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Abstract

This paper introduces a method for offshore oil slick detection. At present, Synthetic Aperture Radar
(SAR) is an image acquisition technology useful for oil slick detection in all weather conditions. It is used
to carry out the detection, with notable limitations under certain conditions (surfaces, weather conditions).
Manual SAR images analysis is expensive and, given the increasing amount of data collected from available
sensors, automation becomes mandatory. To achieve this objective, instance object detection relying on deep
neural networks is interesting to adapt to the data variability. Relying on such an approach, this article
explores the capabilities of generalizing the detection of slicks on large datasets using the Mask-RCNN model.
A detailed performance analysis is established in two complementary directions: (i) the impact of the SAR
image characteristics(sensor, geographical areas, lookalike presence), (ii) the impact of the neural network
architecture, transferred capabilities and training procedures. The main findings of this analysis show that
Mask-RCNN features promising performance for pollution detection.

I. Introduction

In the offshore domain, several major chal-
lenges have been identified for the successful
detection of oil slicks. The first one is related
to the speed of the image acquisition process,
as obtaining quick information is decisive in
case of events as oil spillages to react as fast as
possible. Recent satellite launches, however?
are improving the ability to acquire images by
providing global coverage and 24-hour acqui-
sition capability. On the other hand, the grow-
ing amount of data generated by the satellites
images is leading us to a second challenge con-
cerning the ability to process all the acquired
images in an effective and efficient manner. A

third challenge deals with accurate identifica-
tion of the oil slicks, successfully differentiating
them from the other phenomena on the sea sur-
face [3]. Finally, the fourth challenge is search-
ing for precision in oil slick localization in very
large images [1]. In working to solve this chal-
lenges, SAR images have proven to be reliable
for the detection of oil slicks [7] by provid-
ing high resolution images in a wide range of
weather conditions. Nevertheless, the detection
and segmentation of offshore oil slicks are gen-
erally carried out by human image interpreters,
who spend hours processing the images to find
such anomalies. The task is difficult since oil
slick has high variability in terms of shape and
size and could be easily confused with sim-
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ilar dark structures (lookalike) coming from
algae, waves, etc [22]. This paper is organized
as follows: Section 2 summarizes the related
literature. Section 3 presents an introduction
of the deep learning approach, Section 4 de-
scribes the considered SAR data collection and
the performance evaluation metrics. Section 5
presents the experimental design and section 6
discussed the obtained results and draws the
main conclusions and future research.

II. Relative Works to the oil slick

detection

Offshore oil slick detection has been a chal-
lenge for several years. This is mainly car-
ried out using either passive (optical/infrared
sensors) or active (microwave sensors) remote
sensing sensors. Among these sensors, ac-
tive sensors have advantages in their ability
to operate day and night, independently of
the sunlight, unlike optical sensors. SAR Sen-
sors constitute a powerful tool for detecting
hydrocarbons on the sea surface due to the
sensitivity of microwave signals to the surface
roughness [31] [38]. Most of the electromag-
netic energy is reflected by rough surfaces such
as clean water disturbed by the wind. However,
the oil slick locally dampens the roughness
of the sea surface, thus decreasing the radar
scattering. As a result, dark spots are formed
which contrast with the brightness of the sur-
rounding slick free sea [3]. Such phenomena
should then allow the automatic detection of
the oil slick. However, many lookalikes can oc-
cur above the sea surface and appear on radar
images as dark spots, in the same way as areas
covered by oil. [7] [35] proposes an interesting
hierarchy of these distractors which is illus-
trated in Fig.1.

Furthermore, oil slicks are small targets in
large images that remain scarce. Oil slicks in-
deed cover less than 1% of the image pixels
as shown in the pixel Table 1. These values
are calculated on a typical sample of data, they
reveal the imbalance between the slick pixels
and the sea and lookalike pixels. Such detec-
tion is therefore harder than multimedia object

Figure 1: Main offshore dark patches seen in SAR im-
ages, from [35].

detection benchmarks such as Cityscapes [10]
and Coco [19], which more frequently present
medium and large objects compared to the in-
put image.

Table 1: The distribution between oil slicks and clean
water samples in the considered dataset: on the
left at the image cropping level, on the right at
the pixel level.

