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This paper reports on the computation of a discrete logarithm in the finite field F 2 30750 , breaking by a large margin the previous record, which was set in January 2014 by a computation in F 2 9234 . The present computation made essential use of the elimination step of the quasi-polynomial algorithm due to Granger, Kleinjung and Zumbrägel, and is the first large-scale experiment to truly test and successfully demonstrate its potential when applied recursively, which is when it leads to the stated complexity. It required the equivalent of about 2900 core years on a single core of an Intel Xeon Ivy Bridge processor running at 2.6 GHz, which is comparable to the approximately 3100 core years expended for the discrete logarithm record for prime fields, set in a field of bitlength 795, and demonstrates just how much easier the problem is for this level of computational effort. In order to make the computation feasible we introduced several innovative techniques for the elimination of small degree irreducible elements, which meant that we avoided performing any costly Gröbner basis computations, in contrast to all previous records since early 2013. While such computations are crucial to the L( 1 4 + o(1)) complexity algorithms, they were simply too slow for our purposes. Finally, this computation should serve as a serious deterrent to cryptographers who are still proposing to rely on the discrete logarithm security of such finite fields in applications, despite the existence of two quasi-polynomial algorithms and the prospect of even faster algorithms being developed.

Introduction

Let F 2 denote the finite field consisting of two elements, let F 2 30 := F 2 [T ]/(T 30 + T + 1) and let t be a root of the irreducible polynomial defining the extension. Furthermore, let F 2 30750 := F 2 30 [X]/(X 1025 +X +t 3 ) and let x be a root of the irreducible polynomial defining this extension, and consider the presumed generator g := x+t 9 of the multiplicative group of F 2 30750 . To select a target element that cannot be 'cooked up' we follow the traditional approach of using the digits of the mathematical constant π, which in the present case leads to

h π := 30749 i=0 ⌊π • 2 i+1 ⌋ mod 2 • t 29-(i mod 30) • x ⌊i/30⌋ ∈ F 2 30750 .
On 28th May 2019 we completed the computation of the discrete logarithm of h π with respect to the base g, i.e., an integer solution ℓ to h π = g ℓ . The smallest non-negative solution is given in Appendix B, along with a verification script for the computational algebra system Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]. The total running time for this computation was the equivalent of about 2900 core years on a single core of an Intel Xeon Ivy Bridge or Haswell processor running at 2.6 GHz or 2.5 GHz. For the sake of comparison, the previous record, which was set in F 2 9234 in January 2014, required about 45 core years [START_REF] Granger | Discrete Logarithms in GF (2 9234 )[END_REF]. Other large scale computations of this type include: the factorisation of a 768-bit RSA modulus, which took about 1700 core years and was completed in 2009 [START_REF] Kleinjung | Factorization of a 768-bit RSA modulus[END_REF]; the factorisation of 17 Mersenne numbers with bit-lengths between 1007 and 1199 using Coppersmith's 'factorisation factory' idea [START_REF] Coppersmith | Modifications to the number field sieve[END_REF], which took about 7500 core years and was completed in early 2015 [START_REF] Kleinjung | Mersenne factorization factory[END_REF]; the computation of a discrete logarithm in a 768-bit prime field, which took about 5300 core years and was completed in 2016 [START_REF] Kleinjung | Computation of a 768-bit prime field discrete logarithm[END_REF]; the computation of a discrete logarithm in a 795-bit prime field, which took about 3100 core years, and the factorisation of a 795-bit RSA modulus, which took about 900 core years, both completed in December 2019 [START_REF] Boudot | 795-bit factoring and discrete logarithms[END_REF]; and finally, the factorisation of an 829-bit RSA modulus, which took about 2700 core years and was completed in February 2020 [START_REF] Boudot | Factorization of RSA-250[END_REF].

A natural question that the reader may have is why did we undertake such a large-scale computation? The answer to this question is threefold. Firstly, between 1984 and 2013, the fastest algorithm for solving the discrete logarithm problem (DLP) in characteristic two (and more generally in fixed characteristic) fields was due to Coppersmith [START_REF] Coppersmith | Fast evaluation of logarithms in fields of characteristic two[END_REF]. It has heuristic complexity L Q ( 13 ), where for α ∈ [0, 1] and Q the cardinality of the field, this notation is defined by

L Q (α) := exp O((log Q) α (log log Q) 1-α )
as Q → ∞; this is the usual complexity measure that interpolates between polynomial time (for α = 0) and exponential time (for α = 1), and is said to be subexponential when 0 < α < 1. In 2013 and 2014 a series of breakthroughs occurred, indicating that the DLP in fixed characteristic fields was considerably easier to solve than had previously been believed [START_REF] Göloglu | On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in F 2 1971 and F 2 3164[END_REF][START_REF] Joux | A new index calculus algorithm with complexity L(1/4 + o(1)) in very small characteristic[END_REF][START_REF] Göloglu | Solving a 6120-bit DLP on a desktop computer[END_REF][START_REF] Barbulescu | A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic[END_REF][START_REF] Granger | Breaking '128-bit secure' supersingular binary curves -(or how to solve discrete logarithms in F 2 4•1223 and F 2 12•367[END_REF][START_REF] Granger | On the powers of 2[END_REF][START_REF] Joux | Improving the polynomial time precomputation of Frobenius representation discrete logarithm algorithms[END_REF][START_REF] Granger | On the discrete logarithm problem in finite fields of fixed characteristic[END_REF]. These techniques were demonstrated with the setting of several world records for computations of this type [START_REF] Joux | Discrete Logarithms in GF (2 1778[END_REF][START_REF] Göloglu | Discrete Logarithms in GF (2 1971 )[END_REF][START_REF] Joux | Discrete Logarithms in GF (2 4080[END_REF][START_REF] Göloglu | Discrete Logarithms in GF (2 6120 )[END_REF][START_REF] Joux | Discrete Logarithms in GF (2 6168[END_REF][START_REF] Granger | Discrete logarithms in the Jacobian of a genus 2 supersingular curve over GF (2 367 )[END_REF][START_REF] Granger | Discrete Logarithms in GF (2 9234 )[END_REF], using algorithms that had heuristic complexity at most L Q ( 1 4 + o(1)), where o(1) → 0 as Q → ∞. Amongst all of the breakthroughs from this period, the standout results were two independent and distinct quasi-polynomial algorithms for the DLP in fixed characteristic: the first due to Barbulescu, Gaudry, Joux and Thomé (BGJT) [START_REF] Barbulescu | A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic[END_REF]; and the second due to Granger, Kleinjung and Zumbrägel (GKZ) [START_REF] Granger | On the powers of 2[END_REF][START_REF] Granger | On the discrete logarithm problem in finite fields of fixed characteristic[END_REF]. Both algorithms have heuristic complexity L Q (o(1)), although the latter is rigorous once an appropriate field representation is known. As further discussed below, such representations exist, for instance, for Kummer extensions. While the computational records demonstrated the practicality of the L( 1 4 + o(1)) techniques, it was the promise of the quasi-polynomial algorithms that effectively killed off the use of small characteristic fields in discrete logarithm-based cryptography, even though these algorithms had not been seriously tested. In particular, the descent step, or 'building block' of the BGJT method has to our knowledge never been used for the individual logarithm stage. The descent step of the GKZ method, on the other hand, has been used during the individual logarithm stage for some small degree eliminations for relatively small fields [START_REF] Kleinjung | Discrete Logarithms in GF (2 1279 )[END_REF][START_REF] Joux | Improving the polynomial time precomputation of Frobenius representation discrete logarithm algorithms[END_REF], but not with a view to properly testing its applicability recursively, as it is intended to be used. Since the GKZ algorithm becomes practical for far smaller bit-lengths than the BGJT algorithm, one aspect of our motivation was to test its practicality by seeing in how large a field we could solve discrete logarithms, within a reasonable time. The act of doing so allows one to assess the practical impact of the algorithm and indeed, its success in this case demonstrates that it can be applied effectively at a large scale. It also demonstrates just how much easier the DLP is in binary fields than for prime fields, for this level of computational effort. We note that a recent paper of the second and fourth listed authors proves that the complexity of the DLP in fixed characteristic fields is at most quasi-polynomial, without restriction on the form of the extension degree -in contrast to the GKZ algorithm -thus complementing the practical impact of the present computation with a rigorous theoretical algorithm for the general case [START_REF] Kleinjung | Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic[END_REF].

