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Abstract

This study deals with the problem of the least-weight design of a composite multilayer
plate subject to constraints of di�erent nature (mechanical, geometrical and technological
requirements). To face this problem, a multi-scale two-level (MS2L) design methodology is
proposed. This approach aims at optimising simultaneously both geometrical and mechan-
ical parameters of the laminate at each characteristic scale (mesoscopic and macroscopic
ones). In this background, at the �rst level (macroscopic scale) the goal is to �nd the opti-
mum value of geometrical and mechanical design variables minimising the structure mass
and satisfying the set of imposed constraints (on �rst buckling load, membrane sti�ness
and feasibility constraints). The second-level problem (mesoscopic scale) aims at �nding
at least one stacking sequence meeting the geometrical and material parameters provided
by the �rst-level problem. The MS2L optimisation approach is based on the polar for-
malism to describe the macroscopic behaviour of the composite (in the framework of the
equivalent single layer theories) and on a special genetic algorithm to perform optimisa-
tion calculations. The optimum solutions provided by the MS2L optimisation strategy are
characterised by a weight saving of about 10% with enhanced mechanical properties when
compared to conventional symmetric balanced stacks. The e�ectiveness of the optimum
solutions is also proven through an experimental campaign of buckling tests. The experi-
mental results are in excellent agreement with those foreseen by the numerical simulations.
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1. Introduction

The constant demand of lightweight structures with enhanced mechanical performances
has led to an increasing use of composite materials in the last few decades. Fibre-reinforced
composites present speci�c sti�ness and strength properties that make them really appeal-
ing when compared to metallic alloys. The behaviour of these materials gives the designer
the opportunity to tailor the material properties according to the design needs. A lot of re-
search has been carried out in looking for the best strategy to optimise multilayer composite
plates in order to either minimise the mass (without loosing performances with respect to
a given reference solution) or improve mechanical performances (without increasing the
mass with respect to a reference con�guration). Nonetheless, the problem is still open.
The design of a composite structure is a quite di�cult problem that can be considered as
a multi-scale optimisation problem. The complexity of the design process is due to two
intrinsic properties of composite materials, i.e. heterogeneity and anisotropy. Heterogene-
ity gets involved mainly at the microscopic scale (i.e. that of constitutive phases), whilst
anisotropy intervenes at both mesoscopic scale (that of the lamina) and macroscopic one
(that of the laminate). To deal with heterogeneity a common strategy is to make use of
homogenization techniques [1�3].

The main consequence of anisotropy is the introduction of some phenomena and is-
sues that do not exist in metals (e.g. extension-bending coupling, delamination, residual
stresses, free-edge stresses, di�erent failure mechanisms, etc.). A further complication is
that the design process must deal with a signi�cant amount of design variables at di�erent
scales. In fact, up to now, no general methods exist for the optimum design of a composite
structure.

Adali et al. [4] investigated the post-buckling sti�ness maximisation problem of sim-
ply supported biaxially loaded laminated plates using �ve pre-set symmetrical angle-ply
stacking sequences consisting of eight plies. In this way the number of design variables
reduces to one (for each con�guration) and the optimisation was carried out by means
of the Golden Section method. Later [5] they focused on the problem of maximising the
�rst buckling load of a bi-material multilayer plate. In each considered case the stacking
sequence is balanced and symmetric and the orientations are limited to the canonical set

{0◦,±45◦, 90◦}. Finally in [6, 7] both approaches have been used in the framework of
multi-objective optimisation problems.
Haftka and Walsh [8] used integer programming for the optimum design of symmetric bal-
anced stacks wherein the orientations are constrained to get the values in the canonical set.
These problems were solved by considering additional requirements on the percentage rule
and overall in-plane sti�ness value. Le Riche and Hafka [9] made use of a genetic algorithm
(GA) to perform the solution search for the problem of maximising the �rst buckling load
of a multilayer plate with a given number of plies. Also in this work, symmetric balanced
stacks with orientation angles getting values in the canonical set were considered. Further-
more, an ad-hoc genetic operator, i.e. the permutation operator, was proposed to increase
the e�ciency of the calculations.

Still in the context of the �rst buckling load maximisation problem, Aymerich and
Serra [10] utilised the Ant Colony Optimisation method (considering balanced symmetric
stacking sequences in the usual domain of orientations) which was characterised by a better
e�ciency, in terms of computational e�ort, when compared to GA-based strategies. Irisarri
et al. [11] performed a multi-objective optimisation process of laminated plates using a
Pareto-based evolutionary algorithm. In this interesting work symmetric balanced stacks
are employed and the orientation of each couple of plies comes from a set bigger than the
canonical one, i.e. (0◦2,±15◦,±30◦, ..., 90◦2). Furthermore, a set of design guidelines [12] are
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integrated in the optimisation process, though the �exural behaviour of the laminate was
only approximated.

The previous works aimed at solving the design problem by directly optimising the
value of the layers orientation angles without introducing a multi-scale design/optimisation
approach. In each study, the nature of the stack is set a priori and the orientation angles
are limited to get values in a prede�ned set. Moreover, further design (empirical) rules
[12] were integrated as optimisation constraints. All these aspects contribute to strongly
shrink the design domain leading the algorithm to �nd only suboptimal solutions. All
the previous works are based on an analytical formulation of the optimisation problem.
Conversely, for real-world engineering problems the mechanical response of the structure
is typically evaluated by means of a suitable �nite element (FE) model.

In this scenario, multi-scale optimisation strategies of composite structures which aim
at formulating and solving the design/optimisation problem at each pertinent scale (with-
out introducing simplifying hypotheses on both the nature of the stacking sequence and on
the value of plies orientation) �nd strong motivations. When dealing with the multi-scale
optimisation problem of a composite, at the macroscopic scale, the behaviour is described
in terms of the laminate sti�ness tensors components, regardless of the nature of the stack.
When the laminate behaviour is expressed in the framework of the classic laminate theory
(CLT) the Cartesian components of membrane, bending and membrane/bending coupling
sti�ness tensors constitute the unknowns of the problem. However, since Cartesian compo-
nents are frame dependent, an alternative representation of such tensors is often used. The
most common approach makes use of the well-known lamination parameters (LPs) coupled
with the parameters of Tsai and Pagano [13]. These parameters [14, 15] unquestionably
provide a compact representation of the sti�ness tensors of composite laminates in the
framework of the CLT, although they are not all tensor invariants [13].

Diaconu et al. [16] presented a general framework for determining the feasible region in
LPs space for general composite laminate design. Their method does not give an explicit
relationship between LPs, but only a �numerical de�nition� of the boundary of the feasible
domain. Later they presented a work on the layup optimisation of thick laminates for
maximising the �rst natural frequency [17]. In this context, a multi-step optimisation
approach including numerical veri�cation on the feasibility of the optimum solutions is
proposed. Liu et al. [18] considered the problem of the maximisation of the �rst buckling
load of a multilayer plate in the �exural LPs space. The optimum solutions are only given
in terms of �exural LPs characterising the equivalent homogeneous anisotropic plate.