Area Crops number Pixels Number

Slick 8879 ∼2*107

Sea and lookalike 423 ∼3*109

Consequently, oil slick detection is a chal-
lenge due to numerous factors, such as the
little information associated with them, the
possibility of confusion with the background,
the higher accuracy requirement for location
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and the large size of the image [1]. The state
of the art regarding oil slick detection can be
summarized in Table 2. A distinction is made
between semi-automatic and fully automatic
approaches, which are reviewed in the follow-
ing.

Table 2: Survey on oil slick detection approaches.

Conventional approach
Semi Automatic
Partial integration of deep learning

Fully end to end deep learning
Transfer learning
Full Automatic

i. Semi-Automatic Approaches

Such approaches are summarized in four steps.
Detection and isolation of all dark formations
that are present in the image. This is accom-
plished mainly through thresholding and seg-
mentation processing [36] [17]. The second step
concerns the extraction of the characteristics of
the dark regions, mainly their geometrical pa-
rameters as well as their physical behaviors (e.g.
mean backscatter value, polarimetry) [4] [7]
and contextual data (e.g. distance to ships) [30].
The third step is the classification or differentia-
tion of the extracted values as slick (spill, seep)
or lookalike. A variety of classifiers have been
used, i.e. statistical approach by probability
calculation, fuzzy logic, etc. [29] [6], [3]. The
fourth step examines an assessment against
predefined values commonly known as anno-
tation/ground truth/label, which establishes
a classification between man-made oil slicks
and lookalike phenomena. These values are
generally determined through phenomenolog-
ical considerations (empirical research) and
statistical assessments [11]. Conventional ap-
proaches exhibit poor generalization behaviors,
remaining accurate only in specific configu-
rations (sensor, wind speed, frequency band,
etc.). The main issues are related to the con-
fusion between slick and lookalikes and the
classification between oil slicks types.

To overcome these limitations, learning-
based approaches such as deep neural net-
works are integrated into one of the above

steps. This integration can be at the step of
detection, features extraction, or classification
of the offshore oil slicks. Several works [33] in-
vestigate the use of the capabilities of Convolu-
tional Neural Networks (CNNs) in many steps
of the classical detection process that outper-
form conventional approaches. For example, a
text classifier based on a neural network algo-
rithm is used for the detection of dark features
by [21]. The work of [14] employs a stacked
auto-encoder (SAE), and use a Deep Belief Net-
work (DBN) to optimize the polarimetric fea-
ture sets. A key discovery of this paper is that
even given an insufficient amount of data sam-
ples, deep learning allows achieving better per-
formance than traditional algorithms by initial-
izing its weights in a region near its local min-
imum with Stacked auto-encoders. Moreover,
deep learning algorithms have very strong ca-
pabilities for exploring the complex correlation
between features and obtain very promising
fitting results on complicated data. [8] reports
that oil slick classification achieved by deep
networks outperformed both support vector
machine (SVM) and traditional Artificial Neu-
ral Networks (ANN) with similar parameters.
These studies consequently confirm the gen-
eral trend towards successful deep learning,
which is mainly related to the availability of
large annotated databases to efficiently learn
features from the data, as explained in [2].

ii. Fully Automatic Approaches

Another category of approaches proposes to
solve the task with a deep neural architecture
trained end to end. However, because of the
lack of training data, transfer learning is gen-
erally considered and therefore reuses neural
structures trained for another task and data
that share some common features with the tar-
get context. Recent works on oil slick detec-
tion and segmentation outperform previous
ones [25] [9]. This is in line with initial ob-
servations in the multimedia field which show
the interest of transfer based approaches when
not much data is available in the target do-
main and to reduce computation costs [5, 28].
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Furthermore, [37] shows that initializing a net-
work with transferred features from almost any
number of layers can produce a boost to a gen-
eralization that persists even after fine-tuning
to the target dataset. In this work, we consider
transfer and domain adaptation of the Mask-
RCNN, instance detection, and segmentation
model [15] described in the next section. The
full benefit will be derived from the huge an-
notated SAR sea surface datasets captured by
different SAR sensors in different geographic
areas. The diversity of the available data is
large and rich enough to study the impact of
the data behaviors and the learning strategies
on detection and segmentation performance
as well as the generalizability of the trained
model.