Secondly, we wanted to set a significant new record because in our experience of attempting such computations, one almost always encounters many unexpected obstacles that necessitate having new insights and developing new techniques in order to overcome them, both of which enrich our knowledge and understanding, as well as the state of the art. Indeed, it was the solving of a DLP in F 2 4404 in 2014 [START_REF] Granger | Breaking '128-bit secure' supersingular binary curves -(or how to solve discrete logarithms in F 2 4•1223 and F 2 12•367[END_REF] that led to the discovery of the GKZ algorithm. As Knuth has stated, "The best theory is inspired by practice. The best practice is inspired by theory.", which is as true in this field as it is in any other. In this work, we developed several innovative techniques for the elimination of small degree irreducible polynomials, which were absolutely vital to the feasibility of computing a discrete logarithm within such an enormous field. In particular, our new insights and contributions include the following.

-A simple theoretical and efficient algorithmic characterisation of all so-called Bluher values.

-A highly efficient direct method for eliminating degree 2 polynomials over F q 3 on the fly, which applies with probability ≈ 1 2 . -A highly efficient backup method for eliminating degree 2 polynomials over F q 3 when the direct method fails, making the bottleneck of the computation feasible. In addition we found an interesting theoretical explanation for the observed probabilities. -A fast probabilistic elimination of degree 2 polynomials over F q k for k > 3.

-A novel use of interpolation to efficiently compute roots of the special polynomials that arise.

-An extremely efficient and novel degree 3 elimination method, thus mollifying the new bottleneck in the computation, which was also applied to polynomials of degree 6, 9 and 12. -A new technique for eliminating polynomials of degrees 5 and 7, which together with the techniques for the other small degree polynomials meant that no costly Gröbner basis computations were performed at all. Although such computations are essential to the L Q ( 1 4 + o(1)) complexity algorithms, they were simply too slow for our purposes.

-A highly optimised classical descent using the above elimination costs as input in order to apply a dynamic programming approach.

Finally, although discrete logarithm-based cryptography in small characteristic finite fields has effectively been rendered unusable, there are constructive applications in cryptography for fast discrete logarithm algorithms. For example, knowledge of certain discrete logarithms in binary fields can be exploited to create highly efficient, constant time masking functions for tweakable blockciphers [START_REF] Granger | Improved masking for tweakable blockciphers with applications to authenticated encryption[END_REF]. Further afield, there are several applications which would benefit from efficient discrete logarithm algorithms, although not necessarily in the fixed characteristic case. For example, in matrix groups a problem in GL(n, q) can often be mapped to GL(1, q n ) and naturally becomes a DLP in F q n . Also, discrete logarithms are needed in various scenarios when reducing the unit group of an order of a number field modulo a prime. In finite geometry one encounters near-fields, where multiplication usually requires computing discrete logarithms, and there are other applications in representation theory, group theory and Lie algebras in the modular case. The relevance of the DLP to computational mathematics therefore extends far beyond cryptography. Despite the existence of the quasi-polynomial algorithms, the use of prime degree extensions of F 2 has recently been proposed in the design of a secure compressed encryption scheme of Canteaut et al. [START_REF] Canteaut | Stream ciphers: A practical solution for efficient homomorphic-ciphertext compression[END_REF]Sec. 5]. For 80 bits of security a prime extension of degree ≈ 16 000 was suggested (and of degree 4 000 000 for 128-bit security), very conservatively based on the polynomial time first stage of index calculus as described in [START_REF] Joux | Improving the polynomial time precomputation of Frobenius representation discrete logarithm algorithms[END_REF], but ignoring the dominating quasi-polynomial individual logarithm stage. Even though the security of such fields is massively underestimated and the resulting schemes are prohibitively slow, it is interesting, to say the least, that these proposals were made. Although the computation reported here is not for a prime degree extension of F 2 , our result should nevertheless be regarded as a serious deterrent against such applications. Indeed, the central remaining open problem in this area, which is to find a polynomial time algorithm for the DLP in fixed characteristic fields (either rigorous or heuristic) is far more likely to be solved now than it was before 2013.

Another natural question that the reader may have is why 30 750, exactly? In contrast to the selection of h π , this extension degree was most certainly 'cooked up' specifically for setting a new record 5 . In particular, 30 750 = 3 • 10 • (2 10 + 1) so that the field is of the form F q 3(q+1) , thus permitting the use of a twisted Kummer extension, in which it is much easier to solve logarithms than in other extensions of the same order of magnitude. Firstly, as explained in §5 the factor base which consists of all monic degree one elements possesses an automorphism of order 3075. This reduces the cardinality of the factor base from 2 30 to a far more manageable 349 185. Secondly, such field representations ensure that when eliminating an element during the descent step, the cofactors have minimal degree and therefore will be smooth with maximum probability (under a uniformity assumption when not using the GKZ elimination step). Thirdly, there are no so-called 'traps' during the descent, i.e., elements which can not be eliminated [START_REF] Granger | On the discrete logarithm problem in finite fields of fixed characteristic[END_REF]. The first two reasons explain why Kummer and twisted Kummer extensions have been used for all of the records since 2013. Observe that for the previous record we have 9234 = 2 • 9 • (2 9 + 1). However, whereas for the 9234-bit computation the factor base consisted of all degree one and irreducible degree two elements, for the present computation it would be too costly to compute and store the logarithms of such a factor base, even when incorporating the automorphism. So it was essential that the logarithms of degree two elements could be computed 'on the fly', i.e., as and when needed, without batching. For a base field of the form F q 3 this is non-trivial as each degree two element only has a half chance of being eliminable when the method of [START_REF] Göloglu | On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in F 2 1971 and F 2 3164[END_REF] is applied. For our target field, a backup approach similar in spirit to that used for the 6120 = 3•8•(2 8 -1)-bit record can be used [START_REF] Göloglu | Discrete Logarithms in GF (2 6120 )[END_REF][START_REF] Göloglu | Solving a 6120-bit DLP on a desktop computer[END_REF], and the chosen parameters allow for this with an acceptable probability. However, in order to make the computation feasible, as already mentioned it was essential to develop new techniques for the elimination of degree two and other small degree polynomials and to optimise them algorithmically, arithmetically and implementation-wise. For the number of core years used we therefore believe with high confidence that we have solved as large a DLP as is possible with current state of the art techniques.

The sequel is organised as follows. In §2 we present some results on so-called Bluher polynomials that are essential to the theory and practice of our computation. In §3 we recall the GKZ algorithm, explaining the importance of degree two elimination and how this leads to a quasi-polynomial algorithm. We describe the field setup in §4, and in §5 describe how we computed the logarithms of the factor base elements, namely the degree one elements. Subsequently we present our degree two elimination methods in §6 and more generally even degree element elimination in §7, and in §8 detail how we eliminated small odd degree elements. In §9 we explain how we efficiently compute the roots of Bluher polynomials in various scenarios, while in §10 we detail the classical descent strategy, analysis and timings. In §11 we briefly discuss the security of the proposal of Canteaut et al., and finally in §12 we make some concluding remarks.

Bluher Polynomials and Values

Let q be a prime power, let k ≥ 3 and consider the polynomial

F B (X) ∈ F q k [X] defined by F B (X) := X q+1 -BX + B. (1) 
We call such a polynomial a Bluher polynomial. A basic question that arises repeatedly for us is for what values B ∈ F × q k does F B (X) split over F q k , i.e., factor into a product of q + 1 linear polynomials in F q k [X]? With this in mind we define B k to be the set of all B ∈ F × q k such that F B (X) splits over F q k , and call the members of B k Bluher values. It turns out that there are some simple characterisations of B k which enable various computations to be executed very efficiently. We first recall a result of Bluher.

Theorem 1. [START_REF] Bluher | On x q+1 + ax + b[END_REF] The number of elements B ∈ F × q k such that the polynomial F B (X) splits completely over

F q k equals q k-1 -1 q 2 -1 if k odd, q k-1 -q q 2 -1 if k even.
One characterisation of B k is the following generalisation of a theorem due to Helleseth and Kholosha.

