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Abstract

Automatic speaker verification (ASV) is one of the most natural and convenient means of biometric person recognition. Unfor-
tunately, just like all other biometric systems, ASV is vulnerable to spoofing, also referred to as “presentation attacks.” These
vulnerabilities are generally unacceptable and call for spoofing countermeasures or “presentation attack detection” systems. In
addition to impersonation, ASV systems are vulnerable to replay, speech synthesis, and voice conversion attacks.

The ASVspoof challenge initiative was created to foster research on anti-spoofing and to provide common platforms for the
assessment and comparison of spoofing countermeasures. The first edition, ASVspoof 2015, focused upon the study of counter-
measures for detecting of text-to-speech synthesis (TTS) and voice conversion (VC) attacks. The second edition, ASVspoof 2017,
focused instead upon replay spoofing attacks and countermeasures. The ASVspoof 2019 edition is the first to consider all three
spoofing attack types within a single challenge. While they originate from the same source database and same underlying protocol,
they are explored in two specific use case scenarios. Spoofing attacks within a logical access (LA) scenario are generated with
the latest speech synthesis and voice conversion technologies, including state-of-the-art neural acoustic and waveform model tech-
niques. Replay spoofing attacks within a physical access (PA) scenario are generated through carefully controlled simulations that
support much more revealing analysis than possible previously. Also new to the 2019 edition is the use of the tandem detection cost
function metric, which reflects the impact of spoofing and countermeasures on the reliability of a fixed ASV system.

This paper describes the database design, protocol, spoofing attack implementations, and baseline ASV and countermeasure
results. It also describes a human assessment on spoofed data in logical access. It was demonstrated that the spoofing data in the
ASVspoof 2019 database have varied degrees of perceived quality and similarity to the target speakers, including spoofed data that
cannot be differentiated from bona fide utterances even by human subjects. It is expected that the ASVspoof 2019 database, with
its varied coverage of different types of spoofing data, could further foster research on anti-spoofing.

Keywords: Automatic speaker verification, countermeasure, anti-spoofing, presentation attack, presentation attack detection,
Text-to-speech synthesis, Voice conversion, Replay, ASVspoof challenge, biometrics, media forensics

Preprint submitted to CSL September 22, 2020



1. Introduction

Automatic speaker verification (ASV) is one of the most con-
venient and natural means of biometric person recognition. It
is perhaps for this reason that the technology is now deployed
across an ever-growing array of diverse applications and ser-
vices, e.g., mobile telephones, smart speakers, and call centers.

While recent times have seen great strides in the performance
of ASV systems, it is now accepted that the technology is vul-
nerable to manipulation through spoofing, also referred to as
presentation attacks. There are at least four major classes of
spoofing attacks: impersonation, replay, speech synthesis, and
voice conversion [1]. Impersonation attacks involve one person
altering their voice so that it resembles that of another person
(the target speaker). The vulnerability of ASV systems to im-
personation remains somewhat uncertain.

Replay attacks are the most straightforward to implement;
they can be performed through the recording of a bona fide ac-
cess attempt, presumably surreptitiously, followed by its pre-
sentation to the ASV system. Given that they are simply record-
ings of bona fide speech, replay attacks can be highly effective
in deceiving ASV systems. Furthermore, both recording and
presentation can be performed using inexpensive, consumer-
grade devices, meaning that replay attacks can be mounted with
ease by the lay person.

This is generally not the case for the two other classes of at-
tacks. The mounting of speech synthesis and voice conversion
attacks usually calls for specific know-how and/or a familiarity

∗Corresponding authors
∗∗Equal contribution

Email addresses: wangxin@nii.ac.jp (Xin Wang),
jyamagis@nii.ac.jp (Junichi Yamagishi),
Massimiliano.Todisco@eurecom.fr (Massimiliano Todisco),
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with sophisticated speech technology. They are hence generally
beyond the capabilities of the lay person. Speech synthesis sys-
tems can be used to generate entirely artificial speech signals,
whereas voice conversion systems operate on natural speech.
With sufficient training data, both speech synthesis and voice
conversion technologies can produce high-quality speech sig-
nals that mimic the speech of a specific target speaker and are
also highly effective in manipulating ASV systems.

The threat of spoofing to biometric technology has been
known for some decades [2]. The awareness of this threat
spawned research on anti-spoofing, namely techniques to dis-
tinguish between bona fide and spoofed biometric data. So-
lutions are referred to as spoofing countermeasures or presen-
tation attack detection systems [3]. While there is a body of
earlier work, efforts to develop anti-spoofing solutions for ASV
have been spearheaded recently through the community-driven
ASVspoof initiative1. Born in 2013 [4], ASVspoof sought to
collect and distribute common datasets of bona fide and spoofed
speech signals and to establish common platforms for the com-
parative evaluation of different spoofing countermeasure solu-
tions. The result is a series of bi-annual anti-spoofing chal-
lenges whereby participants working with a common database
produce scores that reflect the likelihood that speech recordings
are bona fide (or spoofed) speech. Participant scores are then
compared by the challenge organizers with ground-truth labels
in order to estimate and compare the performance of each anti-
spoofing solution.

The first ASVspoof challenge held in 2015 focused on the
development of countermeasures for the detection of speech
synthesis and voice conversion spoofing attacks [5]. The sec-
ond edition, held in 2017, focused instead on the develop-
ment of countermeasures for the detection of replay spoof-
ing attacks [6]. While ASVspoof 2015 and 2017 showed that
there is great potential in distinguishing between bona fide and
spoofed speech, the threat of spoofing is very much a mov-
ing target. Speech synthesis and voice conversion technologies
have evolved considerably over the last four years, whereas a
much more controlled setup is needed to study more thoroughly
the threat of replay attacks and the limits of replay spoofing
countermeasures. It is critical that progress on anti-spoofing
keeps pace with developments in technologies and techniques
that can be used to deceive ASV systems.

The ASVspoof 2019 challenge, accompanied by a new
dataset, brings a number of advances compared with previous
editions [7, 8]. It is the first to consider all three spoofing attack
types within a single challenge: speech synthesis, voice con-
version, and replay. While they originate from the same source
database and same underlying protocol, they are explored in
two specific scenarios illustrated in Figure 1, namely logical
and physical access, with distinct datasets for each scenario.

The ASVspoof 2019 database of bona fide and spoofed
speech signals includes synthetic speech and converted voice
signals generated with the very latest, state-of-the-art technolo-
gies, including Tacotron2 [9] and WaveNet [10]. Under well

1https://www.asvspoof.org
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Figure 1: LA access and PA access adopted for ASVspoof 2019

controlled conditions, the best of these algorithms produces
spoofed speech that is perceptually indistinguishable from bona
fide speech. ASVspoof 2019 thus aims to determine whether
advances in speech synthesis and voice conversion technol-
ogy pose a greater threat to the reliability of ASV systems or
whether, instead, they can be detected reliably with existing
countermeasures.

Also new to the 2019 database is carefully controlled simula-
tions of replayed speech that support much more revealing anal-
yses than possible previously. The resulting database is suited
not only to the study of ASV replay spoofing and countermea-
sures but also the study of fake audio detection in the case of,
e.g. smart home devices.

To reflect as best as possible the practical scenario in which
the nature of spoofing attacks is never known in advance, a de-
tailed description of the ASVspoof 2019 database was deliber-
ately withheld from participants during the evaluation period.
Now that the evaluation period is complete, a detailed descrip-
tion can finally be released into the public domain. This paper
describes (i) the database design policy, (ii) the evaluation pro-
tocol for both logical and physical access scenarios, (iii) the
techniques and algorithms used in creating the spoofing attacks
in each scenario, (iv) their impact on the reliability of ASV sys-
tems, and (v) two baseline spoofing countermeasures and their
performance for each scenario. Also new in this paper are the
results of crowd-sourced human listening tests of spoofing de-
tection. The ASVspoof 2019 database is publicly available at
https://doi.org/10.7488/ds/2555.

2. Database partitions and protocols

In contrast to the ASVspoof 2015 and 2017 databases, the
2019 edition focuses on all three major forms of spoofing at-
tack, namely replay, speech synthesis, and voice conversion.
To support such a broader assessment, the ASVspoof 2019
database is designed to reflect two different use case scenar-
ios, namely logical and physical access control. Also different
is the strategy of assessing spoofing and countermeasure per-
formance on ASV, instead of standalone countermeasure per-
formance. All of these differences demand an entirely new
database design policy. It is described here. Training, devel-
opment, and evaluation partitions are described first. Protocols

for the generation of spoofing attacks in each scenario are de-
scribed next. Described last are ASV protocols for assessment
with and without spoofing attacks and countermeasures.

2.1. Database partitions

The ASVspoof 2019 database is based upon the Voice
Cloning Toolkit (VCTK) corpus [11], a multi-speaker English
speech database recorded in a hemi-anechoic chamber at a sam-
pling rate of 96 kHz. It was created using utterances from 107
speakers (46 male, 61 female) that are downsampled to 16 kHz
at 16 bits-per-sample. The set of 107 speakers is partitioned into
three speaker-disjoint sets for training, development, and eval-
uation. This partitioning scheme is illustrated in the top panel
of Figure 2. The training, development, and evaluation sets in-
clude 20 training speakers, 10 target and 10 non-target speakers,
and 48 target and 19 non-target speakers, respectively.

Instead of the equal error rate (EER) metric, as used for the
2015 and 2019 editions, ASVspoof 2019 adopted a new ASV-
centric metric referred to as the tandem detection cost func-
tion (t-DCF) [12]. Use of the t-DCF means that the ASVspoof
2019 database is designed not for the standalone assessment of
spoofing countermeasures (CMs) but their impact on the reli-
ability of an ASV system when subjected to spoofing attacks.
The database partitioning must then support experimentation
and evaluation for both ASV and CMs. This implies the need
for a non-overlapping subset of speaker enrollment data that
are needed for both development and evaluation partitions. Af-
ter the pruning of low-quality recordings, and while keeping to
the same number of enrollment utterances for all speakers of
the same gender, there are 11 enrollment utterances for female
speakers and 19 utterances for male speakers for both devel-
opment and evaluation partitions. The enrollment data for the
development and evaluation speakers is shown in Figure 2 with
tag #1 and #2, respectively.

2.2. Spoofing protocols

Two different spoofing protocols are then defined according
to one of two use case scenarios: logical and physical access
control. These scenarios are illustrated in Figure 1 and are de-
fined in the following sections. Specific details for each sce-
nario protocol follow thereafter.
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Figure 2: Partitions and protocols of ASVspoof 2019 database. Top part shows divisions of training, development, and evaluation sets common to logical access
and physical access conditions and numbers of speakers included in each set. Middle part shows database partitions for logical access condition, and bottom part
shows those for physical access condition.

2.2.1. Scenario definitions

Logical access (LA) control implies a scenario in which a
remote user seeks access to a system or service protected by
ASV. It is assumed in these scenarios that the microphone is
not controlled by the authentication system designer and is in-
stead chosen by the user. An example is a telephone banking
service to which remote customers may connect using either
their fixed/landline or mobile/cellular telephone. Physical ac-
cess (PA) control implies the use of ASV to protect access to a
sensitive or secure physical space or facility. In this scenario,
the microphone is controlled by the authentication system de-
signer, not by the user. An example is the control of access to a
goods warehouse using a door-mounted ASV system.