III. Oil slick segmentation :
Mask-RCNN

MaskRCNN is an instance segmentation
method that combines object detection, clas-
sification. It goes one step further than clas-
sical semantic segmentation methods such as
Fc-DenseNet [16] which are limited to pixel-
level classification without differentiating be-
tween object instances. Mask-RCNN relies on a
multi-stage convolutional network and inherits
from the R-CNN series: R-CNN, Fast R-CNN,
and Faster R-CNN [27]. It also competes with
single-stage networks as YOLO [26] for the de-
tection of large objects. But when detecting
small objects, single-stage frameworks are gen-
erally much less efficient than two-stage frame-
works [20]. This model is illustrated in Fig.2,
can be summarized in three stages. The first
step is a feature extraction step performed by a
basic neural network that is usually pre-trained
for an image classification task. Providing rich
and transferable features that feed the higher
stages. A second step is the Region Proposal
Network (RPN) that generates areas of interest
at different image scales. The final step is a
multi-headed neural network that predicts the
class of the object, refines the bounding box,
and generates the associated object mask, as
shown in Fig.3. This architecture is of real in-

Figure 2: Mask-RCNN architecture schema, from [39]

terest since it manages the extreme foreground-
vs-background class imbalance through the se-
lection process introduced by the RPN model.
Therefore, it is well suited to the task of de-
tecting and segmenting rare oil slicks. In the
following section, we will briefly describe the
main components of Mask-RCNN architecture.

i. Backbone Architecture and Region
Proposal Network

The backbone is a Feature Pyramid Network
(FPN). It extracts rich semantic features at all
scale levels, combining low-resolution seman-
tically strong features with high-resolution se-
mantically weak features via a top-down path-
way and lateral connections. The multi-scale
description capability is especially important
as the slicks have the property of having differ-
ent sizes and shapes. This fact typically raises
a huge challenge for deep learning that is only
slightly invariant to scale. For the multimedia
object detection challenge, Mask-RCNN relies
on a backbone that is pre-trained on a classifi-
cation problem. It is not possible, however, to
provide such pre-training on SAR data at this
time.
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(a) Input Envisat image

(b) Resulting bounding box,associated masks and classes.

Figure 3: Example of application of the Mask-RCNN
approach on an Envisat SAR image(2002).

ii. Head Architecture

We then propose to consider transfer learning
relying on a multimedia pre-trained backbone,
regardless of the difference between RGB and
SAR images. The first layers of a deep neural
network extract generic features that can be
adapted to a variety of image analysis prob-
lems [37]. However, due to the discrepancy
between multimedia RGB images and SAR im-
ages, a domain adaptation is required to fine-
tune the backbone to our problem at a low
learning rate. We rely on ResNet (50 or 101)
backbones that improved the original version
of Mask-RCNN [32]. Besides, ResNet is also
recognized as a good choice in a variety of
transfer case studies [32]. This raises the ques-
tion: can we rely on a pre-trained network

to transfer learned features from one domain
to another and perform domain adaptation to
obtain relevant features and perform accurate
detection?

IV. SAR data sets description and

performance assessment

In the present work, we consider Synthetic
Aperture Radar (SAR) data from both Envisat
and Sentinel-1 sensors. Some of the main SAR
characteristics are the following: it relies on
electromagnetic scattering, it provides high-
resolution and large-sized data and it is altered
by speckle noise [35]. These characteristics
make it challenging to interpret SAR images
and detect the oil targets, consuming a lot of
manual work [4]. However, the huge amount
of annotated data collected along time can be
used to train an automatic detector in a super-
vised way.

i. Data Acquisition

The methodologies and the results presented
in the following are based on a database of
about two thousand SAR images collected be-
tween the years 2002 and 2019 from the Euro-
pean Space Agency (ESA) missions: Envisat
and Sentinel-1. These images are acquired
in several areas along the acquisition period,
mainly near Africa, which represents various
geographical and meteorological contexts. Ta-
ble 3 summarizes the SAR data used, their
spatial resolution, and the acquisition period.

Table 3: SAR Sensors.

Sensor Pixel Spacing(m) Acquisition Period

Envisat 75 2002-2019
Sentinel-1 10 2002-2019

Fig.4 illustrates the pixel value distributions
difference between slick and the other areas,
for both Envisat and Sentinel-1 data. These
curves are computed on interpreted SAR im-
ages from Envisat and Sentinel-1 images from
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4 study areas. Fig.4(a) shows the histograms
of two SAR images containing slicks (Envisat
(left) and Sentinel (right)). We can observe that
the shape of Envisat’s pixel histogram (in red)
is different from that of Sentinel-1 (blue). Be-
sides, as shown in Fig.4 (b,c) when comparing
the histograms of slick and not slick pixels for
both sensors, one observes that the distribu-
tions are different. One could then expect that
a model dedicated to a given sensor is not di-
rectly applied to the images produced by the
other sensor.