Theorem 2. [START_REF] Granger | On the discrete logarithm problem in finite fields of fixed characteristic[END_REF]Lemma. 4.1] We have

B k = (u -u q 2 ) q+1 (u -u q ) q 2 +1 u ∈ F q k \ F q 2 .
Theorem 2 is useful for sampling from B k . However, sometimes it is desirable to test whether a given element of F q k is a Bluher value, without factorising (1) and without first enumerating B k and checking membership, which may be intractable when k is so large that there are prohibitively many Bluher values to precompute. To this end, we define the following polynomials. Let P 1 (X) = 1, P 2 (X) = 1, and for i ≥ 3 define P i (X) by the recurrence

P i (X) = P i-1 (X) -X q i-3 P i-2 (X).
(

) 2 
Theorem 3. An element B ∈ F × q k is a Bluher value if and only if P k ( 1 B ) = 0. Proof. A simple induction shows that the degree of P k equals the number of Bluher values given in Theorem 1, so it suffices to prove the only if part. Let B be a Bluher value and C = 1 B . Using X q ≡ X-1 CX (mod F B ) and induction, for i ≥ 2 one obtains

X q i ≡ P i+1 (C)X -P q i (C) C q i-1 (P i (C)X -P q i-1 (C)) (mod F B ).
Since X ≡ X q k (mod F B ) by assumption, C q k-1 (P k (C)X -P q k-1 (C))X ≡ P k+1 (C)X -P q k (C) (mod F B ) and thus P q k (C) = 0. One can efficiently test if an element B ∈ F × q k is a Bluher value simply by evaluating P k ( 1 B ) using the recurrence [START_REF] Bluher | On x q+1 + ax + b[END_REF]. By rewriting the recurrence in a matrix form it is possible to apply fast methods for evaluating it. However, since k is quite small for most of the computations, we did not use this. Furthermore, one can obviously compute B k by applying the recurrence (2) and factorising P k .

The GKZ Algorithm

In this section we sketch the main idea behind the GKZ algorithm, referring the reader to the original paper for rigorous statements and proofs [START_REF] Granger | On the discrete logarithm problem in finite fields of fixed characteristic[END_REF].

Assume there exist coprime h 0 , h 1 ∈ F q k [X] of degree at most two such that there exists a monic irreducible polynomial I of degree n with I | h 1 X q -h 0 . Let F q kn := F q k [X]/(I) = F q k (x) where x is a root of I. Then we have the following commutative diagram:

F q k [X, Y ] R 1 = F q k [X] R 2 = F q k [X][1/h 1 ] F q k [X]/(I). Y →X q Y →h 0 /h 1
Assume further for the moment that for any d ≥ 1, it is possible in time polynomial in q and d to express a given irreducible degree two element Q ∈ F q kd [X] as a product of at most q + 2 linear elements in F q kd [X] mod I, i.e.,

Q ≡ q+2 i=1 (X + a i ) (mod I), with a i ∈ F q kd . (3) 
We have the following. 

Q ∈ F q k [X]
be an irreducible polynomial of degree 2d. Then Q can be rewritten in terms of at most q + 2 irreducible polynomials of degrees dividing d in an expected running time polynomial in q and in d.

We now sketch the proof. Over F q kd , we have the factorisation

Q = d i=1 Q i , where Q i ∈ F q kd [
X] are irreducible quadratics. Applying the above rewriting assumption to any one of the elements Q i gives an instance of the product in (3), with Q i on the l.h.s. Taking the norm map, i.e., the product of all conjugates of each term under Gal(F q kd /F q k ), produces the original Q on the l.h.s. and for each term on the r.h.s., a d 1 -th power of an irreducible polynomial in

F q k [X] of degree d 2 , where d 1 d 2 = d, which is what the proposition states.
Now, if one begins with an irreducible polynomial Q of degree 2 e with e ≥ 1, then recursively applying Proposition 1 allows one to express Q as a product of at most (q+2) e linear polynomials. Moreover, given g ∈ F × q kn and h ∈ g an element whose logarithm with respect to g is to be computed, one can efficiently find an irreducible representative of h mod I of degree 2 e , provided that 2 e > 4n, by adding random multiples of I to h so that the degree of h+rI is 2 e [16, Lem. 3.3].

The logarithms of the linear elements -the factor base -remain to be computed, but this can be accomplished in polynomial time in various ways [START_REF] Göloglu | On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in F 2 1971 and F 2 3164[END_REF][START_REF] Joux | A new index calculus algorithm with complexity L(1/4 + o(1)) in very small characteristic[END_REF], or can be obviated altogether by repeating the descent to linear elements as many times as the cardinality of the factor base [START_REF] Enge | A general framework for subexponential discrete logarithm algorithms[END_REF], but the latter is usually only of theoretical interest. Note that in practice the above descent method is not optimal as for high degree element elimination the classical methods are more efficient, since they produce far fewer descendants.

The crux of this approach, namely eliminating a degree two element as expressed in (3), can be achieved in various ways originating with [START_REF] Göloglu | On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in F 2 1971 and F 2 3164[END_REF], as follows. Let a, b, c ∈ F q k and consider the polynomial X q+1 + aX q + bX + c. Firstly, since X q ≡ h 0 /h 1 (mod I) we have

X q+1 + aX q + bX + c ≡ 1 h 1 (X + a)h 0 + (bX + c)h 1 (mod I), (4) 
with the numerator of the r.h.s. of ( 4) of degree at most three. We would like to impose that this numerator is divisible by Q. Therefore, let L Q ∈ F q k [X] 2 be the lattice defined by

L Q := {(w 0 , w 1 ) ∈ F q k [X] 2 | w 0 h 0 + w 1 h 1 ≡ 0 (mod Q)}.
In general, L Q has a basis of the form (1, u 0 X + u 1 ), (X, v 0 X + v 1 ) with u i , v i ∈ F q k and thus in order for the r.h.s. of (4) to be divisible by Q we must choose a, b, c such that

(X + a, bX + c) = a(1, u 0 X + u 1 ) + (X, v 0 X + v 1 ). ( 5 
)
When this is so, the cofactor of Q has degree at most one. Secondly, provided that b = a q and c = ab, the polynomial X q+1 + aX q + bX + c may be transformed by using the substitution

X -→ ab -c b -a q X -a (6) 
into a scalar multiple of the Bluher polynomial X q+1 -BX + B, where

B := (b -a q ) q+1 (c -ab) q . (7) 
Thus, if these two conditions on a, b, c hold then X q+1 + aX q + bX + c splits whenever B ∈ B k . Combining ( 5) and ( 7) yields the condition

B = (-a q + u 0 a + v 0 ) q+1 (-u 0 a 2 + (u 1 -v 0 )a + v 1 ) q . ( 8 
)
In order to eliminate Q, one chooses B ∈ B k to obtain a univariate polynomial in a, which can be checked for roots in F q k in various ways, for instance by computing the GCD with a q k -a. Note that the more Bluher values there are, the higher the chance is of eliminating Q. By Theorem 1 the hardest case is for k = 3 as there is only one such Bluher value, namely 1, which is the case we address in this paper, using a backup elimination method à la [START_REF] Göloglu | Solving a 6120-bit DLP on a desktop computer[END_REF]. By this rationale, in general when Proposition 1 is applied, the elimination of degree two Q i over F q kd becomes 'easier' as d grows, although the computational cost per Bluher value increases as the base field increases in size.

Field Setup and Factors

Recall that the group in which we look at the discrete logarithm problem is the (cyclic) unit group of the finite field F 2 30750 , thus its group order is N := 2 30750 -1. We used the factorisation algorithm of Magma, which is assisted by the 'Cunningham tables' for Mersenne numbers, to obtain the 58 known prime factors of N up to bit-length 135 (see Appendix A). 6Also recall that to represent the field F 2 30750 , we first let

F 2 30 := F 2 [t] = F 2 [T ]/(T 30 + T + 1) where t := [T ] ∈ F 2 30
, and then, setting γ := t 3 , we define the target field as the extension 7 The field element g := x + t 9 is then a supposed generator for the group, as g N/p = 1 for the 58 listed prime factors p | N .