In the LA scenario, it is assumed that spoofing attacks are
presented to the ASV system in a worst-case, post-sensor sce-
nario. Attacks then take the form of synthetic speech or con-
verted voice, which are presented to the ASV system without
convolutive acoustic propagation or microphone effects. In the
PA scenario, both bona fide and spoofed speech are assumed
to propagate through a physical space prior to acquisition by a
fixed system microphone. In this case, the worst case scenario

is assumed to involve replay attacks that involve the presenta-
tion of previously recorded bona fide access attempts performed
in the same physical space.

2.2.2. Logical access
The construction of the LA database is illustrated in the mid-

dle panel of Figure 2. Unlike the usual ASV databases, it in-
cludes data to be used by attacker and defender sides. The
application of speech synthesis is referred to as text-to-speech
(TTS) and voice conversion (VC) algorithms from here on. TTS
algorithms convert text input to speech, and VC algorithms con-
duct transformations of input source speech to target speech.
These two algorithms can also be combined.

Defender side. ASV/CM training data comprises 2,580 bona
fide utterances (#5) and 22,800 spoofed utterances (#7) gener-
ated by using four TTS and two VC algorithms. The ASV/CM
development partition contains 1,484 bona fide target utterances
(#6.1), 1,064 bona fide non-target utterances (#6.2), and 22,296
spoofed utterances (#8) generated with the same TTS and VC
algorithms.
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The setup for the ASV/CM evaluation set is similar to that
for the ASV/CM development set. There are 5,370 bona-fide
target utterances (#9.1) and 1,985 bona fide non-target utter-
ances (#9.2). Spoofed data comprises 63,828 utterances (#10)
generated by using 7 TTS and 6 VC spoofing algorithms.

As in previous editions of ASVspoof, there are known and
unknown spoofing attacks. Known attacks are those used for
generating spoofing TTS/VC attacks in the ASV/CM training
and development partitions. The ASV/CM evaluation partition
is created with a mix of 2 known attacks, algorithms also used
for generating attacks in the ASV/CM training and develop-
ment partitions, and 11 unknown attacks. While the unknown
attacks may use similar techniques to the known attacks, the
full algorithms are different. Further details on all spoofing al-
gorithms used in the generation of all spoofing attacks are given
in Section 3

Attacker side. For building TTS and VC systems that can gen-
erate speech similar to a target speaker’s characteristics or that
can increase the false acceptance ratios of ASV systems, the
TTS and VC systems also require an amount of training data.
This data is referred to as TTS/VC training data so as to avoid
confusion with the training partition for ASV and CM.

The portion with tag #3 in Figure 2 are used to train TTS/VC
systems that generate spoofed data in the ASV/CM training and
development partitions (#7 and #8). For VC systems that re-
quire separate source and target training data, the target speaker
partitions (#3.1 and #3.2) and non-target partition (#3.3) are
used as the VC target and source data, respectively. The TTS
systems use all the utterances in #3 for training.

The TTS/VC training data with tag #4 are for TTS/VC sys-
tems that synthesize the spoofed data in the ASV/CM evalua-
tion partition (#10). The sub portions, #4.1 and #4.2, are used
as VC target and source data for the VC systems, respectively.
The TTS systems use all the utterances in #4 for training. Note
that the TTS/VC training data in #3 and #4 consist of 200 ut-
terances per speaker, and these utterances are disjoint from all
utterances used for other purposes.

Note that the utterances of non-target speakers were con-
verted into the spoofed utterances in a gender-dependent man-
ner for the VC systems. Text inputs randomly sampled from a
text corpus in the same domain as the VCTK corpus were used
for generating spoofed data from the TTS system.

2.2.3. Physical access
The construction of the PA database is illustrated in the bot-

tom panel of Figure 2. Its design respects the same high-level
partitioning scheme. There are, however, some differences.
First, since replay attacks stem only from the recording and
presentation of bona fide access attempts, there is no need for
replay training data. Next, replay spoofing attacks are gener-
ated according to different replay configurations, rather than
with different spoofing algorithms. A replay configuration is
defined by an acoustic environment (e.g. room dimensions) and
an attack type (e.g. the physical placement of the microphones
and loudspeaker in the acoustic environment). The top row in
the lower panel in Figure 2 illustrates the protocol for a single

acoustic environment for replay spoofing attacks generated ac-
cording to one of nine different attack types. The figures in the
bottom row correspond to the full protocol comprising replay
attacks in 27 different acoustic environments.

The training partition contains bona fide and replayed
speech. Bona fide data comprises 200 utterances collected from
the 20 training speakers (#11). In a single acoustic environ-
ment, replay data is generated according to the 9 different at-
tack types, thereby giving 1,800 replay utterances (#13). The
same procedure is applied to the development partition, but only
for the 10 target speakers (#12), thereby giving 900 replay ut-
terances (#14). The process is then repeated for the full set
of acoustic environments, thereby giving the numbers of utter-
ances illustrated at the bottom of Figure 2. There are 48,600 and
24,300 replay utterances for the training (#19) and development
(#20) partitions, respectively. The evaluation set is generated
in much the same way, only with 48 target and 19 non-target
speakers. These numbers give 4,320 replay utterances for 9 at-
tack types within a single acoustic environment (#16). For the
full set of 27 acoustic environments, there are then 116,640 re-
play utterances (#22).

The notion of known and unknown attacks is slightly differ-
ent in the PA scenario. Even if all replay attacks in training,
development, and evaluation sets are generated according to a
fixed set of replay categories (e.g. different sized rooms – see
Section 4 for precise details), the impulse responses in each set
are different. In this sense, all replay utterances contained in
the evaluation set correspond to unknown attacks.

2.3. CM protocols

Protocols for the CM experimentation are now straightfor-
ward. They include a combination of bona fide and spoofed
utterances. In the context of CM experimentation, both target
data and non-target utterances are considered as bona fide.

For the LA scenario, there are 2,580 bona fide utterances (#5)
and 22,800 spoofed utterances (#7) in the training set, 2,548
bona fide (#6) and 22,296 spoofed utterances (#8) in the de-
velopment set, and 7,355 bona fide (#9) and 63,882 spoofed
utterances (#10) in the evaluation set. Equivalent numbers for
the PA scenario are illustrated in at the bottom of Figure 2.

2.4. ASV protocols

ASV protocols involve some combination of (i) bona fide
target trials, (ii) non-target (zero-effort impostor) trials, and
(iii) spoofed trials. ASV protocols are specified for the develop-
ment and evaluation partitions only. In both cases, and for both
LA and PA scenarios, there are protocols for assessing ASV
performance in the traditional sense (target and non-target tri-
als) and for the combined assessment of ASV and CMs (target,
non-target and spoofed trials).

The numbers of trials for each partition and scenario are also
illustrated in Figure 2. For the LA scenario development set,
there are 1,484 target utterances (#6.1) and 1,064 non-target
utterances (#6.2) for traditional ASV assessment. For com-
bined ASV and CM assessment, there are an additional 22,296
spoofed utterances (#8). For the evaluation set, there are 5,370
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Table 1: Summary of LA spoofing systems. * indicates neural networks. For abbreviations in this table, please refer to Section 3. Note that A04 and A16 use same
waveform concatenation TTS algorithm, and A06 and A19 use same VC algorithm.

Input Input processor Duration Conversion Speaker represent. Outputs Waveform generator Post process
A01 Text NLP HMM AR RNN* VAE* MCC, F0 WaveNet*
A02 Text NLP HMM AR RNN* VAE* MCC, F0, BAP WORLD
A03 Text NLP FF* FF* One hot embed. MCC, F0, BAP WORLD
A04 Text NLP - CART - MFCC, F0 Waveform concat.
A05 Speech (human) WORLD - VAE* One hot embed. MCC, F0, AP WORLD
A06 Speech (human) LPCC/MFCC - GMM-UBM - LPC Spectral filtering + OLA
A07 Text NLP RNN* RNN* One hot embed. MCC, F0, BA WORLD GAN*
A08 Text NLP HMM AR RNN* One hot embed. MCC, F0 Neural source-filter*
A09 Text NLP RNN* RNN* One hot embed. MCC, F0 Vocaine
A10 Text CNN+bi-RNN* Attention* AR RNN + CNN* d-vector (RNN)* Mel-spectrograms WaveRNN*
A11 Text CNN+bi-RNN* Attention* AR RNN + CNN* d-vector (RNN)* Mel-spectrograms Griffin-Lim [13]
A12 Text NLP RNN* RNN* One hot embed. F0+linguistic features WaveNet*
A13 Speech (TTS) WORLD DTW Moment matching* - MCC Waveform filtering
A14 Speech (TTS) ASR* - RNN* - MCC, F0, BAP STRAIGHT
A15 Speech (TTS) ASR* - RNN* - MCC, F0 WaveNet*
A16 Text NLP - CART - MFCC, F0 Waveform concat.
A17 Speech (human) WORLD - VAE* One hot embed. MCC, F0 Waveform filtering
A18 Speech (human) MFCC/i-vector - Linear PLDA MFCC MFCC vocoder
A19 Speech (human) LPCC/MFCC - GMM-UBM - LPC Spectral filtering + OLA

target utterances (#9.1), 1,985 non-target utterances (#9.2), and
63,882 spoofed utterances (#10). Once again, equivalent num-
bers for the PA scenario are illustrated at the bottom of Figure 2.

3. Details of LA subset

3.1. Spoofing algorithms for LA subset

The LA subset of the new ASVspoof 2019 database is the
result of more than six months of intensive work, including
contributions from academic and industrial research laborato-
ries. Currently, there are so many different types of TTS and
VC systems in the research field and market, and new methods
are proposed almost every week at ArXiv. Therefore, it is diffi-
cult to define either the baseline or major methods for TTS and
VC. Nevertheless, we considered various types of approaches to
the extent that we could, and 17 totally different types of TTS
and VC systems were constructed using the TTS/VC training
data (#3 and #4 in Figure 2)2. Six of them are designated as
known spoofing systems, with the other 11 being designated as
unknown spoofing systems. Table 1 summarizes the spoofing
systems, which are fundamentally diverse. The known spoofing
systems (A01 to A06) include two VC and four TTS systems.
Then A07 to A19 (apart from A16 and A19) are the eleven un-
known spoofing systems, and A16 and A19 are the known ref-
erence systems using the same algorithms as A04 and A063.
The details of each spoofing system are described below.

2Audio samples are available at https://nii-yamagishilab.github.
io/samples-xin/main-asvspoof2019.

3Note that A04/A16 also serves as an anchor to our ASVspoof 2015
database. The spoofing method for A04/A16 was used for the ASVspoof 2015
database and was notated S10 in the previous database. S10 was found to be the
most difficult spoofing attack. Since the protocols for ASVspoof 2015 and 2019
are totally different, we cannot directly compare results for the two databases,
but A04/A16 would imply how CM research advanced rapidly.

