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Introduction

Given a finite group acting freely on a compact topological manifold, it is natural to look for an equivariant cellular decomposition: in particular, this provides a bounded cochain complex of free modules over the group, lifting the action on cohomology to the derived category level.

Milnor classified in [START_REF] Milnor | Groups which act on S n without fixed point[END_REF] finite groups acting freely on S 3 : quaternionic, metacyclic, generalized tetrahedral, binary octahedral and binary icosahedral groups. For all those except the last two, an equivariant decomposition is known [START_REF] Neto | Cellular decomposition of quaternionic spherical space forms[END_REF][START_REF] Fêmina | Cellular decomposition and free resolution for split metacyclic spherical space forms[END_REF][START_REF] Fêmina | Fundamental domain and cellular decomposition of tetrahedral spherical space forms[END_REF][START_REF] Chirivì | Space forms and group resolutions, the tetrahedral family[END_REF]. In the present article, we deal with the two exceptional cases, which we will denote by O and I. We also treat the first tetrahedral group T , since our technique gives a different construction than that of [START_REF] Fêmina | Fundamental domain and cellular decomposition of tetrahedral spherical space forms[END_REF].

Note that S 3 /I is the Poincaré homology sphere (see Theorem 5.3.1 and Remark 5.3.2). The other case is also interesting: as a corollary, we obtain an S 3 -equivariant decomposition of the flag manifold of SL 3 (R).

More precisely, the flag manifold of SL 3 (R) is F(R) = {(0 V 1 V 2 R 3 )} and its Weyl group W = S 3 acts freely on it. We have a tower of covering maps

S 3 /Q 8 / / / / /{±1} / / / / SO 3 (R) /{±1} 2 / / / / SO 3 (R)/{±1} 2 /S 3 / / / / S 3 /O F(R) /S 3 < < < <
This will provide an S 3 -equivariant cellular decomposition of F(R), once a O-equivariant cellular structure on S 3 is known. This is actually the motivation of this paper.

Our strategy is based on the ideas of [START_REF] Chirivì | Space forms and group resolutions, the tetrahedral family[END_REF]. Given a finite group G acting freely on S n , one looks at the orbit polytope P, i.e. the convex hull of the orbit of a point in S n . Then, the group acts freely on the boundary ∂P of P (see the Theorem 2.2.1) and an equivariant cellular decomposition is found by decomposing a fundamental domain D for the action on ∂P. Next, using the G-equivariant homeomorphism ∂P → S n , we obtain a decomposition of the sphere. Furthermore, the fact that the decomposition comes from a decomposition of some polytopal complex with open faces as cells, implies that the resulting decomposition of S n is regular (that is, the closure of a cell is homeomorphic to a closed ball) and the boundaries are then easily computed.

The main tool is the Theorem 2.2.1, which essentially says that we can find representatives for the action of G on the facets of P such that their union is a fundamental domain. We proceed by determining such representatives for O and I and T .

The main results of this paper may be summarized as follows, combining Theorems 4.3.3 and 5.3.3.

Theorem. Every sphere S 4n-1 , endowed with the natural free and isometric action of O (resp. of I, T ), admits an explicit equivariant cell decomposition. As a consequence, the associated cellular homology chain complex is explicitly given in terms of matrices with entries in the group algebras Z[O], Z[I] and Z[T ], respectively.

The crucial case is S 3 . Then one may prove the result inductively, using curved joins. As a consequence, one obtains the following result, which combines the results 4.3.4, 5.3.3, 4.3.6 and 5.3.5. It should be noted that such resolutions were already given in [START_REF] Tomoda | Remarks on the cohomology of finite fundamental groups of 3-manifolds[END_REF]. Our approach however has the advantage of being more conceptual and geometric. Moreover, using the first result above we can derive the following consequence (see Theorems 4.4.6, 4.4.7 and Corollary 4.4.7):

Theorem. The flag manifold F(R) admits an explicit equivariant cell decomposition, with respect to its Weyl group S 3 . In particular, its cellular homology chain complex is explicitly given in terms of matrices with entries in Z[S 3 ] and the isomorphism type of the Z[S 3 ]module H * (F(R), Z) is determined.

Let us outline the content of the article. In Section 2, after a quick reminder on polytopes, we introduce orbit polytopes and study some of their properties. Most importantly, we explain how to obtain a polytopal fundamental domain for the boundary of an orbit polytope, and hence for the sphere, using the radial projection. Most of those results appeared in [START_REF] Chirivì | Space forms and group resolutions, the tetrahedral family[END_REF], we recall them for the convenience of the reader.

In Section 3, we introduce the binary polyhedral groups as finite subgroups of unit quaternions and spherical space forms.