(a) Histogram of slick image.

(b) Slick pixels histogram.

(c) Slick free pixels histogram.

Figure 4: Difference between the histogram of
Envisat(left)/Sentinel-1(right).

ii. Human Experts Annotations

The remote sensing specialists at Total com-
pany have provided manual detection of the
oil slicks, where each slick is labeled. These op-
erators are experts, trained on the task and can
make the difference between natural oil slicks,
spills and lookalikes based on the visual iden-

Figure 5: Example of manual annotation of image inter-
preters on an Envisat SAR 2002 image, oil
seeps (red) and oil spill (blue)

tification of dark areas. The slick assessment is
based on SAR images and external information
used as a support during the analysis such as
wind speed and nearby oil rigs and ships. Fig.5
shows an association of SAR data with an ex-
ample of slick annotation of image interpreters.
The red annotations present seeps and the blue
one’s present spills. Note that lookalikes can
be seen but are not annotated by experts.

iii. Datasets Pre-Processing

From raw SAR images to SAR images provided
to human experts or machine learning algo-
rithms, processing flow is established and il-
lustrated in figure 6. The related sub processes
are summarized as follows:

Pre-processing is a necessary step of
pre-processing applied to the raw N1 images.
Pre-processing consists of transformations of
low-level SAR data to improve the qualitative
and quantitative interpretation of image
components. Integrated into a standardized
pipeline, it includes geometric, radiometric
and atmospheric corrections, as well as
intensity level correction. The geo-referencing
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Figure 6: Flowchart for SAR data pre-processing

step comes afterward, it is an important
step that realizes the correspondence with
the requirements of GIS (geo-referenced
information systems) [12].

Ground Truth (GT) Integration: aims to
associate each SAR image with the correspond-
ing human expert slick annotations to serve
both the training and validation steps. A
class label is associated with each pixel in the
SAR image and all instances of the slick are
differentiated.

Training and Validation Datasets Splitting:
involves precise data selection. Two strategies
are tested, the first is to select N geographic
areas (called studies) for the training and
M others for the validation dataset. The
second consists in mixing the geographi-
cal areas in the two sets of training and
validation (but avoiding the corresponding
image redundancies). The objective is to
understand the impact of geographic vari-
ability on the generalizability of the model.

Note that ground and coastal areas are re-
moved thus avoiding ground patterns learning.

Image Crops Sampling: the last step is to
create image crops based on the large SAR im-
ages. Being aware that a neural network has
a limited field of view and requires a large
amount of memory, the size of the crop must
be larger than the receiving field while still
allowing the model to fit into a given process-
ing device, typically a GPU with 16 Gb of lo-
cal memory. Besides, the selected crops must
present the diversity of data to the network
while maintaining a certain balance between
classes. Then, crop selection is based on ran-
dom region sampling in large images. These
crops are then checked by filters. All the crops
containing a given ratio of slick pixels are pre-
served while only a few free slick crops are
selected if they contain probable lookalikes.
Since these areas are not annotated but have a
higher variance of pixel values than the other
free areas, their selection is based on a min-
imum SAR pixel variance filter. Since these
areas are not annotated but have a higher vari-
ance of pixel values than the other free areas,
their selection is based on a minimum SAR
pixel variance. A random selection is then
applied to limit their quantity compared to
slicks crop in the dataset. Data augmentation
is performed in order to artificially increase the
variability of the data. It consists of random
horizontal and vertical flips [34] and noise ad-
dition. This noise is a null Gaussian mean, it
effectively distorts the characteristics of high-
frequency elements. Learning the latter can
generate an over-fitting [23].

iv. Performance Metrics

We consider a task of object instance detection
and segmentation. Given our slick instance-
level annotated datasets, we rely on the clas-
sical metrics in the domain. The notation of
the metrics used for the evaluation is as fol-
lows : False Positive (FP), False Negative (FN),
True Positive (TP) and True Negative (TN). The
following metrics are calculated :
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• Intersection-over-Union (IoU): measures the
compliance between the masks positioning
and size.
IoU(Y, Ŷ) = TP

TP+FN+FP = Area o f Overlap
Area o f Union

, where Y is the prediction and Ŷ is the
Ground truth (GT). The IoU can also serve
as a good indicator for segmentation, but it
cannot tell us how good are the obtained de-
tection results. We consider that the slick is
detected even with a low IoU score (partial
detection).

