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Polycyclic codes as invariant subspaces

Minjia Shi∗, Xiaoxiao Li†, Zahra Sepasdar‡, Patrick Solé§

Abstract

Polycyclic codes are a powerful generalization of cyclic and constacyclic codes. Their

algebraic structure is studied here by the theory of invariant subspaces from linear

algebra. As an application, a bound on the minimum distance of these codes is derived

which outperforms, in some cases, the natural analogue of the BCH bound.
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1 Introduction

Polycyclic codes of length n over a finite field F can be described as ideals in the quotient

ring of F [x]/(f), where f is some polynomial of degree n. They reduce to cyclic codes when

f = xn − 1 and to constacyclic codes when f = xn − a, for some a ∈ F ∗. They have been

known for a long time under the name of pseudo-cyclic codes [8]. They received a new

name in [5], and a renewed interest in [1], where their algebraic structure is studied in great

detail. Replacing F by a finite chain ring is considered in [6, 7]. In parallel, an algebraic

approach to quasi-twisted and constacyclic codes was developed in [9, 10]. The idea is to

consider the codes in the class under scrutiny as invariant subspaces under the action of an

endomorphism; this allows the machinery from linear algebra to bear on the problem [3].

In the cases considered in [9, 10], the said endomorphism is the analogue of the cyclic shift

of cyclic codes. For another aplication of this linear algebra method to Coding Theory see

[2].
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In the present paper, we apply the latter approach to the study of polycyclic codes. The

transform mentioned before and called here the polyshift admits for matrix the compan-

ion matrix of the polynomial f(x). A notion of minimal invariant subspace is introduced,

driven by the factorization of f(x) into irreducible factors over the base field. This allows

to describe any invariant subspace as a direct sum of its intersections with these spaces.

The first benefit of this decomposition is an analogue of the generator polynomial and of

the check polynomial of cyclic codes. Similarly, an analogue of the idempotent of cyclic

codes is developed. Last but not least, a bound on the minimum distance is derived that

outperforms, in some cases, the BCH-like bound of [4].

The material is arranged as follows. The next section develops the approach to polycyclic

codes as invariant subspaces of the polyshift, and introduces the analogues of generator and

check polynomials of cyclic codes. Section 3 derives a primitive idempotent decomposition

of polycyclic codes. Section 4 is dedicated to a bound on the minimum distance which

improves, in some cases the BCH-like bound of [4]. Section 5 concludes the paper and

points out some challenging open problems.

2 Linear polycyclic codes as invariant subspaces

Let F = Fq be a finite field of order q and Fn be the n-dimensional vector space over F

with the standard basis e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1). E is the

identify matrix. Let c = (c0, c1, ..., cn−1) be a codeword of C with c0 6= 0 and let Tc denote

the polyshift defined as: Fn → Fn,

(x1, x2, . . . , xn)→ xnc + (0, x1, . . . , xn−1).

Then Tc ∈ Hom(Fn) and it has the following matrix:

A(n, c) = A =



0 0 0 · · · 0 0 c0

1 0 0 · · · 0 0 c1

0 1 0 · · · 0 0 c2
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 cn−2

0 0 0 · · · 0 1 cn−1


.

We observe the relations
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A−1(n, c) = A−1 =



− c1
c0

1 0 0 · · · 0 0

− c2
c0

0 1 0 · · · 0 0

− c3
c0

0 0 1 · · · 0 0
...

...
...

. . .
...

...
...

− cn−2

c0
0 0 0 · · · 1 0

− cn−1

c0
0 0 0 · · · 0 1

− 1
c0

0 0 0 · · · 0 0


.

The characteristic polynomial of A is

fA(x) = f(x) =



−x 0 0 · · · 0 0 c0

1 −x 0 · · · 0 0 c1

0 1 −x · · · 0 0 c2
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −x cn−2

0 0 0 · · · 0 1 cn−1 − x


=

(−1)n+1(c0 + c1x+ c2x
2 + · · ·+ cn−2x

n−2 + cn−1x
n−1 − xn).