In Sections 4, 5 and 6, we apply the orbit polytope techniques to the cases where G is O, I or the binary tetrahedral group T acting on S 3 . In particular, we explicitly describe a fundamental domain for the boundary of the polytope, and we use it to determine a G-equivariant cellular decomposition of S 3 . Moreover, we compute the resulting cellular homology chain complexes (which are bounded complexes of free Z[G]-modules). Finally, we generalize this to S 4n-1 and use the resulting equivariant cellular decomposition to obtain an explicit 4-periodic free resolution of Z over Z[G] and recover the integral cohomology of G. Moreover, in Section 4, the application to the real flag manifold of SL 3 (R) is derived.

Orbit polytopes

The following section gives the main tools for determining fundamental domains for finite groups acting isometrically on the sphere S 3 , by using their orbit polytopes. We recall results from [START_REF] Chirivì | Space forms and group resolutions, the tetrahedral family[END_REF]. For general properties of polytopes, the reader is referred to [START_REF] Ziegler | Lectures on polytopes[END_REF].

Some general facts on polytopes.

We denote by S n-1 := {x ∈ R n ; |x| = 1} the (n -1)-dimensional sphere and by D n := {x ∈ R n ; |x| ≤ 1} the n-dimensional disc. To a set of points X in R n , one can associate its convex hull denoted by conv(X).

The convex hull P = conv(x 1 , . . . , x n ) of a finite set of points is called a polytope. The dimension dim(P) of P is the dimension of the affine subspace generated by the x i 's. A polytope can also be defined as a bounded set given by the intersection of a finite number of closed half-spaces (see [START_REF] Ziegler | Lectures on polytopes[END_REF]).

A face of P is the intersection of P with an affine hyperplane H such that P is entirely contained in one of the closed half-spaces defined by H. A proper face of P is a face F such that F = P. The dimension of a face F is the dimension of the affine space it generates. The faces of P of dimension 0, 1 or dim P -1 are called vertices, edges and facets, respectively. The boundary ∂P of P is the union of all the faces of P of dimension less than dim P. A point of P is said to be an interior point if it doesn't belong to ∂P. The set of d-faces of P (i.e. of d-dimensional faces of P) is denoted by P d . Usually, we denote also vert(P) := P 0 . When we want to stress the vertices of F , we write

F = [v 1 , . . . , v k ] if {v 1 , . . . , v k } = vert(F ) = F ∩ vert(P).
2.2. Finite group acting freely on S n , orbit polytope and fundamental domains.

Let G ⊂ O(n) be a finite group acting freely on a sphere S n-1 ⊂ R n and such that any of its orbits span R n . Fix v 0 ∈ S n-1 and let P := conv(G • v 0 ) be the associated orbit polytope.

Recall that, if a group G acts on a topological space X, then a fundamental domain for the action of G on X is a subset D of X such that, for g = h ∈ G, the set gD ∩ hD has empty interior and the translates of D cover X, i.e. X = g∈G gD.

Theorem 2.2.1. ([CS17, 6.1-6.4]) i) If F and F are distinct proper faces of P of the same dimension, then F ∩ gF has empty interior for every 1 = g ∈ G.

ii) The group G acts freely on the set P d of d-dimensional faces of P, for every 0 ≤ d < dim(P). iii) Moreover, the origin 0 is an interior point of P and we have a G-equivariant homeomorphism ∂P ∼ -→ S n-1 x -→ x/|x| iv) Given a system of representatives F 1 , . . . , F r for the (free) action of G on the set of facets of P such that the union i F i is connected, then this union is a fundamental domain for the action of G on ∂P. Furthermore, there exists such a system.

We finish this section by giving a simple but useful fact.

Proposition 2.2.2. Given distinct facets F 1 , . . . , F r of P, form their union

D := r i=1 F i , consider the subset V of G defined by vert(D) = V • v 0 and assume that v 0 ∈ r i=1 vert(F i ). If V ∩ V -1 = {1}, then the F i 's belong to distinct G-orbits.
If r|G| = |P n-1 |, then D is a fundamental domain for the action of G on ∂P.

Proof. Suppose that there are 1 ≤ i = j ≤ r and g ∈ G such that

F j = gF i . Since v 0 ∈ vert(F i ), we get gv 0 ∈ g vert(F i ) = vert(gF i ) = vert(F j ), so g ∈ V . On the other hand, v 0 ∈ vert(F j ) = g vert(F i ), hence g -1 v 0 ∈ vert(F i ), that is g -1 ∈ V . Therefore g ∈ V ∩ V -1
, so g = 1 and thus F i = F j , a contradiction. Now, the equation r|G| = |P n-1 | ensures that F 1 , . . . , F r is a system of representatives of facets and the condition v 0 ∈ i vert(F i ) shows that D is connected, hence the second statement follows from the Theorem 2.2.1.

The curved join.

Here, we shall define the notion of curved join, which allows one to describe the fundamental domain for ∂P as a subset of the sphere. It will also be used to reduce the higher dimensional cases S 4n-1 to S 3 . For any detail, see [START_REF] Fêmina | Cellular decomposition and free resolution for split metacyclic spherical space forms[END_REF]§2.4].

