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The Leray-G̊arding method

for finite difference schemes. II.

Smooth crossing modes

Jean-François Coulombel∗

September 22, 2020

Abstract

In [Cou15] a multiplier technique, going back to Leray and Gårding for scalar hyperbolic partial
differential equations, has been extended to the context of finite difference schemes for evolutionary
problems. The key point of the analysis in [Cou15] was to obtain a discrete energy-dissipation balance
law when the initial difference operator is multiplied by a suitable quantity. The construction of the
energy and dissipation functionals was achieved in [Cou15] under the assumption that all modes were
separated. We relax this assumption here and construct, for the same multiplier as in [Cou15], the
energy and dissipation functionals when some modes cross. Semigroup estimates for fully discrete hy-
perbolic initial boundary value problems are deduced in this broader context by following the arguments
of [Cou15].

AMS classification: 65M06, 65M12, 35L03, 35L04.

Keywords: hyperbolic equations, difference approximations, stability, boundary conditions, semigroup estimates.

Throughout this article, we keep the same notation as in [Cou15]. We introduce the subsets of the
complex plane:

U := {ζ ∈ C, |ζ| > 1} , U := {ζ ∈ C, |ζ| ≥ 1} ,

D := {ζ ∈ C, |ζ| < 1} , S1 := {ζ ∈ C, |ζ| = 1} , D := D ∪ S1 .

We let Mn(K) denote the set of n× n matrices with entries in K = R or C. If M ∈ Mn(C), M
∗ denotes

the conjugate transpose of M . We let I denote the identity matrix or the identity operator when it acts
on an infinite dimensional space. We use the same notation x∗ y for the Hermitian product of two vectors
x, y ∈ Cn and for the Euclidean product of two vectors x, y ∈ Rn. The norm of a vector x ∈ Cn is
|x| := (x∗ x)1/2. The induced matrix norm on Mn(C) is denoted ‖ · ‖.

The letter C denotes a constant that may vary from line to line or within the same line. The dependence
of the constants on the various parameters is made precise throughout the text.
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route de Narbonne, 31062 Toulouse Cedex 9 , France. Research of J.-F. C. was supported by ANR project Nabuco, ANR-
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In what follows, we let d ≥ 1 denote a fixed integer, which will stand for the dimension of the space
domain we are considering. We shall use the space ℓ2 of square integrable sequences. Sequences may be
valued in Ck for some integer k. Some sequences will be indexed by Zd−1 while some will be indexed by Zd

or a subset of Zd. We thus introduce some specific notation for the norms. Let ∆xk > 0 for k = 1, . . . , d
be d space steps as considered herafter. We shall make use of the ℓ2(Zd−1)-norm that we define as follows:
for all v ∈ ℓ2(Zd−1),

‖v‖2ℓ2(Zd−1) :=

(
d∏

k=2

∆xk

)
d∑

ν=2

∑

jν∈Z

|vj2,...,jd |
2 .

The corresponding scalar product is denoted 〈·, ·〉ℓ2(Zd−1). Then for all integers m1 ≤ m2 in Z, we set

|||u|||2m1,m2
:= ∆x1

m2∑

j1=m1

‖uj1,·‖
2
ℓ2(Zd−1) ,

to denote the ℓ2-norm on the set [m1,m2] × Zd−1 (m1 may equal −∞ and m2 may equal +∞). The
corresponding scalar product is denoted 〈·, ·〉m1,m2 . Other notation throughout the text is meant to be
self-explanatory.

1 Introduction

This article is a sequel of our previous work [Cou15] where we have developed a multiplier technique
for finite difference schemes. The theory in [Cou15] encompasses the well-known example of the leap-
frog scheme for the transport equation. Our main motivation was to derive stability estimates for finite
difference schemes with a method that bypasses as much as possible Fourier analysis. This was a first step
towards later considering multistep time integration techniques with finite volume space discretizations
on unstructured meshes. We extend the results of [Cou15] by dropping a simplicity assumption that
was made in this work, which now allows us to consider crossing eigenmodes. Namely, the situation we
consider here is the one where the latter crossing occurs in a smooth way. We also deal completely with
the case of multistep schemes with two time levels for which the eigenmode crossing need not be smooth.
In order to avoid repeating many arguments from [Cou15], we shall refer to this work whenever possible.
We warn the reader that the introduction below is mostly the same as in [Cou15] since the considered
problem is the same and we have found it easier for the reader to recall all the assumptions needed in
the proof of our main result (which is Theorem 1 below). The main difference lies in the statement of
Assumption 2 below.

We now set some more notation. With d ∈ N∗ being the considered space dimension, we let
∆x1, . . . ,∆xd,∆t > 0 denote the space and time steps where the ratios, also known as the so-called
Courant-Friedrichs-Lewy parameters, λk := ∆t/∆xk, k = 1, . . . , d, are fixed positive constants. We
keep ∆t ∈ (0, 1] as the only free small parameter and let the space steps ∆x1, . . . ,∆xd vary accordingly.
The ℓ2-norms with respect to the space variables have been previously defined and thus depend on ∆t
and the CFL parameters through the cell volume (either ∆x2 · · ·∆xd on Zd−1 or ∆x1 · · ·∆xd on Zd). We
always identify a sequence w indexed by either N (for time), Zd−1 or Zd (for space), with the corresponding
step function. In particular, we shall feel free to take Fourier or Laplace transforms of such sequences.

For all j ∈ Zd, we set j = (j1, j
′) with j′ := (j2, . . . , jd) ∈ Zd−1. We let p, q, r ∈ Nd denote some fixed

multi-integers, and define p1, q1, r1, p
′, q′, r′ according to the above notation. We also let s ∈ N denote
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some fixed integer. This article is devoted to recurrence relations of the form:




s+1∑

σ=0

Qσ u
n+σ
j = ∆t Fn+s+1

j , j′ ∈ Zd−1 , j1 ≥ 1 , n ≥ 0 ,

un+s+1
j +

s+1∑

σ=0

Bj1,σ u
n+σ
1,j′ = gn+s+1

j , j′ ∈ Zd−1 , j1 = 1− r1, . . . , 0 , n ≥ 0 ,

unj = fn
j , j′ ∈ Zd−1 , j1 ≥ 1− r1 , n = 0, . . . , s ,

(1)

where the operators Qσ and Bj1,σ are given by:

Qσ :=

p1∑

ℓ1=−r1

p′∑

ℓ′=−r′

aℓ,σ S
ℓ , Bj1,σ :=

q1∑

ℓ1=0

q′∑

ℓ′=−q′

bℓ,j1,σ S
ℓ . (2)

In (2), the aℓ,σ, bℓ,j1,σ are real numbers and are independent of the small parameter ∆t (they may depend
on the CFL parameters though), while S denotes the shift operator on the space grid: (Sℓv)j := vj+ℓ for
j, ℓ ∈ Zd. We have also used the short notation

p′∑

ℓ′=−r′

:=

d∑

ν=2

pν∑

ℓν=−rν

,

q′∑

ℓ′=−q′

:=

d∑

ν=2

qν∑

ℓν=−qν

.

Namely, the operators Qσ and Bj1,σ only act on the spatial variable j ∈ Zd, and the index σ in (1) keeps
track of the dependence of (1) on the s+ 2 time levels involved at each time iteration.

The numerical scheme (1) is understood as follows: one starts with ℓ2 initial data (f0
j ), ..., (f

s
j ) defined

on [1 − r1,+∞) × Zd−1. The source terms (Fn
j ) and (gnj ) in (1) are given. Assuming that the solution

u has been defined up to some time index n + s, n ≥ 0, then the first and second equations in (1)
should uniquely determine un+s+1

j for j1 ≥ 1 − r1, j
′ ∈ Zd−1. The mesh cells associated with j1 ≥ 1

correspond to the interior domain while those associated with j1 = 1 − r1, . . . , 0 represent the discrete
boundary. Recurrence relations of the form (1) arise when considering finite difference approximations
of hyperbolic initial boundary value problems, see [GKO95], which is our main motivation (the Dirichlet
and extrapolation boundary conditions considered in [CL20] are typical examples). We wish to deal here
simultaneously with explicit and implicit schemes and therefore make the following solvability assumption.

Assumption 1 (Solvability of (1)). The operator Qs+1 is an isomorphism on ℓ2(Zd). Moreover, for all
F ∈ ℓ2(N∗×Zd−1) and for all g ∈ ℓ2([1−r1, 0]×Zd−1), there exists a unique solution u ∈ ℓ2([1−r1,+∞)×
Zd−1) to the system

{
Qs+1 uj = Fj , j′ ∈ Zd−1 , j1 ≥ 1 ,

uj +Bj1,s+1 u1,j′ = gj , j′ ∈ Zd−1 , j1 = 1− r1, . . . , 0 .