F 2 30750 := F 2 30 [x] = F 2 30 [X]/(X 1025 + X + γ) where x := [X] ∈ F 2 30750 .
The schedule and the running times of our computation of the discrete logarithm of the target element h π ∈ F 2 30750 from the introduction are summarised in Table 1. In the subsequent sections we present the corresponding steps in more detail. 

Logarithms of Degree 1 Elements

As usual this consists of relation generation followed by a linear algebra elimination.

Relation Generation

The relation generation step is based on the following. As before, let F q be a finite field, let k ≥ 3 and let a, b, c ∈ F q k . Then over F q k , the polynomial X q+1 + aX q + bX + c splits if and only if its affine transformation X q+1 -BX + B splits, with B as given in [START_REF] Coppersmith | Fast evaluation of logarithms in fields of characteristic two[END_REF]. According to Theorem 1, for random a, b, c this occurs with probability about q -3 , in which case the set of roots of X q+1 + aX q + bX + c is, by the transformation (6), given by

λz -a | z ∈ F q k a root of X q+1 -BX + B , where λ := ab -c b -a q .
In our case we have F q k = F 2 30 and regard all linear polynomials x + u, for u ∈ F 2 30 , as the factor base. Since in the target field one has

x 1024 = x + γ x ,
one could use q = 2 10 and k = 3 for a fast relation generation. However, in order to decrease the row-weight of the resulting matrix, we prefer to choose k = 6 and q = 2 5 , so that x q2 = x+γ x . The relation generation then makes use of the identity

(x q+1 + ax q + bx + c) q = 1
x (b q + 1)x q+1 + γx q + (a q + c q)x + a qγ , which provides a relation of weight 66 each time both sides split.

Letting again q = 2 10 , the Galois group Gal(F 2 30750 /F q ) of order 3075 acts on the factor base elements. Indeed, we have (x + u) q = u q +1

x x + γ u q +1 , by which we can express all logarithms in a Galois orbit, up to a small cofactor, in terms of the logarithms of a single representative (and of x). This way we only need to consider the 349 185 orbits as variables. Within a running time of 63 minutes on an ordinary desktop computer the relation generation was finished.

Linear Algebra

The relation generation produced a 349 195 × 349 184 matrix with 66 nonzero entries in each row, each being of the form ±2 e ∈ Z/N Z with some e ∈ Z/30750Z. We solved the linear algebra system for this matrix using the Lanczos method [START_REF] Lanczos | An iteration method for the solution of the eigenvalue problem of linear differential and integral operators[END_REF][START_REF] Lamacchia | Solving large sparse linear systems over finite fields[END_REF]. More precisely, with the intention to speed up modular computations, we used the factorisation

N = N 1 • N 2 • N 3 := (2 10250 -1) • (2 10250 + 2 5025 + 1) • (2 10250 -2 5025 + 1)
and computed a solution vector for each of three moduli M i | N i having small cofactors. This took 30 393 core hours on single computing nodes having 16 or 24 cores.

Then by the Chinese Remainder Theorem we combined the resulting solutions with the logarithms modulo the 38 prime factors of N up to bit-length 43, listed in Appendix A. For the 18 larger ones of these moduli -the smallest being 2 252 951 -we computed the logarithms using the Lanczos algorithm as well. For the remaining 20 small factors, i.e., up to 165 313, we simply generated the corresponding subgroups in the target field and read off the discrete logarithms from the table. This way, and making use of the Galois orbits, we obtained the logarithms log(x + u) for all factor base elements, where u ∈ F 2 30 . The remaining computations accounted for a total of 2105 core hours on a single 16-core computing node.

Degree 2 Elimination Methods

As it is the bottleneck, in order to have a feasible computation it is indispensable to have an extremely efficient degree 2 elimination algorithm and implementation. In this section we apply the sketch of degree 2 elimination given in §3 to our target field and describe algorithms which are more efficient than those presented in [START_REF] Göloglu | Solving a 6120-bit DLP on a desktop computer[END_REF][START_REF] Granger | Breaking '128-bit secure' supersingular binary curves -(or how to solve discrete logarithms in F 2 4•1223 and F 2 12•367[END_REF]. Most of the techniques are more general and are presented in the setting of an arbitrary finite field F q k and x q+1 -x -γ = 0. Let Q = X 2 + q 1 X + q 0 ∈ F q k [X] be an arbitrary irreducible quadratic polynomial to be eliminated, i.e., to be written as a product of linear elements.

Direct Method

Recall that x q = x+γ x , so that

x q+1 + ax q + bx + c = 1 x (b + 1)x 2 + (a + c + γ)x + γa (9) = b + 1 x x 2 + a + c + γ b + 1 x + γa b + 1 .
Since the denominator x on the r.h.s. of ( 9) is in the factor base, we know its logarithm. There is also no lattice to consider as the quadratic term must be Q, leading to the equations q 1 = a+c+γ b+1 and q 0 = γa b+1 . In order for the l.h.s. of (9) to split over F q 3 , since there is only one Bluher value we must have (b -a q ) q+1 = (c -ab) q . Writing b = 1 q 0 (γa -q 0 ) and c = 1 q 0 (-q 0 a -γq 0 + γq 1 a) leads to a univariate polynomial equation in a, namely (-q 0 a q + γa -q 0 ) q+1 -q 0 (-γa 2 + q 1 γa -γq 0 ) q = 0. This equation may be solved by computing the GCD with a q 3 -a, by writing a using a basis for F q 3 over F q and solving the resulting quadratic system using a Gröbner basis computation [START_REF] Göloglu | Solving a 6120-bit DLP on a desktop computer[END_REF], or using the following much faster technique which exploits the fact that B = 1.

Since B = 1 is the only Bluher value for k = 3, writing b = 1 q 0 (γa -q 0 ) = u 0 a + v 0 and c = 1 q 0 (-q 0 a -γq 0 + γq 1 a) = u 1 a + v 1 as in ( 5), the equation ( 8) becomes (-

a q + u 0 a + v 0 ) q+1 -(-u 0 a 2 + (u 1 -v 0 )a + v 1 ) q = 0. ( 10 
)
By setting X i = a q i we can rewrite this as E = 0 with

E := (-X 1 + u 0 X 0 + v 0 )(-X 2 + u q 0 X 1 + v q 0 ) -(-u q 0 X 2 1 + (u q 1 -v q 0 )X 1 + v q 1
) where E is considered as a polynomial in the X i . Notice that the coefficient of X 2 1 vanishes, a consequence of B = 1. Raising [START_REF] Göloglu | On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in F 2 1971 and F 2 3164[END_REF] to the power q while substituting X q i with X i+1 (and X 3 with X 0 ) yields the equation Ẽ = 0 with

Ẽ := (-X 2 + u q 0 X 1 + v q 0 )(-X 0 + u q 2 0 X 2 + v q 2 0 ) -(-u q 2 0 X 2 2 + (u q 2 1 -v q 2 0 )X 2 + v q 2 1
). Since the factors -X 2 + u q 0 X 1 + v q 0 coincide in E and Ẽ (essentially by construction) and X 0 occurs only in their cofactors, it is easy to see that

E + u 0 Ẽ = α 12 X 1 X 2 + α 1 X 1 + α 2 X 2 + α with α * being simple expressions in u 0 , u 1 , v 0 , v 1 .
The special case α 12 = 0 can be handled easily so we assume that α 12 = 0 and rewrite the equation

α 12 X 1 X 2 + α 1 X 1 + α 2 X 2 + α = 0 as X 1 = - α 2 X 2 + α α 12 X 2 + α 1 .
By raising this equation to the power q (with the usual substitution of X q i with X i+1 ) one can express X 2 in terms of X 0 , and after doing this again X 0 in terms of X 1 . Substituting these three equations into each other gives an equation of the form X 0 = β 2 X 0 +β β 12 X 0 +β 1 or, equivalently,

β 12 X 2 0 + (β 1 -β 2 )X 0 -β = 0. ( 11 
)
In the rare case that the l.h.s. of ( 11) is identically zero we abort the direct elimination method and apply the backup method; otherwise we check whether [START_REF] Göloglu | Solving a 6120-bit DLP on a desktop computer[END_REF] has solutions in F 2 30 and when it does so, we check whether they satisfy [START_REF] Göloglu | On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in F 2 1971 and F 2 3164[END_REF]. It is not easy to classify which solutions of (11) lead to solutions of [START_REF] Göloglu | On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in F 2 1971 and F 2 3164[END_REF], although in practice almost all of them do so.