Note that this polynomial is, up to sign, the same f as in the Introduction [1].

Let f(x) = (−1)n+1fp11 (x)fp22 (x) · · · fptt (x) be the factorization of f(x) into irreducible

factors over F . By the theorem of Cayley-Hamilton, we have

f(A) = (−1)n+1fp11 (A)fp22 (A) · · · fptt (A) = 0.

Next, we consider the homogeneous set of equations fpii (A)x = 0,x ∈ Fn for i = 1, . . . , t.

If Ui stands for the solution space of this homogeneous set of equations, then we may write

Ui = Ker(fpii (Tc)), and consider the homogeneous set of equations fi(A)x = 0,x ∈ Fn for

i = 1, . . . , t. If Vi stands for the solution space of this homogeneous set of equations, then

we may write Vi = Ker(fi(Tc)). Now, we need the following well-known fact [3, p.200].

Proposition 2.1. Let V be a Tc-invariant subspace of U . Then fTc|Ui
(x) divides fTc(x).

The general properties of minimal invariant subspaces can be summarized as follows.

Theorem 2.2. The subspaces Ui and Vi of Fn satisfy the following conditions:

(1) Vi ⊆ Ui, Ui and Vi are Tc-invariant subspace of Fn;

(2) if W is a Tc-invariant subspace of Fn and Wi = W ∩ Ui for i = 1, . . . , t, then Wi is

Tc-invariant and W = W1 ⊕W2 ⊕ · · · ⊕Wt;

(3) Fn = U1 ⊕ U2 ⊕ · · · ⊕ Ut;
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(4) dimF Ui = deg fpii (x) = kipi, where degfi(x) = ki;

(5) fTc|Ui
(x) = (−1)kipifpii (x);

(6) Vi is a minimal Tc-invariant subspace of Fn.

Proof. (1) Let u ∈ Ui, i.e. fpii (A)u = 0, then fpii (A)Tc(u) = fpii (A)Au = Afpii (A)u = 0,

so that Tc(u) ∈ Ui.

(2) Let f̂pii (x) = f(x)

f
pi
i (x)

for i = 1, . . . , t. Since (f̂1(x), f̂2(x), . . . , f̂t(x)) = 1, there are poly-

nomials a1(x), . . . , at(x) ∈ F [x] such that a1(x)f̂1(x)+a2(x)f̂2(x)+· · ·+at(x)f̂t(x) = 1.

Then for any w ∈ W , w = a1(A)f̂1(A)w + a2(A)f̂2(A)w + · · · + at(A)f̂t(A)w. Let

wi = ai(A)f̂i(A)w, then fi(A)piwi = ai(A)f(A)w = 0 and wi ∈ Ui
⋂
W . Hence

W = W1 + W2 + · · · + Wt. Assume that w ∈ Wi
⋂∑

j 6=iWj , then fpii (A)w =

0, f̂pii (A)w = 0. Since (fpii (x), f̂pii (x)) = 1, there are polynomials a(x), b(x) ∈ F [x],

such that a(x)fpii (x) + b(x)f̂pii (x) = 1. Hence a(A)fpii (A)w + b(A)f̂pii (A)w = w = 0,

so that w ∈Wi
⋂∑

j 6=iWj = {0}. Therefore W = W1
⊕
W2

⊕
...
⊕
Wt.

(3) This follows from 2) with W = Fn.

(4) Let k ≥ 1 be the smallest positive integer with the property that the vectors u, Tc(u), . . . ,

T kc (u) are linearly dependent for all u ∈ Ui. Then there exist elements a0, a1, . . . , ak−1 ∈
F such that

T kc (u) = a0u + a1T (u) + · · ·+ ak−1T
k−1
c (u). (1)

Consider the polynomial t(x) = xk − ak−1xk−1 − · · · − a0x0 ∈ F [x]. Thus by Eq. (1)

t(Tc)(u) = T kc (u)− ak−1T k−1c (u)− · · · − a0T 0
c (u) = 0.

