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Introduction

Polycyclic codes of length n over a finite field F can be described as ideals in the quotient ring of F [x]/(f ), where f is some polynomial of degree n. They reduce to cyclic codes when f = x n -1 and to constacyclic codes when f = x n -a, for some a ∈ F * . They have been known for a long time under the name of pseudo-cyclic codes [START_REF] Peterson | Error-Correcting Codes[END_REF]. They received a new name in [START_REF] Lopez-Permouth | Dual generalizations of the concept of cyclicity of codes[END_REF], and a renewed interest in [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF], where their algebraic structure is studied in great detail. Replacing F by a finite chain ring is considered in [START_REF] Lopez-Permouth | Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes[END_REF][START_REF] Martinez-Moro | On polycyclic codes over a finite chain ring[END_REF]. In parallel, an algebraic approach to quasi-twisted and constacyclic codes was developed in [START_REF] Radkova | Cyclic codes and quasi-twisted codes: an algebraic approach[END_REF][START_REF] Radkova | Constacyclic codes as invariant subspaces[END_REF]. The idea is to consider the codes in the class under scrutiny as invariant subspaces under the action of an endomorphism; this allows the machinery from linear algebra to bear on the problem [START_REF] Hoffman | Linear Algebra[END_REF]. In the cases considered in [START_REF] Radkova | Cyclic codes and quasi-twisted codes: an algebraic approach[END_REF][START_REF] Radkova | Constacyclic codes as invariant subspaces[END_REF], the said endomorphism is the analogue of the cyclic shift of cyclic codes. For another aplication of this linear algebra method to Coding Theory see [START_REF] Gueneri | On the additive cyclic structure of quasi-cyclic codes[END_REF].

In the present paper, we apply the latter approach to the study of polycyclic codes. The transform mentioned before and called here the polyshift admits for matrix the companion matrix of the polynomial f (x). A notion of minimal invariant subspace is introduced, driven by the factorization of f (x) into irreducible factors over the base field. This allows to describe any invariant subspace as a direct sum of its intersections with these spaces. The first benefit of this decomposition is an analogue of the generator polynomial and of the check polynomial of cyclic codes. Similarly, an analogue of the idempotent of cyclic codes is developed. Last but not least, a bound on the minimum distance is derived that outperforms, in some cases, the BCH-like bound of [START_REF] Li | Pseudo-cyclic codes and the construction of quantum MDS codes[END_REF].

The material is arranged as follows. The next section develops the approach to polycyclic codes as invariant subspaces of the polyshift, and introduces the analogues of generator and check polynomials of cyclic codes. Section 3 derives a primitive idempotent decomposition of polycyclic codes. Section 4 is dedicated to a bound on the minimum distance which improves, in some cases the BCH-like bound of [START_REF] Li | Pseudo-cyclic codes and the construction of quantum MDS codes[END_REF]. Section 5 concludes the paper and points out some challenging open problems.

Linear polycyclic codes as invariant subspaces

Let F = F q be a finite field of order q and F n be the n-dimensional vector space over F with the standard basis e 1 = (1, 0, . . . , 0), e 2 = (0, 1, . . . , 0), . . . , e n = (0, 0, . . . , 1). E is the identify matrix. Let c = (c 0 , c 1 , ..., c n-1 ) be a codeword of C with c 0 = 0 and let T c denote the polyshift defined as:

   F n → F n , (x 1 , x 2 , . . . , x n ) → x n c + (0, x 1 , . . . , x n-1 ).
Then T c ∈ Hom(F n ) and it has the following matrix:

A(n, c) = A =            0 0 0 • • • 0 0 c 0 1 0 0 • • • 0 0 c 1 0 1 0 • • • 0 0 c 2 . . . . . . . . . . . . . . . . . . . . . 0 0 0 • • • 1 0 c n-2 0 0 0 • • • 0 1 c n-1            .
We observe the relations

