Pierre-Adrien Tahay 
email: pierre-adrien.tahay@univ-lorraine.fr
  
Discrete correlation of order 2 of generalized Rudin-Shapiro sequences on alphabets of arbitrary size

Keywords: Mathematics Subject Classification: 11A63, 11K31, 68R15 discrete correlation, Rudin-Shapiro sequence, di erence matrix, exponential sums

.

Example 3. From the table of the finite field F 8 ƒ F 2 [X]/(X 3 + X +1), we obtain the following matrix of D(8, 8, Z 3

2 ):

Q

I Introduction

In 1997 and 1998, Mauduit and Sárközy published two papers [START_REF] Mauduit | On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol[END_REF][START_REF]On finite pseudorandom binary sequences[END_REF] about pseudorandom sequences, i.e., deterministic sequences on finite alphabets sharing similar properties with random sequences. Various results, in particular the pseudorandomness of the Legendre symbol and the correlation of Champernowne, Thue-Morse and Rudin-Shapiro (or Golay-Rudin-Shapiro) sequences have been established. There exists a large literature on the subject. We refer to the recent The aim of this paper is to construct a large class of deterministic sequences over an alphabet that generalize the Rudin-Shapiro sequence. Let us begin by reminding its definition. Definition 2 ([3] p.78). The Rudin-Shapiro (or Golay-Rudin-Shapiro) sequence (a n ) n>0 = 0, 0, 0, 1, 0, 0, 1, 0, . . . is defined for all n oe N by a n = (number of blocks "11" in the binary representation of n) mod 2.

Remark 2 ([3] p.79). It is easy to prove the following equivalent definition:

a 2n = a n and a 2n+1 = Y ] [ (a n + 1) mod 2 if n © 1 (mod 2), a n if n © 0 (mod 2).
Thus, the Rudin-Shapiro sequence can be defined as follows:

a 0 = 0 and a 2n+j = (a n + g(j, n)) mod 2

with g(j, n) = Y ] [ 1, if j = 1, n © 1 (mod 2), 0, else.
From this observation, Grant, Shallit, and Stoll [START_REF] Grant | Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences[END_REF] suggested a definition of generalized Rudin-Shapiro sequences.

Definition 3. Let g : {0, 1, . . . , k ≠ 1} ◊ Z ≠ae Z (j, n) ' ≠ae g(j, n)

be such that for each j, the function n ' ae g(j, n) is periodic with period k. Moreover, let g be such that for all integers u, i oe N with 0 AE u < u + i AE k ≠ 1 we have

{(g(u + i, n) ≠ g(u, n)) mod k : 0 AE n AE k ≠ 1} = {0, 1, . . . , k ≠ 1}.
We call a sequence (â(n)) nØ0 over the alphabet {0, 1, . . . , k ≠ 1} a generalized Rudin-Shapiro sequence if there exists a sequence of integers (a(n)) nØ0 such that â(n) © a(n) mod k and

a(nk + j) = a(n) + g(j, n) for 0 AE j AE k ≠ 1, n Ø 1.
Remark 3. In order to define completely the sequence, we can fix (arbitrarily) the first values a(0), . . . , a(k ≠ 1) and the others are obtained recursively by the last relation.

Remark 4. Allouche and Bousquet-Mélou [START_REF] Allouche | Facteurs des suites de Rudin-Shapiro généralisées[END_REF] studied in detail a generalization of the Rudin-Shapiro sequence within the framework of binary alphabets and paperfolding sequences. Rider [START_REF] Rider | Transformations of Fourier coe cients[END_REF] defined a first generalization of the Rudin-Shapiro sequence over alphabets such that the size is a prime number, and M. Que élec [START_REF] Que | Une nouvelle propriété des suites de Rudin-Shapiro[END_REF] extended the definition for alphabets of arbitrary size and studied its spectral measure. In the definition introduced by Grant et al., these sequences correspond to the special case when the size of the alphabet is a prime number and the function g is defined by g(j, n) = jn mod k (see Example 2). Allouche and Liardet [START_REF] Allouche | Generalized Rudin-Shapiro sequences[END_REF] also extended Que élec's construction and proved that their sequences, as the classical Rudin-Shapiro sequence, still have the Lebesgue measure as spectral measure. In this paper, we do not look at spectral measure properties, but only at properties about discrete correlation of order 2, taking up the same point of view as Grant et al. [START_REF] Grant | Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences[END_REF].

The two main results of Grant, Shallit, and Stoll [START_REF] Grant | Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences[END_REF] are as follows.

Theorem 1 (Theorem 3.1 of [START_REF] Grant | Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences[END_REF]). Let (â(n)) nØ0 be a generalized Rudin-Shapiro sequence over {0, 1, . . . , k ≠ 1} with k prime. Moreover, let 0 AE r 1 < r 2 . Then, as N ae OE, we have

ÿ n<N "(n + r 1 , n + r 2 ) = N 3 1 ≠ 1 k 4 + O k 3 (r 2 ≠ r 1 )log N r 2 ≠ r 1 + r 2 4 .
We note that the main term lines up exactly with the probabilistic one.

With this result, one can also prove that the main term is asymptotically larger than the error term as long as r 2 = o(N ) (Corollary 3.2 of [START_REF] Grant | Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences[END_REF]). Now, using a bijection between

Z p 1 ◊• • •◊Z p d and Z p 1 •••p d , it
is possible to construct a sequence over an alphabet whose size is squarefree and obtain similar properties about the correlation of order 2 of the sequence.