The first and second equations in (1) therefore uniquely determine un+s+1
j for j1 ≥ 1− r1 and j′ ∈ Zd−1;

one then proceeds to the following time index n+ s + 2. Existence and uniqueness of a solution (unj ) in

ℓ2([1−r1,+∞)×Zd−1)N to (1) follows from Assumption 1 as long as the source terms lie in the appropriate
functional spaces, so the last requirement for well-posedness is continuous dependence of the solution on
the three possible source terms (Fn

j ), (g
n
j ), (f

n
j ). This is a stability problem for which several definitions

can be chosen according to the functional framework. The following one dates back to [GKS72] in one
space dimension and to [Mic83] in several space dimensions.
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Definition 1 (Strong stability). The finite difference approximation (1) is said to be ”strongly stable” if
there exists a constant C such that for all γ > 0 and all ∆t ∈ (0, 1], the solution (unj ) to (1) with zero

initial data (that is, (f0
j ) = · · · = (f s

j ) = 0 in (1)) satisfies the estimate:

γ

γ∆t+ 1

∑

n≥s+1

∆t e−2 γ n∆t |||un|||21−r1,+∞ +
∑

n≥s+1

∆t e−2 γ n∆t
p1∑

j=1−r1

‖unj1,·‖
2
ℓ2(Zd−1)

≤ C





γ∆t+ 1

γ

∑

n≥s+1

∆t e−2 γ n∆t |||Fn|||21,+∞ +
∑

n≥s+1

∆t e−2 γ n∆t
0∑

j1=1−r1

‖gnj1,·‖
2
ℓ2(Zd−1)



 . (3)

The main contributions in [GKS72, Mic83] are to show that strong stability can be characterized by
an algebraic condition which is usually referred to as the Uniform Kreiss-Lopatinskii Condition. We
shall assume here from the start that (1) is strongly stable. We can thus control, for zero initial data,
ℓ2 type norms of the solution to (1). Our goal, as in [Cou15], is to understand which kind of stability
estimate holds for the solution to (1) when one considers nonzero initial data (f0

j ), . . . , (f
s
j ) in ℓ2. We are

specifically interested in showing semigroup estimates for (1), that is in controlling the ℓ∞n (ℓ2j) norm of

the solution to (1) (which is stronger than the ℓ2n(ℓ
2
j ) control encoded in (3)). Our main assumption is

the following. It is a relaxed version of the corresponding assumption in [Cou15] where the roots of the
dispersion relation (4) below were assumed to be always simple.

Assumption 2 (Stability for the discrete Cauchy problem). For κ ∈ (C \ {0})d, let us set :

Q̂σ(κ) :=

p∑

ℓ=−r

κℓ aℓ,σ ,

where the coefficients aℓ,σ are the same as in (2) and we use the classical notation κℓ := κℓ11 · · · κℓdd for
κ ∈ (C \ {0})d and ℓ ∈ Zd. Then there exists a finite number of points κ(1), . . . , κ(K) in (S1)d such that
the following properties hold:

• if κ ∈ (S1)d \ {κ(1), . . . , κ(K)}, the roots to the dispersion relation1:

s+1∑

σ=0

Q̂σ(κ) z
σ = 0 , (4)

are simple and located in D.

• if κ equals one of the κ(k)’s, the dispersion relation (4) has one multiple root z(k) ∈ D (its multiplicity
is denoted mk) and all other roots are simple.

• for all k = 1, . . . ,K, there exists a neighborhood Vk of κ(k) in Cd and there exist holomorphic
functions z1, . . . , zmk

on Vk such that

z1(κ
(k)) = · · · = zmk

(κ(k)) = z(k) ,

and for all κ ∈ Vk, z1(κ), . . . , zmk
(κ) are the mk roots to (4) that are close to z(k).

1From Assumption 1, we know that Qs+1 is an isomorphism on ℓ2(Zd), which implies by Fourier analysis that Q̂s+1(κ)
does not vanish for κ ∈ (S1)d. In particular, the dispersion relation (4) is a polynomial equation of degree s+ 1 in z for any
κ ∈ (S1)d.
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Assumption 2 means that the dispersion relation (4) can have multiple roots (for stability reasons, multiple
roots may only belong to D and not to S1). When multiple roots occur, we only ask that the splitting
of the multiple eigenvalue around each such point be smooth (analytic). The fact that we only consider
one multiple root at a time is only a matter of clarity and notation. There is no doubt that more
elaborate crossings (e.g., with one root remaining double along a submanifold of (S1)d) could be considered
by further refining the techniques developed below. Eventually, we observe that multiple roots of the
dispersion relation (4) occur for instance when one uses the Adams-Bashforth or Adams-Moulton time
integration technique of order 3 or higher, see [HNW93, Chapter III] (which is the reason why extending
the result of [Cou15] was necessary). We now make the following assumption, which already appeared in
[GKS72, Mic83] and several other works on the same topic.

Assumption 3 (Noncharacteristic discrete boundary). For ℓ1 = −r1, . . . , p1, z ∈ C and η ∈ Rd−1, let us
define

aℓ1(z, η) :=

s+1∑

σ=0

zσ
p′∑

ℓ′=−r′

a(ℓ1,ℓ′),σ e
i ℓ′·η . (5)

Then a−r1 and ap1 do not vanish on U × Rd−1, and they have nonzero degree with respect to z for all
η ∈ Rd−1.

Our main result is comparable with [Wu95, Theorem 3.3], [CG11, Theorems 2.4 and 3.5] and [Cou15]. It
shows that strong stability (or ”GKS stability”) in the sense of Definition 1 is a sufficient condition for
incorporating ℓ2 initial conditions in (1) and proving optimal semigroup estimates. Our result reads just
as in [Cou15] but it now holds in the broader context of Assumption 2.

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied, and assume that the scheme (1) is strongly stable
in the sense of Definition 1. Then there exists a constant C such that for all γ > 0 and all ∆t ∈ (0, 1],
the solution to (1) satisfies the estimate:

sup
n≥0

e−2 γ n∆t |||un|||21−r1,+∞ +
γ

γ∆t+ 1

∑

n≥0

∆t e−2 γ n∆t |||un|||21−r1,+∞

+
∑

n≥0

∆t e−2 γ n∆t
p1∑

j1=1−r1

‖unj1,·‖
2
ℓ2(Zd−1) ≤ C





s∑

σ=0

|||fσ|||21−r1,+∞ +
γ∆t+ 1

γ

∑

n≥s+1

∆t e−2 γ n∆t |||Fn|||21,+∞

+
∑

n≥s+1

∆t e−2 γ n∆t
0∑

j1=1−r1

‖gnj1,·‖
2
ℓ2(Zd−1)



 . (6)

In particular, the scheme (1) is ”semigroup stable” in the sense that there exists a constant C such that
for all ∆t ∈ (0, 1], the solution (unj ) to (1) with (Fn

j ) = (gnj ) = 0 satisfies the estimate

sup
n≥0

|||un|||21−r1,+∞ ≤ C
s∑

σ=0

|||fσ|||21−r1,+∞ . (7)

The scheme (1) is also ℓ2-stable with respect to boundary data, see [Tre84, Definition 4.5], in the sense
that there exists a constant C such that for all ∆t ∈ (0, 1], the solution (unj ) to (1) with (Fn

j ) = (fn
j ) = 0

satisfies the estimate

sup
n≥0

|||un|||21−r1,+∞ ≤ C
∑

n≥s+1

∆t

0∑

j1=1−r1

‖gnj1,·‖
2
ℓ2(Zd−1) .
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Sections 2 and 3 below are devoted to the proof of Theorem 1. We follow the lines of [Cou15] and first
explain why the same multiplier as in [Cou15] yields an energy-dissipation balance law for the Cauchy
problem (in the whole space) in the broader framework of Assumption 2. The analysis relies on a suitable
construction of the energy and dissipation functionals, which are more involved than in [Cou15]. The
end of the proof of Theorem 1 follows [Cou15] almost word for word. We explain where the specificity
of the broader framework of Assumption 2 comes into play. In an Appendix, we deal with the specific
case s = 1 (recurrence relations with two time levels) for which energy and dissipation functionals with
local densities can be constructed. This gives hope to later deal with finite volume space discretization
techniques on unstructured meshes.

2 The Leray-G̊arding method for fully discrete Cauchy problems

This section is devoted to proving stability estimates for discretized Cauchy problems in the whole space
Zd, which is the first step before considering the discretized initial boundary value problem (1). More
precisely, we consider the simpler case of the whole space j ∈ Zd, and the recurrence relation in ℓ2(Zd):





s+1∑

σ=0

Qσ u
n+σ
j = 0 , j ∈ Zd , n ≥ 0 ,

unj = fn
j , j ∈ Zd , n = 0, . . . , s ,

(8)

where the operators Qσ are given by (2). We recall that in (2), the aℓ,σ are real numbers and are
independent of the small parameter ∆t (they may depend on the CFL parameters λ1, . . . , λd), while S

denotes the shift operator on the space grid: (Sℓv)j := vj+ℓ for j, ℓ ∈ Zd. Stability of (8) is defined as
follows.

Definition 2 (Stability for the discrete Cauchy problem). The numerical scheme defined by (8) is (ℓ2-)
stable if Qs+1 is an isomorphism from ℓ2(Zd) onto itself, and if furthermore there exists a constant C0 > 0
such that for all ∆t ∈ (0, 1], for all initial conditions f0, . . . , f s ∈ ℓ2(Zd), there holds

sup
n∈N

|||un|||2−∞,+∞ ≤ C0

s∑

σ=0

|||fσ|||2−∞,+∞ . (9)

Let us quickly recall, see e.g. [GKO95], that stability in the sense of Definition 2 is in fact independent
of ∆t ∈ (0, 1] (because (8) nowhere involves ∆t and the norms in (9) can be simplified on either side by
the cell volume

∏
k ∆xk), and can be characterized in terms of the uniform power boundedness of the

so-called amplification matrix

A (κ) :=




−Q̂s(κ)/Q̂s+1(κ) . . . . . . −Q̂0(κ)/Q̂s+1(κ)
1 0 . . . 0

0
. . .

. . .
...

0 0 1 0


 ∈ Ms+1(C) , (10)

where the Q̂σ(κ)’s are defined in (4) and where it is understood that A is defined on the largest open

set of Cd on which Q̂s+1 does not vanish. Let us also recall that if Qs+1 is an isomorphism from ℓ2(Zd)

onto itself, then Q̂s+1 does not vanish on (S1)d, and therefore does not vanish on an open neighborhood
of (S1)d. With the above definition (10) for A , the following well-known result holds, see e.g. [GKO95]:
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Proposition 1 (Characterization of stability for the fully discrete Cauchy problem). Assume that Qs+1

is an isomorphism from ℓ2(Zd) onto itself. Then the scheme (8) is stable in the sense of Definition 2 if
and only if there exists a constant C1 > 0 such that the amplification matrix A in (10) satisfies

∀n ∈ N , ∀κ ∈ (S1)d , ‖A (κ)n ‖ ≤ C1 . (11)

In particular, the spectral radius of A (κ) should not be larger than 1 (the so-called von Neumann condi-
tion).