Experimentally we found that a randomly chosen Q is eliminable by this method with probability very close to 1/2. A heuristic argument supporting this observation is that the derived equation [START_REF] Göloglu | Solving a 6120-bit DLP on a desktop computer[END_REF] presumably behaves as a random degree 2 equation, which therefore has a solution in F 2 30 with probability ≈ 1/2.

Before explaining the backup method we first introduce three efficient techniques that we employed for solving related problems.

Finding a Degree 2 Elimination with Probability q -2

A simple method for eliminating a degree 2 element Q in F q k [X] consists of picking a random a ∈ F q k , computing b = u 0 a + v 0 = 1 q 0 (γa -q 0 ) and c = u 1 a + v 1 = 1 q 0 (-q 0 a -γq 0 + γq 1 a) as before, and then checking whether the triple (a, b, c) leads by [START_REF] Coppersmith | Fast evaluation of logarithms in fields of characteristic two[END_REF] to a Bluher value B ∈ B k using Theorem 3, i.e., whether P k ( 1 B ) = 0 for the polynomials P i defined by [START_REF] Bluher | On x q+1 + ax + b[END_REF]. The success probability is expected to be about q -3 per trial by Theorem 1.

A better success rate is achieved by guessing a root r of the polynomial X q+1 + aX q + bX + c first (with b and c as above) and testing if the polynomial splits completely. Note that when r is a root and we plug in b and c, we have r q+1 + ar q + (u 0 a + v 0 )r + (u 1 a + v 1 ) = 0 from which we recover

a = - r q+1 + v 0 r + v 1 r q + u 0 r + u 1 .
From this we again compute B = (b-a q ) q+1 (c-ab) q ∈ F q k and check by Theorem 3 whether B ∈ B k . With this method the probability that the corresponding B is a Bluher value has been increased (heuristically) to about q -2 by [2, Thm. 5.6].

The recurrence (2) for computing P k ( 1 B ) as per Theorem 3 can be modified by

P * 1 = 1, P * 2 = b -a q , P * i = (b -a q ) q i-2 P * i-1 -(c -ab) q i-2 P * i-2 ,
where P * k provides (after clearing denominators) a polynomial P in r having the same roots as P k ( 1 B ), and which may be used for the interpolation approach described next.

Using Interpolation to Find Roots of Featured Polynomials

When encountering the task of finding a root in F q k of a polynomial P of high degree in one variable X which can be written as a low degree polynomial in the variables X, X q , X q 2 , . . . , the method of picking random r ∈ F q k until P (r) = 0 can sometimes be sped up as follows.

Let r 0 , r 1 , . . . , r ℓ ∈ F q k such that r 1 , . . . , r ℓ are linearly independent over F q (in particular ℓ ≤ k) and let R := {r 0 + ℓ i=1 c i r i | c 1 , . . . , c ℓ ∈ F q }. Then there is a low degree polynomial P satisfying P (c 1 , . . . , c ℓ ) = P (r 0 + ℓ i=1 c i r i ); let D = deg( P ) and assume D < q. The polynomial P can be computed by evaluating P at D+ℓ ℓ elements of R and interpolating, after which the q ℓ values P (r) for r ∈ R can be obtained by evaluating P . Notice that still q ℓ operations are needed to cover the set R but if evaluating P is sufficiently more expensive than evaluating P , this method is faster. The optimal value of ℓ depends on q, D and the evaluation costs for the two polynomials.

Using GCD Computations

In certain situations we have to find an element in F q k which is a root of two polynomials P 1 and P 2 . In this case one can speed up the interpolation approach as follows.

Let P1 and P2 be the low degree polynomials corresponding to P 1 and P 2 and let their degrees be D 1 and D 2 , respectively. If a tuple (c 1 , . . . , c ℓ ) leads to a root of P 1 and P 2 then c 1 is a root of Pi (c 1 , . . . , c ℓ ), i = 1, 2, considered as a polynomial in the variable c 1 . Therefore c 1 is also a root of the greatest common divisor of these two univariate polynomials. If q k is much bigger than D 1 D 2 , the degree of the GCD is usually not bigger than 1 so that one trades q evaluations of P1 (and/or P2 ) for one GCD computation.

Backup Method

When the direct method fails, which occurs with probability ≈ 1/2, we use the following backup approach, based on the idea from [START_REF] Göloglu | Solving a 6120-bit DLP on a desktop computer[END_REF]; for the remainder of this section we assume F q k = F 2 30 . Instead of using q = 2 10 , k = 3 we use q = 2 6 , k = 5, which by Theorem 1 means there are q 2 + 1 = 4097 Bluher values, but now the r.h.s. of the relevant equation will have higher degree and thus a smaller chance that the cofactor is 1-smooth.

Let y = x 1024 and x = x 16 , so that y = x 64 . As x 1025 + x + γ = 0 we have x = γ y+1 and x = γ y+1 16 . We therefore have 

Now let Q(X)

:= (X + 1) 2 Q γ X+1 so that Q(x) = Q(y) (y+1) 2
, and consider the lattice

L Q := (w 0 , w 1 ) ∈ F q 5 [X] 2 | w 0 + (X+1) 16 γ 16 w 1 ≡ 0 (mod Q) .
In general, L Q has a basis of the form (X + u 0 , u 1 ), (v 0 , X + v 1 ) with u i , v i ∈ F q 5 . Thus for a ∈ F q 5 we have (X + u 0 + av 0 , aX + u 1 + av 1 ) ∈ L Q . Substituting this element into w 0 , w 1 and evaluating the resulting expression at y leads to the r.h.s. of ( 12) being 

As before, F q 5 -roots of ( 13) can be computed, if they exist, via a GCD computation or using a basis for F q 5 over F q and solving the resulting quadratic system using a Gröbner basis approach. Instead of solving (13) directly, we used the probability q -2 method and interpolation with ℓ = 3 so that we expect to find about q = 2 6 completely splitting l.h.s. of (12) per interpolation.

For each of these we check whether the r.h.s. of ( 12) is 2-smooth as follows. Denote by R the polynomial corresponding to its numerator and let m be a linear fractional transformation over F 2 60 mapping the two roots of Q to 0 and ∞. Then the polynomial R becomes (up to a scalar) X 16 -αX for some α ∈ F × 2 60 , and the transformation m maps R to X 16 -αX, where • denotes the F 2 60 /F 2 30 Galois conjugate, i.e., powering by 2 30 . If and only if α ∈ F 2 60 is a fifteenth power, does the r.h.s. of ( 12) split completely over F 2 60 and is thus 2-smooth over F 2 30 . As Q is irreducible, the transformation m -1 m exchanges 0 and ∞ and is thus of the form X → β X for some β ∈ F × 2 60 , while mapping X 16 -αX (up to a scalar) to X 16 -αX and hence αα = β 15 , which implies that α = α 2+2 30 β -15 is already a third power. Therefore, we expect the r.h.s. of ( 12) to be 2-smooth with probability 1 5 , which is much higher than for a random polynomial of this degree, thanks to it being transformable to a Bluher polynomial.

Furthermore, whenever the r.h.s. is 2-smooth it must factorise into a product of five linear polynomials and five degree two polynomials. In particular, assume that the polynomial R on the r.h.s. of (12) splits completely over F 2 60 . Similarly as above, denote by m a linear fractional transformation mapping R to X 16 = b which has exactly five solutions. Thus the cofactor of Q splits into five polynomials of degree one and five of degree two. We remark that the same reasoning can be applied to determine the possible splitting pattern for a general Bluher polynomial in positive characteristic.