Theorem 2 (Theorem 3.3 of [5]). Let d Ø 2 and let k = p 1 • • • p d be a product of pairwise distinct primes. Let c 1 = 1 and c i = p 1 • • • p i≠1 for 2 AE i AE d. We define the sequence (â(n)) nØ0 by â(n) © a(n) mod k, where (a(n)) nØ0 is defined by a(n) = c 1 a 1 (n)+• • •+c d a d (n) and (a i (n)) nØ0 satisfies the recursive relation a i (p i n + j) = a i (n) + g i (j, n), 1 AE i AE d,
for n Ø 1 and 0 AE j AE p i ≠ 1 and where the g i are functions which satisfy the conditions of Definition 3. Moreover, let 0 AE r 1 < r 2 and 0 < " < 1. Then, as N ae OE we have,

ÿ n<N "(n + r 1 , n + r 2 ) = N 3 1 ≠ 1 k 4 + O k A (r 2 ≠ r 1 )N 1≠ " d + (r 2 ≠ r 1 )N 1≠" log N " d r 2 ≠ r 1 + N " + r 2 B .
Similarly, with this result, one can also prove that the main term is asymptotically larger than the error term as long as [START_REF] Grant | Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences[END_REF]).

r 2 = o(N 1 d ) (Corollary 3.4 of
Remark 5. The previous construction cannot be used for an alphabet whose size is not squarefree because the proof of Theorem 2 requires the result of Theorem 1 that is only valid for a prime number and not for a power of a prime number. To overcome this obstacle, we use new constructions obtained via di erence matrices. We develop this crucial point in the following section, in order to generalize these two results to an alphabet of arbitrary size.

The rest of the paper is structured as follows. In Section III we introduce di erence matrices and give several examples. In Section IV we present our two main results (Theorem 4 and Theorem 5), in Section V we give their proofs and we end the paper with some open questions in Section VI.

III Di erence matrices

Di erence matrices play a central role in our constructions to generalize the previous results. We refer to [START_REF] Hedayat | Orthogonal Arrays[END_REF] and [START_REF] Lampio | Classification of di erence matrices and complex Hadamard matrices[END_REF] for an overview on di erence matrices. We here give an introduction to the theory of this kind of matrices with some examples. We exchange the role of the rows and the columns in comparison with [START_REF] Hedayat | Orthogonal Arrays[END_REF] and [START_REF] Lampio | Classification of di erence matrices and complex Hadamard matrices[END_REF].

Definition 4 ([6, 9]). Let (G, +) be a finite abelian group of order s. A di erence matrix D = (d ij ) of size r ◊ c with entries in G, is a matrix such that for all i and j with 1 AE i, j AE c, i " = j, the set

{d li ≠ d lj : 1 AE l AE r} contains every element of G equally often. Example 1. Q c a 0 0 0 0 1 2 0 2 1 R d b is a di erence matrix over Z 3 .
We let D(r, c, G) denote the set of all di erence matrices of size r ◊ c with entries in the group G.

Example 2 (Example 6.3 of [START_REF] Hedayat | Orthogonal Arrays[END_REF]). Let k be a prime number. Then, the square matrix

A = (a ij ) of size k ◊ k defined by a ij = ij mod k for all 1 AE i, j AE k is a matrix in D(k, k, Z k ).
This result ensures that it is possible to build explicitly an example of function g in the sense of Definition 3 when the size of the alphabet is a prime number. Every set {(g(u 

+ i, n) ≠ g(u, n)) mod k : 0 AE n AE k ≠ 1}
M = Q c c c a (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 1) (1, 0) (1, 1) (0, 0) (1, 0) (1, 1) (0, 1) (0, 0) (1, 1) (0, 1) (1, 0) R d d d b (1) 
is an element of this set, see [6, p.22].

More generally, we have the following result. For the sake of completeness we give below an explicit proof. Proof. Let F p k be the finite field with p k elements. Let the elements be represented by polynomials

-0 + -1 x + • • • + -n≠1 x n≠1 + • • • + -k≠1 x k≠1
where -0 , . . . , -k≠1 oe Z p . We may regard the finite field F p n as an additive subgroup of F p k by identifying its elements with polynomials of the form -0 +-

1 x+• • •+-n≠1 x n≠1
. (The multiplication of elements in F p n is in general di erent from the one in F p k but it is not a problem here, because we will only use the additive structure of F p n ). Let D ú be the multiplication table of F p k and let " : F p k ae F p n be the map which maps the element

-0 +-1 x+• • •+-k≠1 x k≠1 to the element -0 +-1 x+• • •+-n≠1 x n≠1 .
We apply " to each element of the table D ú and we let D denote the new table obtained in this way. Then D is a di erence matrix of

D(p k , p k , F p n ). Indeed, by construction, D is a matrix of size p k ◊ p k with entries in F p n .
Let -0 , . . . ,p k ≠1 be the elements of F p k . Then, the di erence of two columns of D will have the form

Q c c a "(--0 ) . . . "(--p k ≠1 ) R d d b ≠ Q c c a "("-0 ) . . . "("-p k ≠1 ) R d d b
where -, " oe F p k , -" = ". Moreover, by definition of " we have "(-

-i )≠"("-i ) = "(--i ≠"-i ). The di erence of two columns is equal to Q c c a "((-≠ ")-0 ) . . . "((-≠ ")-p k ≠1 ) R d d b .
As each element of F p k appears once among the elements (-≠ ")i , 0 AE i < p k , every element of F p k appears p k≠n times among the elements "((-

≠ ")-i ), 0 AE i < p k .
The existence of di erence matrices has been extensively studied. Proposition 1 gives a method for building explicitly a di erence matrix with given parameters. However, not all di erence matrices are obtained in this way.

Lampio and Östergård [START_REF] Lampio | Classification of di erence matrices and complex Hadamard matrices[END_REF][START_REF] Lampio | Classification of di erence matrices over cyclic groups[END_REF] propose a classification of di erence matrices. It is based on an equivalence relation in the set of all di erence matrices, defined by the following operations that generate a di erence matrix with the same parameters (the numbers of rows, the numbers of columns, and the underlying group).