The eigenvalues of A (κ) are the roots to the dispersion relation (4). When these roots are simple for
all κ ∈ (S1)d, the von Neumann condition is both necessary and sufficient for stability of (8), see, e.g.,
[Cou13, Proposition 3]. However, Assumption 2 is more general than the situation considered in [Cou15]
where the roots always remain simple. Nevertheless, since the occurence of a multiple root only occurs in
the interior D and not on the boundary S1, we easily deduce from Assumption 2 that the matrix A (κ)
in (10) is geometrically regular in the sense of [Cou13, Definition 3]. Hence we can still apply [Cou13,
Proposition 3] and conclude that Assumption 2 implies stability for the Cauchy problem (8) (in the sense
of Definition 2). As in [Cou15], our goal now is to derive the semigroup estimate (9) not by applying
Fourier transform to (8) and using uniform power boundedness of A , but rather by multiplying the first
equation in (8) by a suitable local multiplier. As a warm-up, and to make things as clear as possible,
we first deal with the simpler case where one only considers the time evolution and no additional space
variable (the standard recurrence relations in C).

2.1 Stable recurrence relations

In this Paragraph, we consider sequences (vn)n∈N with values in C. The index n should be thought of
as the discrete time variable, which is the reason why we always write n as an exponent in order to be
consistent with the notation used for discretized partial differential equations. Let then ν ≥ 1 and let
aν , . . . , a0 be some complex numbers with aν 6= 0 (in the next Paragraphs, we choose ν = s + 1). It is
well known that all solutions (vn)n∈N to the recurrence relation

∀n ∈ N , aν v
n+ν + · · · + a0 v

n = 0 ,

are bounded if and only if the polynomial:

P(X) := aν X
ν + · · · + a1 X + a0 , (12)

has all its roots in D and the roots on S1 are simple, see [HNW93, chapter III.3]. This is equivalent to
requiring that the companion matrix (compare with (10)):




−aν−1/aν . . . . . . −a0/aν
1 0 . . . 0

0
. . .

. . .
...

0 0 1 0


 ∈ Mν(C) ,

be power bounded. In that case, the Kreiss matrix Theorem [SW97] implies that the latter matrix is a
contraction (it has a norm ≤ 1) for some Hermitian norm on Cν . In [Cou15], we have obtained some
explicit construction of such a Hermitian norm and an associated dissipation functional in the case where
all the roots of P in (12) are simple and located in D. The construction is based on a multiplier technique
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which is the discrete analogue of [G̊ar56, Lemme 1.1]. The inconvenience of the result in [Cou15] is that
even the roots in D, which are associated with an exponentially decaying behavior in time, are assumed to
be simple. We suppress this technical assumption here and explain why the multiplier technique developed
in [Cou15] allows to deal with the general case with multiple roots in D.

As in [Cou15], we introduce the notation T for the shift operator in time, that is, for any sequence
(vn)n∈N, we define: (Tmv)n := vn+m for all m,n ∈ N. The following Lemma is an extension of [Cou15,
Lemma 1].

Lemma 1 (The energy-dissipation balance law for recurrence relations). Let P ∈ C[X] be a polynomial
of degree ν, ν ≥ 1, that satisfies the following two properties:

• If P (z) = 0, then z ∈ D.

• If P (z) = 0 and z ∈ S1, then z is a simple root of P .

Then there exists a positive definite Hermitian form qe on Cν, and a nonnegative Hermitian form qd on
Cν such that for any sequence (vn)n∈N with values in C, there holds:

∀n ∈ N ,

2Re
(
T (P ′(T) vn)P (T) vn

)
= ν |P (T) vn|2 + (T − I)

(
qe(v

n, . . . , vn+ν−1)
)
+ qd(v

n, . . . , vn+ν−1) .

In particular, for any sequence (vn)n∈N that satisfies the recurrence relation

∀n ∈ N , P (T) vn = 0 ,

the sequence (qe(v
n, . . . , vn+ν−1))n∈N is nonincreasing.

The multiplier TP ′(T) vn used in Lemma 1 is the same as in [Cou15]. We shall see below in the proof
why the expressions provided in [Cou15] for the energy and dissipation functions qe, qd can not cover the
case of multiple roots and how they should be modified.

Proof. Let us first recall the proof in [Cou15] in the case of simple roots because this is the starting point
for the general case we consider here. We therefore assume for now that P has degree ν and only has
simple roots z1, . . . , zν located in D. We write

P (X) = a

ν∏

j=1

(X − zj) ,

with a 6= 0, and introduce the Lagrange polynomials:

∀ k = 1, . . . , ν , Pk(X) := a

ν∏

j=1
j 6=k

(X − zj) .

Since the zj ’s are pairwise distinct, the Pk’s form a basis of Cν−1[X]. Moreover, the following relation
was obtained in [Cou15]:

2Re
(
T (P ′(T) vn)P (T) vn

)
− ν |P (T) vn|2 = (T−I)

{
ν∑

k=1

|Pk(T) vn|2

}
+

ν∑

k=1

(
1− |zk|

2
)
|Pk(T) vn|2 .

(13)
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The conclusion of Lemma 1 is then obtained by introducing the energy (qe) and dissipation (qd) forms:

∀ (w0, . . . , wν−1) ∈ Cν , qe(w
0, . . . , wν−1) :=

ν∑

k=1

|Pk(T)w0|2 , (14)

qd(w
0, . . . , wν−1) :=

ν∑

k=1

(1 − |zk|
2) |Pk(T)w0|2 . (15)

When the roots of P are located in D, qd is obviously nonnegative (this property does not depend on the
fact that the roots are simple). When furthermore the roots of P are simple, the Pk’s form a basis of
Cν−1[X] and qe is positive definite. The conclusion follows.

We now turn to the general case and therefore no longer assume that the roots of P in D are simple.
For the sake of clarity, we label the pairwise distinct roots of P as z1, . . . , zm and let µ1, . . . , µm denote
the corresponding multiplicities. We thus have:

P (X) = a
m∏

j=1

(X − zj)
µj ,

for some a 6= 0, and we introduce the polynomials:

∀ k = 1, . . . ,m , Pk(X) := a (X − zk)
µk−1

m∏

j=1
j 6=k

(X − zj)
µj .

We thus get the relation:

P ′ =
m∑

k=1

µk Pk ,

and it is a simple exercise to adapt the computation in [Cou15] to obtain the relation (compare with
(13)):

2Re
(
T (P ′(T) vn)P (T) vn

)
− ν |P (T) vn|2 = (T − I)

{
m∑

k=1

µk |Pk(T) vn|2

}

+
m∑

k=1

µk (1 − |zk|
2) |Pk(T) vn|2 . (16)

The problem which we are facing is that there are too few polynomials Pk to span the whole space
Cν−1[X]. The trick consists in adding to the energy part on the right hand side of (16) some nonnegative
Hermitian forms in order to gain positive definiteness, while still keeping the corresponding dissipation
form nonnegative. This “add and subtract” trick is performed below.

As long as a root zk is at least double (µk ≥ 2), we introduce the polynomials:

∀ j = 1, . . . , µk − 1 , Qk,j(X) := a (X − zk)
j−1

m∏

ℓ=1
ℓ 6=k

(X − zℓ)
µℓ ,

9



each of which being of degree ≤ ν − 2. (Later we shall use the fact that XQk,j(X) has degree ≤ ν − 1.)
We go back to (16) and add/subtract suitable quantities as follows:

2Re
(
T (P ′(T) vn) P (T) vn

)
− ν |P (T) vn|2

= (T− I)





m∑

k=1

µk |Pk(T) vn|2 +
m∑

k=1

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j) |Qk,j(T) vn|2





(17)

+

m∑

k=1

µk (1 − |zk|
2) |Pk(T) vn|2

+

m∑

k=1

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j)

(
|Qk,j(T) vn|2 − |Qk,j(T) vn+1|2

)
,

where ε > 0 is a parameter to be fixed later on (any choice 0 < ε ≤ 1/4 will do). In (17), it is understood
that if µk = 1 (that is, if the root zk is simple), then we do not add any polynomial Qk,j, the range of
indices 1 ≤ j ≤ µk − 1 being empty. Moreover, we recall that if µk ≥ 2 for some k, then we have |zk| < 1
so the coefficient of the Hermitian form |Qk,j(T)w0|2 on the second line of (17) will be positive.

It remains to show that for some suitably chosen parameter ε > 0, the decomposition (17) yields the
result of Lemma 1. Let us first observe that the ν polynomials

Q1,1 , . . . , Q1,µ1−1 , P1 , . . . , Qm,1 , . . . , Qm,µm−1 , Pm ,

span the space Cν−1[X] (this is nothing but the classical Hermite interpolation problem). Since the
quantity 1−|zk|

2 is positive as long as µk is larger than 2, any choice ε > 0 will make the Hermitian form
qe defined on Cν by:

∀ (w0, . . . , wν−1) ∈ Cν ,

qe(w
0, . . . , wν−1) :=

m∑

k=1

µk |Pk(T)w0|2 +
m∑

k=1

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j) |Qk,j(T)w0|2 , (18)

positive definite. We thus now define a Hermitian form qd on Cν by:

∀ (w0, . . . , wν−1) ∈ Cν , qd(w
0, . . . , wν−1) :=

m∑

k=1

µk (1 − |zk|
2) |Pk(T)w0|2

+

m∑

k=1

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j)

(
|Qk,j(T)w0|2 − |Qk,j(T)w1|2

)
, (19)

and we are going to show that a convenient choice of ε makes qd nonnegative. (Let us observe here that it
is crucial to have the degree of Qk,j less than ν−2 so that the quantity Qk,j(T)w1 is a linear combination
of w1, . . . , wν−1.) With the above definitions (18) and (19) for qe and qd, the energy balance law (17)
reads as claimed in Lemma 1, so the only remaining task is to show that qd is nonnegative for a convenient
choice of ε > 0.