Bloom�eld et al. [19] presented a two-step optimisation strategy for symmetric lam-
inates made of a prede�ned set of possible ply orientations. The strategy is applied to
the problem of mass minimisation of a simply supported multilayer plate under di�erent
loading conditions. The results highlight the interest in widening the standard canonical
set by adding ±30◦ and ±60◦ values. Liu et al. [20] presented a two-step optimisation
strategy for maximising the sti�ness of laminates subject to a given set of optimisation
constraints. During the �rst step the optimisation problem is solved in the LPs space
wherein the feasible region has been approximated by the one that can be obtained by
considering only six di�erent orientation angles. During the second step, a suitable stack is
retrieved by solving a least-square problem in which the orientation angles of the laminae
are the design variables.

As it can be inferred from the previous works, the multi-scale optimisation approach
based on LPs presents two main weaknesses: LPs are not tensor invariants, while not all
Tsai and Pagano parameters are invariants; both LPs and Tsai and Pagano parameters have
not an immediate physical meaning related to the elastic symmetries of the sti�ness tensor.
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Moreover, although the previous studies made use of the multi-scale optimisation strategy
based on LPs, an unnecessary restriction still remains when looking for the optimum stack:
in the formulation of the laminate lay-up design problem simplifying hypotheses on the
nature of the stacking sequence are systematically used. These assumptions are used,
on the one hand, to obtain a short-cut to a possible solution (i.e. to obtain some desired
mechanical properties). On the other hand, the aim of these rules is to prevent the laminate
from some undesired phenomena, though this is never clearly and rigorously stated nor
proved. Unfortunately, the use of these simple rules shrinks the design space and drives
the optimisation algorithm towards suboptimal solutions.

Two examples are the use of symmetric stacking sequences (a su�cient but not nec-
essary condition for membrane-bending uncoupling) and the use of balanced stacks to
obtain orthotropic laminates. However, the use of balanced stacks (a su�cient condition
for membrane orthotropy) leads systematically to misleading solutions: whenever such
a rule is used, bending orthotropy, a rather di�cult property to achieve [21], is simply
understated, assumed, but not really obtained [18, 22�24].

To overcome the previous restrictions, in the present study the multi-scale two-level
(MS2L) optimisation approach based on the Verchery's polar method [25] for designing
anisotropic complex structures [26�28] is used. In this background, the design problem is
formulated in the most general sense, i.e. without introducing simplifying hypotheses and
by considering, as design variables, the full set of geometric and mechanical parameters
de�ning the behaviour of the laminate at each characteristic scale (mesoscopic and macro-
scopic).
In the context of the MS2L methodology, the optimisation problem is split in two distinct
sub-problems. At the �rst level (macroscopic scale) the goal is to �nd the optimum value
of both geometric and mechanical design variables of the laminate satisfying the design
problem which is formulated in the form of a constrained non-liner programming problem
(CNLPP). The second-level problem focuses on the laminate mesoscopic scale (i.e. the
ply-level) and aims at �nding at least one optimum stack meeting the geometrical and
mechanical parameters resulting from the �rst-level problem.

The MS2L approach is based on the generalisation of the Verchery's polar method to the
case of high-order equivalent single layer theories [21, 29, 30] as well as on a GA previously
developed by the �rst author [31, 32]. The MS2L optimisation strategy has already been
successfully applied in the past to many real-world engineering problems [26�28, 33�38].

A rigorous experimental validation of such an approach is the main purpose of this
study. In this work, the MS2L optimisation strategy is applied to the problem of min-
imising the mass of a moderately thick multilayer plate subject to requirements on both
in-plane overall sti�ness and �rst buckling load. The numerical work is complemented by an
experimental campaign that aims not only at validating the MS2L optimisation approach,
but also the e�ectiveness of the very general stacking sequences resulting from the process,
as well as the in�uence of the transverse shear sti�ness on the optimum solution (that
cannot be neglected for moderately thick laminate) and which can be easily integrated in
the framework of the polar method.

The paper is organised as follows: an overview of both numerical and experimental
activities, followed by the description of the selected optimisation problem and the MS2L
strategy is given in Sec. 2. The mathematical formulation of the �rst-level problem is de-
tailed in Sec. 3, while the problem of determining suitable stacking sequences is formulated
in Sec. 4. A concise description of the Finite Element (FE) model used in the optimisation
process is given in Sec. 5, whilst the details about the experimental activities can be found
in Sec. 6. The comparison between numerical and experimental results is presented in Sec.
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7, while Sec. 8 ends the paper with some concluding remarks.

2. Multi-scale optimisation of composite structures: fundamental aspects

2.1. General work-�ow

The work-�ow of the activities described in this study is shown in Fig. 1.
A representative design case is considered: the least-weight design of a multilayer com-

posite plate subject to constraints on both the �rst buckling load (under uni-axial com-
pressive load) and on the overall membrane sti�ness. Such requirements are derived from
their counterparts evaluated for a reference laminate (whose stack is built by using the
classical rules taken from literature) having the same geometry of the optimised plate and
subjected to the same boundary conditions (more details on the problem formulation at
each scale are given in Secs.3 and 4).

Figure 1: Numerical-experimental work-�ow.

With the aim of experimentally validating the MS2L optimisation strategy, numerical
and experimental activities proceed simultaneously and interact at given moments:

• the FE model is created and its geometry and mesh properly parametrized in terms
of the design variables for the problem at hand (Secs. 3 and 5);

• a reference plate is fabricated and tested (Sec. 6);

• experimental results on the reference plate are compared to those provided by the
FE model, to validate the latter (Sec. 6);

• the MS2L optimisation strategy is run by using the validated FE model to obtain
the optimised plate stacking sequence (Secs. 3, 4 and 5);

• the optimum plate is fabricated and tested (Sec. 7);

• experimental results on the optimum solution are compared to the numerical ones
in order to give an experimental proof of the e�ectiveness of the stacking sequence
selected by the optimisation process as well as that of the MS2L optimisation strategy
itself.
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All the above steps require the elastic properties of the constitutive lamina, so they
have been preceded by a characterisation tests campaign.

2.2. Problem Description

The optimisation strategy presented in this study is applied to a simple composite
structure, whose geometry and size are illustrated in Fig. 2. The specimen illustrated in
Figs. 2 and 3 is a rectangular multilayer composite plate with two resin blocks at its ends
that facilitate the loading in compression.

Figure 2: Geometry and overall size of the multilayer composite plate.

Figure 3: Simpli�ed loading scheme of the multilayer composite plate.

The blocks are made of epoxy resin AralditerLY5052/Aradurr5052 while the multi-
layer plate is made of the carbon/epoxy pre-preg HexPlyr M21/34%/UD194/IMA-12K
by Hexcelr. The elastic properties of both materials are reported in Tables 1 and 2,
respectively.

Table 1: Material properties of the epoxy resin Aralditer LY5052-Aradurr 5052 when considering a curing
cycle of two hours at 60◦C plus six hours at 80◦C.