On the other hand, since u ∈ Ui, we have fpii (Tc)(u) = 0. Hence t(Tc)(u) =

fpii (Tc)(u) = 0. It follows that:

[(t(x), fpii (x))(Tc)](u) = 0. (2)

Since fi(x) is an irreducible polynomial, gcd(t(x), fpii (x)) = 1 or f ji (x) for j ≤ pi. By

Eq. (2), gcd(t(x), fpii (x)) = f ji (x) for j ≤ pi. Thus f ji (Tc)(u) = 0 for j ≤ pi. First, we

show that j = pi. Let W = Ker(f ji (Tc)). It is clear that W ⊆ Ui. On the other hand,

from u ∈ Ui, we get that f ji (Tc)(u) = 0, u ∈ W . Because u is an arbitrary element

of Ui, we conclude that Ui ⊆ W and so W = Ui. Therefore (t(x), fpii (x)) = fpii (x).

So fpii (x) divides t(x) and this means that kipi = deg(fpii ) ≤ deg(t(x)) = k. Now,

from fpii (Tc)(u) = 0 we get that u, Tc(u), . . . , T kipic (u) are linearly dependent. By
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minimality of k, we get k ≤ kipi. Hence k = kipi. It is clear that dimUi ≥ k = kipi,

then we have

t∑
i=1

dimUi = dimF F
n = n = deg(f) =

t∑
i=1

deg(fpii ) =
t∑
i=1

kipi.

Therefore dimF Ui = kipi.

(5) Suppose that g(i) = (g
(i)
1 , g

(i)
2 , . . . , g

(i)
kipi

) is a basis of Ui over F for i = 1, . . . , t.

Consider Ai as the matrix of Tc|Ui with respect to that basis. Let f ′i = fTc|Ui
.

First, we show that gcd(fpii , f
′
i) 6= 1. Suppose that gcd(fpii , f

′
i) = 1, then there

exist polynomials a(x), b(x) ∈ F [x] such that a(x)fpii (x) + b(x)f ′i(x) = 1. Then

a(Ai)f
pi
i (Ai) + b(Ai)f

′
i(Ai) = E. By the theorem of Cayley-Hamilton, f ′i(Ai) = 0. So

a(Ai)f
pi
i (Ai) = E. Now, we want to show that fpii (Ai) = 0, and we get the contra-

diction. By (3) in this Theorem, g = (g
(i)
1 , g

(i)
2 , . . . , g

(1)
k1p1

, g
(t)
1 , g

(t)
2 , . . . , g

(t)
ktpt

) is a basis

of Fn and Tc is represented by

A′ =



A1

A2

A3

. . .

At


,

with respect to that basis. Besides A′ = T−1AT , where T is the transformation matrix

from the standard basis of Fn to the basis g. Then we have

fpii (A′) =



fpii (A1)

fpii (A2)

fpii (A3)
. . .

fpii (At)


.

Hence fpii (A′) = fpii (T−1AT ) = T−1fpii (A)T . Let g
(i)
j = λ

(i)
j1
e1 + λ

(i)
j2
e2 + · · ·+ λ

(i)
jn
en,

j = 1, . . . , kipi. Since g
(i)
j ∈ Ui, we get that

fpii (A′)



0
...

1

0
...

0


= T−1fpii (A)T



0
...

1

0
...

0


= T−1fpii (A)


λ
(i)
j1
...

λ
(i)
jn

 = 0,
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where 1 is on the (k1 +k2 + · · ·+ki−1 + j)-th position. According to the last equation,

fpii (Ai) = 0. Therefore gcd(fpii , f
′
i) 6= 1. By the proof of (3) in this theorem, it is

easy to see that gcd(fpii , f
′
i) = fpii . On the other hand, deg(fpii ) = deg(f ′i). Therefore

fTc|Ui
(x) = (−1)kipifpii (x).