A -1 (n, c) = A -1 =               -c 1 c 0 1 0 0 • • • 0 0 -c 2 c 0 0 1 0 • • • 0 0 -c 3 c 0 0 0 1 • • • 0 0 . . . . . . . . . . . . . . . . . . . . . -c n-2 c 0 0 0 0 • • • 1 0 -c n-1 c 0 0 0 0 • • • 0 1 -1 c 0 0 0 0 • • • 0 0               . The characteristic polynomial of A is f A (x) = f (x) =            -x 0 0 • • • 0 0 c 0 1 -x 0 • • • 0 0 c 1 0 1 -x • • • 0 0 c 2 . . . . . . . . . . . . . . . . . . . . . 0 0 0 • • • 1 -x c n-2 0 0 0 • • • 0 1 c n-1 -x            = (-1) n+1 (c 0 + c 1 x + c 2 x 2 + • • • + c n-2 x n-2 + c n-1 x n-1 -x n ).
Note that this polynomial is, up to sign, the same f as in the Introduction [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF].

Let f (x) = (-1) n+1 f p 1 1 (x)f p 2 2 (x) • • • f pt t (x)
be the factorization of f (x) into irreducible factors over F . By the theorem of Cayley-Hamilton, we have

f (A) = (-1) n+1 f p 1 1 (A)f p 2 2 (A) • • • f pt t (A) = 0.
Next, we consider the homogeneous set of equations f p i i (A)x = 0, x ∈ F n for i = 1, . . . , t. If U i stands for the solution space of this homogeneous set of equations, then we may write U i = Ker(f p i i (T c )), and consider the homogeneous set of equations f i (A)x = 0, x ∈ F n for i = 1, . . . , t. If V i stands for the solution space of this homogeneous set of equations, then we may write V i = Ker(f i (T c )). Now, we need the following well-known fact [3, p.200

]. Proposition 2.1. Let V be a T c -invariant subspace of U . Then f Tc|U i (x) divides f Tc (x).
The general properties of minimal invariant subspaces can be summarized as follows.

Theorem 2.2. The subspaces U i and V i of F n satisfy the following conditions:

(1)

V i ⊆ U i , U i and V i are T c -invariant subspace of F n ; (2) if W is a T c -invariant subspace of F n and W i = W ∩ U i for i = 1, . . . , t, then W i is T c -invariant and W = W 1 ⊕ W 2 ⊕ • • • ⊕ W t ;
(3)

F n = U 1 ⊕ U 2 ⊕ • • • ⊕ U t ; (4) dim F U i = deg f p i i (x) = k i p i , where degf i (x) = k i ; (5) f Tc|U i (x) = (-1) k i p i f p i i (x); (6) V i is a minimal T c -invariant subspace of F n . Proof. (1) Let u ∈ U i , i.e. f p i i (A)u = 0, then f p i i (A)T c (u) = f p i i (A)Au = Af p i i (A)u = 0, so that T c (u) ∈ U i . (2) Let f p i i (x) = f (x) f p i i (x) for i = 1, . . . , t. Since ( f1 (x), f2 (x), . . . , ft (x)) = 1, there are poly- nomials a 1 (x), . . . , a t (x) ∈ F [x] such that a 1 (x) f1 (x)+a 2 (x) f2 (x)+• • •+a t (x) ft (x) = 1. Then for any w ∈ W , w = a 1 (A) f1 (A)w + a 2 (A) f2 (A)w + • • • + a t (A) ft (A)w. Let w i = a i (A) fi (A)w, then f i (A) p i w i = a i (A)f (A)w = 0 and w i ∈ U i W . Hence W = W 1 + W 2 + • • • + W t . Assume that w ∈ W i j =i W j , then f p i i (A)w = 0, f p i i (A)w = 0. Since (f p i i (x), f p i i (x)) = 1, there are polynomials a(x), b(x) ∈ F [x], such that a(x)f p i i (x) + b(x) f p i i (x) = 1. Hence a(A)f p i i (A)w + b(A) f p i i (A)w = w = 0, so that w ∈ W i j =i W j = {0}. Therefore W = W 1 W 2 ... W t .
(3) This follows from 2) with W = F n .