Technical constants Value

E [MPa] 3103.0
ν 0.35

The material considered in this work is a pre-preg commonly used for aeronautical
applications which is composed of unidirectional (UD) intermediate-modulus carbon-�bres
(IMA-12k) and epoxy-matrix (M21, 34% in weight) supplied in 300 mm wide rolls.
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Table 2: Material properties of the carbon/epoxy pre-preg HexPlyr M21/ 34%/ UD194/ IMA-12K by
Hexcelr.

Technical constants Polar parameters ∗ of [Q] a Polar parameters of [Q̂] b

E1 [MPa] 171500.0 T0 [MPa] 21687.9918 T [MPa] 4606.1923
Ec1 [MPa] 146000.0 T1 [MPa] 20160.7437 R [MPa] 1275.8077
E2 [MPa] 8659.0 R0 [MPa] 15805.9918 Φ [deg] 90.0
G12 [MPa] 5882.0 R1 [MPa] 17275.5135
ν12 0.3245 Φ0 [deg] 0.0
ν23 0.3 Φ1 [deg] 0.0

Density and thickness

ρ [Kg/mm3] 1.58× 10−6

tply [mm] 0.1831
∗ The polar parameters of [Q] have been evaluated using Ec

1 instead of E1.
a In-plane reduced sti�ness matrix of the ply.
b Out-of-plane shear sti�ness matrix of the ply.

It is noteworthy that the elastic properties of the constitutive lamina, listed in Table
2, have been determined as a result of an experimental characterisation tests campaign,
conducted at I2M laboratory in Bordeaux. Tests have been performed on thin laminated
strips (having a length of 250 mm and a width of 20 mm) with [0◦]8, [90◦]8 and [(±45◦)2]S
stacking sequences. The tests on [(±45◦)2]S specimens respect the ASTM D3518, D3518M-
94(07) standard [39]. Furthermore, the compressive Young's modulus along x1-axis, E

c
1,

listed in Table 2 has been taken directly from the manufacturer data-sheet: this quantity
will be used to de�ne the behaviour of the constitutive lamina within the FE model of the
composite plate in order to carry out the calculation of the �rst buckling load as detailed
in Sec. 5. More details on the whole campaign of characterisation tests can be found in
[40].

The fundamental hypotheses about the macroscopic mechanical response of the struc-
ture focus essentially on the laminate behaviour:

• the material of the constitutive layer has a linear elastic transverse isotropic be-
haviour;

• the laminate is quasi-homogeneous and fully orthotropic [28, 30, 36, 37];

• at the macroscopic scale the elastic response of the laminate is described in the frame-
work of the �rst order shear deformation theory (FSDT) and the sti�ness matrices
of the plate are expressed in terms of the laminate polar parameters [21, 29];

• no delamination occurs neither at the interfaces between the plies, nor at the inter-
faces between the plate and the resin blocks (perfect bonding condition).

Finally, it must be noticed that no simplifying hypotheses are made during the opti-
misation process on the stacking sequence of the multilayer plate, neither in terms of plies
orientation angles nor in terms of the nature of the stack. Only avoiding the utilisation of a
priori assumptions that extremely shrink the solution space (e.g. the utilisation of symmet-
ric, balanced stacks to attain membrane/bending uncoupling and membrane orthotropy,
respectively) one can hope to obtain the true global optimum for a given problem: this is
a key-point in the proposed approach.
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2.3. Description of the multi-scale two-level optimisation strategy

The main goal of the MS2L optimisation strategy is the least-weight design of the mul-
tilayer plate subject to constraints of di�erent nature, i.e. mechanical, geometrical as well
as feasibility constraints. The optimisation procedure is articulated into the following two
distinct (but related) optimisation problems.

First-level problem. The aim of this phase (which focuses on the laminate macroscopic
scale) is the determination of the optimum value of both mechanical and geometric pa-
rameters of the laminate in order to minimise its weight and to satisfy, simultaneously,
the full set of imposed requirements (formulated as optimisation constraints). At this level
the multilayer plate is modelled as an equivalent homogeneous anisotropic plate whose
behaviour is described in terms of the laminate polar parameters [21, 29]. Therefore, the
design variables of this phase are both the geometric and the polar parameters of the lam-
inate.

Second-level problem. The second level of the strategy focuses on the laminate meso-
scopic scale and aims at determining a suitable lay-up meeting the optimum combination
of polar and geometric parameters of the laminate provided by the �rst-level problem. The
goal is, hence, to �nd at least one stacking sequence which has to be quasi-homogeneous,
fully orthotropic and that has to satisfy the optimum values of the polar parameters re-
sulting from the �rst step. At this level of the strategy, the design variables are the layer
orientations.

3. Mathematical formulation of the �rst-level problem

The macroscopic features of the composite have to be optimised during this phase. In
particular, the mass minimisation of the laminate is here performed by satisfying, simul-
taneously, the set of optimisation constraints listed below:

1. a constraint on the �rst buckling load of the laminate (the laminate is subjected to
a uni-axial compressive load);

2. a constraint on the membrane sti�ness along the (in-plane) axis orthogonal to the
applied load direction;

3. a feasibility constraint on the laminate polar parameters.

These aspects are detailed in the following subsections.

3.1. The design variables

The design variables for the problem at hand are of two types: geometrical and me-

chanical.
The only geometrical variable characterising the laminate at the macroscopic scale is

its overall thickness t. Of course, t is considered as a discrete optimisation variable having
a step equal to the thickness of the elementary layer, i.e. ∆t = tply.

As far as the mechanical design variables are concerned, the macroscopic mechanical
response of the laminate is described in the mathematical framework of the FSDT [41]. In
this background, the constitutive law of the laminate (expressed within its global frame
R = {0;x, y, z}) can be stated as: {N}{M}

 =

 [A] [B]

[B] [D]

  {ε0}{χ0}

 , (1)
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{F} = [H] {γ0} , (2)

where [A], [B] and [D] are the membrane, membrane/bending coupling and bending sti�-
ness matrices of the laminate, while [H] is the out-of-plane shear sti�ness matrix. {N},
{M} and {F} are the vectors of membrane forces, bending moments and shear forces per
unit length, respectively, whilst {ε0}, {χ0} and {γ0} are the vectors of in-plane strains,
curvatures and out-of-plane shear strains of the laminate middle plane, respectively, [41].

In order to analyse the elastic response of the multilayer structure, the best practice
consists in introducing the laminate normalised sti�ness matrices:

[A∗] =
1

t
[A],

[B∗] =
2

t2
[B] ,

[D∗] =
12

t3
[D] ,

[H∗] =


1

t
[H] (basic),

12

5t
[H] (modified).