(6) Suppose that V ′i is Tc-invariant subspace of Fn such that {0} 6= V ′i ⊆ Vi. Then by

Proposition 2.1, we know that fTc|V ′i divides fi. Since fi is an irreducible polynomial,

fi = fTc|V ′i . So we have dimV ′i = deg fTc|V ′i = deg fi = dimVi. Then we have V ′i = Vi.

This completes the proof.

Proposition 2.3. Let U be a Tc-invariant subspace of Fn. Then U is a direct sum of some

Tc-invariant subspaces Ui of Fn.

Proof. This follows immediately from (2) of Theorem 2.2.

Definition 2.4. A linear code of length n and dimension k is a linear subspace C of

dimension k of the vector space Fn.

Definition 2.5. A linear code C of length n over F is called polycyclic, if whenever x =

(x1, x2, . . . , xn) ∈ C, then so is y = xnc + (0, x1, . . . , xn−1), where c = (c0, c1, . . . , cn−1) ∈
Fn.

Proposition 2.6. A linear code C of length n over F is polycyclic if and only if C is a

Tc-invariant subspace of Fn.

Proof. The proof of this proposition is immediate from Definition 2.5.

The decomposition of a polycyclic code into minimal invariant subspaces enjoys the

following properties. This is the main result of this section.

Theorem 2.7. Let C be a linear polycyclic code of length n over F . Then the following

results hold.

(1) C = Ui1⊕Ui2⊕· · ·⊕Uis for some Tc-invariant subspaces Uir of Fn and k := dimF C =

ki1pi1 + · · ·+ kispis, where kirpir is the dimension of Uir ;

(2) fTc|C(x) = (−1)ki1pi1+ki2pi2+···+kispisf
pi1
i1

(x)f
pi2
i2

(x) · · · fpisis
(x) = g(x);

(3) c′ ∈ C iff g(A)c′ = 0;

(4) the polynomial g(x) has the smallest degree with respect to (3) in this theorem;

(5) rank(g(A)) = n− k and the matrix H the rows of which constitute an arbitrary set of

n− k linearly independent rows of g(A) is a parity check matrix of C.
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Proof. (1) This follows from 2) of Theorem 2.1.

(2) Let (g
(ir)
1 , . . . , g

(ir)
kirpir

) be a basis of Uir over F , where r = 1, . . . , s, and let Air be the

matrix of Tc|Uir with respect to that basis. Then (g
(i1)
1 , . . . , g

(i1)
ki1pi1

, . . . , g
(is)
1 , . . . , g

(is)
kispis

)

is a basis of C over F and Tc|C is represented by the following matrix:

Ai1
Ai2

Ai3
. . .

Ais


with respect to that basis. Hence,

fTc|C = (−1)ki1pi1+ki2pi2+···+kispisf
pi1
i1

(x)f
pi2
i2

(x) · · · fpisis
(x).

(3) Let c′ ∈ C, then c′ = ui1 + · · ·+ uis for some uir ∈ Uir , where r = 1, . . . , s, and

g(A)c′ = (−1)ki1pi1+···+kispis [(f
pi1
i1
f
pi2
i2
· · · fpisis

)(A)ui1 + (f
pi1
i1
f
pi2
i2
· · · fpisis

)(A)uis ] = 0.

Conversely, suppose that g(A)c′ = 0 for some c′ ∈ Fn. According to Theorem 2.2

part 3, c′ = u1 + u2 + · · ·+ ut. Then

g(A)c′ = (−1)ki1pi1+···+kispis [(f
pi1
i1
f
pi2
i2
· · · fpisis

)(A)u1+· · ·+(f
pi1
i1
f
pi2
i2
· · · fpisis

)(A)ut] = 0,

so that g(A)(uj1 + · · · + ujl) = 0, where {j1, . . . , jl} = {1, . . . , t}\{i1, . . . , is}. Let

v = uj1 + · · · + ujl and h(x) = f(x)
g(x) . Since (h(x), g(x)) = 1, there are polynomials

a(x), b(x) ∈ F [x] such that a(x)h(x) + b(x)g(x) = 1. Therefore, v = a(A)h(A)v +

b(A)g(A)v = 0 and so c′ ∈ C.