10



We use below the convention Qk,µk
:= Pk, which is compatible with the above definition of Pk and of

the Qk,j’s. Observing that there holds:

∀ j = 1, . . . , µk − 1 , X Qk,j(X) = Qk,j+1 + zk Qk,j ,

we have for any k = 1, . . . ,m:

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j)

(
|Qk,j(T)w0|2 − |Qk,j(T)w1|2

)

=

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j)

(
|Qk,j(T)w0|2 − |Qk,j+1(T)w0 + zk Qk,j(T)w0|2

)

=

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j)

(
(1 − |zk|

2) |Qk,j(T)w0|2 − |Qk,j+1(T)w0|2
)

−

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j) 2Re

(
zk Qk,j(T)w0 Qk,j+1(T)w0

)
.

We use Young’s inequality as follows:

∣∣∣2Re
(
zk Qk,j(T)w0 Qk,j+1(T)w0

)∣∣∣ ≤ 1

2
(1 − |zk|

2) |Qk,j(T)w0|2 +
2 |zk|

2

1 − |zk|2
|Qk,j+1(T)w0|2 ,

and thus derive the lower bound:

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j)

(
|Qk,j(T)w0|2 − |Qk,j(T)w1|2

)

≥

µk−1∑

j=1

1

2
εµk−j (1 − |zk|

2)2(µk−j)+1 |Qk,j(T)w0|2

−

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j) 1 + |zk|

2

1 − |zk|2
|Qk,j+1(T)w0|2 .

Shifting indices, we get:

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j)

(
|Qk,j(T)w0|2 − |Qk,j(T)w1|2

)

≥

µk−2∑

j=0

1

2 ε
εµk−j (1 − |zk|

2)2(µk−j)−1 |Qk,j+1(T)w0|2

−

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j) 1 + |zk|

2

1 − |zk|2
|Qk,j+1(T)w0|2 .

Restricting from now on to 0 < ε ≤ 1/4, we have 1/(2 ε) ≥ 2 ≥ 1 + |zk|
2 and all terms corresponding to

the indices j = 1, . . . , µk − 2 in the above two sums match to give a nonnegative quantity (the first one

11



for j = 0 obviously gives a nonnegative contribution since it only appears in the first sum). Hence we can
keep only the very last term corresponding to j = µk − 1 and we have thus derived the lower bound:

µk−1∑

j=1

εµk−j (1 − |zk|
2)2(µk−j)

(
|Qk,j(T)w0|2 − |Qk,j(T)w1|2

)

≥ −ε (1 − |zk|
2) (1 + |zk|

2) |Qk,µk
(T)w0|2 ≥ −

1

2
(1 − |zk|

2) |Pk(T)w0|2 ,

where we have used |zk| ≤ 1 and ε ≤ 1/4 in the last inequality. Going back to the definition (19) of qd,
and summing over the k’s, we obtain that the Hermitian form qd is nonnegative for any choice of ε within
the interval (0, 1/4]. The proof of Lemma 1 is complete.

2.2 The energy-dissipation balance for finite difference schemes

In this Paragraph, we consider the numerical scheme (8). We introduce the following notation:

L :=

s+1∑

σ=0

Tσ Qσ , M :=

s+1∑

σ=0

σTσ Qσ . (20)

Thanks to Fourier analysis, the following result will be a consequence of Lemma 1.

Proposition 2 (The energy-dissipation balance law for finite difference schemes). Let Assumptions 1
and 2 be satisfied. Then there exist a continuous coercive quadratic form E and a continuous nonnegative
quadratic form D on ℓ2(Zd;R)s+1 such that for all sequences (vn)n∈N with values in ℓ2(Zd;R) and for all
n ∈ N, there holds

2 〈M vn, L vn 〉−∞,+∞ = (s + 1) |||Lvn |||2−∞,+∞ + (T− I)E(vn, . . . , vn+s) + D(vn, . . . , vn+s) .

In particular, for any choice of initial data f0, . . . , f s ∈ ℓ2(Zd;R), the solution to (8) satisfies

sup
n∈N

E(un, . . . , un+s) ≤ E(f0, . . . , f s) ,

and (8) is (ℓ2-)stable.

Proof. We use the same notation vn for the sequence (vnj )j∈Zd and the corresponding step function on Rd

whose value on the cell [j1 ∆x1, (j1+1)∆x1)×· · ·× [jd ∆xd, (jd+1)∆xd) equals v
n
j for any j ∈ Zd. Then

Plancherel’s Theorem gives the identity

2 〈M vn, L vn 〉−∞,+∞ − (s + 1) |||Lvn |||2−∞,+∞

=

∫

Rd

2Re
(
T (P ′

κ(T) v̂n(ξ))Pκ(T) v̂n(ξ)
)

− (s+ 1)
∣∣Pκ(T) v̂n(ξ)

∣∣2 dξ

(2π)d
, (21)

where v̂n denotes the Fourier transform (in L2(Rd)) of the function vn, and where we have let

Pκ(z) :=

s+1∑

σ=0

Q̂σ

(
κ1, . . . , κd

)
zσ , κj := ei ξj ∆xj ∈ S1 ,
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and P ′
κ(z) denotes the derivative of Pκ with respect to z.

The construction of the quadratic forms E and D is made, as in [Cou15], of the superposition of
appropriate energy and dissipation Hermitian forms for each frequency κ ∈ (S1)d, each coordinate κj
being a placeholder for exp(i ξj ∆xj). Here, unlike [Cou15], the polynomial Pκ either only has simple
roots in D or it has one multiple root in D and all other roots are simple. We cannot therefore construct
the energy and dissipation forms in a unified manner. Below we shall use the analysis of Lemma 1 in
the neighborhood of finitely many points in (S1)d where Pκ has a multiple root and we shall use [Cou15,
Lemma 1] in the neighborhood of all points where Pκ only has simple roots. (This is the reason why
we have recalled the proof of Lemma 1 in the case where all roots are simple.) We shall eventually glue
things together thanks to a suitable partition of unity.

Let us first consider the point κ(1) ∈ (S1)d for which Pκ(1) has one multiple root (of multiplicity m1)
in D and in the neighborhood of which we have a smooth splitting of the eigenmodes z1, . . . , zm1 . The
other roots zm1+1, . . . , zs+1 are simple and can thus be determined holomorphically with respect to κ
in the neighborhood of κ(1). Keeping in mind that the dominant coefficient of the polynomial Pκ(z)

equals Q̂s+1(κ) (which is nonzero for κ ∈ (S1)d), we consider some κ ∈ (S1)d sufficiently close to κ(1) and
introduce the Lagrange polynomials:

∀ k = 1, . . . , s+ 1 , Pk,κ(z) := Q̂s+1(κ)

s+1∏

j=1
j 6=k

(
z − zj(κ)

)
.

We then introduce the following energy and dissipation Hermitian forms on Cs+1 (below, κ always denotes
an element of (S1)d that is sufficiently close to κ(1) so that all considered quantities are well-defined):

∀ (w0, . . . , ws) ∈ Cs+1 ,

qe,κ(w
0, . . . , ws) :=

s+1∑

k=1

|Pk,κ(T)w0|2 (22)

+

m1∑

k=1

m1−1∑

j=1

εm1−j
(
1 − |zk(κ)|

2
)2(m1−j)

∣∣∣∣∣∣
Q̂s+1(κ)

(
T− zk(κ)

)j−1
s+1∏

ℓ=m1+1

(
T − zℓ(κ)

)
w0

∣∣∣∣∣∣

2

,

qd,κ(w
0, . . . , ws) :=

s+1∑

k=1

(
1 − |zk(κ)|

2
)
|Pk,κ(T)w0|2 (23)

+

m1∑

k=1

m1−1∑

j=1

εm1−j
(
1 − |zk(κ)|

2
)2(m1−j)

×

{∣∣∣Q̂s+1(κ)
(
T− zk(κ)

)j−1
s+1∏

ℓ=m1+1

(
T− zℓ(κ)

)
w0
∣∣∣
2
−
∣∣∣Q̂s+1(κ)

(
T− zk(κ)

)j−1
s+1∏

ℓ=m1+1

(
T− zℓ(κ)

)
w1
∣∣∣
2}

,

where ε > 0 is a parameter to be fixed later on. Using the decomposition (13) which we have recalled in
the proof of Lemma 1, we have the decomposition

2Re
(
T (P ′

κ(T)w0)Pκ(T)w0
)
− (s+1) |Pκ(T)w0|2 = (T−I) (qe,κ(w

0, . . . , ws)) + qd,κ(w
0, . . . , ws) , (24)

for all vectors (w0, . . . , ws) ∈ Cs+1, because we have just added and subtracted some Hermitian forms to
the energy-dissipation balance law (13). It remains to prove that qd,κ in (23) is nonnegative and that qe,κ
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in (22) is positive definite. Let us start with qe,κ. If κ does not equal κ(1), we know from Assumption
2 that the roots z1(κ), . . . , zs+1(κ) are pairwise distinct so the Lagrange polynomials Pk,κ form a basis
of Cs[X]. Hence qe,κ in (22) is positive definite because we have added a nonnegative form to a positive
definite one. We thus now consider the case κ = κ(1) for which the m1 first roots z1, . . . , zm1 all collapse to
z(1) and the m1 first Lagrange polynomials P1,κ(1) , . . . , Pm1,κ(1) are all equal. At the base point κ = κ(1),
the definition (22) thus reduces to:

qe,κ(1)(w0, . . . , ws) = m1 |P1,κ(1)(T)w0|2 +
s+1∑

k=m1+1

|Pk,κ(1)(T)w0|2

+ m1

m1−1∑

j=1

εm1−j
(
1 − |z(1)|2

)2(m1−j)