(3)

As discussed in [21, 29], in the framework of the polar formalism it is possible to
express the Cartesian components of these matrices in terms of their elastic invariants. It
can be proven that, in the FSDT framework, for a fully orthotropic, quasi-homogeneous
laminate (i.e. a laminate having the same orthotropic behaviour in terms of normalised
membrane and bending sti�ness matrices and whose membrane/bending coupling sti�ness
matrix is null) the overall number of independent mechanical design variables describing
its mechanical response reduces to only three: the anisotropic polar parameters RA

∗
0K and

RA
∗

1 and the polar angle ΦA∗
1 (this last representing the orientation of the main orthotropy

axis) of matrix [A∗]. For more details on the polar formalism and its application in the
context of the FSDT the reader is addressed to [21, 29, 42].

In addition, in the formulation of the optimisation problem for the �rst level of the
strategy, the feasibility constraints on the polar parameters (which arise from the combi-
nation of the layers orientations and positions within the stack) must also be considered.
These constraints ensure that the optimum values of the polar parameters resulting from
the �rst-level problem describe a feasible laminate that will be designed during the sec-
ond step of the MS2L strategy, see [43]. Since the laminate is quasi-homogeneous, such
constraints can be written only for matrix [A∗]:

−R0 ≤ RA
∗

0K ≤ R0 ,

0 ≤ RA∗
1 ≤ R1 ,

2

(
RA

∗
1

R1

)2

− 1−
RA

∗
0K

R0
≤ 0 .

(4)

In Eq. (4), R0 and R1 are the anisotropic moduli of the ply reduced sti�ness matrix [21].
It is noteworthy that, for the problem at hand, the main orthotropy direction of the

laminate can be set equal to zero, i.e. ΦA∗
1 = 0: this means that the main orthotropy axis
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is aligned with the direction of the applied load. In this way ΦA∗
1 is no longer a design

variable.
For optimisation purposes it is useful to introduce dimensionless design variables. The

dimensionless quantity related to the laminate overall thickness is, of course, the plies
number n, while the dimensionless laminate polar parameters can be obtained by consid-
ering the ratio between the polar parameters of matrix [A∗] and the lamina counterparts.
Therefore, the dimensionless laminate design variables can be de�ned as follows:

n =
t

tply
, ρ0 =

RA
∗

0K

R0
, ρ1 =

RA
∗

1

R1
. (5)

In this background, Eq. (4) becomes:
−1 ≤ ρ0 ≤ 1 ,

0 ≤ ρ1 ≤ 1 ,

2 (ρ1)
2 − 1− ρ0 ≤ 0 .

(6)

Therefore, the dimensionless design variables de�ned above can be grouped into the
vector of design variables:

ξT = {n, ρ0, ρ1} . (7)

First and second constraints of Eq. (6) can be taken into account as admissible intervals
for the relevant optimisation variables, i.e. on ρ0 and ρ1. Thus, the resulting feasibility
constraint on the laminate dimensionless polar parameters becomes:

g1(ξ) = 2 (ρ1)
2 − 1− ρ0 ≤ 0 . (8)

For a wide discussion upon the laminate feasibility and geometrical bounds as well as
on the importance of the quasi-homogeneity assumption the reader is addressed to [43].

Finally, it must be noted that the laminate dimensionless polar parameters have to
satisfy a further mechanical constraint related to the requirement on the membrane sti�ness
along the y-axis of the laminate global frame. This constraint can be states as:

g2(ξ) = 1− Ayy (ξ)

A
(ref)
yy

≤ 0 , (9)

where Ayy is the component of the membrane sti�ness matrix along y-axis, while A
(ref)
yy is

its reference counterpart, i.e. the same quantity evaluated on the reference con�guration
of the laminate which is described in Sec. 6.

3.2. Mathematical statement of the problem

As previously stated, the aim of the �rst-level optimisation is the minimisation of the
laminate mass by satisfying, simultaneously, constraints of di�erent nature.
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In this context the optimisation problem can be formulated as a classical constrained
non-linear programming problem (CNLPP):

min
ξ

M (ξ)

M (ref)

subject to:
1− λL (ξ)

λ
(ref)
L

≤ 0 ,

gi(ξ) ≤ 0 , with i = 1, 2 .

(10)

The design space of the �rst-level problem, together with the type of each design variable,
is detailed in Table 3. In Eq. (10) M is the laminate mass, λL is the �rst buckling load
of the structure (calculated by means of an eigenvalue buckling analysis, see Sec 5), while

M (ref) and λ
(ref)
L are the counterparts for a reference solution (see Sec. 6) which is subject

to the same boundary conditions (BCs) as those applied to the multilayer plate that will
be optimised.

Table 3: Design space of the �rst-level problem.

Design variable Type Lower bound Upper bound Discretisation step

n integer 16 32 1
ρ0 continuous −1.0 1.0 -
ρ1 continuous 0 1.0 -

3.3. Numerical strategy

Problem (10) is a non-convex CNLPP in terms of both geometrical and mechanical
variables. Its non-linearity and non-convexity is due on the nature of the buckling load
constraint that is a non-convex function. In addition, the complexity of such a problem is
also due to the non-linear feasibility constraints on the laminate polar parameters.

The total number of design variables at the laminate macroscopic scale is three. The
number of optimisation constraints is three too (see Eq. (10)). Furthermore, design vari-
ables have di�erent nature (see Table 3): integer (n) and continuous (ρ0 and ρ1) variables
are involved in the de�nition of this CNLPP.

For the resolution of problem (10) the GA ERASMUS (EvolutionaRy Algorithm for
optimiSation of ModUlar Systems) [32, 44] coupled with the FE model of the laminate (for
calculating the �rst buckling load of the structure) has been utilised as optimisation tool
for the solution search, see Fig. 4. The GA ERASMUS was already successfully applied to
solve di�erent kinds of real-world engineering problems, see for example [28, 33�37, 45, 46].

As shown in Fig. 4, for each individual at each generation, the numerical tool performs
a FE analysis to calculate the �rst buckling load (eigenvalue problem) of the multilayer
plate as well as its weight. The input data of the FE model of the composite structure
(implemented in ANSYSr environment) are both geometrical and mechanical design vari-
ables (generated by ERASMUS). The GA elaborates the results provided by the FE model
in order to execute the genetic operations. These operations are repeated until the GA
meets the user-de�ned convergence criterion.

The generic individual of the GA ERASMUS represents a potential solution for the
problem at hand. The genotype of the individual for problem (10) is characterised by only
one chromosome composed of three genes, each one coding a component of the vector of
design variables, see Eq. (7).
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Figure 4: Logical �ow of the numerical procedure for the solution search of the �rst-level problem.