Given W 1 , W 2 ⊂ S n-1 ⊂ R n such that W 1 ∩ (-W 2 ) = ∅, we define their curved join W 1 * W 2 as the projection on S n-1 of conv(W 1 ∪ W 2 ). For instance we have

S 1 * S 1 = S 3 .
This generalizes as follows: identifying C m with R 2m and given the standard orthonormal basis {e 1 , . . . , e 2m } of R 2m , for each 2 ≤ r ≤ 2m, denote by Π r the plane generated by {e r-1 , e r }. Suppose Π r 1 ∩ Π r 2 = 0 and let W 1 and W 2 be subsets of the unit circles of Π r 1 and Π r 2 , respectively. Then, one can define the curved join W 1 * W 2 as above. In particular, we denote by Σ k the unit circle lying in the k th copy of C in C m and we have the following equality

S 2m-1 = Σ 1 * Σ 2 * • • • * Σ m . Let G ≤ O(n)
be a finite group acting freely on S n-1 and let h ∈ N * . Then, we can make G act diagonally on R hn . Under the identification S hn-1 = S (h-1)n-1 * S n-1 , we have g(x * y) = gx * gy.

To compute the boundaries, we shall need the following technical result:

Lemma 2.3.1. ([FGMNS13, Lemma 2.5])
We have the following Leibniz formula for the oriented boundary of a curved join

∂(X * Y ) = ∂X * Y -(-1) dim X X * ∂Y.
In fact, we will use the following general lemma, allowing to recursively determine a fundamental domain and an equivariant cellular decomposition on S hn-1 , once we know one on S n-1 .

More precisely, let G ≤ O(n) be a finite group acting freely on S n-1 . Assume that D is a fundamental domain for the action on S n-1 and that L is a cellular decomposition of D. We obtain an equivariant cell decomposition K = G • L of S n-1 and L = K/G is a cellular decomposition of S n-1 /G. Assume further that Z is a subcomplex of L that is a minimal decomposition of D by lifts of the cells of L.

Let h ∈ N * and consider the diagonal action of G on S hn-1 . Then, a fundamental domain for this action on S hn-1 is given by

D := S (h-1)n-1 * D.
Furthermore, we construct an equivariant cellular decomposition K of S hn-1 and a minimal cellular decomposition L of D as follows:

• the (h -1)n -1-skeleton of L is L (h-1)n-1 = K;

• for the (h -1)n-skeleton of L , we attach k 0 (h -1)n-cells to K, where k 0 is the number of 0-cells e 0 l of Z and the corresponding attaching map is given by the parametrization of the curved join K * e 0 l ; • for the (h -1)n + 1-skeleton of L , we attach k 1 (h -1)n + 1-cells to the (h -1)nskeleton of L , where k 1 is the number of 1-cells e 1 l of Z and the attaching map is given by the parametrization of L (h-1)n * e 1 l ; • we carry on this procedure up to dimension hn -1. We can summarize this in the following result.

Lemma 2.3.2. ([FGMNS13, Lemma 4.1]) If G ≤ O(n) is a finite group acting freely on S n-1 , if D is
a fundamental domain for this action and if L is a cellular decomposition of D, with associated equivariant cellular decomposition K = G • L of S n-1 , then for every h ∈ N * , the subset D := S (h-1)n-1 * D is a fundamental domain for the diagonal action of G on S hn-1 and the above construction gives a cell decomposition L of D , with associated equivariant cell decomposition K := G• L of S hn-1 .

3. Binary spherical space forms 3.1. Binary polyhedral groups.

Consider the quaternion group Q 8 := i, j = {±1, ±i, ±j, ±k}, a finite subgroup of the sphere S 3 of unit quaternions. The element := 1 2 (-1+i+j +k) has order 3 and normalizes Q 8 . Hence, the group T := i, has order 24, and the 16 elements of T \ Q 8 have the form 1 2 (±1 ± i ± j ± k). The group T is the binary tetrahedral group.

Next, the element γ := 1 √ 2 (1 + i) has order 8 and normalizes both Q 8 and T . Hence the group O := , γ is of order 48 (since γ 2 = i) and is called the binary octahedral group. The set O \ T consists of the 24 elements

1 √ 2 (±u ± v) where u = v ∈ {1, i, j, k}. Setting ϕ := 1 2 (1 + √ 5), the element σ := 1 2 (ϕ -1 + i + ϕj
) is of order 5 hence the binary icosahedral group I := i, σ has order 120 and we have T ≤ I.

The universal covering map S 3 = SU(2) SO 3 (R) can be interpreted as the action of unit quaternions on the space of purely imaginary quaternions

B : S 3 → SO 3 (R).
The respective images of T , O and I are the rotation groups A 4 , S 4 and A 5 of a regular tetrahedron, octahedron and icosahedron respectively, hence the names. In the whole paper we will consider the action of any subgroup G ∈ {T , O, I} of S 3 on S 3 by left multiplication. More generally, we will consider the diagonal action of such a subgroup G on S 4n-1 = S 3 * • • • * S 3 (n times) as explained in the Subsection 2.3. Finally, we define the spherical space form

P 4n-1 G := S 4n-1 /G.