1. Permuting the order of rows.

2. Permuting the order of columns.

3. Adding a fixed element of the group G to a row.

4. Adding a fixed element of the group G to a column.

5.

Applying an automorphism of the group G to every element in the di erence matrix.

Definition 5 ([10]

). We say that two di erence matrices A and B are equivalent, denoted by A ≥ = B, if they have the same parameters and B can be generated from A by applying Operations 1-5 a finite number of times.

The relation ≥ = is an equivalence relation in the set of all di erence matrices, and each equivalence class is a subset of the set of di erence matrices with the same parameters.

Definition 6 ([10]

). Let G be an abelian group with some total order AE G on the elements, where the identity element of G is the minimal element. A di erence matrix of D(r, c, G) is an order-normalized di erence matrix if 1. the first row contains only the identity element, 2. the first column contains only the identity element, 3. the rows are in ascending lexicographic order from top to bottom (imposed by AE G on row vectors), and 4. the columns are in ascending lexicographic order from left to right (imposed by AE G on column vectors).

Theorem 3 ([10]

). Every di erence matrix of D(r, c, G) is equivalent to an ordernormalized di erence matrix of D(r, c, G).

The proof consists in using Operations 1,2,3 and 4 that define the equivalence relation in order to build an order-normalized di erence matrix from a given di erence matrix of D(r, c, G).

Remark 6. This result implies that it su ces to study only order-normalized di erence matrices to investigate the existence of a di erence matrix with given parameters.

Remark 7. The proof of Proposition 1 gives a construction of di erence matrices which already meet conditions 1 and 2 in the definition of order-normalized di erence matrices. Then, by permuting rows and columns we can obtain the order-normalized di erence matrices that are in the same equivalence class.

Table 2 of [START_REF] Lampio | Classification of di erence matrices over cyclic groups[END_REF] gives the number of equivalence classes of di erence matrices according to the parameters.

Example 5. In D(9, 9, Z 3 ), there are two equivalence classes of di erence matrices.

A representative of each equivalence class is given in [START_REF] Lampio | Classification of di erence matrices over cyclic groups[END_REF]:

Q c c c c c c c c c c c c c c c a 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 0 0 0 2 2 2 1 1 1 0 1 2 0 1 2 0 1 2 0 1 2 1 2 0 2 0 1 0 1 2 2 0 1 1 2 0 0 2 1 0 2 1 0 2 1 0 2 1 1 0 2 2 1 0 0 2 1 2 1 0 1 0 2 R d d d d d d d d d d d d d d d b Q c c c c c c c c c c c c c c c a 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 0 0 0 2 2 2 1 1 1 0 1 2 0 1 2 0 1 2 0 1 2 1 2 0 2 0 1 0 1 2 2 0 1 1 2 0 0 2 1 0 2 1 1 0 2 0 2 1 1 0 2 0 2 1 0 2 1 2 1 0 2 1 0 R d d d d d d d d d d d d d d d b
Remark 8. By permuting the rows, the matrix obtained in Example 4 is equivalent to the order-normalized di erence matrix on the left in Example 5. Therefore, the matrix of the second equivalence class is necessarily obtained otherwise.

We are now ready to define a generalization of the Rudin-Shapiro sequence via Proposition 1. It is an extension of the generalization in Definition 3 for powers of prime numbers.

Definition 7. Let p be a prime number, let k Ø 1 and let M = (m ij ) 0AEi<p k 0AEj<p k be a di erence matrix of D(p k , p k , Z k p ). Let g : Z ◊ Z ≠ae Z k p (j, n) ' ≠ae m n mod p k , j mod p k
We let g 1 , . . . , g k denote the functions with values in Z p such that g(j, n) = (g 1 (j, n), . . . , g k (j, n)).

We say that the sequence defined by (a(n)) nØ0 = (a 1 (n), . . . , a k (n)) nØ0 and

a(p k n + j) = a(n) + g(j, n), 0 AE j AE p k ≠ 1, n Ø 0, (j, n) " = (0, 0)
is the Rudin-Shapiro sequence associated to the matrix M .

Remark 9. We can fix arbitrarily the value of a(0) and the other terms are defined recursively.

Remark 10. When the size of the alphabet is p, with p a prime, Definition 3 and Definition 7 coincide, except possibly for the p first values of the sequence.

Remark 11. By definition of g, for all integers u and i with 0 AE u < u+i AE p k ≠1 the set

Ó (g(u + i, n) ≠ g(u, n)) : 0 AE n AE p k ≠ 1 Ô is equal to the set of the elements of Z k p .

IV Main results

We have already seen results about the correlation of order 2 in the case where the size of the alphabet is a prime number or a squarefree product of prime numbers (Theorem 1 and Theorem 2). In this part, we give a similar result for an alphabet of any size. First, we give a result for the alphabets whose size is a power of a prime number. The proof follows the lines of Theorem 1, we give the full details in Section V for a better understanding and in order that the paper is self-contained.

Theorem 4. Let p be a prime number and k Ø 1. Let M be a di erence matrix in D(p k , p k , Z k p ) and let (a(n)) nØ0 be the Rudin-Shapiro sequence associated to M . Moreover, let 0 AE r 1 < r 2 . Then, as N ae OE, we have

ÿ n<N "(n + r 1 , n + r 2 ) = N A 1 ≠ 1 p k B + O p,k 3 (r 2 ≠ r 1 )log N r 2 ≠ r 1 + r 2 4 .
Example 6. Let (ã(n)) nØ0 be the sequence obtained from the generalized Rudin-Shapiro sequence (a(n)) nØ0 associated to the matrix (1) over D(4, 4, Z 2 ◊ Z 2 ) by recoding (0, 0) to 0, (0, 1) to 1, (1, 0) to 2 and (1, 1) to 3. So, (ã(n)) nØ0 is a sequence over the alphabet {0, 1, 2, 3}, whose first terms are given below.