∣∣∣∣∣∣
Q̂s+1(κ

(1))
(
T− z(1)

)j−1
s+1∏

ℓ=m1+1

(
T − zℓ(κ

(1))
)
w0

∣∣∣∣∣∣

2

,

which (up to the harmless positive constant m1 in the second line) coincides with our definition of the
Hermitian form in (18). Since the polynomials:

P1,κ(1)(X) , Pm1+1,κ(1)(X) , . . . , Ps+1,κ(1)(X) , Q̂s+1(κ
(1))

s+1∏

ℓ=m1+1

(
X − zℓ(κ

(1))
)
,

Q̂s+1(κ
(1))

(
X − z(1)

) s+1∏

ℓ=m1+1

(
X − zℓ(κ

(1))
)
, . . . , Q̂s+1(κ

(1))
(
X − z(1)

)m1−2
s+1∏

ℓ=m1+1

(
X − zℓ(κ

(1))
)
,

form a basis of Cs[X] (this is again the classical Hermite interpolation problem), the form qe,κ(1) is positive
definite as long as the parameter ε is a fixed positive constant (the choice ε = 1/8 that is made below will
do). Moreover, once ε is fixed, the form qe,κ depends in a C∞ way on κ in the neighborhood of κ(1).

We now show that the form qd,κ in (23) is nonnegative for a well-chosen parameter ε > 0 and κ ∈ (S1)d

sufficiently close to κ(1). The argument is quite similar to what we have done in the proof of Lemma 1
but we now need to take into account that the m1 first eigenmodes z1, . . . , zm1 split for κ 6= κ(1), which
will make us choose ε > 0 slightly smaller than in the proof of Lemma 1 in order to absorb an additional
error. Before going on, let us recall that the eigenmodes z1(κ), . . . , zs+1(κ) belong to D for κ ∈ (S1)d close
to κ(1) with κ 6= κ(1). By continuity, this implies that they also belong to D for κ = κ(1). Hereafter, we
shall consider κ ∈ (S1)d close to κ(1) and shall therefore feel free to use the inequality |zℓ(κ)| ≤ 1 for all
ℓ = 1, . . . , s+ 1 (the so-called von Neumann condition).

Let us consider some vector (w0, . . . , ws) ∈ Cs+1 and let us introduce the notation:

∀ k, j = 1, . . . ,m1 , Wk,j := Q̂s+1(κ)
(
T− zk(κ)

)j−1
s+1∏

ℓ=m1+1

(
T − zℓ(κ)

)
w0 , (25)

where the complex numbers Wk,j (which, according to (25), are linear combinations of w0, . . . , ws) also
depend on κ but there is no need to keep track of this in what follows. We start from the definition (23)
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and derive the lower bound:

qd,κ(w
0, . . . , ws) ≥

m1∑

k=1

(
1 − |zk(κ)|

2
)
|Pk,κ(T)w0|2

+

m1∑

k=1

m1−1∑

j=1

εm1−j
(
1 − |zk(κ)|

2
)2(m1−j)

(
|Wk,j|

2 − |Wk,j+1 + zk(κ)Wk,j |
2
)
.

Expanding the square modulus |Wk,j+1 + zk(κ)Wk,j |
2 and using Young’s inequality under the form:

∣∣∣2Re
(
zk(κ)Wk,j Wk,j+1

)∣∣∣ ≤ 1

2

(
1 − |zk(κ)|

2
)
|Wk,j|

2 +
2 |zk(κ)|

2

1 − |zk(κ)|2
|Wk,j+1|

2

≤
1

2

(
1 − |zk(κ)|

2
)
|Wk,j|

2 +
1 + |zk(κ)|

2

1 − |zk(κ)|2
|Wk,j+1|

2 ,

we get:

qd,κ(w
0, . . . , ws) ≥

m1∑

k=1

(
1 − |zk(κ)|

2
)
|Pk,κ(T)w0|2

+

m1∑

k=1

m1−1∑

j=1

εm1−j
(
1 − |zk(κ)|

2
)2(m1−j)

(
1 − |zk(κ)|

2

2
|Wk,j|

2 −
2

1 − |zk(κ)|2
|Wk,j+1|

2

)
.

After shifting indices, we end up with:

qd,κ(w
0, . . . , ws) ≥

m1∑

k=1

(
1 − |zk(κ)|

2
)
|Pk,κ(T)w0|2

+

m1∑

k=1

m1−1∑

j=1

εm1−j

2

(
1 − |zk(κ)|

2
)2(m1−j)+1

|Wk,j|
2 −

m1∑

k=1

m1∑

j=2

2 ε εm1−j
(
1 − |zk(κ)|

2
)2(m1−j)+1

|Wk,j|
2 .

Instead of choosing ε ∈ (0, 1/4] as in the proof of Lemma 1, we make the more restrictive choice ε ∈ (0, 1/8]
and thus obtain:

qd,κ(w
0, . . . , ws) ≥

m1∑

k=1

(
1 − |zk(κ)|

2
)
|Pk,κ(T)w0|2 −

(
1 − |zk(κ)|

2
)

4
|Wk,m1 |

2

+

m1∑

k=1

m1−1∑

j=1

εm1−j

4

(
1 − |zk(κ)|

2
)2(m1−j)+1

|Wk,j|
2 . (26)

We go back to the definition of the Lagrange polynomial Pk,κ and of the complex numbers Wk,j. For
k = 1, . . . ,m1, we have:

Pk,κ(z) = Q̂s+1(κ)

m1∏

j=1
j 6=k

(
z − zj(κ)

) s+1∏

ℓ=m1+1

(
z − zℓ(κ)

)
.
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The goal is to absorb in (26) the only negative term by means of all other positive quantities. To do this,
we observe that we can expand the polynomial

(
X − zk(κ)

)m1−1
,

on the basis of Cm1−1[X] formed by the polynomials :

1 ,
(
X − zk(κ)

)
,
(
X − zk(κ)

)m1−2
,

m1∏

j=1
j 6=k

(
X − zj(κ)

)
.

The linear system for determining the coefficients is lower triangular and has determinant 1 so we can
write for each k = 1, . . . ,m1:

(
X − zk(κ)

)m1−1
=

m1∏

j=1
j 6=k

(
X − zj(κ)

)
+

m1−1∑

j=1

ak,j(κ)
(
X − zk(κ)

)j−1
, (27)

with holomorphic functions ak,j defined in the neighborhood of κ(1) and that vanish at κ(1). The decom-
position (27) gives (just use the definition (25) and the expression of the Lagrange polynomial Pk,κ):

Wk,m1 = Pk,κ(T)w0 +

m1−1∑

j=1

ak,j(κ)Wk,j ,

and we now apply the Cauchy-Schwarz inequality twice to get:

|Wk,m1 |
2 ≤ 2 |Pk,κ(T)w0|2 + 2 (m1 − 1)

m1−1∑

j=1

|ak,j(κ)|
2 |Wk,j|

2 .

Fixing from now on ε = 1/8 and using the latter inequality in (26), we find that qd,κ is nonnegative for κ
sufficiently close to κ(1) (recall that |zk(κ)| < 1 uniformly with respect to κ in the neighborhood of κ(1)

since the multiple eigenvalue z(1) lies in D). Moreover, we observe on the defining equation (23)that the
Hermitian form qd,κ depends in a C∞ way on κ in the neighborhood of κ(1).

The above analysis close to κ(1) can be repeated word for word in the neighborhood of any other point
κ(2), . . . , κ(K) where the dispersion relation (4) has a multiple root. Now, if κ ∈ (S1)d is such that the
dispersion relation (4) only has simple roots at κ = κ, the analysis is much simpler since we know in that
case that the roots z1, . . . , zs+1 locally depend holomorphically on κ and the energy and dissipation forms
can be simply defined as:

∀ (w0, . . . , ws) ∈ Cs+1 , qe,κ(w
0, . . . , ws) :=

s+1∑

k=1

|Pk,κ(T)w0|2 ,

qd,κ(w
0, . . . , ws) :=

s+1∑

k=1

(
1 − |zk(κ)|

2
)
|Pk,κ(T)w0|2 ,

with the same notation as above for the Lagrange polynomials Pk,κ. At this stage, we have shown
that for any base point κ in the compact manifold (S1)d, there exists an open neighborhood V of κ in
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(S1)d and there exists a C∞ mapping qe,κ, resp. qd,κ, on V with values in the set of positive definite,
resp. nonnegative, Hermitian forms, such that the decomposition (24) holds for all κ ∈ V and all vectors
(w0, . . . , ws) ∈ Cs+1. By compactness of (S1)d, we can take a finite covering of (S1)d by such neighborhoods
and glue the local definitions of the energy and dissipation forms thanks to a subordinate partition of
unity. We have thus constructed a positive definite, resp. nonnegative, Hermitian form qe,κ, resp. qd,κ,
on Cs+1 which depends in a C∞ way on κ ∈ (S1)d and such that there holds:

2 〈M vn, L vn 〉−∞,+∞ − (s + 1) |||Lvn |||2−∞,+∞

= (T− I)

∫

Rd

qe,κ
(
v̂n(ξ), . . . , v̂n+s(ξ)

) dξ

(2π)d
+

∫

Rd

qd,κ
(
v̂n(ξ), . . . , v̂n+s(ξ)

) dξ

(2π)d
,

where we recall that κ is a placeholder for (exp(i ξ1 ∆x1), . . . , exp(i ξd ∆xd)). The conclusion of Proposition
2 follows as in [Cou15] by a standard compactness argument for showing continuity of the quadratic forms
E and D, and coercivity for E.