The octahedral case

In the following two sections, we let both O and I act (freely) by (quaternion) multiplication on the left on S 3 .

Fundamental domain.

We use Theorem 2.2.1 to find a fundamental domain for O on S 3 . To this end, we first introduce the orbit polytope in R 4

P := conv(O).
Then, we know that O acts freely on the set P 3 of facets of P and by Theorem 2.2.1, it suffices to find a set of representatives in P 3 such that their union is connected; this will be a fundamental domain for the action on ∂P, which we can transport to the sphere S 3 using the equivariant homeomorphism ∂P → S 3 , x → x/|x|.

The 4-polytope P has 48 vertices, 336 edges, 576 faces and 288 facets and is known as the disphenoidal 288-cell ; it is dual to the bitruncated cube. Since O acts freely on P 3 , there must be exactly six orbits in P 3 . We introduce the following elements of O, also expressed in terms of the generators s and t in the Coxeter-Moser presentation:

             ω 0 := 1+i+j+k 2 = s, ω i := 1-i+j+k 2 = t -1 st -1 , ω j := 1+i-j+k 2 = s -1 t 2 , ω k := 1+i+j-k 2 = t -1 st. and        τ i := 1+i √ 2 = t, τ j := 1+j √ 2 = t -1 s, τ k := 1+k √ 2 = st -1 .
Next, we may find explicit representatives for the O-orbits of P 3 .

Proposition 4.1.1. The following tetrahedra (in R 4 )

∆ 1 := [1, τ i , τ j , ω 0 ], ∆ 2 := [1, τ j , τ k , ω 0 ], ∆ 3 := [1, τ k , τ i , ω 0 ], ∆ 4 := [1, τ i , ω k , τ j ], ∆ 5 := [1, τ j , ω i , τ k ], ∆ 6 := [1, τ i , ω j , τ k
] form a system of representatives of O-orbits of facets of P. Furthermore, the subset of P defined by

D := 6 i=1 ∆ i
is a (connected) polytopal complex and is a fundamental domain for the action of O on ∂P.

Proof. First, we have to find the facets of P by giving the defining inequalities. To do this, we make the group {±1} 4 S 4 act on R 4 by signed permutations of coordinates. Let

v 1 := 3-2 √ 2 √ 2-1 √ 2-1 1 , v 2 := 2- √ 2 2- √ 2 2 √ 2-2 0
.

By invariance of P, to prove that the 288 inequalities v, x ≤ 1, with v ∈ ({±1} 4 A 4 ) • {v 1 , v 2 }, are valid for P, it suffices to check the two inequalities v i , x ≤ 1, for i = 1, 2. As there are indeed 288 conditions, we have in fact all of them, hence the facets are given by the equalities v, x = 1 and we find their vertices by looking at vertices of P that satisfy these equalities. We find

vert(D) = {1, τ i , τ j , τ k , ω i , ω j , ω k , ω 0 }. Now, since R 4 = span(O) and vert(D) ∩ vert(D) -1 = {1}, Proposition 2.2.2 ensures that D is indeed a fundamental domain for ∂P.
Remark 4.1.2. The recipe used to find these tetrahedra is quite simple. First, choose ∆ 1 in some O-orbit of ∂P 3 and containing 1 as a vertex. Then, we arbitrarily choose another orbit and look at the dimensions of the intersections of ∆ 1 with the facets of this second orbit.

There is exactly one facet (namely ∆ 2 ) for which the intersection has dimension 2 and we continue further until we obtain representatives for the six orbits. Hence, a lot of different fundamental domains can be produced in this way. The calculations can be done using the Maple package "Convex" (see [Fra]) and quaternionic multiplication, as in [START_REF]GAP -Groups, Algorithms, and Programming[END_REF].

It should be noted that all the figures displayed in the sequel only reflect the combinatorics of the polytopes we consider, not the metric they carry as subsets of S 3 .

1 ω i ω j ω k τ i τ j τ k ω 0 Figure 1. The six tetrahedra inside D.
4.2. Associated O-equivariant cellular decomposition of ∂P.

We shall now examine the combinatorics of the polytopal complex D constructed in the previous subsection to obtain a cellular decomposition of it. Since D is a fundamental domain for O on ∂P, translating the cells will give an equivariant decomposition of ∂P and projecting to S 3 will give the desired equivariant cellular structure on the sphere.