(ã(n)) nØ0 = 0, 0, 0, 0, 0, 1, 2, 3, 0, 2, 3, 1, 0, 3, 1, 2, 0, 0, 0, 0, 1, 0, 3, 2, 2, 0, 1, 3, . . .

Moreover, let 0 AE r 1 < r 2 .
Then, as N ae OE, we have

ÿ n<N "(n + r 1 , n + r 2 ) = 3 4 N + O 3 (r 2 ≠ r 1 )log N r 2 ≠ r 1 + r 2 4 .
Remark 12. It is possible to use a similar recoding for any choice of p k . We have also the following corollary.

Corollary 1. In the setting of Theorem 4, if r 2 = o(N ) then

ÿ n<N "(n + r 1 , n + r 2 ) ≥ N A 1 ≠ 1 p k B .
Consequently 

= p k 1 1 • • • p k d d . For every 1 AE i AE d, we consider a di erence matrix M i of D(p k i i , p k i i , Z k i p i ), to which we associate a function g i (j, n) = (g i 1 (j, n), . . . , g i k i (j, n)) and a sequence a i (n) = (a i 1 (n), . . . , a i k i (n))
as previously defined. We define the sequence (â(n)) nØ0 by

â(n) = (a 1 (n) mod p 1 , . . . , a d (n) mod p d ).
Moreover, let 0 AE r 1 < r 2 . Then, as N ae OE, we have

ÿ n<N "(n + r 1 , n + r 2 ) = N A 1 ≠ 1 k B + O k Q a Q a (r 2 ≠ r 1 )log N 1 d r 2 ≠ r 1 + r 2 R b N d≠1 d R b .
In the same way as before, we obtain the following corollary.

Corollary 2. In the setting of Theorem 4, if

r 2 = o(N 1 d ) then ÿ n<N "(n + r 1 , n + r 2 ) ≥ N A 1 ≠ 1 k B .
Remark 13. By comparing the error terms of Theorems 2 and 5 when the size of the alphabet is squarefree, we observe that when r 2 ≠ r 1 = O(1), the optimal choice of " in Theorem 2 is achieved when 1 ≠ " d = ", i.e., " = d d+1 . This gives an error term bound by N d+1) ), our result is an improvement for the alphabets where the size is squarefree and with at least two prime numbers.

V Proofs V.1 Proof of Theorem 4

For the proof of Theorem 4, we need the following lemma.

Lemma 1.

Let G be a di erence matrix of D(p k , p k , Z k p ). We let G 1 , . . . , G k denote the matrices obtained from G by taking respectively the first,. . ., the k-th coordinate. Let 0 AE h 1 , . . . , h k < p with (h 1 , . . . , h k ) " = (0, . . . , 0). Then the matrix

H = h 1 G 1 + • • • + h k G k is a di erence matrix of D(p k , p k , Z p ).
Proof. We let (g 1 (j, n), . . . , g k (j, n)) denote the element of G at the j-th column and the n-th row. The di erence between two distinct columns i and j of H can be written as

C i,j = Q c a h 1 (g 1 (j, 0) ≠ g 1 (i, 0)) + • • • + h k (g k (j, 0) ≠ g k (i, 0)) . . . h 1 (g 1 (j, p k ≠ 1) ≠ g 1 (i, p k ≠ 1)) + • • • + h k (g k (j, p k ≠ 1) ≠ g k (i, p k ≠ 1)) R d b .
As G is a di erence matrix, we have

Ó (g 1 (j, n) ≠ g 1 (i, n), . . . , g k (j, n) ≠ g k (i, n)), 0 AE n < p k Ô = Z k p .
Therefore, the elements that appear in C i,j are all the elements of the form

h 1 c 1 + • • • + h k c k , for (c 1 , . . . , c k ) oe Z k p .
Thus, in C i,j , for all d oe Z p , each element appears

# Ó (c 1 , . . . , c k ) oe Z k p : h 1 c 1 + • • • + h k c k = d Ô = p k≠1 times.
Consequently, H is a di erence matrix of D(p k , p k , Z p ). Now, we have all the tools to prove Theorem 4.

Proof. Let 0 AE r 1 < r 2 . We have

ÿ n<N "(n + r 1 , n + r 2 ) = N ≠ ÿ n<N 1 p k k Ÿ i=1 ÿ 0AEh i <p e A h i p (a i (n + r 2 ) ≠ a i (n + r 1 )) B = N ≠ ÿ n<N 1 p k ÿ 0AEh 1 ,...,h k <p e A 1 p k ÿ i=1 h i (a i (n + r 2 ) ≠ a i (n + r 1 )) B = N A 1 ≠ 1 p k B ≠ 1 p k ÿ 0AEh 1 ,...,h k <p (h 1 ,...,h k )" =(0,...,0) S N (h 1 , . . . , h k ), with S N (h 1 , . . . , h k ) = ÿ n<N e A 1 p k ÿ i=1 h i (a i (n + r 2 ) ≠ a i (n + r 1 )) B . Put r = r 2 ≠ r 1 .
It su ces to show that for all 0 AE h 1 , . . . , h k < p with (h 1 , . . . , h k ) " = (0, . . . , 0) we have

S N (h 1 , . . . , h k ) = O p,k A rlog N r + r B . Let b(n) = h 1 a 1 (n) + • • • + h k a k (n) and g ú (j, n) = h 1 g 1 (j, n) + • • • + h k g k (j, n) so that b(p k n + j) = b(n) + g ú (j, n).
By Lemma 1, for all integers u and i such that