A01. A neural-network (NN)-based TTS system. This system
follows the standard NN-based statistical parametric speech
synthesis (SPSS) framework [14] and uses a powerful neural
waveform generator called WaveNet [10]. Attackers may use
A01 to attack ASV/CM systems because the WaveNet vocoder
can produce high-quality speech that fools CMs.

A01 uses the Festival lite (Flite) [15] as the front-end to
convert text into a sequence of linguistic features such as
phone and pitch-accent labels. It then uses a hidden Markov
model (HMM)-based duration model to predict the duration of
context-dependent phones. Then, an NN-based acoustic model
predicts a sequence of acoustic features, including the Mel-
cepstral coefficients (MCCs) of 60 dimensions, interpolated F0,
and voicing flags. Finally, the WaveNet vocoder is used to con-
vert the MCCs and F0 into a waveform. While the front-end
is off-the-shelf, the duration model, the acoustic model, and
the WaveNet vocoder were trained using the data for spoofing
systems (#1 in Figure 2). The acoustic model is a combina-
tion of a shallow autoregressive (SAR) mixture density net-
work [16] and variational auto-encoder (VAE) [17]. The in-
put linguistic features are processed by two feedforward and
two bi-directional long short-term memory (LSTM) layers [18]
into 256-dimensional hidden feature vectors. The VAE encoder
takes both the acoustic and hidden linguistic features as input
and produces an utterance-level latent vector with 64 dimen-
sions. The decoder is the SAR, which reconstructs acoustic
features given the encoder’s output and the hidden linguistic
features. The WaveNet vocoder followed the recipe in [19]
but uses a Gaussian distribution to directly model continuous-
valued raw waveforms.

A02. An NN-based TTS system similar to A01 except that the
WORLD vocoder [20] rather than WaveNet is used to generate
waveforms. Attackers may use A02 rather than A01 if they can-
not collect sufficient data to train the WaveNet vocoder. Note
that the acoustic model in A02 predicts 25 dimensional band-
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aperiodicity coefficients (BAPs), in addition to the MCCs and
F0s, as the input to the WORLD vocoder.

A03. An NN-based TTS system similar to A02. Attackers may
use A03 because it can be easily built from scratch by using
recipes in an open-source TTS toolkit called Merlin [21].

A03 used Festival as the front-end to convert input text into a
linguistic specification. This linguistic specification is format-
ted to match HTS style labels [22] with state-level alignment.
These labels are converted to binary vectors based on HTS-style
questions [21]. One-hot-vector-based speaker code is added to
the labels. 60-dimensional MCCs, 25-dimensional BAPs and
logarithmic F0 were extracted at 5 ms frame intervals using the
WORLD vocoder [20]. Using the acoustic features and lin-
guistic vectors, a duration model and an acoustic model were
trained. Both models comprise 6 feed-forward hidden layers;
each hidden layer has 1,024 hyperbolic tangent units. Note that
the predictions of the duration model are used together with the
linguistic vectors to train the acoustic model.

A04. A waveform concatenation TTS system based on the
MaryTTS platform [23]4 using the voicebuilding plugin (v5.4)
[24]. Attackers may use A04 because the waveform concatena-
tion method preserves the short-term acoustic features of nat-
ural speech, and the waveforms generated from A04 may be
difficult to detect for CMs.

The waveform generation in A04 is performed using standard
diphone unit selection with target and join cost coefficients. The
target cost includes phonological and prosodic features of each
unit and its context, while the join cost is calculated from the
mel-frequency cepstral coefficients (MFCCs), log F0, and log
F0 delta at the unit boundaries. During concatenation, con-
tiguous diphones are assembled into larger, non-uniform units,
while non-contiguous diphones are joined by linearly interpo-
lating one pitch period. Prosodic target features are predicted
using classification and regression trees (CARTs) for F0 and
duration, while grapheme-to-phoneme (G2P) conversion uses
finite-state transducers (FSTs) created from a pronunciation
dictionary adapted from CMUdict.

A05. An NN-based VC system that uses a VAE [25] as the VC
conversion model. Attackers may use A05 because it can be
trained without using parallel speech data and is more straight-
forward to build than conventional VC systems.

The VAE makes it possible to achieve non-parallel VC based
on an unsupervised factorization of speech spectral features via
autoencoding. Conversion was carried out by encoding the
input spectral features into speaker independent latent vectors
and decoding them into converted spectral features with the de-
sired target speaker representation. Specifically, a cross-domain
VAE [26] was trained to decode and encode mel-cepstral co-
efficients (MCCs) and spectral envelopes. Each speaker has
a 128-dimensional trainable speaker embedding vector that

4https://github.com/marytts/

is randomly initialized and optimized jointly with the cross-
domain VAE to minimize reconstruction loss. During conver-
sion, the MCCs are converted by the trained VAE given the tar-
get speaker vector. The converted MCCs, linearly transformed
F0, and unmodified aperiodicity are fed to the WORLD vocoder
for waveform generation.

A06. A transfer-function-based VC system [27]. Attackers
may use A06 if they intend to use a VC technique specifically
designed to increase the impostor acceptance rate of ASV.

The principle behind A06 is to analyze the input voice sig-
nal following a source-filter model and replace the filters of the
input signal by their corresponding of the targeted speaker. Af-
ter the modification of the filters, the signal is re-synthesized
using the original residual signals and the new filters through a
classical overlap-add technique.

Two parallel sets of acoustic features are used: MFCC fea-
tures with mean and variance normalization and the linear pre-
diction cepstral coefficient (LPCC) features which are used to
filter the residuals to obtain speech signals. The first step is
to train an UBM-GMM with 2048 Gaussians on the LPCC-
MFCC feature. Given the trained UBM-GMM, we can esti-
mate for each frame (20ms with shift of 10ms) the posteriori
probability of a Gaussian in the UBM-GMM. For each target
speaker tar and for each Gaussian g in the GMM-UBM, we es-
timate the mean of all frames belonging to that Gaussian and to
that speaker in the LPCC domain, which is denoted as mtar

g,lpcc.
For each frame x of the input waveform from a source speaker,
we replace its LPCC coefficients by: ΣM

g=1 p(g|x)mtar
g,lpcc, where

p(g|x) is the posteriori probability of Gaussian g given the frame
x and is estimated using the LPCC-MFCC UBM-GMM.

Note that mtar
g,lpcc is estimated if and only if there is enough

data belonging to speaker tar and to Gaussian g. Otherwise, it
is not used for the transformation. The conversion is conducted
only on speech frames detected by an voice activity detection
(VAD) module. Non speech frames are not changed.

A07. An NN-based TTS system. Attackers may use A07 if
they intend to leverage the GAN-based post-filter, with the hope
that the GAP filter may mask differences between the generated
speech waveform and natural speech waveform.

A07 generates speech in two steps. The first step, which
is similar to A03, converts the input text into a synthetic
waveform using the pipeline of a text analyzer, an acous-
tic model, a duration model, and the WORLD vector. The
acoustic feature vector generated by the acoustic model con-
tains the 60-dimensional Mel-cepstrum, 1-dimensional F0,
5-dimensional aperiodic component, and 1-dimensional un-
voiced/voiced (U/V) information. The acoustic model is an NN
with three 256-dimensional LSTM layers and a linear output
layer. The duration model is an NN with a LSTM layer of 64
dimensions and a linear output layer. The alignment for model
training was extracted using the Merlin toolkit [21].

After the waveform is synthesized using the WORLD
vocoder, WaveCycleGAN2 [28], a time-domain neural postfil-
ter, is used to transform the output waveform of the WORLD
vocoder into a natural-sounding waveform. In other words,
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both the input and output of WaveCycleGAN2 are raw wave-
forms. WaveCycleGAN2 was trained using the GAN criterion
with four discriminators (waveform, Mel-spectrum, MCC, and
phase spectrum discriminators). The generator consists of a lin-
ear projection layer followed by six stacked ResBlock with 64
units and a linear projection output layer.

A08. An NN-based TTS system similar to A01. However, A08
uses a neural-source-filter waveform model [29], which is much
faster than WaveNet. Attackers may consider this system if
they want to generate fake speech at a high speed. Another
difference from A01 is that A08 replaces the VAE with one-hot
speaker vectors.

A09. An NN-based SPSS TTS system [30]. Attackers may try
A09 because it is designed for real-time TTS on mobile devices
to reduce computation load and disk footprint.

A09 uses two LSTM-based acoustic models and a vocoder
called Vocaine [31]. The first LSTM model is a duration model
that takes as input a vector describing the linguistic character-
istics for each phoneme in a similar way to the above Merlin
toolkit and predicts the number of acoustic frames required for
that phone. Given the predicted number of acoustic frames and
a very similar linguistic input, the second LSTM model predicts
the acoustic features that are used by Vocaine to generate wave-
forms. The primary differences between this TTS system and
that described in [30] is that this TTS system uses wider LSTM
layers and one-hot speaker for the two LSTM models. In addi-
tion to VCTK speech data, proprietary voice data was mixed in
order to stabilize and generalize multi-speaker modeling.

A10. An end-to-end NN-based TTS system [32] that applies
transfer learning from speaker verification to a neural TTS sys-
tem called Tacotron 2 [9]. Attackers may implement A10 since
it is reported that synthetic speech produced by this system has
high naturalness and good similarity to target speakers percep-
tually.

The base system, Tacotron 2, is composed of two com-
ponents: a sequence-to-sequence model that generates Mel-
spectrograms on the basis of the input text or phoneme se-
quences and a neural vocoder for converting Mel-spectrograms
to a waveform. On top of that, a speaker encoder separately
trained for a speaker verification task [33] is used for encoding
a few seconds of audio clips for a target speaker into a fixed di-
mensional speaker embedding, which is used as a condition in
the base Tacotron 2 model. For the neural vocoder, WaveRNN
[34] was used.

A11. A neural TTS system that is the same as A10 except
that A11 uses the Griffin-Lim algorithm [35] to generate wave-
forms. Attackers may consider A11 instead of A10 because the
Griffin-Lim algorithm requires no model training and is faster
in waveform generation than the WaveRNN in A10.

A12. A neural TTS system based on the AR WaveNet [10].
Although this model is not real-time, attackers may use it be-
cause it produces high-quality waveforms. Phone duration and
F0 were first predicted by the above TTS system A09; they were

then used as input features to an AR WaveNet with a condition-
ing stack to receive the linguistic features.

A13. A combined NN-based VC and TTS system. Attackers
may use A13 because it not only combines TTS and VC but also
includes a waveform modification approach to produce output
waveforms. Speech generated from such a system may be dif-
ficult to detect by CMs.

The TTS system in A13 is a product called VoiceText Web-
API, which is publicly available for non-commercial uses5.
This TTS system uses a unit selection approach and was built
with 40 hours of a single speaker’s recordings. Using this TTS
system, a parallel database of the TTS voice and bona-fide
speech of target speakers in the LA subset was constructed, and
a conventional VC model was trained. The VC model consists
of a highway network and a 3-layered feedforward network,
where its inputs are MCCs of the source speaker and outputs
are those of the target speaker. This network was trained by us-
ing a moment-matching-based loss function [36]. Direct wave-
form modification was used to generate the output waveform.
Given the converted MCCs, a differential spectrum filter was
estimated, and the TTS voice was filtered and converted into
the waveform of a target speaker [37].