(4) Let k ≥ 1 be the smallest positive integer with the property that the vectors u, T c (u), . . . , T k c (u) are linearly dependent for all u ∈ U i . Then there exist elements a 0 , a 1 , . . . , a k-1 ∈ F such that

T k c (u) = a 0 u + a 1 T (u) + • • • + a k-1 T k-1 c (u). (1) 
Consider the polynomial t

(x) = x k -a k-1 x k-1 -• • • -a 0 x 0 ∈ F [x]
. Thus by Eq. ( 1)

t(T c )(u) = T k c (u) -a k-1 T k-1 c (u) -• • • -a 0 T 0 c (u) = 0.
On the other hand, since u ∈ U i , we have

f p i i (T c )(u) = 0. Hence t(T c )(u) = f p i i (T c )(u) = 0. It follows that: [(t(x), f p i i (x))(T c )](u) = 0. (2) 
Since

f i (x) is an irreducible polynomial, gcd(t(x), f p i i (x)) = 1 or f j i (x) for j ≤ p i . By Eq. (2), gcd(t(x), f p i i (x)) = f j i (x) for j ≤ p i . Thus f j i (T c )(u) = 0 for j ≤ p i . First, we show that j = p i . Let W = Ker(f j i (T c )). It is clear that W ⊆ U i . On the other hand, from u ∈ U i , we get that f j i (T c )(u) = 0, u ∈ W . Because u is an arbitrary element of U i , we conclude that U i ⊆ W and so W = U i . Therefore (t(x), f p i i (x)) = f p i i (x). So f p i i (x) divides t(x) and this means that k i p i = deg(f p i i ) ≤ deg(t(x)) = k. Now, from f p i i (T c )(u) = 0 we get that u, T c (u), . . . , T k i p i c (u) are linearly dependent. By minimality of k, we get k ≤ k i p i . Hence k = k i p i . It is clear that dim U i ≥ k = k i p i , then we have t i=1 dim U i = dim F F n = n = deg(f ) = t i=1 deg(f p i i ) = t i=1 k i p i . Therefore dim F U i = k i p i .
(5) Suppose that g (i) = (g

(i) 1 , g (i) 
2 , . . . , g

k i p i ) is a basis of U i over F for i = 1, . . . , t. Consider A i as the matrix of T c | U i with respect to that basis. Let f i = f Tc| U i . First, we show that gcd(f p i i , f i ) = 1. Suppose that gcd(f p i i , f i ) = 1, then there exist polynomials a(x), b(x) ∈ F [x] such that a(x)f p i i (x) + b(x)f i (x) = 1. Then a(A i )f p i i (A i ) + b(A i )f i (A i ) = E. By the theorem of Cayley-Hamilton, f i (A i ) = 0. So a(A i )f p i i (A i ) = E (i) 
. Now, we want to show that f p i i (A i ) = 0, and we get the contradiction. By (3) in this Theorem, g = (g

(i) 1 , g (i) 2 , . . . , g (1) 
k 1 p 1 , g (t) 1 , g (t) 2 , . . . , g (t)
ktpt ) is a basis of F n and T c is represented by

A =          A 1 A 2 A 3 . . . A t         
, with respect to that basis. Besides A = T -1 AT , where T is the transformation matrix from the standard basis of F n to the basis g. Then we have

f p i i (A ) =          f p i i (A 1 ) f p i i (A 2 ) f p i i (A 3 ) . . . f p i i (A t )          . Hence f p i i (A ) = f p i i (T -1 AT ) = T -1 f p i i (A)T . Let g (i) j = λ (i) j 1 e 1 + λ (i) j 2 e 2 + • • • + λ (i) jn e n , j = 1, . . . , k i p i . Since g (i) j ∈ U i , we get that f p i i (A )             0 . . . 1 0 . . . 0             = T -1 f p i i (A)T             0 . . . 1 0 . . . 0             = T -1 f p i i (A)     λ (i) j 1 . . . λ (i) jn     = 0,
where 1 is on the (k

1 + k 2 + • • • + k i-1 + j)-th position.
According to the last equation,

f p i i (A i ) = 0. Therefore gcd(f p i i , f i ) = 1.
By the proof of (3) in this theorem, it is easy to see that gcd(f

p i i , f i ) = f p i i .
On the other hand, deg(f

p i i ) = deg(f i ). Therefore f Tc|U i (x) = (-1) k i p i f p i i (x). (6) Suppose that V i is T c -invariant subspace of F n such that {0} = V i ⊆ V i . Then by Proposition 2.1, we know that f Tc|V i divides f i . Since f i is an irreducible polynomial, f i = f Tc|V i . So we have dim V i = deg f Tc|V i = deg f i = dim V i . Then we have V i = V i .
This completes the proof.