The C∞ regularity of the Hermitian forms qe,κ, qd,κ with respect to κ is not needed in the proof of
Proposition 2 (continuity with respect to κ would be enough) but we have paid attention to that particular
issue since it is a crucial step for later extending this construction to variable coefficients problems and
applying symbolic calculus rules as in [LN66]. This is left to a future work.

3 Semigroup estimates for fully discrete initial boundary value prob-

lems

It remains to prove Theorem 1 with the help of Proposition 2. The strategy is exactly the same as in
[Cou15] since the analysis in that earlier work shows that the cornerstone of the proof of Theorem 1 is the
existence of a multiplier for the fully discrete Cauchy problem on Zd. Let us emphasize that the relation
(21) is of the exact same form as in [Cou15]. The multiplier M vn is the same. The only difference is in
the definition of the energy and dissipation forms E and D, but their precise expression is not useful in
what follows. What matters is that D is nonnegative, and E is coercive and therefore yields a control of
ℓ2 norms on Zd. Hence we can apply the same arguments as in [Cou15] as long as the proof of Theorem
1 only uses the result of Proposition 2 and not the behavior of the roots of the dispersion relation (4).
We thus follow the proof of [Cou15, Theorem 1] and explain where the same arguments can be applied
without any modification.

3.1 The case with zero initial data

The first step in [Cou15] is to prove the validity of (6) for zero initial data (f0 = · · · = f s = 0 in (1)).
This part of the proof only uses the relation (21) and the fact that the multiplier M has the same stencil
as the original difference operator L. Hence we can repeat the arguments in [Cou15] word for word and
obtain the validity of (6) when the iteration (1) is considered with zero initial data. It then remains to
consider (1) with nonzero initial data in ℓ2 and zero interior/boundary forcing terms.

3.2 Construction of dissipative boundary conditions

This was the most technical step of the analysis in [Cou15]. The goal here is to construct an auxiliary set
of numerical boundary conditions for which, with arbitrary initial data in ℓ2, we can derive an optimal
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semigroup estimate and a trace estimate for the solution. Our result here is the same as in [Cou15] but
it now holds in the broader framework of Assumption 2. (Theorem 2 is the place where Assumption 3 is
needed.)

Theorem 2. Let Assumptions 1, 2 and 3 be satisfied. Then for all P1 ∈ N, there exists a constant
CP1 > 0 such that, for all initial data f0, . . . , f s ∈ ℓ2(Zd) and for all source term (gnj )j1≤0,j′∈Zd−1,n≥s+1

that satisfies the integrability condition:

∀Γ > 0 ,
∑

n≥s+1

e−2 Γn
∑

j1≤0

‖ gnj1,· ‖
2
ℓ2(Zd−1) < +∞ ,

there exists a unique sequence (unj )j∈Zd,n∈N in ℓ2(Zd)N solution to the iteration





Lunj = 0 , j ∈ Zd , j1 ≥ 1 , n ≥ 0 ,

M unj = gn+s+1
j , j ∈ Zd , j1 ≤ 0 , n ≥ 0 ,

unj = fn
j , j ∈ Zd , n = 0, . . . , s .

(28)

Moreover for all γ > 0 and ∆t ∈ (0, 1], this solution satisfies

sup
n≥0

e−2 γ n∆t |||un |||2−∞,+∞ +
γ

γ∆t+ 1

∑

n≥0

∆t e−2 γ n∆t |||un |||2−∞,+∞

+
∑

n≥0

∆t e−2 γ n∆t
P1∑

j1=1−r1

‖unj1,· ‖
2
ℓ2(Zd−1)

≤ CP1





s∑

σ=0

||| fσ |||2−∞,+∞ +
∑

n≥s+1

∆t e−2 γ n∆t
∑

j1≤0

‖ gnj1,· ‖
2
ℓ2(Zd−1)



 . (29)

Proof. Unsurprisingly, most of the proof of Theorem 2 is the same as in [Cou15] but there is one specific
point where the behavior of the roots to the dispersion relation (4) is used so we review the main steps of
the proof and simply refer to [Cou15] when no modification is needed. First, the existence and uniqueness
of a solution to (28) follows from the invertibility of Qs+1 on ℓ2(Zd). Then, using Proposition 1, we can
derive the same estimate as in [Cou15] for the solution to (28):

sup
n≥0

e−2 γ n∆t |||un |||2−∞,+∞ +
γ

γ∆t+ 1

∑

n≥0

∆t e−2 γ n∆t |||un |||2−∞,+∞

+
∑

n≥0

∆t e−2 γ (n+s+1)∆t
∑

j1∈Z

‖Lunj1,· ‖
2
ℓ2(Zd−1)

≤ C





s∑

σ=0

||| fσ |||2−∞,+∞ +
∑

n≥s+1

∆t e−2 γ n∆t
∑

j1≤0

‖ gnj1,· ‖
2
ℓ2(Zd−1)



 , (30)

where the constant C is independent of γ, ∆t and on the source terms in (28). It remains to derive the
trace estimate for the solution (unj ) to (28) (that is showing that the third term in the sum on the left
hand side of the inequality (29) is controlled by the right hand side).

The derivation of the trace estimate when γ∆t is large enough is done as in [Cou15] since it only uses
the invertibility of the operator Qs+1 on ℓ2(Zd). We can thus assume from now on γ∆t ∈ (0, lnR0] for
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some fixed constant R0 > 1. Then we can deduce from (30) that for any j1 ∈ Z, the Laplace-Fourier
transform ûj1 of the step function

uj1 : (t, y) ∈ R+ × Rd−1 7−→ unj if (t, y) ∈ [n∆t, (n+ 1)∆t)×
d∏

k=2

[jk ∆xk, (jk + 1)∆xk) ,

is well-defined on the half-space {τ ∈ C , Re τ > 0} × Rd−1. The dual variables to (t, y) are denoted
τ = γ+i θ, γ > 0, and η = (η2, . . . , ηd) ∈ Rd−1. We also use below the notation η∆ := (η2 ∆x2, . . . , ηd ∆xd).
The following result, which is proved in [Cou15], is used here as a blackbox since its proof is merely based
on the validity of (30) and Plancherel’s Theorem.

Lemma 2. With R0 > 1 fixed as above, there exists a constant C > 0 such that for all γ > 0 and
∆t ∈ (0, 1] satisfying γ∆t ∈ (0, lnR0], there holds

∑

j1∈Z

∫

R×Rd−1

∣∣∣∣∣∣

p1∑

ℓ1=−r1

aℓ1
(
e(γ+i θ)∆t, η∆

)
ûj1+ℓ1(γ + i θ, η)

∣∣∣∣∣∣

2

dθ dη

+
∑

j1≤0

∫

R×Rd−1

∣∣∣∣∣∣

p1∑

ℓ1=−r1

e(γ+i θ)∆t ∂zaℓ1
(
e(γ+i θ)∆t, η∆

)
ûj1+ℓ1(γ + i θ, η)

∣∣∣∣∣∣

2

dθ dη

≤ C





s∑

σ=0

||| fσ |||2−∞,+∞ +
∑

n≥s+1

∆t e−2 γ n∆t
∑

j1≤0

‖ gnj1,· ‖
2
ℓ2(Zd−1)



 . (31)

Recall that the functions aℓ1 , ℓ1 = −r1, . . . , p1, are defined in (5).

The conclusion now relies on the following crucial result. (This is the place where the behavior of the
roots to the dispersion relation (4) matters, and where we therefore need to be careful.)

Lemma 3 (The trace estimate). Let Assumptions 1, 2 and 3 be satisfied. Let R0 > 1 be fixed as above
and let P1 ∈ N. Then there exists a constant CP1 > 0 such that for all z ∈ U with |z| ≤ R0, for all
η ∈ Rd−1 and for all sequence (wj1)j1∈Z ∈ ℓ2(Z;C), there holds

P1∑

j1=−r1−p1

|wj1 |
2 ≤ CP1




∑

j1∈Z

∣∣∣∣∣∣

p1∑

ℓ1=−r1

aℓ1(z, η∆)wj1+ℓ1

∣∣∣∣∣∣

2

+
∑

j1≤0

∣∣∣∣∣∣

p1∑

ℓ1=−r1

z ∂zaℓ1(z, η∆)wj1+ℓ1

∣∣∣∣∣∣

2
 .

(32)

As in [Cou15], Lemma 3 yields the conclusion of Theorem 2 by integrating (32) for the sequence (ûj1(γ+
i θ, η))j1∈Z with respect to (θ, η) (taking z = e(γ+i θ)∆t accordingly), using the inequality (31) from Lemma
2 and applying Plancherel’s Theorem. We thus focus on the proof of Lemma 3 from now on.