4. Methematical formulation of the second-level problem

The second-level problem focuses on the laminate lay-up design. The goal is to de-
termine at least one stacking sequence satisfying the optimum values of both geometric
and polar parameters resulting from the �rst level of the strategy and having the elastic
symmetries imposed to the laminate within the formulation of the �rst-level problem, i.e.
quasi-homogeneity and orthotropy. In the framework of the FSDT (and when considering
the polar formalism for representing the laminate sti�ness matrices) this problem can be
stated in the form of an unconstrained minimisation problem [21, 29]:

min
δ

I (fi (δ)) , (11)

with

I (fi (δ)) =

6∑
i=1

fi (δ) . (12)

where δ ∈ Rn is the vector of the layer orientations, i.e. the design variables of this phase,
while fi (δ) are quadratic functions in the space of polar parameters, each one representing
a requirement to be satis�ed, such as orthotropy, uncoupling, etc. For the problem at hand
the partial objective functions can be written as:

f1(δ) =

(
|ΦA∗

0 (δ)− ΦA∗

1 (δ)|
π/4

−KA∗(opt)

)2

, f2(δ) =

(
RA∗

0 (δ)−RA∗(opt)
0

R0

)2

,

f3(δ) =

(
RA∗

1 (δ)−RA∗(opt)
1

R1

)2

, f4(δ) =

(
|ΦA∗

1 (δ)− Φ
A∗(opt)
1 |

π/4

)2

, f5(δ) =

(
||C(δ)||
||Q||

)2

,

f6(δ) =

(
||B∗(δ)||
||Q||

)2

,
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(13)

where f1 (δ) represents the elastic requirement on the orthotropy of the laminate having the
prescribed shape (imposed by the value of KA∗

provided by the �rst step of the procedure),
f2 (δ), f3 (δ) and f4 (δ) are the requirements related to the prescribed values of the optimal
polar parameters resulting from the �rst-level problem, while f5 (δ) and f6 (δ) are linked
to the quasi-homogeneity condition.

I (fi (δ)) is a positive, semi-de�nite, convex function in the space of the laminate polar
parameters, see Eqs. (12)-(13). Nevertheless, such a function is highly non-convex in the
space of laminae orientations because the laminate polar parameters depend upon circular
functions of these angles. Moreover, the absolute minima of I (fi (δ)) are known a priori

since they are the zeroes of this function. For more details about the nature of the second-
level problem, see [21, 29].

In order to simplify the problem of retrieving an optimum stack, the search space for
problem (11) has been restricted to a particular class of quasi-homogeneous laminates:
the quasi-trivial (QT) stacking sequences which constitute exact solutions with respect to
the requirements of quasi-homogeneity, i.e. functions f5 (δ) and f6 (δ) in Eq. (13) are
identically null for QT stacks.

QT solutions can be found for laminates with identical plies by acting only on the
position of the layers within the stack. Indeed, QT stacks are exact solutions, in terms of
quasi-homogeneity condition, regardless of the value of the orientation angle assigned to
each layer. In this way, orientations represent free parameters which can be optimised to
ful�l further elastic requirements, i.e. functions f1 (δ), f2 (δ), f3 (δ) and f4 (δ).

The procedure for searching QT stacks is conceptually simple. Let n be the number of
layers and ng ≤ n the number of saturated groups [47]. Plies belonging to a given saturated
group share the same orientation angle θj , (j = 1, ..., ng). The idea is to look for all the
permutations of the position of the plies indexes belonging to each group which meet the
quasi-homogeneity condition. More details on this topic can be found in [47].

Suppose now to �x both the number of plies and of saturated groups, namely n and
ng. As discussed in [47], the problem of determining QT stacks for a given couple of
n and ng can give rise to a huge number of solutions: the number of QT stacks rapidly
increases along with n. To this purpose a database of QT stacks has been built for di�erent
combinations of n and ng.

For the problem at hand, the optimum number of plies n constitutes a result of the
�rst-level problem, while the number of saturated groups ng has been �xed a priori. Let
nsol be the number of QT stacks for a particular combination of n and ng. Each solution
collected within the database is uniquely de�ned by means of an identi�er IDsol (i.e. an
integer) which varies in the range [1, nsol]. Therefore, IDsol represents a further design
variable along with the ng orientation angles of di�erent saturated groups, i.e. θ ∈ Rng .
The design variables can be thus collected into the following vector,

ηT =
{

IDsol, θ1, ..., θng

}
, (14)

and problem (11) can be reformulated as

min
η

4∑
i=1

fi (η) , (15)

f5 (η) and f6 (η) being identically null.
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In this background, the solution search for problem (15) is performed by means of the
GA ERASMUS. In the case of QT stacks the structure of the individual genotype is simple
because it is composed of a single chromosome with ng + 1 genes: the �rst one codes the
variable IDsol whilst the remaining genes code the orientation angles of every saturated
group which are discrete variables in the range [-89◦, 90◦] with a step length equal to 1◦.

5. Finite element model of the multilayer plate

The FE model of the multilayer plate involved in the �rst level of the MS2L strategy
is built using the FE commercial code ANSYSr. As far as the optimisation process is
concerned, a linear eigenvalue buckling analysis is conducted to determine the value of the
�rst buckling load for each individual, i.e. for each point in the design space, at the current
generation.

The need to analyse, within the same generation, di�erent geometrical con�gurations
(laminates with di�erent geometrical and mechanical properties), each one corresponding
to an individual, requires the creation of an ad-hoc input �le for the FE code that has to
be interfaced with ERASMUS. The FE model must be conceived to account for variable
geometry, material and mesh. Indeed, for each individual at the current generation, the
FE code has to be able to vary such quantities, thus a proper parametrisation of the model
has to be done.

The FE model of the laminate is illustrated in Fig. 5. The model has been built by
using a combination of four-nodes shell elements with six Degrees Of Freedom (DOFs) per
node (ANSYS SHELL181 elements), eight-nodes solid elements with three DOFs per node
(ANSYS SOLID185 elements) and non-linear multi-point constraints elements (ANSYS
MPC184 elements).

Figure 5: FE model of the multilayer composite plate and the details of MPC184 elements.

SHELL281 elements have been used to model the multilayer composite plate at the
macroscopic scale, regardless of the stacking sequence, i.e. their mechanical behaviour is
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described by de�ning directly the homogenised sti�ness matrices [A∗], [B∗], [D∗] and [H∗]
(by using a pre-integrated de�nition of the shell section).

SOLID185 elements have been considered to model resin blocks (full integration with
incompatible modes has been set), while the compatibility of the displacement �eld at the
interface between the plate and the resin blocks is achieved through ANSYS MPC184 ele-
ments whose formulation is based upon a classical multi-point constraint element scheme [48].
MPC184 elements are de�ned between each couple of nodes belonging to contiguous shell
and solid elements, as depicted in Fig. 5. In particular, MPC184 elements are de�ned be-
tween nodes of the middle plane of the multilayer plate (master nodes) and those belonging
to the internal faces of the resin blocks (slave nodes).

Furthermore, MPC184 elements have been used to simulate the boundary conditions
(BCs) imposed by the experimental apparatus (see Sec. 6). In particular, two pilot nodes,
A= {0, 0, 0} and B= {L, 0, 0}, have been de�ned according to the structure global frame
illustrated in Fig. 2 (L = 360mm is the overall length of the structure along x-axis). Then,
nodes A and B have been connected (through MPC184 elements) to those located on the
resin blocks end faces, i.e. faces located at x = 0 and x = L, respectively (see Fig. 5). The
BCs for nodes A and B are

node A: ui = 0, βi = 0;

node B: Fx = −1N, uy = uz = 0, βi = 0,

(i = x, y, z).