Proposition 2.3. Let U be a T c -invariant subspace of F n . Then U is a direct sum of some T c -invariant subspaces U i of F n .
Proof. This follows immediately from (2) of Theorem 2.2.

Definition 2.4. A linear code of length n and dimension k is a linear subspace C of dimension k of the vector space

F n . Definition 2.5. A linear code C of length n over F is called polycyclic, if whenever x = (x 1 , x 2 , . . . , x n ) ∈ C, then so is y = x n c + (0, x 1 , . . . , x n-1 ), where c = (c 0 , c 1 , . . . , c n-1 ) ∈ F n . Proposition 2.6. A linear code C of length n over F is polycyclic if and only if C is a T c -invariant subspace of F n .
Proof. The proof of this proposition is immediate from Definition 2.5.

The decomposition of a polycyclic code into minimal invariant subspaces enjoys the following properties. This is the main result of this section.

Theorem 2.7. Let C be a linear polycyclic code of length n over F . Then the following results hold.

(1)

C = U i 1 ⊕U i 2 ⊕• • •⊕U is for some T c -invariant subspaces U ir of F n and k := dim F C = k i 1 p i 1 + • • • + k is p is , where k ir p ir is the dimension of U ir ; (2) f Tc|C (x) = (-1) k i 1 p i 1 +k i 2 p i 2 +•••+k is p is f p i 1 i 1 (x)f p i 2 i 2 (x) • • • f p is is (x) = g(x); (3) c ∈ C iff g(A)c = 0;
(4) the polynomial g(x) has the smallest degree with respect to (3) in this theorem;

(5) rank(g(A)) = n -k and the matrix H the rows of which constitute an arbitrary set of n -k linearly independent rows of g(A) is a parity check matrix of C.

Proof.

(1) This follows from 2) of Theorem 2.1.

(2) Let (g

(ir) 1 , . . . , g (ir) 
k ir p ir ) be a basis of U ir over F , where r = 1, . . . , s, and let A ir be the matrix of T c |U ir with respect to that basis. Then (g

(i 1 ) 1 , . . . , g (i 1 ) k i 1 p i 1 , . . . , g (is) 1 , . . . , g (is)
k is p is ) is a basis of C over F and T c |C is represented by the following matrix:

         A i 1 A i 2 A i 3 . . . A is         
with respect to that basis. Hence,

f Tc|C = (-1) k i 1 p i 1 +k i 2 p i 2 +•••+k is p is f p i 1 i 1 (x)f p i 2 i 2 (x) • • • f p is is (x).
(

) Let c ∈ C, then c = u i 1 + • • • + u is for some u ir ∈ U ir 3 
, where r = 1, . . . , s, and

g(A)c = (-1) k i 1 p i 1 +•••+k is p is [(f p i 1 i 1 f p i 2 i 2 • • • f p is is )(A)u i 1 + (f p i 1 i 1 f p i 2 i 2 • • • f p is is )(A)u is ] = 0.
Conversely, suppose that g(A)c = 0 for some c ∈ F n . According to Theorem 2.2 part 3, 

c = u 1 + u 2 + • • • + u t . Then g(A)c = (-1) k i 1 p i 1 +•••+k is p is [(f p i 1 i 1 f p i 2 i 2 • • • f p is is )(A)u 1 +• • •+(f p i 1 i 1 f p i 2 i 2 • • • f p is is )(A)u t ] = 0, so that g(A)(u j 1 + • • • + u j l ) = 0, where {j 1 , . . . , j l } = {1, . . . , t}\{i 1 , . . . , i s }. Let v = u j 1 + • • • + u j l and h(x) = f (x) g(x) . Since (h(x), g(x)) = 1, there are polynomials a(x), b(x) ∈ F [x] such that a(x)h(x) + b(x)g(x) = 1. Therefore, v = a(A)h(A)v + b(A)g(A)v = 0 and so c ∈ C.
k i 1 p i 1 +k i 2 p i 2 +•••+k im p im f p i 1 i 1 (x)f p i 2 i 2 (x) • • • f p im im (x) and m < s. Let us consider the code C = U i 1 U i 2 • • • U im ⊂ C. Then b(x) = f Tc|C (x)
and by the equation g(A)c = 0 for all c ∈ C, we obtain that C ⊆ C . This contradiction proves the statement.