A14. Another combined VC and TTS system. Attackers may
consider A14 because the VC part in A14 was built following
the best VC system in Voice Conversion Challenge 2018 [38].

For A14, a commercial English TTS synthesis engine was
first adopted to produce the voice of a female speaker for input
text. Then, the TTS voice was used as a source speaker of a VC
model and was converted to each of the target speakers. In the
VC part, bottleneck features were first extracted from the wave-
forms of the source speaker via an automatic speech recognition
(ASR) model in order to acquire linguistic-related embedding
vectors automatically. The ASR model was trained using an
in-house dataset that contains around 3,000 hours of speech.
Then, an LSTM-based acoustic model was constructed for each
target speaker that predicted acoustic features from the bottle-
neck features. The acoustic features used are 41-dimensional
MCCs, F0, and 5-dimensional BAPs, all of which were ex-
tracted using STRAIGHT [39]. For waveform reconstruction,
the STRAIGHT vocoder was used.

A15. Another combined VC and TTS system similar to A14.
However, A15 uses speaker-dependent WaveNet vocoders
rather than the STRAIGHT vocoder to generate waveforms.
Attackers may use A15 if they intend to improve the speech
quality and increase the chance to fool a CM. These WaveNet
vocoders (µ-law companding and 10-bit quantization) were
trained by pre-training them using an in-house multi-speaker
corpus and fine-tuning it using the speech of target speakers
[38].

5http://dws2.voicetext.jp/tomcat/demonstration/top.html
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A16. A waveform concatenation TTS system that uses the
same algorithm as A04. However, A16 was built given the
VCTK data for training spoofing systems in the LA evaluation
set (#4 in Figure 2).

A17. A NN-based VC system that uses the same VAE-based
framework as A05. However, rather than using the WORLD
vocoder, A17 uses a generalized direct waveform modification
method [40][37] for waveform generation. Attackers may con-
sider A17 because this method was judged to have the highest
spoofing capability in Voice Conversion Challenge 2018 [41].

In this method, an F0 transformed residual signal is first gen-
erated from the input speech waveform by applying WSOLA
[42], inverse filtering, and resampling processes. Then, the con-
verted speech waveform is generated by filtering the F0 trans-
formed residual signal with a synthesis filter designed on the ba-
sis of the converted Mel-cepstrum. Here, the mel-log spectrum
approximation (MLSA) filter [43] was chosen for both inverse
and synthesis filtering.

A18. A non-parallel VC system [44] inspired by the standard
i-vector framework [45, 46] used in text-independent ASV. At-
tackers may use A18 because it is based on a transfer learning
method where a traditional ASV system (i-vector PLDA, with
MFCC inputs) is first trained to optimize ASV. This i-vector
PLDA system is then directly used to define the voice conver-
sion function in a regression setting. Attackers may also use
A18 because it does not require parallel training data, either.

The system uses a vocoder that generates speech from
MFCCs that are originally not designed for VC. This system
proceeds in five steps:

1. The first off-line step is to learn an i-vector extractor,
that is, a sequence-to-vector encoder, in order to repre-
sent utterances of different lengths as fixed-sized i-vectors
[45, 46].

2. The second offline step is to learn a subspace in the i-
vector space that best discriminates speakers and acquire a
speaker factor extractor via a probabilistic linear discrimi-
nant (PLDA) model [47][48].

3. The third step is VC training. Given some training i-
vectors of the source and target speakers, a linear model
that predicts a target speaker i-vector, given a (new) source
speaker i-vector, is trained.

4. The fourth step is voice conversion. From a given new
source speaker utterance, its MFCCs and i-vector are ex-
tracted, and the MFCCs are converted given the target
speaker’s predicted i-vector.

5. The fifth step, the vocoder generates the speech waveform
given the transformed target MFCCs and a linearly trans-
formed F0.

This VC system is the same as the one described in [44] ex-
cept for the vocoder and a few updates in the data engineer-
ing methods. The mechanism of the new vocoder is similar
to the transfer-function-based approach in A06. However, the
vocoder here modifies the source residual signal to match the
given target MFCC spectral envelope and pitch. The residual

signal is first pitch-shifted to match the modified F0. Pitch-
shifting is computed by extracting two-period pulses from the
original excitation signal, stretching the pulses to match the
modified F0, and generating the excitation signal using PSOLA.
Finally, the modified excitation is fed to the synthesis filter com-
puted using the target all-pole envelope derived from the con-
verted MFCCs.

A19. A transfer-function-based VC system using the same al-
gorithm as A06. However, A19 was built given the VCTK data
for training spoofing systems in the LA evaluation set (#4 in
Figure 2).

3.2. Visualization of LA subset
In this section, we visualize the spoofed and bona-fide data

in a 2D space. First, we extracted a 512-dimensional x-vector
[49] for each of the utterances in the LA subset, which con-
tains 121,461 utterances in total. The neural-network-based
x-vector extractor was trained using the Kaldi toolkit and the
VoxCeleb recipe6. Then, the raw x-vectors were whitened
given the mean and standard deviation vectors calculated for
each speaker, and the whitened x-vectors were further normal-
ized to have a unit length. After that, the processed x-vectors
were transformed using within-class covariance normalization
(WCCN) [50], where the 19 attacking systems and the bona fide
data were treated as 20 different classes. Finally, the tree-based
t-SNE algorithm [51] with a perplexity value of 40 was used to
reduce the dimensions of the processed x-vectors.

Figure 3 is a scatter plot of the processed x-vectors. The dif-
ferent attacking systems and bona fide data can be identified by
the colors. The circle roughly indicates the range of mean ±3
standard deviation for the bona fide data. While some of the
attacking systems are well separated from the bona-fide data,
spoofed data from A04, A16, A12, A11, and A10 overlapped
with the bona fide data. For example, A04 and A16 are ex-
pected to be located near the bona fide speech because they are
unit-selection-based TTS systems and can preserve the acous-
tic features of the bona-fide data in the spoofed data to some
degree. A11 and A10 are also close to bona-fide, and they also
overlapped with each other. This is reasonable because A11 and
A10 share the same TTS architecture except for the waveform
generation modules.

Besides the 2D visualization, we carried out a clustering
process to find out which attacks are naturally grouped to-
gether. To this end, we used the same (pre-processed) x-vectors
to compute all pairwise distances between attacks. If we let
Xi and X j denote the x-vector collections of attacks i and j
(i, j = 1, . . . , 20), we define the distance of Xi and X j as

D(Xi, X j) =
1
|Xi|

∑
x∈Xi

min
y∈X j

(
1 − s(x, y)

)
, (1)

where s(x, y) is the cosine similarity of x-vectors x and y, and
|Xi| denotes the number of x-vectors in Xi. We then run ag-
glomerative clustering on the resulting 20 × 20 distance matrix

6https://github.com/kaldi-asr/kaldi/tree/master/egs/

voxceleb/v2
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Figure 3: Visualization of bona fide and spoofed speech data of ASVspoof
2019 LA subset. Black circle denotes range of bona fide data within mean ±3
standard deviation.
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Figure 4: Agglomerative clustering of LA attacks using same input data as
Figure 3.

by using unweighted average distance (UPGMA) as the cluster
distance. The result, visualized as a dendrogram, is displayed in
Figure 4. This clustering result is also reasonable. The closest
pairs (A10 and A11, A14 and A15, and A01 and A02), again,
indicate pairs using the same TTS architecture except for the
waveform generation modules. The right-side branches (A05,
A06, A17, A18, and A19) correspond to the VC systems using
human speech as source data. Interestingly, the VC systems us-
ing source data produced by TTS systems (A13, A14, A15) are
grouped together with TTS systems.

In ASVspoof 2015, one attacking system similar to A04 and
A16 was included in the evaluation set (i.e., S10 in ASVspoof
2015). Compared with ASVspoof 2015, however, the LA sub-
set for ASVspoof 2019 contains more challenging spoofed data.
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Figure 5: Illustration of ASVspoof 2019 physical access (PA) scenario. Replay
attacks are simulated within an acoustic environment/room of dimensions x× y
(7.5m2 in the example above) with controllable reverberation. Recordings of
bona fide presentations are acquired from distance Da from the talker. Bona
fide or replay presentations are made at distance Ds from ASV microphone.

By comparing Figure 3 with a similar figure plotted for spoof-
ing systems in ASVspoof 2015 (i.e., Figure 2 in [52]), we can
see that the ASVspoof 2019 database includes more spoofing
systems that overlapped with the bona fide data in the 2D fea-
ture space. In addition to the evidence from the feature visual-
ization, we further demonstrate in Section 7 that spoofed data
in the ASVspoof 2019 database has high perceptual natural-
ness and quality. Some of the spoofed data are even challeng-
ing to detect for human beings. Therefore, the ASVspoof 2019
database is expected to be used to examine how CMs perform
facing the advanced TTS and VC spoofing systems.

4. Details of PA subset

In the physical access (PA) scenario, spoofing attacks are as-
sumed to be presented at the sensor/microphone level. In this
scenario, the microphone is a fixed component of the ASV sys-
tem. There is still variability in the channel, however. Prior to
acquisition, speech signals propagate through a physical space
in which the position of the speaker and microphone can vary.

Since they are presented at the sensor level and cannot be
injected post-sensor, all spoofing attacks in this scenario are
referred to as replay attacks. In contrast to the LA scenario,
spoofing attacks in the PA scenario conform to the ISO def-
inition of presentation attacks [3]. Replay attacks involve the
presentation to the ASV microphone of surreptitiously captured
recordings of bona fide access attempts. The PA scenario is thus
relevant not just to ASV but also to the detection of fake audio,
a problem that plagues a host of other applications such as voice
interactive devices and services, e.g., smart-speakers and voice-
driven assistants.

Whereas the 2017 ASVspoof database consists of real re-
play recordings, the 2019 edition consists of simulated replay
recordings in a manner similar to [53] 7. Simulation was chosen

7We have released another data set that was recorded and replayed in real
rooms (https://www.asvspoof.org/user/register). But this real re-
played data set is irrelevant to the published results of the ASVspoof challenge
2019. Neither is it included in the released ASVspoof 2019 database.
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Table 2: Environment is defined as triplet (S,R,Ds), each element of which
takes one value in set (a,b,c) as a categorical value.

Environment definition
labels

a b c

S: Room size (m2) 2-5 5-10 10-20
R: T60 (ms) 50-200 200-600 600-1000
Ds: Talker-to-ASV distance (cm) 10-50 50-100 100-150

in order to collect a large database of replay recordings with a
carefully controlled setup. Variability in the setup consists of
differences in the acoustic environment, and the recording and
presentation devices. Simulation allows one parameter to be
changed at a time while keeping everything else constant. This
approach supports a more insightful study of the different fac-
tors affecting both the impact of replay attacks on ASV, as well
as the reliability of countermeasures. The simulation setup is
described here.