(16)

In Eq. (16) ui and βi are nodal displacements and rotations, respectively, whilst Fx is the
x component of the nodal force.

Concerning the comparison between numerical and experimental results, a non-linear
buckling analysis has been performed on the FE model of the structure both on the ref-
erence structure (to validate the FE model it-self) and on the optimum con�gurations
(for veri�cation purposes). Let λL be the value of the �rst buckling load resulting from
the eigenvalue analysis and uL (x, y, z) the corresponding eigenvector (i.e. the normalised
displacement �eld of the structure). In order to carry out the non-linear buckling load anal-
ysis, the initial geometry of the multilayer plate is perturbed by introducing a �ctitious
geometrical imperfection. As usually done in these cases [48], the geometrical imperfec-
tion is simulated through a small perturbation of the nodes location by applying a scaling
factor (equal to 0.1, resulting in a deformation of the same magnitude of the geometrical
defects measured on the specimens) to the previous displacement �eld uL (x, y, z). Only
the Cartesian coordinates of the nodes are perturbed without introducing any additional
stress/strain �eld. Subsequently, a non-linear static analysis is performed by applying to
the pilot node B a compressive force Fx = 1.1λL and by stopping the analysis when that
same pilot node has reached a displacement ux = −0.8 mm (i.e. approximately the same
displacement measured during the experimental test on the reference specimen, see Sec. 6).
The non-linear buckling load λNL is then computed as the last value of the reaction force
along x-axis measured at the pilot node A. The arc-length method [48] has been chosen as
a numerical technique to �nd the solution for the non-linear equilibrium problem.

Finally, before starting the optimisation process, a sensitivity study (not reported here
for the sake of brevity) on the proposed FE model with respect to the mesh seed parameters
nαx , n

α
y , n

α
z , (α = b, p, depending on the region), illustrated in Fig. 6, has been conducted.

It was observed that a mesh having nbx = nby = nbz = 3, npx = 30, npy = 16 and npz = 1 is
su�cient to properly evaluate the �rst buckling load (both linear and non-linear) of the
structure.
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Figure 6: Mesh seed parameters for the FE model of the multilayer composite plate.

6. Experimental apparatus for buckling analysis

A schematic representation of the specimen geometry and loading condition is given in
Figs. 2 and 3. The specimen reference system is shown in Fig. 2: the positive z-direction
points from the plate surface which is in contact to the mould (during the curing cycle)
towards the other one. The edges of the plate that are in touch with the testing machine
are embedded into two resin blocks. On the one hand, these resin blocks allow for an
easy placement and load application during the tests. On the other hand, they avoid the
introduction of high local stresses on the plate edges which can lead to a premature failure
of the specimen.

Two specimens are tested: one for the reference con�guration and one among the
di�erent optimum solutions provided by the MS2L optimisation method (see Sec. 7). Each
sample is obtained from a 420×300 mm panel fabricated by computer numerical controlled
(CNC) cutting and manual lay-up of the used pre-preg composite material and than cured
following the guidelines given by the manufacturer. A rectangular plate has been obtained
from the central part of each panel by means of a horizontal mill equipped with a circular
diamond blade, then the two long edges of the plates have been lightly ground to improve
their parallelism. To embed the plates into the resin blocks, some simple custom tools have
been fabricated. The blocks are formed into a semi-rigid silicon mould obtained from an
aluminium CNC machined mould. The frame shown in Fig. 7 has been created to keep
in place the plate and the mould during the resin polymerisation process ensuring, in this
way, a good and stable alignment. The so obtained specimens had some defects on their
bottom and top surfaces: air bubbles coming from the polymerisation process as well as
non-acceptable �atness and parallelism levels. Accordingly, by using one of the long edges
of the plate as reference, the two block surfaces and the embedded ends of the plate have
been milled.

Before performing the buckling tests, each specimen has undergone a series of measure-
ments to evaluate its geometrical defects.

The frame illustrated in Fig. 7 has a double function: it acts as a positioning tool for
the specimen as well as a support for the measuring sensors during each test. During the
test various data have been collected (Fig. 8 and Fig. 9 show the typical testing set-up):

• longitudinal displacement (ux) and rotations (βy and βz) of the moving surface of the
testing machine via three Linear Variable Displacement Transducer (LVDT) sensors;
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Figure 7: Curing assembly.

• out-of-plane displacement of the middle part of the longitudinal axis of the plate via
a laser sensor;

• strain data via strain gages;

• the applied load via a load cell.

Figure 8: Testing set-up 1.

The specimens have been tested in an MTSr Alliance RF/100 high-performance elec-
tromechanical (EM) load frame equipped with �at �xed (non-rotating) surface heads. The
data have been recorded using three PC-driven data acquisition systems and then combined
via time-based synchronisation.

All tests have been performed at a �xed cross-head displacement rate of 0.2 mm/min
and stopped when reaching the given strain of εmax = 0.25% on one of the two back to
back strain gages positioned at the center of the plate.

6.1. The reference con�guration: numerical vs. experimental results

Before starting the multi-scale optimisation process, a reference con�guration must be
de�ned in order to establish reference values for the mass as well as for the �rst buckling
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Figure 9: Testing set-up 2.

load and the membrane sti�ness along y-axis. Of course, the reference multilayer plate
has the same geometry (in plane overall size) and it is subject to the same set of BCs, as
those applied on the specimen that will be optimised. As a reference solution a symmetric
quasi-isotropic laminate composed of 32 layers has been chosen. The plies are arranged
according to the following stack: [(45◦, 0◦,−45◦, 90◦)S ]4, i.e. the laminate is uncoupled and
the membrane sti�ness matrix is isotropic, but the bending one is totally anisotropic. This
reference solution corresponds to a classical con�guration utilised in the aeronautical �eld:
its mass and its overall sti�ness (both bending and membrane) still represent a �good�
compromise between lightness and sti�ness requirements.

For the purposes of this work, among the di�erent data recorded during the tests, only
the applied load versus longitudinal displacement has been considered. For the reference
solution, this curve is illustrated in Fig. 10, where also its numerical counterpart (the buck-
ling load resulting from both linear eignevalue and non-linear buckling analyses) provided
by the FE model is plot for comparison purposes.
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Figure 10: Experimental and numerical results comparison, reference solution.

A summary of the results on the reference solution is given in Table 4.
The numerical value of the buckling load (λNL from the non-linear simulation) shows a

di�erence of −0.1% compared to the experimental one, con�rming in this way the excellent
agreement between numerical and experimental results.
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Table 4: Numerical and experimental mechanical properties of the reference solution.

Property Reference solution

nply 32
Ayy [N/mm] 363326
λ(exp) [N] 48760

λL [N] 48924
λNL [N] 48712

As far as the membrane sti�ness along y-axis is concerned, this data has not been
experimentally measured, but it is derived analytically according to the FSDT formulae.