(4) Suppose that b(x) ∈ F [x] is a nonzero polynomial of smallest degree such that b(A)c′ =

0 for all c′ ∈ C. By the division algorithm in F [x] there are polynomials q(x), r(x) such

that g(x) = b(x)q(x)+r(x), where deg(b(x)) < deg(g(x)). Then for each vector c ∈ C,

we have g(A)c′ = q(A)b(A)c′+r(A)c′ and hence, r(A)c′ = 0. But this contradicts the

choice of b(x) unless r(x) = 0. Thus b(x) divides g(x). If deg(b(x)) < deg(g(x)), then

b(x) is a product of some irreducible factors of g(x), and without loss of generality

we may assume that b(x) = (−1)ki1pi1+ki2pi2+···+kimpimf
pi1
i1

(x)f
pi2
i2

(x) · · · fpimim
(x) and

m < s. Let us consider the code C ′ = Ui1
⊕
Ui2

⊕
· · ·

⊕
Uim ⊂ C. Then b(x) =

fTc|C′(x) and by the equation g(A)c′ = 0 for all c′ ∈ C, we obtain that C ⊆ C ′. This

contradiction proves the statement.

(5) dimF C = k = n− rank(g(A)), so rank(g(A)) = n− k = dimF C
⊥.
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3 Idempotent matrices

Let C = Ui be a linear polycyclic code of length n over F ,

g(x) = (−1)kipifpii (x)

and

h(x) = (−1)n−kipi f̂pii (x),

where kipi = dimF Ui. Since gcd(g(x), h(x)) = 1, there are unique polynomials ui(x), vi(x) ∈
F [x] such that ui(x)g(x) + vi(x)h(x) = 1, deg(ui(x)) < deg(h(x)),deg(vi(x)) < deg(g(x)).

It follows that

vi(x)h(x)[ui(x)g(x) + vi(x)h(x)] = vi(x)h(x)

and hence

vi(A)h(A)[ui(A)g(A) + vi(A)h(A)] = vi(A)h(A).

If we let ei(A) = vi(A)h(A), then we have e2i (A) = ei(A) because of h(A)g(A) = f(A) = 0.

The main properties of the idempotent matrices ei(A) are as follows.

Theorem 3.1. The matrices ei(A), i = 1, . . . , t, satisfy the following relations:

(1) e2i (A) = ei(A);

(2) ei(A)ej(A) = 0 for j 6= i;

(3) c′ ∈ Ui iff ei(A)c′ = c′;

(4) ei(A)c′ = 0 iff for all c′ ∈ Uj, j 6= i;

(5)
∑t

i=1 ei(A) = E;

(6) the columns of ei(A) generate Ui.

Proof. (1) ei(A) = (−1)n−kipivi(A)f̂pii (A) = vi(A)h(A), so e2i (A) = ei(A).

(2) ei(A)ej(A) = (−1)2n−kipi−kjpjvi(A)vj(A)f̂pii (A)f̂
pj
j (A) = u(A)f(A) = 0 for a suitable

polynomial u(x) ∈ F [x].

(3) Let c′ ∈ Ui, then we have

(−1)kipiui(A)fi(A)pic′ + (−1)n−kipivi(A)f̂i(A)pic′ = ei(A)c′ = c′.

Conversely, let ei(A)c′ = c′, then

fpii (A)c′ = fpii (A)ei(A)c′ = (−1)n−kipivi(A)f(A)c′ = 0,

so c′ ∈ Ui.

(4) Let c′ ∈ Uj , j 6= i. Then ei(A)c′ = (−1)n−kipivi(A)f̂pii (A)c′ = u(A)f
pj
j (A)c′ = 0.
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(5) For the proof of (5) we refer to Theorems 3 to 5 in [10].

(6) For the proof of (6) we refer to Theorems 3 to 6 in [10].