The facets of D are the ones of the six tetrahedra ∆ i , except those that are contained in some intersection ∆ i ∩ ∆ j . We obtain the following facets

D 2 = {[1, τ j , ω i ], [1, ω i , τ k ], [1, τ k , ω j ], [1, ω j , τ i ], [1, τ i , ω k ], [1, ω k , τ j ], [τ j , ω i , τ k ], [τ k , ω j , τ i ], [τ i , ω k , τ j ], [τ i , τ j , ω 0 ], [τ j , τ k , ω 0 ], [τ k , τ i , ω 0 ]}.
We notice the following relations

τ i • [1, τ j , ω i ] = [τ i , ω 0 , τ k ], τ i • [1, ω i , τ k ] = [τ i , τ k , ω j ], τ j • [1, τ i , ω j ] = [τ j , ω k , τ i ], τ j • [1, ω j , τ k ] = [τ j , τ i , ω 0 ], τ k • [1, τ j , ω k ] = [τ k , ω i , τ j ], τ k • [1, ω k , τ i ] = [τ k , τ j , ω 0 ].
These are the only relations linking facets, hence, we may gather facets two by two and define the following 2-cells and 1-cells, respectively

e 2 1 :=]τ j , 1, ω i [ ∪ ]1, ω i [ ∪ ]1, ω i , τ k [, e 2 2 :=]τ i , 1, ω j [ ∪ ]1, ω j [ ∪ ]1, ω j , τ k [, e 2 3 :=]τ i , 1, ω k [ ∪ ]1, ω k [ ∪ ]1, ω k , τ j [, e 1 1 :=]1, τ i [, e 1 2 :=]1, τ j [, e 1 3 :=]1, τ k [, recalling that, for a polytope [v 1 , . . . , v n ] := conv(v 1 , . . . , v n ), we denote by ]v 1 , . . . , v n [ its interior, namely its maximal face.
If we add vertices of D and its interior, which is formed by only one cell e 3 by construction, then we may cover all of D with these cells and some of their translates. Thus, we have obtained the following:

Lemma 4.2.1. Consider the following sets of cells in D            E 0 D := {1, τ i , τ j , τ k , ω i , ω j , ω k }, E 1 D := {e 1 1 , τ j e 1 1 , τ k e 1 1 , ω i e 1 1 , e 1 2 , τ i e 1 2 , τ k e 1 2 , ω j e 1 2 , e 1 3 , τ i e 1 3 , τ j e 1 3 , ω k e 1 3 }, E 2 D := {e 2 1 , τ i e 2 1 , e 2 2 , τ j e 2 2 , e 2 3 , τ k e 2 3 }, E 3 D := {e 3 }
Then, one has the following cellular decomposition of the fundamental domain

D = 0≤j≤3 e∈E j D e.
1

ω i ω j ω k τ i τ j τ k ω 0 ω j e 1 2 τ i e 1 3 ω k e 1 3 τ j e 1 1 ω i e 1 1 τ k e 1 2 τ k e 1 1 τ i e 1 2 τ j e 1 3 e 1 1 e 1 2 e 1 3 Figure 2. The 1-skeleton of D.
Then, combining Proposition 4.1.1 and Lemma 4.2.1, yields the following result: As a consequence, using the homeomorphism φ : ∂P ∼ → S 3 given by x → x/|x|, we obtain the following O-equivariant cellular decomposition of the sphere

Proposition 4.2.2. Letting E 0 := {1}, E 1 := {e 1 i , i = 1, 2, 3}, E 2 := {e 2 i , i = 1,
S 3 = 0≤j≤3 e∈E j ,g∈O g • φ(e).
We now have to compute the boundaries of the cells and the resulting cellular homology chain complex. We choose to orient the 3-cell e 3 directly, and the 2-cells undirectly. The induced orientations seen in D can be visualized in Figure 3. 

K O := Z[O] ∂ 3 / / Z[O] 3 ∂ 2 / / Z[O] 3 ∂ 1 / / Z[O] ,
where

∂ 1 =   τ i -1 τ j -1 τ k -1   , ∂ 2 =   ω i τ k -1 1 1 ω j τ i -1 τ j -1 1 ω k   , ∂ 3 = 1 -τ i 1 -τ j 1 -τ k . e 2 1 e 2 3 e 2 2 1 ω i ω j ω k τ i τ j τ k ω 0 τ k e 2 3 τ j e 2 2 τ i e 2 1 ω i ω j ω k τ i τ j τ k ω 0 Figure 3.
The fundamental domain with its 2-cells (back and front).

To conclude this section, we show in Figure 4 a tetrahedron in P 3 containing 1 as a vertex. In this picture, we put the points ω ± h (with h = 0, i, j, k) at the centers of the facets of the octahedron 1 . The tetrahedra in question are constructed in the following way: one chooses an edge of the octahedron and the center of a face which is adjacent to this edge. The resulting four vertices (including 1) are vertices of the corresponding tetrahedron. This representation will be useful when we study the application to the flag manifold of SL 3 (R). 