For each set of five degree two polynomials, we attempt to eliminate each of them using the direct method, which succeeds with probability 1/2 5 , assuming these eliminations are independent. One thus expects to eliminate such degree two elements after trying 160 Bluher values, a figure which was borne out by our experiments. One also expects the approach to fail for a given irreducible of degree two with probability (1 -1 160 ) 4097 ≈ 7 • 10 -12 . If this happened, we simply restarted the elimination at an ancestor with a different seed for randomness. In terms of timings per degree two elimination, on average these ranged between 1.1ms on some machines and just less than 1ms on others.

Small Even Degree Elimination Techniques

An overview of the various descent methods that we applied for the smaller degrees is depicted in Figure 1. In this short section we explain those methods for even degrees that are based on degree 2 elimination, and in the next section we detail the methods for odd degrees.

Degree 4 Elimination

By Proposition 1 this case is reduced to the elimination of a degree 2 polynomial over F q 6 = F 2 60 . We use the probability q -2 method and interpolation with ℓ = 1 to obtain a polynomial P of degree 15 over F q 6 and search for its zeroes in F q as follows. By choosing an F q basis of F q 6 the polynomial P can be expressed as a linear combination of six polynomials P1 , . . . , P6 ∈ F q [X] so that an F q -zero of P is also a zero of GCD( P1 , . . . , P6 ). In the rare case that the degree of this GCD is bigger than 1 we evaluate P at all elements of F q . Usually it is sufficient to compute the GCD of at most three of the Pi .

Degree 2d to Degree d

For 2d ∈ {8, 10, 16, 32} we rewrite an irreducible in F q 3 [X] of degree 2d into factors of degree (at most) d, using the algorithm outlined in the proof sketch of Proposition 1. This method is based on degree 2 elimination over the fields F q 3d , which we perform using the technique already described in §6.2, since the subsequent costs dominate the elimination costs by a large factor.

Small Odd Degree Elimination Techniques

In this section we explain the methods employed for eliminating irreducible polynomials in F q k [X] of small odd degree d into polynomials of degrees d-1, . . . , 1. In the same way that the degree 2 elimination extends to any even degree polynomial these techniques allow to eliminate irreducible polynomials of degree nd into polynomials of degrees n(d-1), . . . , n.

Degree 3 Elimination

We show in this section how the degree 2 elimination technique can be extended to eliminate degree 3 polynomials. Instead of eliminating degree 2 polynomials into linear polynomials, we eliminate degree 3 polynomials into degree 2 polynomials: it is a 3-to-2 elimination.

As in §3 we use the field representation F q kn = F q k [X]/(I), where I divides h 1 X q -h 0 . We may assume that h 0 and h 1 have degree at most 1, since in our setup h 0 = X + γ and h 1 = X. The 3-to-2 elimination takes as input a cubic polynomial Q in F q k [X] and rewrites it into a product of linear and quadratic polynomials

Q i ∈ F q k [X] such that Q ≡ i Q i mod I.
In our setup, the base case consists in eliminating cubic polynomials over F 2 30 into quadratic and linear polynomials over F 2 30 , so q = 2 10 and k = 3. As mentioned, this technique allows to eliminate irreducible polynomials of degree 3d over F 2 30 into polynomials of degree 2d and d over F 2 30 in the same way that the degree 2 elimination extends to any even degree polynomials. Concretely, let Q ∈ F 2 30 [X] be an irreducible polynomial of degree 3d. Then Q splits in F 2 30d [X] into d Galois-conjugate irreducible factors, each of degree 3. Let Q be any of these factors. Let

N : F 2 30d [X] → F 2 30 [X] be the norm map. Then Q = N ( Q).
Applying the degree 3 elimination to Q yields a product i Qi such that each Qi is linear or quadratic in F 2 30d [X], and Q ≡ i Qi mod I. Thus each

Q i = N ( Qi ) is of degree d or 2d in F 2 30 [X], and Q ≡ i Q i mod I.
This method is used in our computation to eliminate polynomials of degree 6, 9 and 12.

Degree 3 to Degree 2 Elimination Let k ≥ 3. We now show how to eliminate a cubic polynomial Q over F q k into a product of linear and quadratic polynomials over F q k . As previously, let B k be the set of all values B ∈ F q k such that X q+1 -BX + B splits completely in

F q k [X].
Any polynomial of the form X q+1 + aX q + bX + c with c = ab and b = a q splits completely in

F q k [X] whenever B = (b-a q ) q+1 (c-ab) q is in B k . Consider the polynomial H 0 (X, Y ) = XY + aY + bX + c ∈ F q k [X, Y ] ,
and define the transformation

T δ : X -→ X 2 + X + δ X + 1 . Let H δ (X, Y ) = H 0 (T δ (X), T δ q (Y )). Whenever B = (b-a q ) q+1 (c-ab) q ∈ B k , the numerator of H δ (X, X q ) splits into linear and quadratic polynomials in R 1 = F q k [X]
. The denominator of H δ equals (X + 1)(Y + 1), and the polynomial (X + 1)(Y + 1)H δ is of degree 2 in Y . Therefore the image of (

X +1)(Y +1)H δ in R 2 = F q k [X][1/h 1 ] has denominator h 2
1 , so to get rid of all the denominators, we will work with the polynomial

G δ = h 2 1 (X + 1)(Y + 1)H δ .
On one hand, we want G δ to split into linear and quadratic polynomials in R 1 , i.e., B should be an element of B k . On the other hand, we want Q to divide the image of G δ in R 2 . The latter is of degree at most 2 + 2 max(deg h 0 , deg h 1 ). When h 0 and h 1 are of degree 1, and Q divides the image of G δ in R 2 , the cofactor is of degree at most 1.

We shall now describe how to find suitable values of δ, a, b and c in F q k . First, observe that G δ is a linear combination of the polynomials

I 0 = h 2 1 (X + 1)(Y + 1)T δ (X)T δ q (Y ), J 0 = h 2 1 (X + 1)(Y + 1)T δ q (Y ), K 0 = h 2 1 (X + 1)(Y + 1)T δ (X), L 0 = h 2 1 (X + 1)(Y + 1),
as G δ = I 0 + aJ 0 + bK 0 + cL 0 . Let I, J, K and L be the reductions modulo Q of the images in R 2 of I 0 , J 0 , K 0 and L 0 respectively; in particular, these are polynomials in R 2 of degrees at most 2.

Then, Q divides G δ in R 2 if and only if I + aJ + bK + cL = 0. The latter is a linear system for the three variables a, b and c, in the 3-dimensional vector space of polynomials of degree 2. Solving this linear system with δ as a symbolic variable yields a solution a, b, c

∈ F q k [δ].
Choosing random values for δ, the resulting B is expected to fall in B k with an expected probability of q -3 . For k = 3, there is only one element in B k , so it might happen that no good value of δ exists. In that case, we start again with the transformation

T δ,α : X -→ X 2 + X + δ X + α , in place of T δ , for random values α ∈ F q k .
Optimising the Elimination Suppose we have computed a, b, c ∈ F q k [δ], and are looking for values of δ that give rise to a Bluher value. Instead of trying random values for δ, one can directly find these which yield a B in B k via the characteristic polynomial of inverse Bluher values as per Theorem 3. By using the recurrence in §6.2 and interpolation (cf. §6.3, in our practical setting we use ℓ = 1) the random guessing approach could be sped up considerably.

Eliminating Polynomials of Degree 5 and Degree 7

Let Q be a polynomial of degree d. Consider two polynomials

F = d F i=0 f i X i and G = d G i=0 g i X i in F q k [X] with d F , d G < d. We have F q G -F G q ≡ 1 h d-1 1 F (q) h 0 h 1 h d-1 1 G -F G (q) h 0 h 1 h d-1 1 (mod I),
with the numerator of the r.h.s. of degree at most 2d -2. The coefficients of this numerator are simple polynomials in the f i , f q i , g i and g q i , in particular, they are linear in each of these variables. If the polynomial G is fixed, it is easy to find all polynomials F such that the r.h.s. is zero modulo Q. Indeed, for an F q -basis (α i ) of F q k one can write

f i = k j=1 f ij α j with f ij ∈ F q (implying f q i = k j=1 f ij α q j
) and reducing the r.h.s. modulo Q to obtain a linear system of dk equations in the dk unknowns f ij . Since F = G is always a solution, the corresponding matrix has rank at most dk-1; if its rank is smaller, a non-trivial pair (F, G) exists which leads to an elimination of Q into polynomials of degrees smaller than d.