(5

) dim F C = k = n -rank(g(A)), so rank(g(A)) = n -k = dim F C ⊥ .

Idempotent matrices

Let C = U i be a linear polycyclic code of length n over F ,

g(x) = (-1) k i p i f p i i (x) and h(x) = (-1) n-k i p i f p i i (x),
where

k i p i = dim F U i . Since gcd(g(x), h(x)) = 1, there are unique polynomials u i (x), v i (x) ∈ F [x] such that u i (x)g(x) + v i (x)h(x) = 1, deg(u i (x)) < deg(h(x)), deg(v i (x)) < deg(g(x)). It follows that v i (x)h(x)[u i (x)g(x) + v i (x)h(x)] = v i (x)h(x)
and hence

v i (A)h(A)[u i (A)g(A) + v i (A)h(A)] = v i (A)h(A).
If we let e i (A) = v i (A)h(A), then we have e 2 i (A) = e i (A) because of h(A)g(A) = f (A) = 0. The main properties of the idempotent matrices e i (A) are as follows.

Theorem 3.1. The matrices e i (A), i = 1, . . . , t, satisfy the following relations: (1) e 2 i (A) = e i (A); (2) e i (A)e j (A) = 0 for j = i;

(3) c ∈ U i iff e i (A)c = c ; (4) e i (A)c = 0 iff for all c ∈ U j , j = i;

(5) t i=1 e i (A) = E; (6) the columns of e i (A) generate U .

Proof. (1) e

i (A) = (-1) n-k i p i v i (A) f p i i (A) = v i (A)h(A)
, so e 2 i (A) = e i (A).

(

) e i (A)e j (A) = (-1) 2n-k i p i -k j p j v i (A)v j (A) f p i i (A) f p j j (A) = u(A)f (A) = 0 for a suitable polynomial u(x) ∈ F [x]. (3) Let c ∈ U i , then we have (-1) k i p i u i (A)f i (A) p i c + (-1) n-k i p i v i (A) fi (A) p i c = e i (A)c = c . 2 
Conversely, let e i (A)c = c , then

f p i i (A)c = f p i i (A)e i (A)c = (-1) n-k i p i v i (A)f (A)c = 0, so c ∈ U i . (4) Let c ∈ U j , j = i. Then e i (A)c = (-1) n-k i p i v i (A) f p i i (A)c = u(A)f p j j (A)c = 0.
(5) For the proof of ( 5) we refer to Theorems 3 to 5 in [START_REF] Radkova | Constacyclic codes as invariant subspaces[END_REF].

(6) For the proof of ( 6) we refer to Theorems 3 to 6 in [START_REF] Radkova | Constacyclic codes as invariant subspaces[END_REF].

This completes the proof.

Because of the preceding theorem and the form of constructing polynomial, the proofs of the following two theorems are similar to those of Theorems 4 and 5 in [START_REF] Radkova | Constacyclic codes as invariant subspaces[END_REF]. Thus we omit them here. Theorem 3.2. e i (A) is the only idempotent matrix satisfying e i (A)c = c for all c ∈ U i and i (A)x = 0 for all x ∈ j =i U j .