7. Optimum solutions: numerical and experimental results

The genetic parameters tuning the behaviour of the GA used to perform the solution
search, for both �rst and second-level problems, are listed in Table 5. Moreover, concern-
ing the constraint-handling technique for the �rst-level problem, the Automatic Dynamic
Penalisation (ADP) method has been considered, see [44]. For more details on the optimi-
sation tool and the meaning of the values of the di�erent parameters tuning the GA, the
reader is addressed to [31].

For the �rst-level problem, the overall optimisation process has required approximately
7 days (6s for each eigenvalue buckling analysis) using two cores of a machine with an
Intel Xeon E5-2697v2 processor (2.70-3.50 GHz). The computational e�ort related to the
second level problem requires only few seconds on the same machine.

The optimum values of both geometric and mechanical design variables (dimensionless
variables) resulting from the �rst level of the optimisation strategy are listed in Table 6.
Since problem (10) is non-convex, many optimal solutions exist: only the �rst three best
con�gurations have been reported in Table 6. These solutions exhibit the �best� compro-
mise between lightness and the requirements on buckling and membrane sti�ness. It is
noteworthy that each optimum solution is composed of 29 plies, which means a weight sav-
ing of 9.4% when compared to the reference con�guration of the multilayer plate. At the
macroscopic scale, each one of the three laminates reported in Table 6 is quasi-homogeneous
and fully orthtropic (both membrane and bending sti�ness matrices) with an ordinary or-
thotropy shape (parameter KA∗

= 0 because the dimensionless anisotropic polar modulus
ρ0 is positive, see [21]). For each solution, the dimensionless polar parameter ρ1 is about an
order of magnitude lower than ρ0: this means that the laminate tends to exhibit a square

symmetric behaviour (for both membrane and bending sti�ness matrices). For a deeper
insight on these aspects, the interested reader is addressed to [21, 29].

As stated in Sec. 4, the second-level problem is solved in the space of QT stacks. After
�xing the number of plies n and the number of saturated groups ng, the design variables are
the identi�er of the QT solution as well as the orientation angle of each saturated group,
see Eq. (14). Because problem (15) is highly non-convex in the space of the orientation
angles of saturated groups, it is possible to �nd multiple solutions (theoretically an in�nite
number) meeting the optimum value of the laminate polar parameters provided by the
�rst-level problem. A non-exhaustive list of them, in the case of ng = 5, is presented in
Table 7 and the respective mechanical properties (in terms of membrane sti�ness along
y-axis and buckling load resulting from the non-linear analysis) can be found in Table 8.

It is noteworthy that all these solutions are non-standard stacks. Although such se-
quences are neither symmetric nor balanced, they are fully orthotropic (both in membrane
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Table 5: GA parameters used for the solution search of both �rst-level and second-level problems.

Property First-level pb. Second-level pb.

N. of populations 2 2
N. of individuals per population (Nind) 200 500
N. of chromosomes 1 1
N. of genes 3 3
Stop criterion Fixed generations (250) Fixed generations (500)
Crossover probability 0.85 0.85
Mutation probability 0.005(= 1/Nind) 0.002(= 1/Nind)
Selection operator Roulette wheel Roulette wheel
Elitism operator Active Active
Isolation time 10 20

Table 6: Optimum solutions of the �rst-level problem.

ID Design variables
n ρ0 ρ1

1.01 29 0.9863 0.0978
1.02 29 0.9941 0.0821
1.03 29 0.9589 0.0929

and bending), uncoupled and they exhibit the same elastic behaviour (in terms of nor-
malised membrane and bending sti�ness). These peculiar features are the natural result
of the utilisation of very general QT stacks. Furthermore, these optimum solutions really
represent equivalent con�gurations: they share the same number of plies and they show
light di�erencies in terms of mechanical performances. As reported in Table 8, these dif-
ferencies range from +1.7% to +3.9% for the buckling load and from +2.2% to +3.3% for
Ayy. Therefore, each optimum con�guration is simultaneously lighter and sti�er than the
reference one and this result has been achieved only by abandoning the usual engineering
rules related to the nature of the stacking sequence.

Table 7: Numerical results of the second-level problem (optimum stacking sequences).

ID Parent Stacking Sequence

2.01 1.01 [89/0/90/90/2/90/-3/-3/2/0/-3/2/0/0/90/90/89/90/89/-3/2/90/89/90/0/0/90/2/-3]
2.02 1.01 [-87/88/1/-2/-2/0/0/88/88/1/88/88/-2/1/0/88/-87/0/-87/-2/1/-2/-87/88/88/-2/1/88/0]
2.03 1.01 [4/-2/0/89/89/-89/-89/-89/-2/-2/-89/0/89/-2/0/0/4/-2/4/89/-89/89/4/-2/-89/89/-89/-2/0]
2.04 1.01 [-87/88/-2/1/1/88/-1/88/-2/88/-1/1/-1/1/-2/88/-87/1/-87/88/88/-2/-87/1/88/-2/88/1/-1]
2.05 1.01 [-89/-2/-1/90/90/-2/6/90/-1/90/6/-2/6/90/-1/-2/-89/90/-89/-2/-2/-1/-89/90/90/-1/90/-2/6]
2.06 1.01 [-89/90/1/90/-4/4/-4/1/4/4/1/90/-89/-89/90/-4/90/1/-4/90/90/-89/4/1/-89/1/4/-4/90]
2.07 1.01 [-89/90/3/0/0/-2/-2/90/90/3/90/90/0/3/-2/90/-89/-2/-89/0/3/0/-89/90/90/0/3/90/-2]
2.08 1.01 [90/90/0/0/0/0/0/90/90/0/90/90/0/0/0/90/90/0/90/0/0/0/90/90/90/0/0/90/0]
2.09 1.01 [-2/0/88/-88/0/1/88/-88/1/1/88/1/-88/-88/88/88/-2/0/-2/0/0/-88/-2/0/1/88/88/1/-88]
2.10 1.02 [-87/89/-9/3/89/3/6/6/-9/89/6/89/3/89/-9/89/-87/3/-87/6/3/-9/-87/89/89/-9/89/3/6]
2.11 1.02 [8/-7/88/88/3/-87/-87/-7/3/-7/88/3/88/-7/-87/88/8/-87/8/-7/3/88/8/88/-7/-7/88/3/-87]
2.12 1.01 [-83/87/7/-3/87/-3/-3/-3/7/87/-3/87/-3/87/7/87/-83/-3/-83/-3/-3/7/-83/87/87/7/87/-3/-3]
2.13 1.03 [-87/-2/88/88/8/88/-7/-7/8/-2/-7/8/-2/-2/88/88/-87/88/-87/-7/8/88/-87/88/-2/-2/88/8/-7]
2.14 1.03 [8/88/-87/-7/-7/88/3/3/-87/88/3/-7/88/-7/-87/88/8/-7/8/3/88/-87/8/-7/88/-87/88/-7/3]
2.15 1.01 [-87/88/3/-2/88/-2/-2/88/-2/3/88/-2/-2/3/-2/88/-87/-2/-87/88/3/88/-87/-2/88/88/3/-2/-2]

Among the solutions listed in Table 7, the stacking sequence identi�ed by the ID 2.01
has been selected to be manufactured and tested. The load-displacement curve for this
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Table 8: Mechanical properties of the optimum stacking sequences in terms of buckling load and membrane
sti�ness along y-axis; for each property the percentage di�erence between the optimum con�guration and
the reference one is indicated in parentheses.