4.1. Acoustic environment

The PA scenario assumes the use of ASV within an acoustic
environment such as that illustrated in Figure 5. The acoustic
configuration in which the ASV system is situated (or any other
device that is tasked with determining whether a recording is
bona fide or spoofed/fake) is of size S m2. As illustrated in Ta-
ble 2, room sizes are categorized into three different intervals:
(a) small rooms of size 2-5 m2, (b) medium rooms of size 5-10
m2, and (c) large rooms of size 10-20 m2.

The position of the ASV/device microphone (cardioide) is il-
lustrated by the yellow, crossed circle in Figure 5. The position
of a speaker, hereafter referred to as a talker (in order to avoid
potential confusion with the loudspeaker used to mount replay
spoofing attacks), is illustrated by the blue star. Bona fide ac-
cess attempts/presentations are made by the talker when posi-
tioned at a distance Ds from the microphone. As also illustrated
in Table 2, there are three categories of talker-to-ASV distance
Ds: (a) short distances of 10-50 cm, (b) medium distances of
50-100 cm, and (c) large distances of between 100 and 150 cm.

Each physical space is assumed to exhibit reverberation vari-
ability according to the differences between spaces, e.g., the
wall, ceiling, and floor absorption coefficients, as well as the
position in the room. The level of reverberation is specified in
terms of the T60 reverberation time denoted by R. As per Ta-
ble 2, there are three categories of T60 values: (a) short, with a
T60 time of 50-200 ms; (b) medium, with a T60 time of 200-
600 ms; (c) high with a T60 time of 600-1000 ms.

While they are not specific parameters of the setup, the po-
sition of the ASV system microphone and the talker can all
vary within the physical space. Their positions are set randomly
within the room according to the category of room size S and
the talker-to-ASV distance Ds. The talker is, however, always
assumed to speak in the direction of the microphone.

Table 3: Replay attack is defined as duple (Da,Q), each element of which takes
one value in set (A,B,C) as a categorical value.

Attack definition
labels

A B C

Da: Attacker-to-talker distance (cm) 10-50 50-100 > 100
Q: Replay device quality perfect high low

Table 4: Definition of replay device quality (Q). OB refers to occupied band-
width, minF is lower bound of the OB, LNLR is linear-to-non-linear power
ratio.

Replay device quality OB (kHZ) minF (Hz) LNLR (dB)

Perfect inf 0 inf
High > 10 < 600 > 100
Low < 10 > 600 < 100

4.2. Replay devices

The manner by which replay attacks are mounted is also il-
lustrated in Figure 5. A replay spoofing attack is mounted by
(i) making a surreptitious recording of a bona fide access at-
tempt and (ii) presenting the recording to the ASV microphone.
Attackers acquire recordings of bona fide access attempts at the
position indicated by the red circle in Figure 5 at distance Da

from the talker. For a given room, their subsequent presentation
to the microphone is nonetheless made from the same distance
Ds as bona fide access attempts.

Recordings are assumed to be made in one of three zones
illustrated in Figure 5, each representing a different interval of
distances Da from the talker. They are illustrated in Table 3:
(A) where Da is 10-50 cm, (B) where Da is 50-100 cm, and
(C) where Da is over 100 cm. Recordings captured in Zone
A (nearest to the talker) are expected to be of higher quality
(higher signal-to-reverberation ratio) than those made in zones
B and C further away from the talker.

In addition to reverberation, replay attacks will reflect ar-
tifacts stemming from recording and presentation devices.
Recordings are made with a microphone which is different to
that of the ASV system. Presentations are made using a loud-
speaker. The behavior of even miniature microphones can be
mostly linear, and their frequency response can be relatively
flat. Loudspeakers, in contrast, often exhibit non-linear behav-
ior and rarely have flat frequency responses. In this case, and as
is usual in situations involving artifacts from both microphones
and loudspeakers, e.g., acoustic echo cancellation, loudspeaker-
related artefacts are assumed to dominate [54], so microphone
artifacts can be safely ignored. Typical non-linear and band-
limiting loudspeaker effects are therefore also simulated.

Loudspeaker artifacts are included according to a generalized
polynomial Hammerstein model (GPHM), the parameters of
which are estimated using the Synchronized Swept Sine tool8.

8https://ant-novak.com/pages/sss/
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Figure 6: Illustration of set of higher harmonic frequency responses (HHFRs) for arbitrary smart-tablet device estimated using synchronized-swept-sine approach
to nonlinear system identification based on nonlinear convolution. H1 is linear component, while H2 − H5 are higher order non-linear components. Blue/shaded
region is occupied bandwidth, difference in frequency between points where integrated power crosses 0.5% and 99.5% of total power in spectrum.

Using a GPHM, both the linear and non-linear characteristics of
a loudspeaker can be modelled and then simulated using linear
impulse responses. These are referred to as higher harmonic
frequency responses (HHRFs). An example set of HHRFs for
an arbitrary smart-tablet device is illustrated in Figure 6. It
shows the dominant, 1st order, linear impulse response H1( f )
towards the top with those of the less significant 2nd to 5th or-
der non-linear components H2( f )...H5( f ) towards the bottom.
In practice, one need only model the first five components in or-
der to capture the most significant device non-linearities. Also
illustrated in Figure 6 by the blue/shaded box is the occupied
bandwidth of the device, which extends from approximately
0.5-18kHz. The non-linear behavior of a loudspeaker can then
be simulated by convolving a replay recording with the full set
of impulse responses.

As illustrated in Table 4, the simulations consider three cat-
egories of loudspeaker, each with a different range of occupied
bandwidth (OB), minimum frequency (minF), and linear-to-
non-linear power ratio (LNLR). The first, hypothetical perfect
category represents an entirely linear, full bandwidth loud-
speaker. High-quality loudspeakers have an occupied band-
width exceeding 10 kHz and an LNLR exceeding 100 dB. Low-
quality loudspeakers have an occupied bandwidth below 10
kHz and an LNLR below 100 dB. Differences in bandwidth and
linearity are summarized according to a single device quality
indicator Q. The correspondence between replay device quality
and Q indicator is illustrated in the last row of Table 3. Replay
attacks mounted with low-quality loudspeakers are expected to
be detected with relative ease, whereas those mounted with the
‘perfect’ loudspeaker represent the worst case scenario.

A list of real loudspeaker devices is shown in Table 5. The
devices with a Q indicator equal to B and C correspond to cat-
egories High and Low in Table 4, respectively. They include
a variety of smaller bluetooth (BT), headphones (H), mobile
(M), tablet (T) and laptop (LT) loudspeakers, in addition to
larger consumer and professional loudspeakers (LS). Each de-
vice was set to operate at either an arbitrary low or high vol-
ume level. Due to the mechanical operation of typical loud-
speakers, e.g., the movement of the voice coil towards the pole
piece, higher volume levels typically lead to more significant
non-linearities. This translates into higher energy for higher

Table 5: List of real devices from which measurements were taken for sim-
ulation of replay attack presentation. Q indicates device quality (B high, C
low). Device code signifies device type: bluetooth (BT); headphone (H); mo-
bile smartphone (M); larger consumer and professional loudspeaker (LS); tablet
(T); laptop (LT). Level indicates volume (high, low) used during device charac-
terisation. Right-most column indicates whether measured device characteris-
tics were used for the simulation of utterances in training and development set
(known devices) or evalutaion set (unknown devices).

Q device model and brand level known

B

BT2 EC technology S10 low x
BT4 Sony SRS XB3 low x
H1 Beyerdynamic DT770 PRO low x
H2 Beyerdynamic DT770 PRO high x

M10 iPhoneSE low x
LS4 Desktop speaker low x
LS1 Behringer Truth B2030A high
LS2 Behringer Truth B2030A low
LS5 ESI nEar08 Ex high
LS6 ESI nEar08 Ex low

C

BT1 EC technology S10 high x
BT3 Sony SRS XB3 high x
LS3 Desktop speaker high x
LT3 DELL Vostro V131 high x
LT4 DELL Vostro V131 low x
M11 Motorola Mot G6 plus high x
M12 Motorola Mot G6 plus low x
M15 Oneplus 5T high x
M16 Oneplus 5T low x
M19 Oppo F7 high x
M1 BQ AQUARIS E5 high x
M20 Oppo F7 low x
M2 BQ AQUARIS E5 low x
M3 Huawei P10 lite high x
M4 Huawei P10 lite low x
M5 Huawei P10 plus high x
M9 iPhoneSE high x
T1 Samsung Galaxy TabA high x
T2 Samsung Galaxy TabA low x

BT5 UE BOOM2 high
BT6 UE BOOM2 low
LT1 Alienware high
LT2 Alienware low
M13 Homtom HT26 high
M17 Oneplus One high
M18 Oneplus One low
M22 Xiaomi MI5 high
M23 Xiaomi MI5 low
M25 Xiaomi redmi note3 low
M8 iPhone4 low

order harmonics, e.g., H2( f )-H5( f ). The right-most column on
Table 5 shows whether the devices were used to simulate replay

12



utterances in the training and development partitions, in which
case they are known devices, or whether they were used for the
simulation of replay utterances in the evaluation set, in which
case they are unknown devices.

An illustration of the occupied bandwidth (OB), minimum
frequency (minF) and linear-to-non-linear power ratio (LNLR)
values for each device is presented in Figure 7. Devices are
sorted according to the OB for which values range between ap-
proximately 7.5 and 17kHz. The minF ranges from approxi-
mately 0.2kHz to 1.5kHz, whereas the LNLR ranges from 30
to 145dB. The set of devices represent a broad range of device
types, characteristics and qualities that could be used for the
mounting of replay devices.

4.3. Simulation procedure

The approach used to simulate room acoustics is that
described in [55]. Simulations were done using Roomsi-
move9 [56], which takes into account the entire acoustic en-
vironment, including room size, reverberation, and varying
source/receiver positions, which includes source directivity.
The same software and technique has been applied successfully
for data augmentation in well-known x-vector-based speaker
and speech recognition recipes [57, 58].

As illustrated in the bottom panel of Figure 2, bona fide
and replay utterances were simulated10 in 27 different environ-
ments. An environment was defined according to a combination
of room size S, reverberation level R, and talker-to-ASV dis-
tance Ds. With each parameter being categorized into three in-
tervals as per Table 2, a single acoustic environment is specified
according to a tuple (SRDa). By way of example, environment
‘aaa’ corresponds to a small room size of 2-5 m2 with a T60
reverberation of 500-200 ms and a talker-to-ASV distance of
10-50 cm. The three parameters, each categorized into three in-
tervals, gives the full set of 27 different acoustic environments:
aaa, aab, aac,... ccb, ccc.

In each acoustic environment, replay utterances are simu-
lated according to nine different attack types. They depend
upon the attacker-to-talker distance Da and the replay device
quality Q. With each parameter being categorized into the three
intervals illustrated in Table 3, each attack is specified by the
duple (DaQ) so that attack type ‘AA’ corresponds to an attacker-
to-talker distance of 10-50 cm and presentations made with the
hypothetical perfect loudspeaker. The two different parameters,
each categorized into three different intervals, give the nine dif-
ferent replay configurations: AA, AB, AC,... CB, CC.