Heuristic arguments suggest that the probability of finding a non-trivial pair (F, G) for a randomly chosen G is about q -2 . Namely, discarding the 1 + (q + 1)(q dk -1) trivial solutions

{(F, G) | c F F = c G G for some c F , c G ∈ F q },
one expects that about a q -dk part of the roughly q 2dk remaining pairs (F, G) give rise to a r.h.s. divisible by Q. Since one non-trivial solution (F, G) entails q 2 -q non-trivial solutions (aF + bG, G), with a, b ∈ F q , a = 0, the probability of finding a non-trivial solution for a fixed G is heuristically about q -2 .

The cost of the algorithm as presented is O(q 2 (dk) 3 ) (with a lower exponent if fast matrix multiplication is used; since the subsequent costs of the elimination dominate, we did not do this). If q is big compared to dk, the following variants might be advantageous. If the rank of the matrix corresponding to the linear system obtained from a randomly chosen G has rank at most dk -2 then all its minors vanish. Thus, instead of directly computing the rank of the matrix, one can check whether a few minors vanish and, if so, compute the rank. Since the minors are polynomials of degree dk -1 in the g ij ∈ F q defined by g i = k j=1 g ij α j , the interpolation approach as well as the GCD approach may be used. For an ℓ = 1 interpolation the cost is O(q(dk) 4 ) and for ℓ = 2 it is O((dk) 5 +q(dk) 2 ).

In our computation we used this method for degrees 5 and 7 for which the ℓ = 2 interpolation was optimal (q = 1024 and dk = 15, 21). We remark that the subsequent costs for this method are much bigger than for the Gröbner basis method, but this was not a significant concern as the resulting costs for these degrees were relatively inexpensive.

Computing Roots of Bluher Polynomials and Their Transformations

In order to find all roots of a Bluher polynomial or a transformation thereof, which is known to split completely, we use two different methods.

If a transformation is known which maps the polynomial to an explicit polynomial with known roots, this transformation is used to obtain the roots. This applies to the following cases:

the direct method in degree 2 and degree 3 elimination, where we transform to the only Bluher polynomial X q+1 -X + 1 and use its pre-computed roots; -the backup method in degree 2 elimination for which the r.h.s. polynomial can be transformed to X 16 -β 15 X; -and the degree nd to n(d -1), . . . , n elimination where the splitting of the polynomial is obvious.

In the other cases of degree 2 t elimination, one root of the polynomial is known so that by sending this root to ∞ we have to find the roots of a polynomial P = X q + a 1 X + a 0 . The case a 1 = 0 is trivial so we assume that P has no multiple roots. Let r 0 , r 1 ∈ F q k be random elements and compute s 1 X + s 0 ≡ k-1 i=0 (r 1 X + r 0 ) q i (mod P ). By construction (s 1 X + s 0 ) q ≡ s 1 X + s 0 (mod P ) holds so that P divides (s 1 X + s 0 ) q -(s 1 X + s 0 ). If s 1 does not vanish, the roots of P are β-s 0 s 1 , β ∈ F q ; otherwise one tries other random pairs (r 0 , r 1 ). Finally, for the degree 6, 9, 10 and 12 eliminations, the polynomials are also a transformation of a Bluher polynomial. Three roots of the Bluher polynomial are found with the Cantor-Zassenhaus algorithm, from which all the roots of the original polynomial are recovered.

Classical Descent

As stated in the introduction, we set ourselves a discrete logarithm challenge using the digit expansion (to the base 2 30 ) of the mathematical constant π, which is viewed, as is common, as a source of pseudorandomness. Specifically, the target element h π ∈ F 2 30750 is represented by a polynomial over F 2 30 of degree 1024.

In the individual logarithm phase, or the 'descent' phase, of the index calculus method, we seek to rewrite this polynomial, modulo X 1025 + X + γ, step-by-step as a product of polynomials having smaller degrees, until we have expressed the target element as a product of factor base elements.

Descent Analysis

Performing a descent starting from degree 1024 constitutes a substantial challenge. In order to optimise the overall computational cost we employ a bottom-up approach in our analysis. This means that for every degree d = 2, 3, 4, . . . we determine the expected cost of computing a logarithm of an element represented by a polynomial of degree d. This cost is the sum of finding a (good) representation as a product of lower degree polynomials (the 'direct cost'), plus the expected total cost of the factors appearing in the product, based on the earlier cost estimations for degrees < d (the 'subsequent cost').

When computing the expected direct and subsequent costs, one needs statistical information about the degree pattern distribution and the resulting cost distribution for a random polynomial over F 2 30 of a given degree. These can be obtained using formulas for the number of irreducible polynomials and an approach involving formal power series. As the analysis becomes more difficult when the degrees increase, we round the input costs appropriately and sometimes replace the field F 2 30 by the field F 2 (without much loss of accuracy). Assisted by Magma for the power series computations, we list in Table 2 the expected costs for each of the degrees up to 40. 8Table 2. Rounded cost estimations used in the descent phase. The cost unit is normalised to the equivalent of one degree [START_REF] Granger | On the discrete logarithm problem in finite fields of fixed characteristic[END_REF] 

Initial Split and Classical Descent

Having finished the bottom-up analysis, starting from lowest degrees, the actual descent computation was performed top-down, starting with the target element of degree 1024.

In the first phase, referred to as 'initial split', the target element β is rewritten as a fraction

g i h π = r(x)/s(x),
where deg r + deg s = 1024 and the integer i should be chosen so that the polynomials r, s ∈ F 2 30 [X] have a favourable factorisation pattern. The descent analysis suggested that a split with unbalanced degrees is preferable, so we searched for splittings with deg r = 205 and with deg r = 256. The most promising initial split we found was using deg r = 205, deg s = 819 and where i = 47 611 005 802, resulting in a factorisation with largest irreducible factor being of degree 672. Next the 'classical descent' was performed, which is based on the following rewriting method. Choose some a ∈ {0, 1, . . . , 10} and define x := x 2 10-a and y := x 2 a , so that x = (γ/(y+1)) 2 10-a . Then for polynomials u, v ∈ F 2 30 [X] we have

u(x 2 a )x + v(x 2 a ) = u(y) γ y+1 2 10-a + v(y).
If a target field element represented by a polynomial Q ∈ F 2 30 [X] of degree d is to be eliminated, we choose the polynomials u, v such that Q divides one of the sides. Now balancing the degrees such that deg u + deg v = d + e (for e ∈ {0, 1}) gives 2 30(e+1) trials for obtaining a smooth cofactor and a smooth other side.

We refer to Table 3 for computational details of the initial split and the classical descent. This phase resulted in a number of polynomials to be eliminated by the non-classical descent methods, the timings of which are summarised in Table 4. One question which has a direct bearing on the security of the secure compressed encryption scheme of Canteaut et al. [START_REF] Canteaut | Stream ciphers: A practical solution for efficient homomorphic-ciphertext compression[END_REF], is what is the complexity of solving discrete logarithms in the fields F 2 n with n prime and ≈ 16 000?

In fact n ≈ 10 322 > 2 80/6 would suffice for their security condition, which is that the first stage of index calculus -which has complexity O((2 log 2 n ) 6 ) when using the approach of Joux-Pierrot -should have 80-bit security. Firstly, one can reduce this slightly by using a degree n irreducible factor of h 1 (X q )X -h 0 (X q ) with deg(h 1 ) = 2 and deg(h 0 ) = 1, allowing q = 2 13 to be used rather than the stipulated 2 14 . Secondly, ignoring the descent is an overly conservative approach as one is then effectively assuming that logarithms can be computed in polynomial time, which partly explains why the performance of the scheme is so slow. Thirdly, one can instead use q = 2 12 and h 1 := X 3 + X 2 + X + 1, h 0 := X 5 + X 4 + X 2 as h 1 (X q )X -h 0 (X q ) has an irreducible factor of degree 10 333, which is the next prime after 10 322. For such h 1 , h 0 , the analysis of Joux-Pierrot does not apply in its entirety, but the alternative used by Kleinjung for the computation of discrete logarithms in F 2 1279 [START_REF] Kleinjung | Discrete Logarithms in GF (2 1279 )[END_REF] gives an O(q 7 ) algorithm for computing the logarithms of all irreducible elements of F q 10333 of degree ≤ 4.