• The pixel confusion matrix.

V. Experimental Design

Our experiment plan has two main objectives,
where the first is to study the impact of the
training/validation dataset selection strategy.
And the second is to study the network archi-
tecture, hyperparameters and learning strate-
gies.

i. Selection strategy of train-
ing/validation datasets

The last two steps of the data processing shown
in Fig. 6 are set to study the impact of the
following parameters :

• Selection of SAR data sensors : Envisat
and Sentinel-1 have different sensors be-
haviors such as the resolution and pixel
value distributions.

• Selection of data acquisition areas : each
area represents different geographical and
meteorological contexts. The characteris-
tics of the slick are directly affected by
meteorological conditions [13].

• Control on the introduction of lookalike
phenomena : either avoid them or intro-
duce a given amount in the training data
set.

ii. Network and Architecture Parame-
ters

We consider the following parameters:

• Network Architecture : we experiment
with the Mask-RCNN model different
backbone architectures (feature map ex-
tractors): ResNet with either 50 or 101 lay-
ers.

• Loss Function : an extreme imbalance be-
tween foreground (slick) and background
(sea) classes during training is observed
as shown in Table 1. To down-weight the
easy examples and to focus the training
on the hard negatives, we use the focal
loss [18] instead of the Cross-Entropy(CE)
for the mask loss computation. A modu-
lating factor is added to the CE loss where
integer λ is defined as 2 in the experiment.

L(pt) = −αt(1 − pt)
λlog(pt) (1)

where pt is the predicted probability of the
class. The role of the parameters αt and
λ is to down-weight the easy examples
and thus focus the optimization on the
hard negatives [18]. When λ = 0, the focal
loss is equivalent to the EC. Increasing λ
also increases the effect of the modulation
factor. In our case, we’ve set it at 2.

VI. Results and Discussion

Fig.7 illustrates the results of the detection on
various SAR images including the presence of
various lookalike phenomena. The model con-
sidered: relies on the Resnet-101 backbone and
trained on data from mixed study areas (train-
ing/validation), it is trained on Envisat data
with the addition of lookalike samples. In these
images, the SAR information is displayed in
red, the expert annotation (GT) in blue and the
prediction in green. The GT overlay associated
with good prediction is shown in light blue.
Visual inspection shows that only a few looka-
likes are detected as slicks (the green color
highlights pixels predicted as slick but are not
slick i.e. False alarms). Most of the slicks are
partially detected, highlighting issues related
to slick boundaries; either the detected slick is
outside GT or is not entirely detected. Almost
all the slicks are detected with a classification
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score higher than 0.9. Tab.4 shows the con-
fusion matrix of the image in the upper right
corner of Fig.7. It shows that 1063 pixels are de-
tected as a slick and they are slick pixels(light
blue color), 281 pixels are detected as slick and
they are sea pixels, 1187 sea pixels are detected
as slick (green color). The subsequent values
are mainly the result of erroneous predictions
on the slick boundaries.

Table 4: The confusion matrix in pixels numbers.

Prediction

Slick Sea

Ground Truth
Slick 1063 1187

Sea 281 259613

An analysis of performance is detailed in the
sequel. We focus our attention only on the most
relevant results, the quantitative measures of
our analysis are reported in Table 5. Experi-
ments have been carried out on both Envisat
and Sentinel-1 satellite images. A first obser-
vation is that absolute performance levels are
different between sensors, due to the change
in their data distributions and their different
characteristics mentioned in Table 3. however,
to preserve the readability of the paper, we will
limit the presentation of the results to a specific
sensor.

• In general, and as shown in Fig.7, there is
an annotation uncertainty about the slick
boundaries at the manual annotation step.
Therefore results cannot be expected to reach
maximum performance measure values. A
maximum mean IoU (mIoU) value of 0.65
is obtained in our experiments. Finding the
border of the objects was indeed the most dif-
ficult problem.This manifests itself in miss-
ing detection and misadjusted edge.