Proof of Lemma 3. We reproduce most of the proof that can already be found in [Cou15] in order to
highlight where Assumption 2 (in its new form) is used. We argue by contradiction and assume that the
conclusion to Lemma 3 does not hold. Therefore, up to normalizing and extracting subsequences, there
exist three sequences (indexed by k ∈ N):

• a sequence (wk)k∈N with values in ℓ2(Z;C) such that (wk
−r1−p1 , . . . , w

k
P1
) belongs to the unit sphere

of CP1+r1+p1+1 for all k, and (wk
−r1−p1 , . . . , w

k
P1
) converges towards (w−r1−p1 , . . . , wP1

) as k tends to
infinity,
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• a sequence (zk)k∈N with values in U ∩ {ζ ∈ C , |ζ| ≤ R0}, which converges towards z ∈ U ,

• a sequence (ηk)k∈N with values in [0, 2π]d−1, which converges towards η ∈ [0, 2π]d−1,

and these sequences satisfy:

lim
k→+∞

∑

j1∈Z

∣∣∣∣∣∣

p1∑

ℓ1=−r1

aℓ1(z
k, ηk)wk

j1+ℓ1

∣∣∣∣∣∣

2

+
∑

j1≤0

∣∣∣∣∣∣

p1∑

ℓ1=−r1

zk ∂zaℓ1(z
k, ηk)wk

j1+ℓ1

∣∣∣∣∣∣

2

= 0 . (33)

We are going to show that (33) implies that the vector (w−r1−p1 , . . . , wP1
) must be zero, which will yield

a contradiction since this vector has norm 1.

•We already know that (wk
−r1−p1 , . . . , w

k
P1
) converges towards (w−r1−p1 , . . . , wP1

) as k tends to infinity,
and arguing by induction as in [Cou15], we can show that (33) and Assumption 3 imply that each
component (wk

j1
)k∈N, j1 ∈ Z, has a limit as k tends to infinity. This limit is denoted wj1 for any j1 ∈ Z.

Then (33) implies that the sequence w, which does not necessarily belong to ℓ2(Z;C), satisfies the two
recurrence relations (observe that the recurrence relation (35) only holds on (−∞, 0) and not on Z):

∀ j1 ∈ Z ,

p1∑

ℓ1=−r1

aℓ1(z, η)wj1+ℓ1 = 0 , (34)

∀ j1 ≤ 0 ,

p1∑

ℓ1=−r1

z ∂zaℓ1(z, η)wj1+ℓ1 = 0 . (35)

• We define the source terms:

∀ j1 ∈ Z , F k
j1 :=

p1∑

ℓ1=−r1

aℓ1(z
k, ηk)wk

j1+ℓ1 , Gk
j1 :=

p1∑

ℓ1=−r1

zk ∂zaℓ1(z
k, ηk)wk

j1+ℓ1 ,

which, according to (33), satisfy

lim
k→0

∑

j1∈Z

|F k
j1 |

2 = 0 , lim
k→0

∑

j1≤0

|Gk
j1 |

2 = 0 . (36)

We also introduce the vectors (here T denotes transposition)

∀ j1 ∈ Z , W k
j1 :=

(
wk
j1+p1 , . . . , w

k
j1+1−r1

)T
, W j1 :=

(
wj1+p1 , . . . , wj1+1−r1

)T
,

and the matrices:

L(z, η) :=




−ap1−1(z, η)/ap1(z, η) . . . . . . −a−r1(z, η)/ap1(z, η)
1 0 . . . 0

0
. . .

. . .
...

0 0 1 0


 ∈ Mp1+r1(C) , (37)

M(z, η) :=




−∂zap1−1(z, η)/∂zap1(z, η) . . . . . . −∂za−r1(z, η)/∂zap1(z, η)
1 0 . . . 0

0
. . .

. . .
...

0 0 1 0


 ∈ Mp1+r1(C) . (38)
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The matrix L is well-defined on U × Rd−1 thanks to Assumption 3. The matrix M is also well-defined
on U × Rd−1 because for any η ∈ Rd−1, Assumption 3 asserts that ap1(·, η) is a nonconstant polynomial
whose roots lie in D. From the Gauss-Lucas Theorem, the roots of ∂zap1(·, η) lie in the convex hull of
those of ap1(·, η), hence in D. Therefore ∂zap1(·, η) does not vanish on U . In the same way, ∂za−r1(·, η)
does not vanish on U .

With our above notation, the vectors W k
j1
, W j1 , satisfy the one step recurrence relations:

∀ j1 ∈ Z , W k
j1+1 = L(zk, ηk)W k

j1 +
(
F k
j1+1/ap1(z

k, ηk), 0, . . . , 0
)T

, (39)

W j1+1 = L(z, η)W j1 , (40)

∀ j1 ≤ −1 , W k
j1+1 = M(zk, ηk)W k

j1 +
(
Gk

j1+1/(z
k ∂zap1(z

k, ηk)), 0, . . . , 0
)T

, (41)

W j1+1 = M(z, η)W j1 . (42)

The recurrence relations (40), (42) are just an equivalent way of writing (34), (35).

• From Assumption 3 and the above application of the Gauss-Lucas Theorem, we already know that
both matrices L(z, η) and M(z, η) are invertible for (z, η) ∈ U × Rd−1. Furthermore, a quick analysis
shows that κ ∈ C\{0} is an eigenvalue of L(z, η) if and only if z is a solution to the dispersion relation (4).
Assumption 2 therefore shows that L(z, η) has no eigenvalue on S1 for (z, η) ∈ U × Rd−1 for otherwise
the von Neumann condition would not hold. (This eigenvalue splitting property dates back at least to
[Kre68].) However, central eigenvalues on S1 may occur for L when z belongs to S1 (see [Cou13] for a
thorough analysis of the leap-frog scheme).

As in [Cou15], the crucial point for proving Lemma 3 is that Assumption 2 in its new form still
precludes central eigenvalues of M for all z ∈ U . Namely, let us show that for all z ∈ U and all η ∈ Rd−1,
M(z, η) has no eigenvalue on S1. This property holds because otherwise, for some (z, η) ∈ U × Rd−1,
there would exist a root κ1 ∈ S1 to the characteristic polynomial of M(z, η), that is (up to multiplying by
a nonzero factor):

p1∑

ℓ1=−r1

z ∂zaℓ1(z, η)κ
ℓ1
1 = 0 .

For convenience, the coordinates of η are denoted (η2, . . . , ηd). Using the definition (5) of aℓ1 , and defining
κ := (κ1, e

i η2 , . . . , ei ηd) ∈ (S1)d, we have found a root z ∈ U to the relation

s+1∑

σ=1

σ Q̂σ(κ) z
σ−1 = 0 . (43)

This is where the new form of Assumption 2 matters. Namely, we know that for all κ ∈ (S1)d, the
roots of the polynomial equation (4) lie in D and if there are roots on the boundary S1, then they must
necessarily be simple. Applying again the Gauss-Lucas Theorem, we know that the roots to (43) lie in the
convex hull of those to (4) and therefore belong to D (because the only possibility for (43) to have a root
on the boundary S1 would be that (4) admits a double root on S1 but this degeneracy is precluded by
Assumption 2). The Gauss-Lucas Theorem thus shows that the roots to the relation (43) do not belong
to U . Hence M(z, η) has no eigenvalue on S1 for any (z, η) ∈ U × Rd−1.

• At this stage, we know that for (z, η) ∈ U ×Rd−1, the eigenvalues of M(z, η) split into two groups:
those in U , which we call the unstable ones, and those in D, which we call the stable ones. For (z, η) ∈
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U ×Rd−1, we then introduce the spectral projector Πs
M(z, η), resp. Πu

M(z, η), of M(z, η) on the generalized
eigenspace associated with eigenvalues in D, resp. U . These projectors are analytic with respect to (z, η)
on U × Rd−1. We can integrate from −∞ to 0 the recurrence relation (41) and get

Πs
M(zk, ηk)W k

0 =
1

zk ∂zap1(z
k, ηk)

∑

j1≤0

M(zk, ηk)|j1|Πs
M(zk, ηk)

(
Gk

j1 , 0, . . . , 0
)T

.

The projector Πs
M depends analytically on (z, η) ∈ U ×Rd−1. Furthermore, since the spectrum of M does

not meet S1 for (z, η) ∈ U × Rd−1, there exists a constant C > 0 and a parameter δ ∈ (0, 1) that are
independent of k ∈ N and such that

∀ j1 ≤ 0 , ‖M(zk, ηk)|j1|Πs
M(zk, ηk) ‖ ≤ C δ|j1| .

We thus get a uniform estimate with respect to k:

|Πs
M(zk, ηk)W k

0 |2 ≤ C
∑

j1≤0

|Gk
j1 |

2 .

Passing to the limit and using (36), we get Πs
M(z, η)W 0 = 0, or in other words W 0 = Πu

M(z, η)W 0.
Furthermore, since (W j1)j1≤0 satisfies the recurrence relation (42) with W 0 in the generalized eigenspace
of M(z, η) associated with eigenvalues in U , we find that (W j1)j1≤0 decays exponentially at −∞ and thus
belongs to ℓ2(−∞, 0).

• The sequence (W j1)j1≤0 satisfies both recurrence relations (40) and (42), which equivalently means
that the complex valued sequence (wj1)j1≤0 satisfies the two recurrence relations (34) and (35) for j1 ≤ 0.
Hence (wj1)j1≤0 satisfies the recurrence relation associated with the greatest common divisor of the
polynomials associated with (34) and (35). In other words, the vector W 0 belongs to the generalized
eigenspace (of either L or M) associated with the common eigenvalues of M(z, η) and L(z, η). Since we
already know that M(z, η) has no eigenvalue on S1 and that W 0 belongs to the generalized eigenspace of
M(z, η) associated with eigenvalues in U (the unstable ones), we can conclude that W 0 also belongs to
the generalized eigenspace of L(z, η) associated with those common eigenvalues of M(z, η) and L(z, η) in
U .

The final argument is the following. The matrix L(z, η) has Nu eigenvalues in U , N s in D and N c

on S1 (all eigenvalues are counted with multiplicity). (Since z may belong to S1, N c is not necessarily
zero.) With rather obvious notations, we let Πu,s,c

L
(z, η) denote the corresponding spectral projectors of

L for (z, η) sufficiently close to (z, η). In particular, the Nu eigenvalues corresponding to Πu
L(z, η) lie in

U uniformly away from S1 for (z, η) sufficiently close to (z, η). We can then integrate (39) from +∞ to
0 and derive (for k sufficiently large):

Πu
L(z

k, ηk)W k
0 = −

1

ap1(z
k, ηk)

∑

j1≥0

L(zk, ηk)−j1−1Πu
L(z

k, ηk)
(
F k
j1 , 0, . . . , 0

)T
.