1 τ i τ j τ j τ k τ k ω 0 ω i ω j ω k
3 :=(ω i * 1 * τ j * τ k ) ∪ (1 * τ j * τ k * ω 0 ) ∪ (ω j * 1 * τ k * τ i ) ∪ (1 * τ k * τ i * ω 0 ) ∪ (ω k * 1 * τ i * τ j ) ∪ (1 * τ i * τ j * ω 0 ).
As a consequence, the sphere S 3 admits a O-equivariant cellular decomposition with the following cells as orbit representatives, where relint denotes the relative interior,

e 0 := 1 * ∅ = {1}, e 1 1 := relint(1 * τ i ), e 1 2 := relint(1 * τ j ), e 1 3 := relint(1 * τ k ), e 2 1 := relint((1 * ω i * τ j ) ∪ (1 * ω i * τ k )), e 2 2 := relint((1 * ω j * τ k ) ∪ (1 * ω j * τ i )), e 2 3 := relint((1 * ω k * τ i ) ∪ (1 * ω k * τ j )
), e 3 :=

• F 3 . Furthermore, the associated cellular homology complex is the chain complex K O from the Proposition 4.2.3.

For the higher dimensional case, combining Lemma 2.3.2 and the previous theorem yields:

Proposition 4.3.2. The following subset of S 4n-1 is a fundamental domain for the diagonal action of O F 4n-1 := Σ 1 * Σ 2 * • • • * Σ 2(n-1) * F 3 , with F 3 inside Σ 2n-1 * Σ 2n the fundamental domain from Theorem 4.3.1.
We can now describe the resulting equivariant cellular decomposition on S 4n-1 . It only remains to consider the boundary of the cells e 4q for q > 0. But since e 4q = S 4(q-1) * e 3 , its boundary is given by all the cells in S 4q-1 , that is, all the orbits under O. This gives the following result, which we prefer to state using the vocabulary of universal covering spaces. We denote by C( K, Z[G]) the chain complex of finitely generated free (left) Z[G]modules given by the cellular homology complex of the universal covering space K of a finite CW-complex K with the fundamental group G acting by covering transformations. 

0 / / Z[O] ∂ 4n-1 / / Z[O] 3 / / • • • / / Z[O] 3 ∂ 2 / / Z[O] 3 ∂ 1 / / Z[O] / / 0 ,
where, for q ≥ 1,

∂ 4q-3 =   τ i -1 τ j -1 τ k -1   , ∂ 4q-2 =   ω i τ k -1 1 1 ω j τ i -1 τ j -1 1 ω k   , ∂ 4q-1 = 1 -τ i 1 -τ j 1 -τ k , ∂ 4q = g∈O g .
In particular, the complex is exact in middle terms, i.e.

∀0 < i < 4n -1, H i (C( P 4n-1 O , Z[O])) = 0 and we have H 0 (C( P 4n-1 O , Z[O])) = H 4n-1 (C( P 4n-1 O , Z[O])) = Z.
Proof. The computation of the complex follows from Lemma 2.3.2 and the previous discussion. The claims on its homology follow, S 4n-1 being the universal covering space of

P 4n-1 O .
Adding the augmentation map ε : Z[O] → Z defined by ε g∈O a g g := g∈O a g we find:

Corollary 4.3.4. The following complex is a 4-periodic resolution of Z over Z

[O] • • • / / Z[O] 3 ∂ 4q-3 / / Z[O] ∂ 4q-4 / / • • • / / Z[O] 3 ∂ 2 / / Z[O] 3 ∂ 1 / / Z[O] ε / / Z / / 0 .
We can now compute the group cohomology of O using the previous Corollary. But first, let us recall the following basic fact: Lemma 4.3.5.

(1) If G is a finite group acting freely and cellularly on a CW-complex X and K is the cellular homology chain complex of X (a complex of free Z[G]-modules), then the induced cellular homology complex of

X/G is K ⊗ Z[G] Z. (2) If f : Z[G] m → Z[G] n is a homomorphism of left Z[G]
-modules, identified with its matrix in the canonical bases, then the matrix of the induced homomorphism f ⊗ Z[G] id Z : Z m → Z n is given by the matrix ε(f ), computed term by term.

Proof. The first statement is obvious, by definition of the cellular structure on X/G and the second one is a direct calculation.

Corollary 4.3.6. The group cohomology of O with integer coefficients is:

H 0 (O, Z) = Z and ∀q ≥ 1      H q (O, Z) = Z/48Z if q ≡ 0 (mod 4), H q (O, Z) = Z/2Z if q ≡ 2 (mod 4), H q (O, Z) = 0 otherwise.
Proof. In view of Lemma 4.3.5, it suffices to compute

C(P ∞ O , Z[O])⊗ Z[O] Z, with C(P ∞ O , Z[O]
) the complex given in Corollary 4.3.4. The notation will become clear later (see Theorem 4.3.3). Computing the matrices ε(∂ i ) and dualizing the result leads to the following cochain complex

0 / / Z 0 / / Z 3 1 1 0 0 1 1 1 0 1 / / Z 3 0 / / Z ×48 / / Z / / • • • / / Z ×48 / / Z 0 / / Z 3 / / • • •
and computing the elementary divisors of the only non-trivial matrix concludes. 