This completes the proof.

Because of the preceding theorem and the form of constructing polynomial, the proofs

of the following two theorems are similar to those of Theorems 4 and 5 in [10]. Thus we

omit them here.

Theorem 3.2. ei(A) is the only idempotent matrix satisfying ei(A)c′ = c′ for all c′ ∈ Ui
and ei(A)x = 0 for all x ∈

∑
j 6=i Uj.

Now let C = Ui1
⊕
Ui2

⊕
· · ·

⊕
Uis be an arbitrary linear polycyclic code of length n

over F . Then

fTc|C(x) = (−1)ki1pi1+···+kispisf
pi1
i1

(x)f
pi2
i2

(x) · · · fpisis
(x) = g(x),

and

h(x) =
f(x)

g(x)
= (−1)n−(ki1pi1+ki2pi2+···+kispis )f

pj1
j1

(x)f
pj2
j2

(x) · · · fpjljl
(x),

where {j1, . . . , jl} = {1, . . . , t}\{i1, . . . , is}. Let e(A) = v(A)h(A) for some polynomial

v(A) ∈ F [x], e2(A) = e(A).

Theorem 3.3. Let C = Ui1
⊕
Ui2

⊕
· · ·

⊕
Uis be an arbitrary linear polycyclic code of

length n over F . Then the following facts hold:

(1) c′ ∈ C iff e(A)c′ = c′;

(2) the columns of e(A) generate C;

(3) e(A) = ei1(A) + ei2(A) + · · ·+ eis(A);

(4) the polycyclic code C ′ = Uj1
⊕
Uj2

⊕
· · ·

⊕
Ujl has the idempotent matrix E − e(A).

4 Bounds for polycyclic codes

Let K = Fqm be the splitting field of the polynomial f(x) = (−1)n+1(
∑n−1

i=0 cix
i − xn) over

Fq, where 0 6= c0 ∈ Fq. Let z be a root of f(x). Then z is an eigenvalue of A, where

A =



0 0 0 · · · 0 0 c0

1 0 0 · · · 0 0 c1

0 1 0 · · · 0 0 c2
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 cn−2

0 0 0 · · · 0 1 cn−1


.
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The corresponding eigenvector is given by

Atv(z)t = zv(z)t,v(z) = (1, z, . . . , zn−1),

where ∗t is transposition and v is an eigenvector of At with associated eigenvalue z.

Now we study the case that f(x) has no repeated roots. Assume that f(x) has n distinct

roots zj , 1 ≤ j ≤ n. Each root is an eigenvalue of A and At.

Atv(zj) = zjv(zj), 1 ≤ j ≤ n.

These n statements can be expressed in just one matrix statement (each eigenvector being

a column of the Vandermonde matrix V = V (z1, z2, . . . , zn)), where

V =



1 1 1 · · · 1 1 1

z1 z2 z3 · · · zn−2 zn−1 zn

z21 z22 z23 · · · z2n−2 z2n−1 z2n
...

...
...

. . .
...

...
...

zn−21 zn−22 zn−23 · · · zn−2n−2 zn−2n−1 zn−2n

zn−11 zn−12 zn−13 · · · zn−1n−2 zn−1n−1 zn−1n


.

Let D = diag(z1, z2, . . . , zn) be the diagonal matrix with the roots {zj |1 ≤ j ≤ n} on the

main diagonal and with zeros everywhere else, we have

AtV = V D ⇔ V −1AtV = D ⇔ V tA(V t)−1 = D.

Let T = (V t)−1, then T−1AT = D, where

T−1 =



1 z1 z21 · · · zn−31 zn−21 zn−11

1 z2 z22 · · · zn−32 zn−22 zn−12

1 z3 z23 · · · zn−33 zn−23 zn−13
...

...
...

. . .
...

...
...

1 zn−1 z2n−1 · · · zn−3n−1 zn−2n−1 zn−1n−1
1 zn z2n · · · zn−3n zn−2n zn−1n


.

