Supplementary information

Local atomic and electronic structure in the Li_xVPO₄(F,O) Tavorite-type materials from Solid State NMR combined with DFT calculations

T. Bamine^{a,b}, E. Boivin^{a,b,d}, C. Masquelier^{b,c,d}, L. Croguennec^{a,b,c}, Elodie Salager^{b,e}, and

D. Carlier^{a,b,c*}

^a CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB UMR 5026, F-33600 Pessac, France

^b RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459,

F-80039 Amiens Cedex 1, France

^c ALISTORE-ERI, FR3104, 80039 Amiens cedex, France

^d Laboratoire de Réactivité et de Chimie des Solides, CNRS-UMR#7314, Université de Picardie Jules Verne, F-80039 Amiens Cedex 1, France

^e CNRS, CEMHTI UPR 3079, Université d'Orléans, Orléans, France

		Exp. Shift (ppm)	Calculated Fermi contact Shift (ppm)	
			GGA	GGA+U (4eV)
LiVPO ₄ F	⁷ Li	115	130	116
	³¹ P	3871	6900	3450
	¹⁹ F	-1500	-630	-140
LiVPO ₄ O	⁷ Li(1)	79	110	44
	⁷ Li(2)		105	40
	³¹ P(1)	1613	2815	1834
	³¹ P(2)	1441	2600	1577

Figure S1: Calculated Fermi contact shifts for ⁷Li, ³¹P and ¹⁹F in LiVPO₄F and ⁷Li and ³¹P in LiVPO₄O compared to experimental ones while spinning at 30 kHz (T~320 K). Calculations were done using GGA and GGA+U approaches. In our previous study on LiVPO₄F, several values were used for the U term: as 4eV led to good agreement between calculated and experimental shifts it has been chosen in the previous study ref [1]. Further details concerning the Fermi contact shifts calculations using this method can be found in ref [1-2]. Overall, a localization of the electron on the Vanadium d orbital generated by the U term, induces a weaker spin transfer on the adjacent nuclei and thus a weaker computed Fermi contact shift. It was already discussed in our previous studies [3-4].

Figure S2: The peculiar electronic structure of V^{4+} ions involved in the vanadyl (V=O) bonds in LiVPO₄O. (a) 3D spin density map showing that the d_{xy} orbital perpendicular to the short V=O bond is carrying the spin. (b) 3D charge density map showing the strong covalency of the V=O bond and (c) the theoretical formation of this double bond involving the d_{z2} and the d_{yz} (or d_{xz}) orbitals.

Figure S3: Tentative decomposition of the 1D ⁷Li MAS NMR spectra of the three intermediate $LiVPO_4F_{1-y}O_y$ phases with y = 0.35, 0.55, 0.75 using 6 contributions with a pseudo voigt lineshape in addition to the LiF contribution around 0ppm. Note that especially in the grey regions with strong overlap, more contributions could have been considered.

Figure S4: Spin density maps around V ions depending on their VO₄X₂ environment typically calculated for LiVPO₄(O,F) model phases and their corresponding oxidation states V^{III} or V^{IV}. From the Li environment on the left, the expected magnitude of spin transfer from V to Li, relative to the spin transfer observed in LiV^{III}PO₄F, is deduced. ST = similar spin transfer, weak ST = weaker spin transfer, strong ST = larger spin transfer and no ST = almost no spin transfer.

rfdr5ms

1.5

rfdr1ms

-50

Figure S5: ⁷Li-⁷Li fp-RFDR correlation spectra with a mixing time of 1, 5 and 10 ms for $LiVPO_4F_{0.25}O_{0.75}$, with the ⁷Li-⁷Li EXSY correlation spectrum acquired in the same conditions with a mixing time of 10 ms. The cross peak areas are compared for the RFDR (5ms) and the EXSY at the bottom tight.

Figure S6: ⁷Li-⁷Li fp-RFDR correlation spectra with a mixing time of 1, 5 and 10 ms for $LiVPO_4F_{0.45}O_{0.55}$, with the 7Li-7Li EXSY correlation spectrum acquired in the same conditions with a mixing time of 10 ms. The cross peak areas are compared for the RFDR (5ms) and the EXSY at the bottom tight.

Figure S7: ⁷Li-⁷Li fp-RFDR correlation spectra with a mixing time of 1, 5 and 10 ms for)) $LiVPO_4F_{0.65}O_{0.35}$, with the ⁷Li-⁷Li EXSY correlation spectrum acquired in the same conditions with a mixing time of 10 ms. The cross peak areas are compared for the RFDR (5ms) and the EXSY at the bottom tight.

References

- [1] T. Bamine, T. E. Boivin, F. Boucher, R. Messinger, E. Salager, M. Deschamps, C. Masquelier, L. Croguennec, M. Ménétrier, D. Carlier, J. Phys. Chem. C 2017, 121 (6), 3219–3227.
- [2] L-H-B Nguyen, P. Sanz Camacho, T. Broux, J. Olchowka, C. Masquelier, L. Croguennec, D. Carlier, *Chem. Mater.* 2019, *31(23)*, 9759-9768. L-H-B Nguyen, P. Sanz Camacho, T. Broux, J. Olchowka, C. Masquelier, L. Croguennec, D. Carlier, *Chem. Mater.* 2019, *31(23)*, 9759-9768.
- [3] D. Carlier, M. Ménétrier, C. Delmas J. Phys. Chem. C, 2010, 114, 4749-4755.
- [4] A. Castets, D. Carlier, Y. Zhang, F. Boucher, N. Marx, L. Croguennec, M. Ménétrier, J. Phys. Chem. C, 2011, 115, 16234-16241.