O = T, U | T U 2 T = U 2 , T U T = U T U from [CM72]
. As we would like to work with presentations, we use the isomorphism

T, U | T U 2 T = U 2 , T U T = U T U ∼ -→ O sending T to 1 √ 2 (1 + i) and U to 1 √ 2 (1 + j).
Then, the Tomoda-Zvengrowski complex reads

K TZ O = Z[O] δ 3 / / Z[O] 2 δ 2 / / Z[O] 2 δ 1 / / Z[O] ,
with

δ 1 = T -1 U -1 , δ 2 = 1 + T U -U T -1 -U T 1 + T U 2 T -U -1 + T U , δ 3 = 1 -T U U -1 .
On the other hand, the differentials ∂ i of the complex K O from Proposition 4.2.3 are given, through the above presentation, by

∂ 1 =   T -1 U -1 T U T -1 -1   , ∂ 2 =   U T -1 T U T -1 -1 1 1 U -1 T T -1 U -1 1 U T   , ∂ 3 = 1 -T 1 -U 1 -T U T -1 .
We claim that the complexes K O and K TZ O are homotopy equivalent. This observation relies on elementary operations on matrix rows and columns. Write Z := U 4 = T 4 for the only non trivial element of the center of O. For short, define

P :=   -Z 0 0 Z(1 -T ) T U T -U 2 -U -3 T -T U T 0   , Q :=   0 -T U T 0 -T U T 0 0 U 2 -T U T U 2 T 1   , then P, Q ∈ GL 3 (Z[O]
) and

P -1 =   -Z 0 0 U -1 0 -(T U T ) -1 U -2 (T -1) + U -1 T -U -2 -U -2   , Q -1 =   0 -(T U T ) -1 -(T U T ) -1 0 U T -1 T U T -1 -1   .
Now, we have the following relations

-Q -1 ∂ 1 T U T =   T -1 U -1 0   , P -1 ∂ 2 Q =   0 0 -Z 1 + T U -U T -1 -U T 0 1 + T U 2 T -U -1 + T U 0   , U -2 ∂ 3 P = 0 1 -T U U -1 . Hence, the isomorphism K O K TZ O ⊕ 0 / / Z[O] 1 / / Z[O] / / 0 , confirms that K O is indeed homotopy equivalent to K TZ O . 4.4. Application to the flag manifold of SL 3 (R).
The O-equivariant cellular structure of S 3 may be used to obtain a cellular decomposition of the real points of the flag manifold SU(3)/T of type A 2 . The elementary facts concerning Lie groups we use here can be found in [START_REF] Bump | Lie groups[END_REF] or [START_REF] Fulton | Representation theory -A first course[END_REF].

Given a maximal torus T in a simply connected compact semisimple Lie group G, one can consider the Weyl group W := N G (T )/T . It is a finite Coxeter group ([Bum13, Proposition 15.8 and Theorem 25.1]), which acts by right multiplication on the flag manifold G/T . For instance, in type A n-1 , we have G = SU(n) and we can take T to be the group of diagonal matrices in SU(n). In this case, one has W S n . This group has Coxeter presentation W = S n = s 1 , . . . , s n-1 | s 2 i = 1, s i s i+1 s i = s i+1 s i s i+1 , s i s j = s j s i , ∀|i -j| > 1 and a representative ṡi for the reflection s i in N SU(n) (T ) can be taken as a block matrix (with (i -1) ones before the matrix s): ṡi := diag(1, . . . , 1, s, 1 . . . , 1), with s := 0 -1 1 0 .

If w = s i 1 s i 2 • • • s i k is a reduced word in W , then the element ẇ := ṡ i 1 ṡ i 2 • • • ṡ i k ∈ N G (T )
does not depend on the chosen word for w and for g ∈ G, the action of w on g is given by multiplication g • w := g ẇ. On the other hand, the Iwasawa decomposition (see [START_REF] Bump | Lie groups[END_REF]Theorem 26.4]) gives a diffeomorphism G/T G C /B, with G C the universal complexification of G and B a Borel subgroup of G C containing T . This provides G/T with a structure of complex algebraic variety. Hence, one may talk about real points of G/T . We use the standard notation X(R) to denote the set of real points of an algebraic variety X.