The full simulation procedure is illustrated in Figure 8. By
combining the 9 different replay configurations with the 27 dif-
ferent acoustic configurations, there was a total of 243 different
evaluation conditions. For maximum precision, all simulations

9http://homepages.loria.fr/evincent/software/Roomsimove_

1.4.zip
10Note that, in the defined scenario, both bonafide and spoofed access at-

tempts occur in the same environment (the one in which the ASV system is
placed). For this reason, to generate bonafide speech, the source clean speech
(from the VCTK corpus, recorded in an anechoic room) is also processed with
environment simulator.

were performed with the original VCTK data whose sampling
rate is 96 kHz. For consistency with the LA setup, the resulting
96-kHz data was then downsampled to 16kHz with 16 bits-per-
sample resolution. Bona fide presentations were generated from
the simulation of acoustic environment effects only (SRDs).
In contrast, replay attacks were generated from the simulation
of recording effects (SRDa), loudspeaker effects (Q), and re-
play presentation (SRDs). All simulations were made with the
Roomsimove default microphone and talker heights of 1.1m.
The height of each room is set to the Roomsimove default of
2.7 m.

The quality of the loudspeakers (Q) has been defined as the
best combination of OB, minF and LNLR. The measurements
of the 40 devices/loudspeakers has been performed in a quasi-
anechoic room of 2 m2. The distance between the loudspeaker
and the microphone is set to 1 m. For all the measurements,
we have used the AKG C3000 flat-response condenser micro-
phone and the Focusrite Scarlet 2i2 low-noise audio device. For
each loudspeaker, we set up two different levels: low and high,
meaning that the volume of the device is set to 1/4 and 3/4,
respectively.

4.4. Visualization of PA subset
Figure 9 shows a visualisation of the PA data in the same

way as Figure 3 showed for LA data. The plots are very dif-
ferent, however. Each colour in Figure 9 corresponds to replay
utterances in each replay configuration, e.g., AA...CC, in addi-
tion to bona fide utterances. Each mini-cluster corresponds to a
different speaker-utterance combination.

In contrast to the same plot for the LA scenario, the impact
of replay attacks is not at all evident in Figure 9; the distribu-
tion of replay and bona fide utterances is completely overlap-
ping. This is hardly surprising, however, since x-vector repre-
sentations attenuate channel variability. Since channel artefacts
are essentially the only means to distinguish between bona fide
and replay utterances, the x-vector representation of each are
then highly alike. This observation shows the potential diffi-
culty in detecting replay attacks and also the need to develop
independent ASV and CM systems. It may also suggest that
the latter should use employ an utterances representation that
emphasizes, rather than attenuates channel variability.

5. ASV and CM baseline systems

As for the 2017 edition, countermeasure (CM) baseline sys-
tems were provided to all ASVspoof 2019 participants. In ad-
dition, participants were also provided with ASV scores for all
bona fide and spoofed trials. For the challenge itself, these were
provided for the training and development partitions only. The
now-public version of the database also contains ASV scores
for the evaluation partition. ASV scores, produced by a fixed
ASV system designed by the organizers, support the use of the
t-DCF metric [12], which assesses the impacts of both spoofing
and CMs on ASV performance. Participants may then focus
exclusively on the design of CMs without the need to develop
and optimize an additional ASV system. The baseline ASV and
CM systems are described here.
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Figure 7: Characteristics measured from 40 different loudspeaker devices listed in Table 5. The top plot shows the operational bandwidth (OB). The middle plot
shows the lower bound of the OB (minF). The bottom plot shows the linear-to-non-linear power ratio (LNLR) in the range of the OB. Change label of lower plot to
LNLR.
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Figure 8: Illustration of PA simulation process based on impulse response (IR)
modeling approach. Simulations take into account size of acoustic environ-
ment S and level of reverberation R. Bona fide access attempts are made at
distance Ds from ASV microphone, whereas surreptitious recordings are made
at distance Da from talker before being presented to ASV microphone, also at
distance Ds. Effects of digital-to-analogue conversion, signal amplification and
replay (using loudspeaker) are all modelled, and represented with single device
quality indicator Q.

5.1. ASV baseline
The ASV system uses DNN-based x-vector speaker embed-

dings [57] together with a probabilistic linear discriminant
analysis (PLDA) [59] backend. The x-vector extractor is a pre-
trained11 neural network available for the Kaldi [60] toolkit.
The network is trained with MFCC features extracted from
audio data from 7,325 speakers of the VoxCeleb1 and Vox-
Celeb2 [61] databases. The x-vector model consists of a 5-layer
deep time-delay neural network (TDNN), followed by statistics
pooling and two fully connected layers before a softmax output.
The statistics pooling layer converts the frame-level TDNN out-
put to utterance-level representations by computing the mean

11http://kaldi-asr.org/models/m7

Figure 9: As for Figure 3, except for PA data. Bona fide utterances and re-
played versions according to 9 different replay configurations are completely
overlapping. Mini-clusters correspond to speaker-utterance combinations.

and standard deviation of features over time. The x-vector em-
beddings are obtained from the first fully connected layer after
the pooling layer. The dimension of the embedding layer is
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512, and the embeddings are extracted without the application
of the ReLU activation function or batch normalization of the
embedding layer. The network was trained with a stochastic
gradient descent algorithm. Further details concerning network
parameters and data preparation are available in [57].

The original Kaldi recipe was modified to include PLDA
adaptation using disjoint, bona fide, in-domain data. Bona fide
CM training data (#5 and #17 in Figure 2) was used as in-
domain data for both the LA and PA scenarios. Note that adap-
tation was performed separately for the LA and PA scenarios
since bona fide recordings for the latter only contain simulated
acoustic and recording effects. The within-class and between-
class covariances were adapted using Kaldi’s domain adapta-
tion technique (Algorithm 1 of [62]) with scaling factors of
αw = 0.25 and αb = 0 for LA and αw = 0.90 and αb = 0
for PA. The scaling factors were optimized to deliver the best
recognition performance with non-target, zero-effort imposters.

The x-vector representations of the enrollment utterances
were averaged to create a single x-vector per enrolled speaker.
Before PLDA-based log-likelihood-ratio scoring, x-vectors
were centered, reduced to a dimension of 200 with a linear
discriminant analysis (LDA) transform that whitens the within-
class covariance matrix, and normalized to the unit length. The
Kaldi implementation of PLDA [63] is used for scoring.

5.2. CM baseline

Two baseline CM systems were made available to ASVspoof
2019 participants. Both use a common Gaussian mixture model
(GMM) back-end classifier with either constant-Q cepstral co-
efficient (CQCC) features [64, 65] (B01) or linear frequency
cepstral coefficient (LFCC) features [66] (B02).

CQCC baseline B01 uses a constant-Q transform (CQT),
which is applied with a maximum frequency of fnyq = fs/2,
where fs = 16kHz is the sampling frequency. The minimum
frequency is set to nine octaves below the maximum frequency
fmin = fmax/29 ' 15Hz. The number of bins per octave is
set to 96. The resulting geometrically-scaled CQT spectrogram
is re-sampled to a linear scale using a sampling period of 16.
The discrete cosine transform (DCT) is then applied to obtain
a set of static cepstral coefficients. The full set of CQCC fea-
tures includes 29+0th order static coefficients plus correspond-
ing delta and delta-delta coefficients computed using two adja-
cent frames.

LFCC baseline B02 uses a short-term Fourier transform. The
input signal is the first frame blocked with a 20 ms Hamming
window and a 10 ms shift. The power magnitude spectrum of
each frame is calculated using a 512-point FFT. A triangular,
linearly spaced filterbank of 20 channels is then applied to ob-
tain a set of 20 coefficients. LFCC features are obtained by
applying the DCT to the filterbank log-energy densities. The
set of 19+0th static coefficients are then augmented with cor-
responding delta and delta-delta coefficients, again computed
using two adjacent frames.

The back-end for both B01 and B02 use a pair of GMMs each
with 512 components. Parameters for bona fide and spoofed
speech models are trained separately with 20 iterations of the

Table 6: ASV performance in terms of EER (%) on LA subset of ASVSpoof
2019 dataset for baseline and different attack conditions for development and
evaluation set. Note that A16 used same TTS algorithm as A04, and A19 used
same VC algorithm as A06.

Attack Development Evaluation
Baseline 2.43 2.48

A01 24.52 -
A02 15.04 -
A03 56.94 -
A04 63.02 -
A05 21.90 -
A06 10.11 -
A07 - 59.68
A08 - 40.39
A09 - 8.38
A10 - 57.73
A11 - 59.64
A12 - 46.18
A13 - 46.78
A14 - 64.01
A15 - 58.85
A16 - 64.52
A17 - 3.92
A18 - 7.35
A19 - 14.58

expectation-maximization (EM) algorithm. Finally, scores are
the log-likelihood ratio between the two hypotheses, namely
that a given trial is either bona fide or spoofed speech. Base-
line CMs are trained separately for LA and PA scenarios using
designated CM training data.

6. ASV and CM baseline results

This section describes the results obtained with the
ASVspoof 2019 ASV and CM baselines. The results are pre-
sented separately for the LA and PA datasets. The metrics are
the equal error rate (EER) and new ASV-centric tandem detec-
tion cost function (t-DCF) [12] which combines the errors of
both ASV and CM systems into a single metric.

6.1. Analysis of LA subset

6.1.1. Analysis of baseline ASV performance
First, we assessed the impact of the different attacks with the

baseline ASV system. In Table 6, we show the ASV perfor-
mance for the LA subset using the x-vector system described in
Section 5.1. The performance was measured in terms of EER
computed with a tool developed for the challenge12. The first
row of the results shows the performance with the bona fide
imposters, whereas the rest of the rows show the results for all
19 attacks, i.e., A01-A19, split into development and evaluation
sets.

12https://www.asvspoof.org/asvspoof2019/tDCF_matlab_v1.

zip (MATLAB) https://www.asvspoof.org/asvspoof2019/tDCF_

python_v1.zip (Python)
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The results indicate that the spoofed data created with vari-
ous VC and TTS methods drastically degraded the ASV perfor-
mance. However, the severity of the attacks varied across dif-
ferent methods. For instance, A04, the TTS attack created with
the waveform concatenation method, increased the EER from
2.43% to 63.02%, and it turned out to be the most severe attack
in the development set. Apart from this, A03, another attack
in the development set created with the feedforward-neural-
network-based acoustic model and the WORLD vocoder also
severely degraded the ASV performance. Both A03 and A04
yielded an EER of more than 50%, which also indicates that
the synthetic speech created with these two attacks was more
similar to the speakers than the genuine target sentences used,
interestingly. Note that all the spoofing methods used 200 ut-
terances per target speaker to train the spoofing system (as il-
lustrated in Figure 2), and these two methods seem to be more
efficient in cloning speaker-related characteristics closer to the
enrollment utterances. In comparison, the attacks developed
with the acoustic model based on GMM-UBM (i.e., A06) dis-
played the least degradation in ASV performance. The other
two attacks created with auto-regressive LSTM (A01 and A02)
or with VAE (i.e., A05) were also able to severely degrade the
ASV performance but not like A03 or A04. Nevertheless, the
poorest attack in the development set (i.e., A06) also increased
the baseline EER by more than four times.