0 AE u < u + i AE p k ≠ 1, the set Ó (g ú (u + i, n) ≠ g ú (u, n)) : 0 AE n AE p k ≠ 1 Ô contains p k≠1 times each element of Z p . We define " N (r, f ) = ÿ n<N e A b(n + r) ≠ b(n) p B e A f (n) p B ,
where f : N ae Z is an arbitrary periodic function with period p k . Let us begin by showing that " N (1, f) = O(logN ) for N > p k . In order to show this, we decompose n modulo p k . For this purpose, we replace N by p k N + j, with 0 AE j AE p k ≠ 1. Then, we have

" p k N +j (1, f) = ÿ n<p k N +j e A 1 p (b(n + 1) ≠ b(n)) B e A f (n) p B = p k ≠1 ÿ u=0 ÿ p k n+u<p k N +j e A 1 p (b(p k n + u + 1) ≠ b(p k n + u)) B e A f (u) p B = j≠1 ÿ u=0 e A 1 p (b(p k N + u + 1) ≠ b(p k N + u)) B e A f (u) p B ( 2 
)
+ p k ≠2 ÿ u=0 e A f (u) p B ÿ 0AEn<N e A 1 p (b(p k n + u + 1) ≠ b(p k n + u)) B ( 3 
)
+ e A f (p k ≠ 1) p B ÿ 0AEn<N e A 1 p (b(p k n + p k ) ≠ b(p k n + p k ≠ 1) B . ( 4 
)
The term ( 2) is trivially bounded by j AE p k ≠ 1.

For (3) we have for

0 AE u AE p k ≠ 2, ÿ 0AEn<N e A 1 p (b(p k n + u + 1) ≠ b(p k n + u)) B = ÿ 0AEn<N e A 1 p (b(n) + g ú (u + 1, n) ≠ b(n) ≠ g ú (u, n)) B = ÿ 0AEn<N e A 1 p (g ú (u + 1, n) ≠ g ú (u, n)) B .
For 0 AE n AE p k ≠ 1 and fixed u, the di erences

g ú (u + 1, n) ≠ g ú (u, n) take p k≠1
times every value of Z p . Therefore, this sum is bounded by

p k 2 . Consequently, the sum (3) is bounded by (p k ≠ 1)p k 2 .
Finally, for (4) we have

ÿ 0AEn<N e A 1 p (b(p k n + p k ) ≠ b(p k n + p k ≠ 1) B = ÿ 0AEn<N e A 1 p (b(n + 1) + g ú (0, n + 1) ≠ b(n) ≠ g ú (p k ≠ 1, n) B = ÿ 0AEn<N e A 1 p (b(n + 1) ≠ b(n)) B e A f (n) p B ,
where

f (n) = g ú (0, n + 1) ≠ g ú (p k ≠ 1, n) is periodic with period p k .
We deduce that |"

p k N +j (1, f)| AE |" N (1, f )| + (p k ≠ 1)(p k + 2) 2 .
Moreover, since |" n (1, f)| AE p k ≠ 1 for 1 AE n AE p k ≠ 1 and all periodic functions f with period p k , it follows by induction that for all periodic functions f with period p k and for all N > p k ,

|" N (1, f)| AE (p k ≠ 1)(p k + 2) 2klogp logN + p k ≠ 1. (5) 
Indeed, suppose that for N > p k we have ( 5) for all periodic functions f with period p k . Then, let f be a periodic function with period p k and 0 AE j AE p k ≠ 1.

We have

|" p k N +j (1, f)| AE |" N (1, f )| + (p k ≠ 1)(p k + 2) 2 AE (p k ≠ 1)(p k + 2) 2klogp logN + p k ≠ 1 + (p k ≠ 1)(p k + 2) 2 AE (p k ≠ 1)(p k + 2) 2klogp (logN + klogp) + p k ≠ 1 AE (p k ≠ 1)(p k + 2) 2klogp log(p k N + j) + p k ≠ 1.
We note that the sum

" N (0, f) = ÿ n<N e A f (n) p B satisfies |" N (0, f)| AE p k 2 if f ( Ó 0, . . . , p k ≠ 1 Ô ) contains p k≠1 times each element of Z p . (6)
Now, let us consider the general case with r = p k M + i > 0 where M Ø 0 and AE i AE p k ≠ 1 but (M, i) " = (0, 0). We have

" p k N +j (p k M + i, f ) = ÿ n<p k N +j e A 1 p (b(n + p k M + i) ≠ b(n)) B e A f (n) p B = ÿ n<p k N e A 1 p (b(n + p k M + i) ≠ b(n)) B e A f (n) p B + O p,k (1) 
=

p k ≠1 ÿ u=0 ÿ 0AEn<N e A 1 p (b(p k n + u + p k M + i) ≠ b(p k n + u)) B e A f (u) p B + O p,k (1) 
=

p k ≠1 ÿ u=0 e A f (u) p B ÿ 0AEn<N e A 1 p (b(p k n + u + p k M + i) ≠ b(p k n + u)) B (7) 
+ O p,k (1),
where the implied constant comes from the terms n = N and is bounded by p k ≠ 1.