Now let C = U i 1 U i 2 • • • U is be an arbitrary linear polycyclic code of length n over F . Then f Tc|C (x) = (-1) k i 1 p i 1 +•••+k is p is f p i 1 i 1 (x)f p i 2 i 2 (x) • • • f p is is (x) = g(x), and h(x) = f (x) g(x) = (-1) n-(k i 1 p i 1 +k i 2 p i 2 +•••+k is p is ) f p j 1 j 1 (x)f p j 2 j 2 (x) • • • f p j l j l (x),
where {j 1 , . . . , (2) the columns of e(A) generate C;

j l } = {1, . . . , t}\{i 1 , . . . , i s }. Let e(A) = v(A)h(A) for some polynomial v(A) ∈ F [x], e 2 (A) = e(A). Theorem 3.3. Let C = U i 1 U i 2 • • • U is be
(3) e(A) = e i 1 (A) + e i 2 (A) + • • • + e is (A); (4) the polycyclic code C = U j 1 U j 2 • • • U j l has the idempotent matrix E -e(A).

Bounds for polycyclic codes

Let K = F q m be the splitting field of the polynomial f (x) = (-1) n+1 ( n-1 i=0 c i x i -x n ) over F q , where 0 = c 0 ∈ F q . Let z be a root of f (x). Then z is an eigenvalue of A, where

A =            0 0 0 • • • 0 0 c 0 1 0 0 • • • 0 0 c 1 0 1 0 • • • 0 0 c 2 . . . . . . . . . . . . . . . . . . . . . 0 0 0 • • • 1 0 c n-2 0 0 0 • • • 0 1 c n-1            .
The corresponding eigenvector is given by

A t v(z) t = zv(z) t , v(z) = (1, z, . . . , z n-1 ),
where * t is transposition and v is an eigenvector of A t with associated eigenvalue z.

Now we study the case that f (x) has no repeated roots. Assume that f (x) has n distinct roots z j , 1 ≤ j ≤ n. Each root is an eigenvalue of A and A t .

A t v(z j ) = z j v(z j ), 1 ≤ j ≤ n.
These n statements can be expressed in just one matrix statement (each eigenvector being a column of the Vandermonde matrix V = V (z 1 , z 2 , . . . , z n )), where

V =            1 1 1 • • • 1 1 1 z 1 z 2 z 3 • • • z n-2 z n-1 z n z 2 1 z 2 2 z 2 3 • • • z 2 n-2 z 2 n-1 z 2 n . . . . . . . . . . . . . . . . . . . . . z n-2 1 z n-2 2 z n-2 3 • • • z n-2 n-2 z n-2 n-1 z n-2 n z n-1 1 z n-1 2 z n-1 3 • • • z n-1 n-2 z n-1 n-1 z n-1 n           
.

Let D = diag(z 1 , z 2 , . . . , z n ) be the diagonal matrix with the roots {z j |1 ≤ j ≤ n} on the main diagonal and with zeros everywhere else, we have

A t V = V D ⇔ V -1 A t V = D ⇔ V t A(V t ) -1 = D. Let T = (V t ) -1 , then T -1 AT = D, where 
T -1 =            1 z 1 z 2 1 • • • z n-3 1 z n-2 1 z n-1 1 1 z 2 z 2 2 • • • z n-3 2 z n-2 2 z n-1 2 1 z 3 z 2 3 • • • z n-3 3 z n-2 3 z n-1 3 . . . . . . . . . . . . . . . . . . . . . 1 z n-1 z 2 n-1 • • • z n-3 n-1 z n-2 n-1 z n-1 n-1 1 z n z 2 n • • • z n-3 n z n-2 n z n-1 n            . Let u i = (1, z i , . . . , z n-1 i ), 1 ≤ i ≤ n, which is a row of T -1 .
Since D is a diagonal matrix, the matrices g(D) and h(D) are also diagonal.

Let deg(h(x)) = n -k = r, and let its r zeros be z i 1 , z i 2 , . . . , z ir and its k nonzeros be z j 1 , z j 2 , . . . , z j k . It is obvious that the zeros of g(x) are the nonzeros of h(x) and vice versa. We denote I = {i 1 , i 2 , . . . , i r } and J = [n] \ I = {j 1 , j 2 , . . . , j k }. Let K be any finite field and A = [a 1 , a 2 , . . . , a n ] any matrix over K with n columns a i , 1 ≤ i ≤ n. Let C A denote the linear code over K with A as parity check matrix. The minimum distance of C A will be denoted as d A .