ID λNL [N] Ayy [N/mm]

2.01 50486 (+3.5%) 375219 (+3.3%)
2.02 50551 (+3.7%) 374193 (+3.0%)
2.03 50662 (+3.9%) 375105 (+3.2%)
2.04 50581 (+3.7%) 374194 (+3.0%)
2.05 50408 (+3.4%) 375303 (+3.3%)
2.06 50202 (+3.0%) 375275 (+3.3%)
2.07 50494 (+3.6%) 375219 (+3.3%)
2.08 50600 (+3.8%) 375235 (+3.3%)
2.09 50569 (+3.7%) 374482 (+3.1%)
2.10 49598 (+1.7%) 375072 (+3.2%)
2.11 49638 (+1.8%) 374591 (+3.1%)
2.12 50072 (+2.7%) 371435 (+2.2%)
2.13 49666 (+1.9%) 374627 (+3.1%)
2.14 49694 (+1.9%) 374591 (+3.1%)
2.15 50488 (+3.5%) 374233 (+3.0%)

optimum solution (both experimental and numerical results) is given in Fig. 11.
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Figure 11: Experimental and numerical results comparison, optimum solution.

The polar diagram of stack 2.01 is shown in Fig. 12: only the �rst component of the
normalised sti�ness matrices of the laminate, i.e. A∗, B∗ andD∗ are represented. The solid
line refers to the membrane sti�ness matrix, the dashed one to the bending sti�ness matrix,
while the dash-dotted one is linked to the membrane/bending coupling sti�ness matrix.
It can be noticed that the laminate is uncoupled as the dash-dotted curve disappears,
homogeneous as the solid and dashed curves are coincident and orthotropic because there
are two orthogonal axes of symmetry in the plane. In addition, for both laminates the
main orthotropy axis is oriented at ΦA∗

1 = 0◦ according to the hypothesis of the �rst-
level problem. Of course, the same considerations can be repeated also for the rest of the
optimum solutions.

A summary of the results characterising the stack 2.01 is given in Table 9.
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Figure 12: Polar diagram of stack 2.01.

Table 9: Numerical and experimental mechanical properties for the optimum solution 2.01; for each prop-
erty the percentage di�erence between the optimum con�guration and the reference one is indicated in
parentheses.

Property Optimum solution

nply 29 (−9.4%)
Ayy [N/mm] 375219 (+3.3%)
λ(exp) [N] 51189 (+5.0%)

λL [N] 50922 (+4.1%)
λNL [N] 50486 (+3.6%)

Also for this case, experimental and numerical results are in excellent agreement with a
percentage di�erence of −1.4% (non-linear numerical buckling load over the experimental
one), thus giving an experimental proof of the e�ectiveness of QT stacks and, by extension,
of the MS2L optimisation process.

8. Conclusions

The design strategy presented in this paper is a numerical optimisation procedure
characterised by several features that make it an innovative, e�ective and general method
for the multi-scale design of composite structures. In the present work this strategy has
been applied to the multi-scale optimisation of a composite multilayer plate.

The design process is not submitted to restrictions: any parameter characterising the
structure (at each relevant scale) is an optimisation variable. This allows searching for a
true global minimum, hard to be obtained otherwise. The multi-scale design problem has
been split into two distinct but linked non-linear minimisation problems which are solved
subsequently within the same numerical procedure. The �rst-level problem focuses on the
macroscopic scale of the panel: the laminate is considered as an equivalent homogeneous
anisotropic plate and its macroscopic mechanical response is described in terms of polar
parameters. Furthermore, the overall plate thickness is also determined at this level. The
second level of the procedure is devoted to �nd at least one optimum stack meeting the
elastic requirements imposed to the laminate (quasi-homogeneity and orthotropy) as well
as the optimum value of the laminate polar parameters resulting from the �rst step.

At the macroscopic scale, the mechanical properties of the multilayer plate are repre-
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sented by means of the polar formalism, a mathematical representation characterised by
several advantages. The main features of the polar method are the possibility to represent
in an explicit and straightforward way the elastic symmetries of the laminate sti�ness ma-
trices, the elastic and geometric bounds for the laminate polar parameters and to eliminate
from the optimisation procedure redundant variables. In addition, the utilisation of the
polar formalism leads the designer to easily formulate the second-level problem by taking
into account in a correct and elegant way the requirements on the elastic symmetries of the
structure, without making simplifying hypotheses on the nature of the stacking sequence.

As far as the optimisation calculations are concerned, they are carried out by a a special
genetic algorithm able to integrate both continuous and discrete-valued variables during
the same calculation and to e�ectively handle the optimisation constraints by means of the
very general ADP method. For the solution of the �rst-level problem, the GA has been
interfaced with the FE commercial code ANSYS that invokes a linear eigenvalue buckling
analysis in order to compute both the objective and the constraint functions of the problem.

The utilisation of an evolutionary strategy, together with the fact that the problem is
stated in the most general sense, allows �nding some non-conventional con�gurations that
are more e�cient than the standard ones. In fact, the considered example proves that,
when standard rules for tailoring laminate stacks are abandoned and all the parameters
characterising the laminate are included within the design process, a signi�cant weight
saving can be obtained: up to 9.4% (with respect to a reference canonical stack) with
enhanced mechanical properties in terms of both �rst buckling load and membrane sti�ness
along y-axis (the percentage increment range from from +1.7% to +3.9% and from +2.2%
to +3.3%, respectively, depending on the considered optimum solution).

In addition, experimental buckling tests have been conducted on both reference and
optimum solutions. Experimental and numerical results are in excellent agreement (max-
imum absolute percentage di�erence lower than 1.4%) con�rming, in this way, the high
potential of non-conventional QT solutions and, by extension, that of the MS2L optimisa-
tion approach. These encouraging results unquestionably prove the e�ectiveness and the
robustness of the MS2L optimisation approach proposed in this work and provide con�-
dence for further research in this direction.

As far as the perspectives of this work are concerned, research is ongoing in order to de-
velop a suitable global/local modelling approach for composite structures to be integrated
into the MS2L optimisation strategy when applied to real-world engineering problems (as
the multi-scale optimisation of a wing-box structure). A proper global/local modelling is
of paramount importance when both global (e.g. mass, sti�ness, etc.) and local (failure
criteria, local buckling, etc.) design criteria must be included into the optimisation process.
These activities will be developed in the framework of the project PARSIFAL (Prandtlplane
ARchitecture for the Sustainable Improvement of Future AirpLanes) funded by the Euro-
pean Union.
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