• Introducing a given number of lookalikes in
the training data improves the IoU slick by
42%, yielding less over-fitting, as shown in
Table 5(Envisat A). The first phenomenon

Figure 7: Example of a prediction result on Envisat
SAR images from a set of tests, good predic-
tions (light blue), false alarms (green), non-
detections (dark blue).

targeted by the network when over-fitting is
lookalikes, which are much more important
than the slick ones. Then, their explicit addi-
tion in the train dataset helps avoid them.

• The use of focal loss instead of CE for the
calculation of mask loss shows a slight im-
provement, where a 19% mIoU improvement
is reported in Table 5(Envisat B). Focal loss
compensates for class imbalance and refines
slicks boundaries.

• Table 5(Envisat C) indicates the impact of
the slick position inside the crop. The mIoU
improves by 23% in the mIoU when random-
izing crops position. The sea IoU decreases
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by 19 % in the case of generation of centered
slicks with more false alarms, this may be
due to a bias in the RPN module caused by
the systematic centering of the slick.

• The results indicates that the generalization
of the test set is considerably improved when
training and validation take into account
mixed images from different study areas as
shown in Table 5(Envisat D). The results are
better than in the case where training and
validation are carried out on different stud-
ies from different areas.

• Using the deeper ResNet backbone (Resnet-
101) architecture yields better mIoU perfor-
mance as shown in Table 5(Envisat E). Con-
clusions are similar to [24].

• The ImageNet pre-trained weights yield a
slightly better result than the Coco pre-
trained weights. This may be due to the
variety in the object sizes in the ImageNet
dataset as shown in Table 5(Sentinel-1 F).

• Networks trained on Envisat data perform
slightly better than those trained on Sentinel-
1 data. This can be observed by com-
paring Envisat based measurements with
those based on Sentinel-1 as shown in Ta-
ble 5. However, the sensors areas and pre-
processing are different and Envisat benefit
from a longer experience such that a more
dedicated study must be conducted before
drawing more comparison.

• As illustrated in Fig.7, a large slick may be
detected as different slick instances. Differ-
ent hyper-parameters impact on this issue,
mainly the mask shape size and the RPN an-
chor scales. Morphological post-processing
can be carried out to optimize large target
detection.

VII. Conclusion and Future works

Introducing deep learning in the field of
HSE(Health Security Environment) field is a
research trend. In this paper, a specific effort
has been placed to study the deep SAR data in-
stance segmentation method. We demonstrate
that the Mask-RCNN instance segmentation

Table 5: Multi-criteria performance measures on the test
dataset for different configurations

Name IoU Sea IoU Slick mIoU
Envisat A
With lookalikes 0.84 0.5 0.52
Without lookalikes 0.99 0.35 0.65

Envisat B
Focal loss 0.95 0.49 0.62
CE loss 0.83 0.49 0.52

Envisat C
Centered slick 0.83 0.49 0.52
Random slick 0.99 0.32 0.64

Envisat D
Mixed areas 0.88 0.49 0.56
Not mixed areas 0.73 0.49 0.45

Envisat E
ResNet101 0.99 0.35 0.65
ResNet50 0.99 0.02 0.51

Sentinel-1 F
COCO weights 0.97 0.25 0.56
ImageNet weights 0.97 0.27 0.56

Experimental comparison results are obtained
during training with specific hyper-parameters.

Envisat A mixes study areas or restricts training to
specific areas, Envisat B shows the impact of the
ResNet backbone complexity, Envisat C indicates

the impact of introducing lookalikes in the training
data, Envisat D compares the effect of changing the

mask loss, Envisat E presents the effect of slick
position within the images and Sentinel-1 E reports

the effect of the pre-trained weights.

approach, although primarily designed with
object detection, object localization and seg-
mentation of natural image instances, can be
used to produce a promising ability for auto-
matic detection of the offshore oil slick, under
different weather conditions and in a variety
of locations.

Our future work will focus on three main
directions: (1) Improving the dataset and its ef-
ficiency by adding more useful information
such as meteorological information and oil
platforms and pipeline position. (2) A full
analysis of model optimization and limitation
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of over-fitting and edge problems. (3) An
exploration of the performance not only for
detecting but also characterizing offshore oil
slick(seep, spill).
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