The last part consists in estimating the sum given in [START_REF] Katz | Sequences with low correlation[END_REF]. First, we suppose that i " = 0. Then

p k ≠1 ÿ u=0 e A f (u) p B ÿ 0AEn<N e A 1 p (b(p k n + u + p k M + i) ≠ b(p k n + u)) B = p k ≠1≠i ÿ u=0 e A f (u) p B ÿ 0AEn<N e A 1 p (b(n + M ) + g ú (u + i, n + M ) ≠ b(n) ≠ g ú (u, n)) B + p k ≠1 ÿ u=p k ≠i e A f (u) p B ◊ ÿ 0AEn<N e A 1 p (b(n + M + 1) + g ú (u + i ≠ p k , n + M + 1) ≠ b(n) ≠ g ú (u, n)) B = p k ≠1≠i ÿ u=0 e A f (u) p B ÿ 0AEn<N e A 1 p (b(n + M ) ≠ b(n)) B e A f 1 (n) p B + p k ≠1 ÿ u=p k ≠i e A f (u) p B ÿ 0AEn<N e A 1 p (b(n + M + 1) ≠ b(n)) B e A f 2 (n) p B , with f 1 (n) = g ú (u + i, n + M ) ≠ g ú (u, n) for 0 AE u AE p k ≠ 1 ≠ i, and f 2 (n) = g ú (u + i ≠ p k , n + M + 1) ≠ g ú (u, n) for p k ≠ i AE u AE p k ≠ 1.
For the sake of simplicity, here and later on, we do not write down the dependency on u of these functions. Thus

- - - - - - p k ≠1 ÿ u=0 e A f (u) p B ÿ 0AEn<N e A 1 p (b(p k n + u + p k M + i) ≠ b(p k n + u)) B - - - - - - AE - - - - - - p k ≠1≠i ÿ u=0 e A f (u) p B " N (M, f 1 ) - - - - - - + - - - - - - p k ≠1 ÿ u=p k ≠i e A f (u) p B " N (M + 1, f 2 ) - - - - - - .
Let f1 and f2 be two functions such that |" N (M, f1 )| = max

0AEuAEp k ≠1≠i |" N (M, f 1 )| and |" N (M, f2 )| = max p k ≠iAEuAEp k ≠1 |" N (M, f 2 )|.
We deduce the following estimate:

|" p k N +j (p k M + i, f )| AE (p k ≠ i)|" N (M, f1 )| + i|" N (M + 1, f2 )| + p k ≠ 1. (8) 
Let us substitute M = 0 in [START_REF] Konieczny | Gowers norms for the Thue-Morse and Rudin-Shapiro sequences[END_REF].

Since i " = 0, the image of the set Ó 0, . . . , p k≠1 Ô by the function

f 1 (n) = g ú (u + i, n) ≠ g ú (u, n) is the multiset {0, . . . , 0 ¸˚˙p k≠1 , . . . , p ≠ 1, . . . , p ≠ 1 ¸˚˙p k≠1 }.
Using ( 5) and ( 6) we therefore get

(p k ≠ i)|" N (0, f1 )| AE (p k ≠ i) ◊ p k 2 .
and

i|" N (1, f2 )| AE i A (p k ≠ 1)(p k + 2) 2klogp logN + p k ≠ 1 B . Therefore, |" p k N +j (i, f )| AE (p k ≠ i) p k 2 + i A (p k ≠ 1)(p k + 2) 2klogp logN + p k ≠ 1 B + p k ≠ 1 AE i A (p k ≠ 1)(p k + 2) 2klogp logN B + (p k ≠ i) p k 2 + i(p k ≠ 1) + p k ≠ 1 AE (p k ≠ 1) 2 (p k + 2) 2klogp logN + p k 2 (p k ≠ i + 2i + 2) ≠ i ≠ 1 AE (p k ≠ 1) 2 (p k + 2) 2klogp logN + p k 2 (2p k + 1) ≠ p k .
Thus, for all 1 AE i AE p k ≠ 1 and all periodic functions f with period p k , we have, for

N > p k , |" N (i, f )| AE (p k ≠ 1) 2 (p k + 2) 2klogp log N p k + p k 2 (2p k + 1) ≠ p k . ( 9 
)
We now establish a bound for i = 0. For 0 AE u AE p k ≠ 1 we have

b(p k n + u + p k M ) ≠ b(p k n + u) = b(n + M ) ≠ b(n) + g ú (u, n + M ) ≠ g ú (u, n)
and therefore, for M " = 0, by ( 7)

|" p k N +j (p k M, f )| AE p k ≠1 ÿ u=0 |" N (M, f 3 )| + p k ≠ 1 (10) 
with 5) and substituting M = 1 in (10), we deduce, for

f 3 (n) = g ú (u, n + M ) ≠ g ú (u, n). Using (
N > p k , |" N (p k , f)| AE p k A (p k ≠ 1)(p k + 2) 2klogp log N p k + p k B .
Hence using [START_REF] Lampio | Classification of di erence matrices and complex Hadamard matrices[END_REF], for all N > p k and for

1 AE i AE p k , |" N (i, f )| AE p k A (p k ≠ 1)(p k + 2) 2klogp log N p k + p k B . ( 11 
)
Using ( 8), we have for

1 AE i AE p k ≠ 1, 0 AE m AE p k(s≠1) (p k ≠ 1) ≠ 1, M = p k(s≠1) + m with s Ø 1,
and for all N > p k(s+1) ,

|" p k N +j (p k (p k(s≠1) + m) + i, f )| AE (p k ≠ i)|" N (p k(s≠1) + m, f1 )| + i|" N (p k(s≠1) + m + 1, f2 )| + p k ≠ 1 AE p k max(|" N (p k(s≠1) + m, f1 )|, |" N (p k(s≠1) + m + 1, f2 )|) + p k ≠ 1.
Let N = p k N 1 + j 1 . Depending on whether p k is a factor or not of p k(s≠1) + m (resp. p k(s≠1) + m + 1), we can use [START_REF] Konieczny | Gowers norms for the Thue-Morse and Rudin-Shapiro sequences[END_REF] or [START_REF] Lampio | Classification of di erence matrices over cyclic groups[END_REF] 