Note that some spoofing system such as A16 led to an ASV
EER larger than 50%. This is because the spoof data from those
spoofing systems acquired ASV scores even higher than that of
bona fide data, as Figure 10 plots for the case of A16. Accord-
ingly, the false reject rate, the false accept rate, and the EER
become larger than 50%.

From the results of the evaluation set, which we depict as
DET curves in Figure 11, we also observed that different at-
tacks had different degrees of severity. Here also, the wave-
form concatenation based attack (i.e., A16, which is the same
as A04 used in the development set) turned out to be the most
critical attack with an ASV EER of 64.52%. The spoofing
method A14, which uses LSTM with the STRAIGHT vocoder,
also caused a comparable degradation in EER. The other two
LSTM-acoustic-model-based spoofing methods integrated with
the neural waveform model (i.e., A15) or WORLD vocoder
(i.e., A07) had an ASV EER of more than 50%. However,
the LSTM-based acoustic model that uses the Vocaine vocoder
(i.e., A09) for waveform generation did not degrade the ASV
performance like the other LSTM-based models. Amongst the
other attacks, the sequence-to-sequence based methods (i.e.,
A10 and A11) also exhibited an ASV EER of more than 50%.
Similar to the development set, the voice conversion systems,
where the source speakers are human (i.e., A17-19), showed
less degradation in ASV performance compared than other at-
tacks. The spoofing method A17 based on the VAE-based
acoustic model and waveform filtering for wave generation had
an EER of 3.92%, which is comparable to the ASV perfor-
mance achieved with the bona fide imposter.
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Figure 11: ASV DET curves for eval side of LA subset. DET curves are
computed by assigning bonafide target scores to positive class while assign-
ing bonafide non-target scores or scores from different attack types to negative
class. These DET curves can be compared with ones in upcoming Figure 15 to
see how ASV results compare with human perception.

6.1.2. Analysis of baseline CM performance
The results so far discussed do not consider any countermea-

sure. Therefore, they do not reflect the actual impact of the at-
tacks in a scenario in which the ASV system is integrated with
countermeasures. Table 7 shows the performance of the joint
CM and ASV system for the development set in terms of min-
tDCF as well the performance of the standalone CM system in
terms of EER.

We observed that the B1 or CQCC-based method had lower
costs as well as error rates compared with the B2 or LFCC-
based method in most cases. However, for two attacks, A03
and A05, the LFCC-based system outperformed the other. For
the B1 system, A05 turned out to be the most difficult attack in
terms of both performance evaluation metrics. For the B2 sys-
tem, A06 was the most difficult attack. Interestingly, compared
with A03 and A04, the baseline ASV EERs (Table 6) were not
that high for A05 and A06. Furthermore, attack A04, which
yielded the highest ASV EER, was accurately detected by the
B1 system, though it turned out to be the second most diffi-
cult attack from the B2 system perspective. Note that the B1
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Table 7: Performance of integrated system in terms of min-tDCF and of stan-
dalone countermeasures in terms of EER (%) on development set (LA subset)
of ASVSpoof 2019 dataset. Results are shown for two baselines, B1 (CQCC-
GMM) and B2 (LFCC-GMM), separately, combined with fixed ASV system
based on x-vector. Last row describes results for “pooled condition” when tri-
als from all the attacks are considered for evaluation.

Attack
B1 B2

min-tDCF EER min-tDCF EER

A01 0.0000 0.00 0.0005 0.03
A02 0.0000 0.00 0.0000 0.00
A03 0.0020 0.08 0.0000 0.00
A04 0.0000 0.00 0.1016 4.90
A05 0.0261 0.94 0.0033 0.16
A06 0.0011 0.03 0.2088 5.27

Pooled 0.0123 0.43 0.0663 2.71

Table 8: Same as Table 7 but for evaluation set

Attack
B1 B2

min-tDCF EER min-tDCF EER

A07 0.0000 0.00 0.3263 12.86
A08 0.0007 0.04 0.0086 0.37
A09 0.0060 0.14 0.0000 0.00
A10 0.4149 15.16 0.5089 18.97
A11 0.0020 0.08 0.0027 0.12
A12 0.1160 4.74 0.1197 4.92
A13 0.6729 26.15 0.2519 9.57
A14 0.2629 10.85 0.0314 1.22
A15 0.0344 1.26 0.0607 2.22
A16 0.0000 0.00 0.1419 6.31
A17 0.9820 19.62 0.4050 7.71
A18 0.2818 3.81 0.2387 3.58
A19 0.0014 0.04 0.4635 13.94

Pooled 0.2366 9.57 0.2116 8.09

or CQCC-GMM system has already demonstrated its superior-
ity over other features, including LFCC, specially for detecting
waveform concatenation based TTS attack [65]. In the present
scenario, the CM system was also trained with spoofed audio
data generated with the same attack, here A04. This further
helped the system to more efficiently detect such attacks. As a
result, though A04 seemed to be the most difficult attack from
the ASV viewpoint, it was easily detected by the B1 system.

Table 8 shows the result for the evaluation set. Here, we
observed that the overall performance with the pooled attacks
was substantially poorer than the performance on the develop-
ment set. This was due to the presence of new attacks that
were not included during CM training. For instance, we ob-
served that attacks A16 and A19, which were already included
in the training set, had a lower EER and min-tDCF for the B1
system. However, for these two known attacks, the other sys-
tem, B2, did not show lower EER and min-tDCF because this
LFCC-based system is already poor in detecting those attacks
(see results for A04 and A06 in Table 7). In comparison, we

noticed that attacks A10, A13, and A17 had a higher EER and
min-tDCF consistently for both the B1 and B2 systems. A10
uses the Tacotron acoustic model with WaveRNN for waveform
generation, whereas A13 and A17 employ an acoustic model
based on the moment matching neural network and VAE, re-
spectively, with waveform filtering for waveform generation.
The attacks included in the training do include similar methods
for waveform generation. From the results of A17, we can also
conclude that the acoustic model seemed to have less of an im-
pact than the waveform generation method since spoofed audio
data created with the VAE based acoustic model was already
used in CM training and the waveform generation method is
different from the methods used in training. This was also con-
firmed by the comparison of performance obtained with A10
and A11 where the only difference was in the waveform gener-
ation method. We noticed that attacks A08, A09, and A11 were
easy to detect for both baseline CM systems. It turns out that
the waveform generation methods based on the neural source-
filter model, Vocaine, and Griffin-Lim were not able to produce
audio that shows more similarity to genuine speech under the
current settings. Finally, when comparing the two CM meth-
ods, we found that B1 was better than B2 in most cases. How-
ever, for A09, A13, A14, and A18, the LFCC-based B2 system
performed better than B1.

In Figure 12, we have summarized the baseline results for
the LA-evaluation subset according to the categories, acoustic
models, and waveform generation methods. We computed the
average performance over all the attacks for each type. We ob-
served that TTS-based synthetic speech was easier to detect on
average, especially when the B1 method was used. VC (Hu-
man) had the largest min-tDCF with the B1 method as the CM.
Comparing the acoustic models, both the average min-tDCF
and EER had lower values with neural-network-based pipeline
TTS methods (A07, A08, A09, and A12). In contrast, at-
tacks created with acoustic modeling using the neural-network-
based VC methods (A13, A14, A15, A17) were the most dif-
ficult to detect with the highest average min-tDCF and EER.
Finally, comparison of waveform generation methods demon-
strates that synthetic speech created with waveform-filtering-
based approaches (A13 and A17) were the most difficult to de-
tect than the other methods.

6.2. Analysis of PA subset
Reported here are results for the PA subset. Two sets of re-

sults are presented in order to show the influence of different
replay configurations and different acoustic environments upon
baseline ASV and CM performance. In contrast to those pre-
sented for the LA subset above, results for the PA subset are
presented for the evaluation set only. Differences between LA
spoofing attacks in the development and evaluation partitions
correspond to fundamentally different algorithms. There are
then substantial differences between ASV and CM performance
in the case of each attack algorithm. For the PA scenario, dif-
ferences between development and evaluation partitions corre-
spond to differences only in specific impulse responses; acous-
tic environment and replay configuration categories are exactly
the same. In this case, differences in ASV and CM performance
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Figure 12: Summary of LA subset (evaluation section) results in terms of t-DCF (left) and EER (right). First row shows results for three categories of synthetic
speech: (i) TTS, (ii) VC (TTS), and (iii) VC (Human). Next row shows results for four types of acoustic models: (i) neural-network-based pipeline TTS, (ii) neural-
network-based end-to-end TTS, (iii) neural-network-based VC, and (iv) statistical-model-based VC. Last row shows results for different waveform generation
methods: (i) neural waveform models, (ii) classic speech vocoders, (iii) waveform concatenation, (iv) spectral filtering, (v) waveform filtering, and (vi) others.

are far less substantial and do not warrant unnecessary atten-
tion here. Results for the PA development set are entirely con-
sistent with the trends reported for teh evaluation set and are
nonetheless available in the documentation that accompanies
the ASVspoof 2019 database.

6.2.1. Replay configurations
ASV performance for the PA scenario is illustrated in the top

panel of Figure 13. The plot shows standalone ASV perfor-
mance in the case of target and zero-effort impostor trials (blue
profile) and then target and replay spoofing trials (red profile).
Results are shown separately for each of the nine different re-
play configurations, each denoted by the duple Da,Q (see Ta-
ble 3). In all cases, results are pooled across the full set of
27 different acoustic environments. All results are reported in
terms of the EER.

Baseline EERs are somewhat higher for PA than they are
for LA. This is due to the session variability introduced in
each acoustic environment, e.g., variability in convolutive chan-
nel noise. EERs for replay spoofing conditions are markedly
higher. The highest EERs are observed for replay configura-
tions with the shortest attacker-to-talker distance (Da) and the
highest quality loudspeaker Q (condition AA). The EER de-
creases monotonically as either the attacker-to-talker distance

increases or the device quality decreases. Among the differ-
ent replay configurations, the lowest EER is observed for the
largest attacker-to-talker distance and the lowest quality loud-
speaker (condition CC).

Baseline countermeasure performance for the PA scenario is
illustrated in the middle and bottom panels of Figure 13 in terms
of the EER and min-tDCF respectively. In both cases, results
are presented for the two baseline countermeasures B1 and B2.
Trends are consistently similar to those observed for standalone
ASV performance. The highest min-tDCF and EER results are
for the shortest attacker-to-talker distances (Da) and the highest
quality devices Q (condition AA); higher quality replay attacks
are more difficult to detect. Both the min-tDCF and EER de-
crease when either the attacker-to-talker distance increases or
the device quality decreases. The lowest min-tDCF and EER
results are obtained for the largest attacker-to-talker distances
and the lowest device quality. Also observed are the relative im-
pacts of attacker-to-talker distance and the device quality. The
device quality has a considerably greater impact on baseline
CM performance. As is the case for the LA scenario, for the
majority of cases, baseline B1 outperforms B2.
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Figure 13: An illustration of baseline results for the PA scenario of the ASVspoof 2019 database. Results illustrated for individual replay configurations (pooled
acoustic environments) and for: (top panel) standalone ASV results in terms of EER (%) with target and zero-effort impostor trials (black bars) and target and replay
spoofing trials (gray bars); (middle panel) standalone replay spoofing in terms of EER (%) for baselines B1 and B2; (bottom panel) combined ASV and CM results
illustrated in terms of the min-tDCF.