Using the uniform exponential decay of L(zk, ηk)−j1−1Πu
L(z

k, ηk) (with respect to j1) and the convergence
(36), we finally end up with

Πu
L(z, η)W 0 = 0 .

Since W 0 belongs to the generalized eigenspace of L associated with those common eigenvalues of M(z, η)
and L(z, η) in U , we can conclude that W 0 equals zero. Applying the recurrence relation (40), the whole
sequence (W j1)j1∈Z is zero, which yields the expected contradiction.
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3.3 End of the proof

The end of the proof of Theorem 1 follows, as in [Cou15], from a superposition argument, see [BGS07,
chapter 4] for a similar argument in the context of continuous problems. The solution to (1) with nonzero
initial data is decomposed as the sum of a solution to an auxiliary problem (28) (that auxiliary problem
incorporates the initial data) and of a solution to a problem of the form (1) with zero initial data (hence
our earlier treatment of that case). The analysis in [Cou15] can be applied again word for word so we feel
free to refer the reader to that earlier work.

A Numerical schemes with two time levels

As we have seen in the proof of Proposition 2, the construction of energy and dissipation functionals for
finite difference operators is dictated, through the Plancherel Theorem, by the analogous construction for
recurrence relations. The inconvenience in the proof of Lemma 1 is that the construction of the forms qe
and qd depends on whether the roots of the polynomial P are simple. There is however one case that can
be dealt with in a unified way and for which the coefficients of the forms qe and qd depend in a very simple
and explicit way on the coefficients of P . Namely, we have the following result in the case of degree two
polynomials2 (the case of degree one polynomials is actually even simpler).

Lemma 4 (The energy-dissipation balance law for second order recurrence relations). Let P = aX2 +
bX + c ∈ C[X] be a polynomial of degree 2 (a 6= 0), that satisfies the following two properties:

• The roots of P are located in D.

• If P has a double root, then it is located in D.

Then the Hermitian form qe, resp. qd, defined on C2 by:

∀ (x1, x2) ∈ C2 , qe(x1, x2) := 2 |a|2 |x2|
2 + 2Re

(
a x2 b x1

)
+
(
|a|2 + |c|2

)
|x1|

2 ,

qd(x1, x2) :=
(
|a|2 − |c|2

)
|x2|

2 + 2Re
(
a x2 b x1

)
− 2Re

(
b x2 c x1

)
+
(
|a|2 − |c|2

)
|x1|

2 ,

is positive definite, resp. nonnegative. Furthermore, for any sequence (vn)n∈N with values in C, there
holds:

∀n ∈ N , 2Re
(
T (P ′(T) vn)P (T) vn

)
= 2 |P (T) vn|2 + qe(v

n+1, vn+2) − qe(v
n, vn+1) + qd(v

n, vn+1) .

(44)

The defining equations for qe and qd in Lemma 4 show that, if P is a polynomial whose coefficients are
trigonometric polynomials on Rd, then the coefficients of qe and qd can also be chosen as trigonometric
polynomials on Rd (this was not the case, in general, with our construction from Lemma 1).

Proof. The validity of (44) is a mere algebra exercise. One can for instance expand the left hand side,
which reads:

2Re
(
(2 a vn+2 + b vn+1) (a vn+2 + b vn+1 + c vn)

)
,

and verify that it coincides with the right hand side of (44) (a good starting point for this calculation
is first to subtract 2 |P (T) vn|2 to the latter quantity and factorize P (T) vn within the real part before

2Our attempts to obtain an analogue of Lemma 4 with ‘explicit’ Hermitian forms for degree three polynomials have been
unsuccessful so far, not mentioning higher degrees.
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expanding). The relation (44) can be also derived by noting that the above forms qe and qd in Lemma
4 differ from those given in [Cou15] (which we have recalled in the proof of Lemma 1) in terms of the
Lagrange polynomials associated with P by the standard telescopic “add and subtract” trick. Namely, if
z1, z2 denote the two roots of P , then qe equivalently reads:

qe(x1, x2) = |a|2
∣∣x2 − z2 x1

∣∣2 + |a|2
∣∣x2 − z1 x1

∣∣2 + |a|2 (1 − |z1|
2) (1 − |z2|

2) |x1|
2 , (45)

where the two first terms in the sum on the right hand side correspond to the Lagrange polynomials
P1(T)x1 and P2(T)x1 (see (14)), and the very last term in the sum on the right hand side has been
added in order to keep qe positive definite in case z1 and z2 coincide, in which case they belong to D (this
last term was absent in [Cou15] since the roots were assumed to be simple). The link with the defining
equation for qe in Lemma 4 is made by using the relations:

a (z1 + z2) = −b , a z1 z2 = c .

It is clear from the above alternative definition (45) that qe is positive definite under the assumptions we
have made for the polynomial P .

Let us now turn to the dissipation form qd. In agreement with the alternative expression (45) for qe,
the reader can check that the form qd given in Lemma 4 can be alternatively defined by the expression:

qd(x1, x2) = |a|2 (1 − |z1|
2)
∣∣x2 − z2 x1

∣∣2 + |a|2 (1 − |z2|
2)
∣∣x2 − z1 x1

∣∣2

+ |a|2 (1 − |z1|
2) (1 − |z2|

2)
(
|x1|

2 − |x2|
2
)
,

where the two first terms in the sum on the right hand side read as in (15), and the very last term on the
right hand side has been added in order to keep the balance law (44) valid. Expanding the square moduli
in the expression of qd, we find that it can be represented by the Hermitian matrix:

|a|2
[

1 − |z1|
2 |z2|

2 −
(
(1 − |z1|

2) z2 + (1 − |z2|
2) z1

)

−
(
(1 − |z1|

2) z2 + (1 − |z2|
2) z1

)
1 − |z1|

2 |z2|
2

]
,

whose trace is clearly nonnegative since z1 and z2 belong to D. Furthermore, up to the positive |a|4 factor,
its determinant equals:

(
1 − |z1|

2 |z2|
2
)2

−
∣∣(1 − |z1|

2) z2 + (1 − |z2|
2) z1

∣∣2 .

Expanding the square modulus and factorizing, the latter quantity is found to be equivalently given by:

(
1 − |z1|

2
) (

1 − |z2|
2
) (

1 + |z1|
2 |z2|

2 − 2Re (z2 z1)
)
,

which is bounded from below by the nonnegative quantity:

(
1 − |z1|

2
)2 (

1 − |z2|
2
)2

.

Hence the determinant of qd is nonnegative, so qd is nonnegative. The proof of Lemma 4 is complete.

Lemma 4 has an important consequence for the Cauchy problem (8) with s = 1 (finite difference operators
with two time levels). Namely, if we follow the proof of Proposition 2 with the aim of constructing some
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energy and dissipation functionals for (8), we introduce the multiplier M as in (20) and obtain the relation
(21). In the case s = 1, the polynomial Pκ reads:

Pκ(X) = Q̂2(κ)X
2 + Q̂1(κ)X + Q̂0(κ) ,

If the Cauchy problem (8) is ℓ2-stable, then the polynomial Pκ satisfies the conditions of Lemma 4 for
any κ ∈ (S1)d. Hence we can apply Lemma 4 and rewrite (21) as:

2 〈M vn, L vn 〉−∞,+∞ = 2 |||Lvn |||2−∞,+∞ + E(vn+1, vn+2) − E(vn, vn+1) + D(vn, vn+1) , (46)

with (here we apply the Plancherel Theorem ‘backwards’):

E(vn, vn+1) :=

∫

Rd

2 |Q̂2(κ)|
2 |v̂n+1(ξ)|2 + 2Re

(
Q̂2(κ) v̂n+1(ξ) Q̂1(κ) v̂n(ξ)

)

+
(
|Q̂2(κ)|

2 + |Q̂0(κ)|
2
)
|v̂n(ξ)|2

dξ

(2π)d
,

= 2 |||Q2 v
n+1 |||2−∞,+∞ + 2 〈Q2 v

n+1, Q1 v
n 〉−∞,+∞ + |||Q2 v

n |||2−∞,+∞ + |||Q0 v
n |||2−∞,+∞ ,

and, similarly:

D(vn, vn+1) := |||Q2 v
n+1 |||2−∞,+∞ − |||Q0 v

n+1 |||2−∞,+∞

+ 2 〈Q2 v
n+1, Q1 v

n 〉−∞,+∞ − 2 〈Q1 v
n+1, Q0 v

n 〉−∞,+∞ + |||Q2 v
n |||2−∞,+∞ − |||Q0 v

n |||2−∞,+∞ .

The interesting feature of these expressions is that both E and D correspond to the sum, with respect
to j ∈ Zd, of local energy and dissipation densities Ej(v

n, vn+1), resp. Dj(v
n, vn+1), which depend on

finitely many values of the sequences vn, vn+1 near j. For instance, the local density Ej(v
n, vn+1) can be

defined by:

Ej(v
n, vn+1) := 2 |Q2 v

n+1
j |2 + 2 (Q2 v

n+1
j ) (Q1 v

n
j ) + |Q2 v

n
j |

2 + |Q0 v
n
j |

2 .

Hence there is now a genuine hope to extend the definition of E and D to more general domains (by
means of sums of local quantities which do not rely on the Fourier transform) and/or to take the energy-
dissipation balance law (46) as a starting point for deriving stability estimates for finite volume space
discretizations on unstructured meshes. This is left to a future work.
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