to bound |" p k N 1 +j 1 (p k(s≠1) + m, f1 )| (resp. |" p k N 1 +j 1 (p k(s≠1) + m + 1, f2 )|).
By iterating s times, and using [START_REF] Mauduit | Prime numbers along Rudin-Shapiro sequences[END_REF] for the last bound, we obtain for r = p ks + 1, . . . , p ks + p k ≠ 1, p ks + p k + 1, . . . , p k(s+1) ≠ p k ≠ 1, p k(s+1) ≠ p k + 1, . . . , p k(s+1) ≠ 1 with s Ø 1, and for all N > p k(s+1) ,

|" N (r, f )| AE p ks A p k (p k ≠ 1)(p k + 2) 2klogp log N p k(s+1) + p k + 1 B + s≠1 ÿ j=0 (p k ≠ 1)p kj . ( 12 
)
For r = p ks + p k , p ks + 2p k , . . . , p k(s+1) we use [START_REF] Lampio | Classification of di erence matrices over cyclic groups[END_REF]. Let f3 be a function such that

|" N (M, f3 )| = max 0AEuAEp k ≠1 |" N (M, f 3 )|. Then, we have for all N > p k(s+1) . |" p k N +j (r, f )| AE p k ≠1 ÿ u=0 |" N ( r p k , f 3 )| + p k ≠ 1 AE p k |" N ( r p k , f3 )| + p k ≠ 1.
We can then again iterate (8) or [START_REF] Lampio | Classification of di erence matrices over cyclic groups[END_REF], and [START_REF] Mauduit | Prime numbers along Rudin-Shapiro sequences[END_REF] for the last bound. With ( 11) and ( 12), we deduce for r = p ks + 1, . . . , p k(s+1) with s Ø 0 and for all N > p k(s+1) ,

|" N (r, f )| AE p ks A p k (p k ≠ 1)(p k + 2) 2klogp log N p k(s+1) + p k + 1 B + s≠1 ÿ j=0 (p k ≠ 1)p kj AE p ks A p k (p k ≠ 1)(p k + 2) 2klogp B log N p k(s+1) + p ks (p k + 2) ≠ 1.
Finally, for all N > rp k , we have

|" N (r, f )| AE r A p k (p k ≠ 1)(p k + 2) 2klogp B log N r + r(p k + 2).
This completes the proof of Theorem 4.

V.2 Proof of Theorem 5

Let n oe N. We let [s , -s≠1 , . . . , -1 , -0 ] k denote the standard base-k representation of n, wheres " = 0 is the most significant digit, so that n

= -s k s + -s≠1 k s≠1 + • • • + -1 k + -0 .
We take the convention that -s+1 = 0. For the proof of Theorem 5 we will need the following elementary lemma:

Lemma 2. Let k Ø 2 and let (a(n)) nØ0 be a sequence associated to a generalized Rudin-Shapiro sequence, in the sense of Definition 3, which satisfies the relation

a(nk + j) = a(n) + g(j, n), 0 AE j AE k ≠ 1, n Ø 0, (j, n) " = (0, 0). Then, for n = [-s , -s≠1 , . . . , -1 , -0 ] k we have a(n) = a(-s ) + s≠1 ÿ i=0 g(-i , -i+1 ) = a(0) + s ÿ i=0 g(-i , -i+1 ).
Proof. By definition, the function g is periodic in the second variable with period k. By induction on s, we have

a(n) = a(-s k s + -s≠1 k s≠1 + • • • + -1 k + -0 ) = a(-s k s≠1 + -s≠1 k s≠2 + • • • + -2 k + -1 ) + g(-0 , -1 ) = . . . = a(-s ) + s≠1 ÿ i=0 g(-i , -i+1 ).
Now, since we have a(s ) = a(0) + g(s , 0) = a(0) + g(s , -s+1 ), we deduce

a(n) = a(0) + s ÿ i=0 g(-i , -i+1 ).
We end this section by the proof of Theorem 5.

Proof. Let us begin with some notation. We set r = r 2 ≠ r 1 . Let N be an integer and let b = (b 1 , . . . , b d ), define

P b = {n oe N : 'i oe {1, . . . , d}, n © b i (mod p i s i )} ,
where s i is the unique integer with p i s i AE N

1 d < p i s i +1
. As a first estimate, we have

# {n oe N : n oe P b , n < N} = N r d i=1 p i s i + O(1).
We consider the sets

B = {(b 1 , . . . , b d ) : 0 AE b i < p i s i } , B 0 = {(b 1 , . . . , b d ) : 0 AE b i < p i s i ≠ r} . Fix 1 AE i AE d and 1 AE j AE k i . Now, consider n such that n = n i p i s i + b i where (b 1 , . . . , b d ) oe B 0 . Write b i + r = -Õ s i ≠1,i p i s i ≠1 + -Õ s i ≠2,i p i s i ≠2 + • • • + -Õ 0,i , b i = -s i ≠1,i p i s i ≠1 + -s i ≠2,i p i s i ≠2 + • • • + -0,i , where -‹,i , -Õ ‹,i oe {0, 1, . . . , p i ≠ 1} for 0 AE ‹ < s i . Moreover, consider v i = max(Ÿ : -Õ Ÿ,i " = 0, 0 AE Ÿ AE s i ≠ 1), w i = max(Ÿ : -Ÿ,i " = 0, 0 AE Ÿ AE s i ≠ 1),
which correspond to the uppermost non-zero coe cients in the expansions in base p i . Using the recursive relation of the sequence (a i j (n)) nØ0 , according to Lemma 2 we have on the one hand a i j (n + r) = a i j (n i ) + g i j (-Õ s i ≠1,i , n i ) +

s i ≠2 ÿ ‹=0 g i j (-Õ ‹,i , -Õ ‹+1,i ),
and on the other hand a i j (n) = a i j (n i ) + g i j (s i ≠1,i , n i ) +