For any m×n matrix X = [x 1 , x 2 , . . . , x n ] with nonzero columns x i ∈ K m for 1 ≤ i ≤ n, we define the matrix A(X) as

A(X) =       x 11 a 1 x 12 a 2 • • • x 1n a n x 21 a 1 x 22 a 2 • • • x 2n a n . . . . . . . . . . . . x m1 a 1 x m2 a 2 • • • x mn a n      
We recall the following lemma [START_REF] Radkova | Constacyclic codes as invariant subspaces[END_REF], which describes how the parity-check matrix A for a linear code can be extended with new rows in such a way that the minimum distance increases. Next, we recall the following BCH type lower bound that is a direct consequence of the observation that a shortened code has at least as great a minimum distance as the original code [8, p. 241]. Theorem 4.2. (BCH Type Lower Bound) [START_REF] Li | Pseudo-cyclic codes and the construction of quantum MDS codes[END_REF] Let C be a polycyclic code over F q with g(x) = f Tc|C (x) and h(x) = f (x) g(x) . If f (x) has no repeated roots and deg(f (x)) = n 1 ≥ 1. Suppose f (x)|(x n -1) for some positive integer n with gcd(n, q) = 1. Let β be a primitive element of order n in some finite extension of F q . Suppose there are integers a, b, d such that {β a+bi : 0 ≤ i ≤ d -2 and h(β a+bi ) = 0} and

n gcd(b,n) ≥ n 1 ≥ d -1.
Then the minimum distance of C is at least d. Definition 4.3. Let K = F q m . A set M = {α j 1 , α j 2 , . . . , α j l } is a consecutive set of n-th roots of unity if there is some primitive n-th root of unity β in K such that M consists of consecutive powers of β. Definition 4.4. Given n 1 such that n 1 ≤ n. If N = {α j 1 , α j 2 , . . . , α jt } is a set of zeros of n-th roots of unity, we denote by U N or by U (α j 1 ,α j 2 ,...,α j t ) the matrix of size t by n 1 over K that has (1, α js , . . . , α n 1 -1 js ) as its s-th row.

From the discussion above, it is clear that U N is a parity-check matrix for the polycyclic code C over F having N as a set of zeros of h(x). Let C N be the polycyclic code over K with U N as the parity-check matrix, and let this code have minimum distance d N . So the minimum distance of C is at least d N , because C is a subfield subcode of C N .

The proof of the following theorem is similar to that of Theorem 6 in [START_REF] Radkova | Constacyclic codes as invariant subspaces[END_REF], so we omit it here. According to Theorems 4.2 and 4.5, a systematic algorithm to compute the bound for a polycyclic code C in the multiplicity free case can be sketched as follows.

(i) For a polycyclic code C over F q with f (x) = f Tc (x), g(x) = f Tc|C (x) and h(x) = f (x) g(x) . Write n 1 = deg(f (x)). If f (x) has no repeated roots, we can find a minimal integer n such that f (x)|(x n -1), and gcd(n, q) = 1. Let β be a primitive element of order n in the splitting field F q m of x n -1 over F.

(ii) Compute the cyclotomic cosets of n mod q, denoted by C i for i = 0, 1, . . . , s.

(iii) Write the zeros of h(x) as β i , with i belonging to some union of the cyclotomic cosets.

If h(x) has a string of δ -1 consecutive zeros, then the BCH bound of C is δ.

(iv) Find two sets M, N satisfy the conditions in Theorem 4.5 such that M N is contained in the set of zeros of h(x).

(v) Find the matrix U N that has (1, α, . . . , α n 1 -1 ) as its row for all α ∈ N . Let U N be the parity-check matrix over F q m and compute the minimum distance d N . Then our bound for the minimum distance Similar to the discussion as above, we have (a) Let C be a polycyclic code over F 7 with f (x) = (x 4 + x 3 + x 2 + x + 1)(x 4 + 2x 3 + 4x 2 + 2x + 1)(x 4 + 4x 3 + 4x + 1)(x 4 + 4x 3 + 3x 2 + 4x + 1)(x 4 + 6x 3 + 5x 2 + 6x + 1) and g(x) = (x 4 + 6x 3 + 5x 2 + 6x + 1)(x 4 + 4x 3 + 4x + 1). Then the BCH bound is 5 and our bound is 6.