6.2.2. Acoustic environment
Figure 14 shows results in terms of the 27 different acoustic

environments each denoted by the tuple S,R,Ds (see Table 2).
In a fashion consistent to results shown in Figure 13 for re-
play configurations, they are shown for standalone ASV (top
panel), standalone CMs (middle panel) and integrated ASV and
CMs (bottom panel). Once again, standalone results are illus-
trated in terms of the EER, whereas integrated results are in
terms of the min-tDCF.

Baseline ASV results (no spoofing) shown in the top panel
of Figure 14 show that the room size S has little influence upon
performance, whereas higher T60 reverberation times R and
larger talker-to-ASV distances Ds result in higher EERs/min-
tDCFs. Replay spoofing results in substantial increases in the
EER for all acoustic environments.

Baseline CM results expressed either in terms of the EER or
min-tDCF show different trends. While the room size still has
little influence, higher T60 reverberation times R and talker-to-
ASV distances now give lower EERs/min-tDCFs. This obser-
vation is consistent with intuition. Replay attacks act to am-
plify the effects of the acoustic environment and when these are
greater, then replay detection can be performed with ease. In
contrast, when the acoustic environment is more benign, then
replay detection is more challenging.

7. Human assessment

While Section 6 demonstrated how the baseline ASV and
CM performed on the ASVspoof 2019 database, we describe
in this section a human assessment on the LA subset of the
database. The results show whether the spoofed data was per-
ceptually similar to the bona-fide data of target speakers and
whether the spoofed data could be detected by the human sub-
jects. Note that we did not conduct human assessment on the
PA subset because the human perception of the bona fide and
replayed speech may be affected by the varied types of head-
phones used by the human subjects during the crowd-sourced
assessment. This uncontrolled acoustic environment will make
it difficult to interpret the assessment results on PA subset.

We designed the human assessment protocol on the basis of
the ASVspoof LA evaluation protocol. The original protocols
are unsuitable for human assessment because the prohibitive
cost of evaluating the large number of spoofed trials in the eval-
uation set. In addition, the human subjects’ perception may
be biased by the unbalanced amount of spoofed and bona-fide
evaluation data.

For one target speaker in the evaluation set, we randomly
selected 25 spoofed utterances from each of the 13 spoofing
TTS/VC systems (A07 - A19). Meanwhile, we randomly sam-
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Figure 14: As for Figure 13 except for results in terms of individual acoustic environments (pooled replay configurations).

pled 25 bona-fide utterances from each of the 10 non-target
speakers with the same gender as the target speaker13. Since we
collected 325 (13 × 25) spoofed utterances and 250 (10 × 25)
non-target bona-fide utterances for the target speaker, to strike
a balance between target and non-target data, we over-sampled
575 bona-fide utterances from the target speaker. We prepared
the same amount of data for each of the 48 target speakers in
the evaluation set and collected 27,600 (48×575) bona-fide tar-
get utterances, 15,600 (48×325) spoofed utterances, and 12,000
(48×250) bona-fide non-target utterances, which lead to 55,200
utterances in total.

During the assessment, the subjects were asked to conduct
two role-playing tasks [67] in one evaluation page. In one task,
they listened to one utterance and were asked to judge whether
the utterance was produced by a human or machine, given an
imagined scenario where he or she must detect abnormal tele-
phone calls in the customer service center of a commercial
bank. The played utterance was randomly selected and may be
bona-fide target, non-target, or spoofed. The subject was asked
to give a score ranging from 1 to 10, where 1 indicates that the
utterance was absolutely machine-generated, and 10 denotes a
human-produced utterance with total confidence. The instruc-
tion given to subjects is as follows.

13Because the number of non-target male speakers was 9, we over-sampled
the data from one of the non-target male speakers.

Imagine you are working for a bank call center.
Your task is to correctly accept only inquiries from
human customers and to properly determine those
that may be due to artificial intelligence as ‘suspi-
cious cases that may be malicious’. However, if al-
most everything is judged to be ‘artificially generated
speech’, there will be many complaints from real cus-
tomers, which must be avoided. Imagine a situation
where you are working to protect bank accounts and
balance convenience.

The audio sample that you will listen to is audio
produced by humans or produced artificially by arti-
ficial intelligence. There are not only a system that
sounds unnatural like a robot but also an artificial in-
telligence system that synthesizes natural speech that
is very similar to human speech.

Now, please listen to the audio sample and de-
termine whether the voice is artificially generated by
artificial intelligence or is uttered by a person on the
basis of only the voice you hear. You can listen to it
as many times as you like. The content of the conver-
sation in English is irrelevant and does not need to be
heard. Please judge on the basis of only the charac-
teristics of the sound, not the content of the words.

In the other task, the subjects listened to two utterances
and was asked to judge whether they sounded like the voice
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Figure 15: DET curves based on human assessment of similarity to target speakers (left) and speech quality (right)

of the same person. Again, the subjects were instructed to
imagine a scenario in which he or she must judge whether the
voice in an incoming telephone call is similar to a recorded
one that the speaker claimed. For this scenario, the recorded
voice was a randomly selected enrollment utterance of the tar-
get speaker, and the stimuli may have been a bona-fide utterance
or a spoofed utterance of that speaker or a bona-fide utterance
of a non-target speaker. The subject was asked to evaluate the
similarity using a scale of 1 to 10, where 1 and 10 denote ‘differ-
ent speakers’ and ‘the same speaker’ with absolute confidence.
The detailed instruction given to subjects is as follows:

As before, imagine you are working for a bank
call center. Your next task is to compare customer
inquiries with voices recorded when the same cus-
tomer made inquiries in the past. From the voices,
you must determine whether the voices are of the
same person or another person who is impersonating
the original voices. However, if you choose ‘spoofing
by someone else’ more than necessary, there will be
many complaints from real customers, which should
be avoided. Imagine a situation in which you are
working to protect bank accounts and balance con-
venience. Now press the ‘Sample A’ and ‘Sample
B’ buttons below and listen to the samples. You can
listen to them as many times as you like. Use only
the audio you hear to determine if the speakers are
the same or not. The content of the conversation in
English is irrelevant and does not need to be heard.
Please judge on the basis of the characteristics of the
voice, not the content of the words. If the sound is
artificially generated, please judge it as a different
speaker.

We prepared 55,200 evaluate pages that covered all the col-
lected utterances and organized the human assessment on a
crowd-sourcing platform. In total, 1,145 subjects participated,

and each of them evaluated at least 32 pages. We acquired
around 27,000 scores for bona-fide utterances of target speak-
ers, around 12,000 scores for bona-fide utterances of non-target
speakers, and around 1,200 scores for spoofed utterances pro-
duced by each of the TTS/VC spoofing systems in the CM eval-
uation set.

We first drew DET curves on the basis of the similarity
scores. The results are plotted in Figure 15. On the basis of
the scores of the other task, we drew DET curves where the
bona-fide data from the target speakers was assumed to be pos-
itive and the bona-fide data from the non-target speakers and
spoofed data negative. The results are plotted in Figure 15.

As expected, we see that most of the spoofing systems had
a DET curves above that of the non-target data in Figure 15,
which indicates that these spoofing systems generated spoofed
data that sounded similar to the target speakers in varied de-
grees. In Figure 15, the DET curves of the spoofed data spread
across the plane, suggesting a varied perceived quality and sim-
ilarity in the spoofed data between the different spoofing sys-
tems. In general, we can see that the spoofed data in the LA
database had disparate perceived quality and similarity to the
target bona-fide data.

Among the spoofing systems, the DET curve of A10 was
close to the diagonal line in Figure 15. According to the re-
sults of a Mann-Whitney U test [68], the difference between the
spoofed data from A10 and the bona-fide utterances of the tar-
get speakers was marginally significant (p = 0.012) in terms of
the quality and insignificant (p = 0.81) in terms of the similar-
ity to the enrollment utterances. These results demonstrate that
the spoofed utterances from A10 sounded the same as the tar-
get bona-fide speaker and sounded very natural from the human
listener’s perspectives, clearly showing that the state-of-the-art
TTS has the capability of producing synthetic speech that is per-
ceptually indistinguishable from bona fide speech. Since A10
also lead to a high EER for both the ASV and CM baselines, we
can summarize this as A10 being good at fooling both humans
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and the ASV/CM baselines.
We can also see that the spoofed data from A11 was much

more easily detected in the human assessment, even though
A11 used the same TTS architecture as A10, except that A11
and A10 used Griffin-Lim and WaveRNN for waveform gen-
eration, respectively. Similar results can be observed by com-
paring A14 and A15, which were identical in the TTS-VC ar-
chitecture but differed in terms of waveform generation. Both
the difference between A10 and A11 and that between A14 and
A15 were statistically significant (p < 0.001). These results
suggest that the perceived quality of spoofed data is affected by
the waveform generation technique used. Furthermore, the per-
ceived similarity to the target speaker is also influenced by the
performance of the waveform generator.

Interestingly, the human assessment also showed different re-
sults from those obtained using the baseline ASV and CM. For
example, while A13 was good at fooling the baseline ASV and
CM, it was easily detected by the human evaluators as spoofed
data as Figure 15 shows. Likewise, A17 was also good at fool-
ing the baseline CM, but it was also easily detected by the hu-
man evaluators.

In all, the LA subset of the ASVspoof2019 database includes
spoofed data with varied degrees of perceived quality and sim-
ilarity to the target speakers. Some of them are strong spoofing
methods even for the baseline ASV and CM. Such variation is
essential for the LA task so that the performance of ASV and
CM can be examined under various conditions.

8. Summary

This paper described the design, protocol, and spoofing at-
tack implementations of the ASVspoof 2019 database. This is
the first database that considers all three types of spoofing at-
tacks, and it has two specific use case scenarios: logical access
and physical access scenarios. Spoofing attacks within the log-
ical access scenario have been generated with the latest speech
synthesis and voice conversion technologies, including state-
of-the-art neural acoustic and waveform model techniques, and
have varied degrees of perceived quality and similarity to the
target speakers, including spoofed data that cannot be differen-
tiated from bona fide utterances even by human subjects. Re-
play spoofing attacks within the physical access scenario have
been generated through carefully controlled simulations that
support much more revealing analysis than possible previously.
Both the acoustic environment and attacks’ factors, including
the physical placement of the microphones and loudspeaker in
the acoustic environment, were systematically simulated. This
paper also reported their impact on the reliability of the base-
line ASV systems and two spoofing countermeasures and their
performance using the traditional metric EER and newly intro-
duced metric t-DCF for each scenario.

This database, including ground truth labels, meta labels, and
baseline ASV scores, is freely available for both academic and
commercial purposes at the Edinburgh DataShare14 under the

14https://doi.org/10.7488/ds/2555

Open Data Commons Attribution License. We strongly believe
that the ASVspoof 2019 database will further accelerate and
foster research on speaker recognition and media forensics.
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