s i ≠2 ÿ ‹=0 g i j (-‹,i , -‹+1,i ).
This implies that a i j (n + r) ≠ a i j (n) = g i j (-Õ s i ≠1,i , n i ) +

s i ≠2 ÿ ‹=0 g i j (-Õ ‹,i , -Õ ‹+1,i ) ≠ g i j (-s i ≠1,i , n i ) ≠ s i ≠2 ÿ ‹=0 g i j (-‹,i , -‹+1,i ).
Similarly, since b i + r = [-Õ v i ,i , . . . , -Õ 1,i , -Õ 0,i ] p and b i = [w i ,i , . . . , -1,i , -0,i ] p , and -Õ v i +1,i = 0 andw i +1,i = 0, by definition of v i and w i , we obtain

a i j (b i + r) = a i j (0) + v i ÿ ‹=0 g i j (-Õ ‹,i , -Õ ‹+1,i )
and

a i j (b i ) = a i j (0) + w i ÿ ‹=0 g i j (-‹,i , -‹+1,i ).
Consequently, we have a i j (n + r) ≠ a i j (n) = a i j (b i + r) ≠ a i j (b i ) + µ i,j (b i , r, n i )

where µ i,j (b i , r, n i ) = g i j (-Õ s i ≠1,i , n i ) ≠ g i j (s i ≠1,i , n i ) +

s i ≠2 ÿ ‹=v i +1 g i j (-Õ ‹,i , -Õ ‹+1,i ) ≠ s i ≠2 ÿ ‹=w i +1
g i j (-‹,i , -‹+1,i ).

Moreover, we have a(n + r) = a(n) if and only if a i j (n + r) = a i j (n) for all 1 AE i AE for the vector a(n + r) ≠ a(n). We also introduce the notation 

h = A h

d d+1 .

 d+1 In Theorem 5, the corresponding error term is bound by r 2 N d≠1 d , therefore, in order to obtain an improvement we need r 2 N ., r 2 = o(N 1 d(d+1) ). Thus, if r 2 ≠ r 1 = O(1) and r 2 = o(N 1 d(

d and 1

 1 AE j AE k i . In what follows, we use the notation a = a(n) =

a 1 k 1

 1 (n + r) ≠ a 1 k 1 (n)

1 (n 1 p 1 s 1 + b 1 + r) ≠ a 1 1 (n 1 p 1 s 1 + b 1 )k 1 (n 1 p 1 s 1 + b 1 + r) ≠ a 1 k 1 (n 1 p 1 s 1 + b 1 ) 1 (

 1111111111111 n d p d s d + b d + r) ≠ a d 1 (n d p d s d + b d ) . . . a d k d (n d p d s d + b d + r) ≠ a d k d (n d p d s d + b d )

a 1 k 1

 1 (b 1 + r) ≠ a 1 k 1 (b 1 ) . . . . . . a d 1 (b d + r) ≠ a d 1 (b d ) . . . a d k d (b d + r) ≠ a d k d (b d )

  , in Example 6, for r 2 = o(N ), we have the same result as Grant et al. for an alphabet of size 4,

	ÿ n<N	"(n + r 1 , n + r 2 ) ≥	3 4	N.
	Now, we present the general case for any alphabet.	

Theorem 5. Let d Ø 2, and let p 1 , . . . , p d be pairwise distinct primes and k 1 , . . . , k d positive integers. We consider the alphabet {0, . . . , k ≠ 1}, where k

  Fix a vector h " = 0 such that for all 1 AE i AE d and all 1 AE j AE k i we have 0 AE h i j < p i . It su ces to estimate

	1 1 p 1	, . . . ,	h 1 k 1 p 1	, . . . . . . ,	h d 1 p d	, . . . ,	h d k d p d	B	.
	Thus,								
	ÿ					ÿ	ÿ
						n<N	h" =0

n<N

"(n + r 1 , n + r 2 ) = N A 1 ≠ 1 k B ≠ 1 k e(h • a).
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Using [START_REF] Mauduit | On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol[END_REF] we have 

Therefore, the sum (15) is trivially bounded by

We have one of the error terms in the estimate. Now, to finish the proof, we need to estimate [START_REF]On finite pseudorandom binary sequences[END_REF]. Let

For every b oe B r we have µ i,j (b i , r, n i ) = 0, for all n < N, n oe P b . Using a similar argument where B r corresponds to B 0 , we can bound the sum ( 14) by

The last part consists in establishing a bound for

. We have to count the number of b i satisfying 0 AE b i < p i s i and for which we have a carry propagation from digitv i ,i of b i when adding r. For this, a necessary condition is

Using the fact that s i AE logN

For all 1 AE i AE d and all 1 AE j AE k i , define

. By adding all the terms, we have
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By assumption, h " = 0 so there exists 1 AE l AE d such that h l " = 0. With the notation of the proof of Theorem 4 we have

For i " = l, we bound the other factors trivially, and since 'i oe {1, . . . , d}, p i s i AE N

For h " = 0, we have

Finally we have the estimate

where the implied constant only depends on k. This ends the proof of Theorem 5.

VI Open questions

1. Is it possible to improve the error terms in Theorems 4 and 5?

2. We have dealt with generalized Rudin-Shapiro sequences. Is it possible to obtain similar results for the discrete correlation of order 2 for other constructions of pseudorandom sequences?

3. Our work concerns the discrete correlation of order 2. What happens for correlations of higher order? As in Definition 1, it is possible to define the discrete correlation coe cient of order m (see [5, p.346]). For a uniform random sequence, Remark 1 still holds in this case, with C r = 1 ≠ 1/k m≠1 with probability 1 for all m Ø 2. So, a natural question arises: is it possible to build a family of pseudorandom sequences such that we obtain the expected main term for one or several m Ø 3 or for all m Ø 2?