C is d ≥ d M N ≥ d N + |M | -1.
(b) Let C be a polycyclic code over F 3 with f (x) = (x + 2)(x 5 + x 4 + 2x 3 + x 2 + 2)(x 5 + 2x 3 + 2x 2 + 2x + 1) and g(x) = x + 2. Then the BCH bound is 4 and our bound is 5.

(c) Let C be a polycyclic code over F 5 with f (x) = (x+1)(x+2)(x+3)(x 2 +x+2)(x 2 +3x+3) and g(x) = (x 2 + 3x + 3)(x + 3). Then the BCH bound is 3 and our bound is 4.

Conclusion and open problems

In the present paper, we have developed an approach to polycyclic codes based on the theory of invariant subspaces under a fixed endomorphism. When the characteristic polynomial of this endomorphism is multiplicity free in its factorization, we have derived a lower bound on the minimum distance of the polycyclic codes. This mild hypothesis is equivalent, in the cyclic codes case, to the coprimality of the length and the alphabet size. The first open problem is to derive a similar bound for the repeated root case. Another open problem would be to generalize our results from finite fields alphabets to chain rings [START_REF] Martinez-Moro | On polycyclic codes over a finite chain ring[END_REF]. Finally, an algebraic decoding algorithm would be a natural continuation of the minimum distance bound.

( 4 )

 4 Suppose that b(x) ∈ F [x] is a nonzero polynomial of smallest degree such that b(A)c = 0 for all c ∈ C. By the division algorithm in F [x] there are polynomials q(x), r(x) such that g(x) = b(x)q(x)+r(x), where deg(b(x)) < deg(g(x)). Then for each vector c ∈ C, we have g(A)c = q(A)b(A)c + r(A)c and hence, r(A)c = 0. But this contradicts the choice of b(x) unless r(x) = 0. Thus b(x) divides g(x). If deg(b(x)) < deg(g(x)), then b(x) is a product of some irreducible factors of g(x), and without loss of generality we may assume that b(x) = (-1)

  an arbitrary linear polycyclic code of length n over F . Then the following facts hold:(1) c ∈ C iff e(A)c = c ;

  Assume that d = (d 1 , d 2 , . . . , d n ) ∈ F n q and let d = T -1 d. We know d ∈ C iff g(A)d = 0. The latter condition is equivalent to g(D)d = T -1 g(A)T T -1 d = T -1 g(A)d = 0, which, in its turn, is equivalent to d i = 0, i ∈ I. Hence, d ∈ C ⇔ u i d = 0, i ∈ I.

Lemma 4 . 1 .

 41 If d A ≥ 2 and every m × (m + d A -2) submatrix of X has full rank, then d A(X) ≥ d A + m -1.

Theorem 4 . 5 .

 45 If M, N are sets of n-th roots of unity such that |M | ≤ |M | + d N -2 for some consecutive set M containing M , then d M N ≥ d N + |M | -1, where M N = {αβ|α ∈ M, β ∈ N }.

Example 4 . 6 .

 46 A polycyclic code C over F 2 with f (x) = (x 2 + x + 1)(x 4 + x 3 + 1)(x 4 + x 3 + x 2 + x + 1) and g(x) = x 4 + x 3 + 1. We can find f |(x 15 -1) and (15, 2) = 1. Let β be a primitive 15-th root of unity. We determine the cyclotomic coset of 2 mod 15. These areC 0 = {0}, C 1 = {1, 2, 4, 8}, C 3 = {3, 6, 9, 12}, C 5 = {5, 10} and C 7 = {7, 11, 13, 14}.It is easy to check that the zeros of h(x) = f (x) g(x) are β i with i ∈ C 3 ∪ C 5 . Since h(x) has a string of two consecutive zeros, the linear polycyclic code C defined by h(x) has a minimum distance d ≥ 3 according to Theorem 4.2.Now take {βi |i = 5, 9} and M = {β i |i = 0, 1}. Then the elements of M N are zeros of h(x). Since d N = 3 and |M | = 2 ≤ |M | + d N -2 = 3, Theorem 4.5 implies d ≥ d M N ≥ |M | + d N -1 = 4.
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