Max. n. of generations	100
	p cross	Crossover probability	0.85
	p mut	Mutation probability	1/n ind
	handled via Automatic Dynamic Penalisation (ADP) method [63]. The whole optimisa-
	tion process requires a computational time of approximately 11 days when four cores of
	a machine with an Intel Xeon E5-2697v2 processor (2.7-3.5 GHz) are dedicated to the
	ANSYS R solver.		
	The history of the best solution, for each generation, is reported in Fig. 18. As it can
	been inferred from this figure, the best individual (and, thus, all the individuals within
	the two populations) is infeasible because at least one constraint is not satisfied. However,
	thanks to the ADP method, the GA is able to find a feasible solution after only 4 iterations
	and to converge towards a pseudo-optimal solution after 80 generations. The objective
	function value does not substantially decrease after 80 iterations. The values of design
	variables for the optimised wing-box configuration are reported in Tab. 7, whilst objective
	function and most significant constraints values are resumed in Tab. 8.

Table 7 :

 7 Optimisation variables values for the optimal individual

	Variable		FW			RW	
		top		bot top		bot
	α j s [-]		0.12			0.21	
	α j b [-] s (y root ) [mm] 13.1 t ij	0.66	12.4 11.1	0.72	7.9
	t j b (y root ) [mm] w ij b (y root ) [mm] t j web (y root ) [mm] p j r [mm]	59	6.5 10.9 600	68	45	9.2 14.4 600	50
	p ij [mm]	155		155 170		160

Table 8 :

 8 Objective function and constraints values for the optimal individual

	Function	Value
	Φ Kg	11920
	g 1	-0.303
	g 2	-0.001
	g 3	-0.247
	g 4	-0.034
	g 5	-0.331
	g 6	-0.359
	g 7	-0.452
	g 8	-0.291
	g 9	
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