Let ui = (1, zi, . . . , z
n−1
i ), 1 ≤ i ≤ n, which is a row of T−1. Since D is a diagonal matrix,

the matrices g(D) and h(D) are also diagonal.

Let deg(h(x)) = n − k = r, and let its r zeros be zi1 , zi2 , . . . , zir and its k nonzeros be

zj1 , zj2 , . . . , zjk . It is obvious that the zeros of g(x) are the nonzeros of h(x) and vice versa.

We denote I = {i1, i2, . . . , ir} and J = [n] \ I = {j1, j2, . . . , jk}.

Assume that d = (d1, d2, . . . , dn) ∈ Fnq and let d′ = T−1d. We know d ∈ C iff g(A)d = 0.

The latter condition is equivalent to g(D)d′ = T−1g(A)TT−1d = T−1g(A)d = 0, which, in
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its turn, is equivalent to d′i = 0, i ∈ I. Hence,

d ∈ C ⇔ uid = 0, i ∈ I.

Let K be any finite field and A = [a1,a2, . . . ,an] any matrix over K with n columns

ai, 1 ≤ i ≤ n. Let CA denote the linear code over K with A as parity check matrix. The

minimum distance of CA will be denoted as dA.

For any m×n matrix X = [x1,x2, . . . ,xn] with nonzero columns xi ∈ Km for 1 ≤ i ≤ n,

we define the matrix A(X) as

A(X) =


x11a1 x12a2 · · · x1nan

x21a1 x22a2 · · · x2nan
...

...
. . .

...

xm1a1 xm2a2 · · · xmnan


We recall the following lemma [10], which describes how the parity-check matrix A for

a linear code can be extended with new rows in such a way that the minimum distance

increases.

Lemma 4.1. If dA ≥ 2 and every m × (m + dA − 2) submatrix of X has full rank, then

dA(X) ≥ dA +m− 1.

Next, we recall the following BCH type lower bound that is a direct consequence of the

observation that a shortened code has at least as great a minimum distance as the original

code [8, p. 241].

Theorem 4.2. (BCH Type Lower Bound)[4] Let C be a polycyclic code over Fq with g(x) =

fTc|C(x) and h(x) = f(x)
g(x) . If f(x) has no repeated roots and deg(f(x)) = n1 ≥ 1. Suppose

f(x)|(xn−1) for some positive integer n with gcd(n, q) = 1. Let β be a primitive element of

order n in some finite extension of Fq. Suppose there are integers a, b, d such that {βa+bi :

0 ≤ i ≤ d− 2 and h(βa+bi) = 0} and n
gcd(b,n) ≥ n1 ≥ d− 1. Then the minimum distance of

C is at least d.

Definition 4.3. Let K = Fqm. A set M = {αj1 , αj2 , . . . , αjl} is a consecutive set of n-th

roots of unity if there is some primitive n-th root of unity β in K such that M consists of

consecutive powers of β.

Definition 4.4. Given n1 such that n1 ≤ n. If N = {αj1 , αj2 , . . . , αjt} is a set of zeros of

n-th roots of unity, we denote by UN or by U(αj1
,αj2

,...,αjt )
the matrix of size t by n1 over K

that has (1, αjs , . . . , α
n1−1
js

) as its s-th row.
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From the discussion above, it is clear that UN is a parity-check matrix for the polycyclic

code C over F having N as a set of zeros of h(x). Let CN be the polycyclic code over K

with UN as the parity-check matrix, and let this code have minimum distance dN . So the

minimum distance of C is at least dN , because C is a subfield subcode of CN .

The proof of the following theorem is similar to that of Theorem 6 in [10], so we omit

it here.

Theorem 4.5. If M,N are sets of n-th roots of unity such that |M | ≤ |M | + dN − 2 for

some consecutive set M containing M , then dMN ≥ dN + |M | − 1, where MN = {αβ|α ∈
M,β ∈ N}.

According to Theorems 4.2 and 4.5, a systematic algorithm to compute the bound for

a polycyclic code C in the multiplicity free case can be sketched as follows.