Given that a target discrete logarithm is in F 2 10333 , any irreducible elements of degree d obtained during the descent can be split into some degree d/GCD(d, 12) irreducibles over F q (or a subfield). Hence for the initial split one can expect to obtain only elements of degree, say < 200, in a reasonable time. Furthermore, since the logarithms of elements of degree up to 4 are known, d/GCD(d, 12) need only be a small power of 2 times 1, 2, 3 or 4 in order to apply the GKZ step, so that, e.g., d = 288, 384, 576 or 768 are also favourable degrees to search for during the initial split. Note that since the degrees of h i are larger than in the present case, finding cofactors that are 1-smooth will be more costly for each elimination. However, whether an individual logarithm can be computed in this field more efficiently than the factor base logarithms would require a detailed model and analysis of both parts, and we leave this as an open, but not particularly pressing question.

More generally, finding the optimal field representation, factor base logarithm method, and descent strategy for any given extension degree is an interesting open problem, with the understanding that optimal here means subject to the current state of the art.

Concluding Remarks

We have presented the first large-scale experiment which makes essential recursive use of the elimination step of the GKZ quasi-polynomial algorithm and in doing so have set a new discrete logarithm record, in the field F 2 30750 . We have contributed novel algorithmic and arithmetic improvements to degree two elimination -the core of the GKZ algorithm -as well as to other small degree eliminations, which together made the computation feasible.

Regarding open problems, the remaining major open problem in fixed characteristic discrete logarithm research is whether or not there is a polynomial time algorithm, either rigorous or heuristic. Since we now have L(o(1)) algorithms, one might hope that L(0) complexity is not only possible, but may be discovered in the not too distant future. 
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x 65 + 1 (

 651 ax 64 + bx + c = y γ y+1 16 + ay + b γ y+1 16 + c = y+1) 16 ay 17 + cy 16 + (γ 16 + a)y + (bγ 16 + c) .

1 (

 1 y+1) 16 ay 17 + (u 1 + av 1 )y 16 + (γ 16 + a)y + γ 16 (u 0 + av 0 ) + u 1 + av 1 and thus b = av 0 + u 0 and c = av 1 + u 1 . The l.h.s. of (12) transforms into a Bluher polynomial provided that (a 64 + b) 65 = B(ab + c) 64 for some B ∈ B 5 . This results in the equation (a 64 + v 0 a + u 0 ) 65 + B(v 0 a 2 + (u 0 + v 1 )a + u 1 ) 64 = 0 .

Fig. 1 .

 1 Fig. 1. Overview of the small-degree, 'non-classical' descent methods. The encircled numbers represent the degrees of elements. Solid arrows indicate two-to-one descents (including the backup strategy for 2 → 1), dashed arrows depict three-to-two descents, and dotted arrows represent specific odd-degree methods.

  Proposition 1. [16, Prop. 3.2] For the stated field representation, let d ≥ 1 and let

Table 1 .

 1 Overall schedule and running times.

	Step	when	core hours
	Relation Generation	23 Feb 2016	1
	Linear Algebra	27 Feb 2016 -24 Apr 2016	32 498
	Initial Split	09 Sep 2016 -20 Sep 2016	248 140
	Classical Descent	13 Oct 2016 -23 Jan 2019 17 077 836
	Small Degree Descent 27 Jan 2019 -28 May 2019 8 122 744
	total running time		25 481 219

Table 3 .

 3 Initial split and classical descent: schedule and running times.

	is	when	degree #polys iterations core hours
		09 Sep -20 Sep 2016 1024	1	60 G	248 140
	cd	when		degree #polys iterations core hours
		13 Oct -30 Oct 2016	672	1	80 G	220 406
		31 Oct -02 Dec		466	1	80 G	395 216
		08 Dec -03 Jan		130	1	80 G	121 988
		17 Dec -26 Dec		106	1	40 G	120 821
		14 Jan -22 Jan 2017	64	1	40 G	85 721
		22 Jan -28 Jan		45	1	26 G	52 127
		28 Jan -01 Feb		40	1	32 G	56 721
		01 Feb -02 Feb		38	1	16 G	26 620
		03 Feb -04 Feb		35	1	16 G	23 298
		04 Feb -07 Feb		34	3	48 G	69 144
		08 Feb -11 Feb		31	3	48 G	70 381
		11 Feb -14 Feb		30	3	96 G	143 208
		18 Feb -21 Feb		29	2	32 G	47 987
		22 Feb -04 Mar		28	4	64 G	96 933
		05 Mar -08 Mar		27	3	48 G	72 982
		10 Mar -13 Mar		26	2	32 G	38 565
		14 Mar -18 Mar		25	4	40 G	43 820
		18 Mar -26 Mar		24	8	100 G	110 932
		29 Mar -01 Apr		23	5	60 G	59 165
		01 Apr -09 Apr		22	9	108 G	108 868
		11 Apr -24 Apr		21	12	173 G	153 994
		24 Apr -08 May		20	12	216 G	192 121
		12 May -30 May		19	19	486 G	347 169
		31 May -09 Jul		18	43	1143 G	788 765
		19 Jul -02 Aug		17	39	879 G	588 148
		05 Aug -11 Oct		15	116	2761 G 1 780 136
		14 Oct -19 May 2018	14	209	6558 G 4 049 638
		20 May -10 Sep		13	592	6961 G 4 361 593
		10 Sep -23 Jan 2019	11	1687	4647 G 2 851 369
		total running time				17 077 836

Table 4 .

 4 Timings of the non-classical descent methods. Reflections on the Security of the Proposal of Canteaut et al.

	degree #polys core hours
	32	8 2 800 053
	16	8622 2 944 153
	12	5644	976 533
	10	4694	790 316
	9	4184	372 762
	8	3998	1388
	7	3671	236 195
	6	3467	615
	5	3384	719
	3	3744	8
	0,1,2,4 22 973	2
	total		8 122 744

  If the following is true then the verification was successful hpi eq g^log;
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	5013861890264189122129401515436677143878765049187831537840274254424382439643469154213721491144269067296361\
	6051432753779913538873113633936518574532486982523322988706677914219270407026556650524538565864371064774748\
	4867602003344929825895687057572953680017482076645977509597091659601823250525835336256115596721455871414374\
	6351560051626179272980584314925670111185042232817880467226026682913911023733784867852189640489302773537683\
	5717196907350765540368510887811021602414497973745995443737338335533027023950567389671881860493290854194750\
	4545177330607937383529015834991073224632423885343798187392846024451158898698310032950777455747923800905182\
	5392779456539720775448781391228678148890742424968562845987995586524902058280079962717162582155370835454789\
	1650133177176132154040253188770800869123676869923554635172224567587671587185280855086810932854774829377859\
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	8235535589706649686543556212160299922543798489873871039814453052217419176811991881558223042302400904599466\
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	7517008929290929045177138658046268536040641420459151077068958543533667447527529852899548554504385661263910\
	5169467841260768876286409103241121712596014243949615914988012323302604935241664873668009690540503022580253\
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The fact that 30 750 is precisely the seating capacity of the first listed author's home football stadium is purely a coincidence; see https://en.wikipedia.org/wiki/Falmer_Stadium.

We remark that this partial factorisation is sufficient, since the expected running time of a generic discrete logarithm algorithm on a subgroup of order the largest listed prime already exceeds our total running time.

Note that this convenient field representation for the discrete logarithm problem can be assumed without loss of generality, as it is possible to efficiently map between arbitrary field representations given by irreducible polynomials, cf.[START_REF] Lenstra | Finding isomorphisms between finite fields[END_REF].

In common descent algorithms, a smaller degree usually means a lower cost, which however is not generally true in our case. So in fact, our bottom-up analysis starts with the degrees for which the non-classical descent methods apply, cf. Fig.1.
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Appendix A

This Magma script displays the partial factorisation of the group order N = 2 30750 -1 by listing the known prime factors of bit-length up to 135, in increasing order. 

Appendix B

The following Magma script verifies the solution of the chosen DLP.