(i) For a polycyclic code C over Fq with f(x) = fTc(x), g(x) = fTc|C(x) and h(x) = f(x)
g(x) .

Write n1 = deg(f(x)). If f(x) has no repeated roots, we can find a minimal integer

n such that f(x)|(xn − 1), and gcd(n, q) = 1. Let β be a primitive element of order n

in the splitting field Fqm of xn − 1 over F.

(ii) Compute the cyclotomic cosets of n mod q, denoted by Ci for i = 0, 1, . . . , s.

(iii) Write the zeros of h(x) as βi, with i belonging to some union of the cyclotomic cosets.

If h(x) has a string of δ − 1 consecutive zeros, then the BCH bound of C is δ.

(iv) Find two sets M,N satisfy the conditions in Theorem 4.5 such that MN is contained

in the set of zeros of h(x).

(v) Find the matrix UN that has (1, α, . . . , αn1−1) as its row for all α ∈ N . Let UN be

the parity-check matrix over Fqm and compute the minimum distance dN . Then our

bound for the minimum distance C is d ≥ dMN ≥ dN + |M | − 1.

Example 4.6. A polycyclic code C over F2 with f(x) = (x2 + x + 1)(x4 + x3 + 1)(x4 +

x3 + x2 + x + 1) and g(x) = x4 + x3 + 1. We can find f |(x15 − 1) and (15, 2) = 1. Let β

be a primitive 15-th root of unity. We determine the cyclotomic coset of 2 mod 15. These

are C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 9, 12}, C5 = {5, 10} and C7 = {7, 11, 13, 14}.
It is easy to check that the zeros of h(x) = f(x)

g(x) are βi with i ∈ C3 ∪ C5. Since h(x) has a

string of two consecutive zeros, the linear polycyclic code C defined by h(x) has a minimum

distance d ≥ 3 according to Theorem 4.2.

Now take {βi|i = 5, 9} and M = {βi|i = 0, 1}. Then the elements of MN are zeros of

h(x). Since dN = 3 and |M | = 2 ≤ |M | + dN − 2 = 3, Theorem 4.5 implies d ≥ dMN ≥
|M |+ dN − 1 = 4.

Similar to the discussion as above, we have
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(a) Let C be a polycyclic code over F7 with f(x) = (x4 +x3 +x2 +x+ 1)(x4 + 2x3 + 4x2 +

2x + 1)(x4 + 4x3 + 4x + 1)(x4 + 4x3 + 3x2 + 4x + 1)(x4 + 6x3 + 5x2 + 6x + 1) and

g(x) = (x4 + 6x3 + 5x2 + 6x+ 1)(x4 + 4x3 + 4x+ 1). Then the BCH bound is 5 and

our bound is 6.

(b) Let C be a polycyclic code over F3 with f(x) = (x+ 2)(x5 + x4 + 2x3 + x2 + 2)(x5 +

2x3 + 2x2 + 2x+ 1) and g(x) = x+ 2. Then the BCH bound is 4 and our bound is 5.

(c) Let C be a polycyclic code over F5 with f(x) = (x+1)(x+2)(x+3)(x2+x+2)(x2+3x+3)

and g(x) = (x2 + 3x+ 3)(x+ 3). Then the BCH bound is 3 and our bound is 4.

5 Conclusion and open problems

In the present paper, we have developed an approach to polycyclic codes based on the theory

of invariant subspaces under a fixed endomorphism. When the characteristic polynomial of

this endomorphism is multiplicity free in its factorization, we have derived a lower bound

on the minimum distance of the polycyclic codes. This mild hypothesis is equivalent, in

the cyclic codes case, to the coprimality of the length and the alphabet size. The first open

problem is to derive a similar bound for the repeated root case. Another open problem

would be to generalize our results from finite fields alphabets to chain rings [7]. Finally,

an algebraic decoding algorithm would be a natural continuation of the minimum distance

bound.
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