Remark 4.4.1. In type A n-1 , that is if G = SU(n) and if T is the group diagonal matrices in SU(n), then one may take G C = SL n (C) and B the Borel subgroup of upper-triangular matrices in SL n (C). We denote by F n the set of flags in C n , that is

F n := {V • := (V 1 , . . . , V n-1 ) ; V i ≤ C n , V i ⊂ V i+1 , dim V i = i}.
The group G C acts naturally on F n and if V 0 is the canonical flag of C n , then the bijection

G C /B -→ F n gB -→ g • V 0
endows F n with the structure of a complex algebraic variety. Furthermore, it is easy to see that the real points F n (R) of F n is the set of real flags in R n and we have

F n (R) SO n (R)/T (R) and T (R) is isomorphic to (Z/2Z) n-1 .
The case G = SU(2) (i.e. in type A 1 ) is fairly trivial, since SU(2)/T S 2 and W = S 2 = {1, s} acts as the antipode on S 2 , so the quotient (SU(2)/T )/S 2 is the projective plane P 2 (R) and its simplest cellular structure lifts to a W -equivariant one on S 2 , see Figure 5. In this section, we treat the case of the real points of SU(3)/T , using the octahedral spherical space form.

First of all, we have to identify spaces and actions. We begin with a trivial lemma.

Lemma 4.4.2. Let P be a finite group acting freely by diffeomorphisms on a manifold X and Q P be a normal subgroup of P . Then, P/Q acts freely on the quotient manifold X/Q and the projection X X/P induces a natural diffeomorphism

(X/Q) (P/Q) ∼ -→ X/P.
We will apply this lemma to P = O, Q = Q 8 and X = S 3 . One has to be careful at this point: we let O act on S 3 on the left, whereas W = S 3 naturally acts on F(R) on the right. Hence we let O act on the right on S 3 by multiplication. It is straightforward to adapt our results to this case. For instance, we replace ∆ i =: conv(q 1 , q 2 , q 3 , q 4 ) by ∆ i := conv(q -1 1 , q -1 2 , q -1 3 , q -1 4 ) and F 3 by F 3 := pr( D) where pr(x) = x/|x| is the usual projection and D := i ∆ i and we can do the same for the cells in S 3 . Briefly, we just have to replace every quaternion appearing in Sections 4.1, 4.2 and 4.3 by its inverse and left multiplications by right multiplications. Now, denoting by F := SU(3)/T SL 3 (C)/B the flag manifold, we have a diffeomorphism

F(R) SO 3 (R)/T (R).
Recall the surjective homomorphism B : S 3 SO 3 (R), with kernel {±1}. We have a surjective homomorphism

φ : S 3 B SO 3 (R) SO 3 (R)/T (R) F(R). Now, it is clear that B -1 (T (R)) = {±1, ±i, ±j, ±k} = Q 8 . The Lemma 4.4.2 applied to G = Q 8 , N := {±1} = Z(Q 8
) and X = S 3 leads to the following result:

Lemma 4.4.3. Denoting by F := SU(3)/T the flag manifold of type A 2 , the above defined map φ induces a diffeomorphism

φ : S 3 /Q 8 ∼ -→ F(R).
Now, one has W = S 3 = s α , s β | s 2 α = s 2 β = 1, s α s β s α = s β s α s β (the notation s α , s β makes reference to the simple roots α and β of the root system of type A 2 ). The reflections s α ans s β can be represented in SO 3 (R) by the following matrices ṡα = 0 -1 0 1 0 0 0 0 1 , ṡβ = 1 0 0 0 0 -1 0 1 0 . These matrices may be obtained from S 3 using B:

ṡα = B 1 + k √ 2 , ṡβ = B 1 + i √ 2 ,
and this induces a well-defined isomorphism 

σ : O/Q 8 ∼ -→ S 3 (1 + i)/ √ 2 -→ s β (1 + k)/ √ 2 -→ s α Therefore, recalling that S 3 = N SU(3) (T )/T = (N SO 3 (R) (SO 3 (R)) ∩ T ))/(SO 3 (R) ∩ T ) acts on F(R)
φ : S 3 /O ∼ -→ F(R)/S 3 .
In particular, O-equivariant cellular structure on S 3 defined in Theorem 4.3.1 induces an S 3 -equivariant cellular structure on the real flag manifold F(R).

Corollary 4.4.5. The fundamental groups of the real flag manifold F(R) and of its quotient space by S 3 are given by

π 1 (F(R), * ) = Q 8 and π 1 (F(R)/S 3 , * ) = O.
We are now in a position to state and prove the principal result of this section: Theorem 4.4.6. The real flag manifold F(R) = SO 3 (R)/T (R) admits an S 3 -equivariant cellular decomposition with orbit representative cells given by Furthermore, the associated cellular homology complex is the chain complex of free right Z[S 3 ]-modules

e i j := φ π Q 8 (e i j ) -1 , where π Q 8 : S 3 → S 3 /Q 8 is the natural projection, φ : S 3 /Q 8 → F(R) is the S 3 -equivariant diffeomorphism from
K S 3 := Z[S 3 ] ∂ 3 / / Z[S 3 ] 3 ∂ 2 / / Z[S 3 ] 3 ∂ 1 / / Z[S 3 ] ,
where

∂ 1 = 1 -s β 1 -w 0 1 -s α , ∂ 2 =   s α s β 1 w 0 -1 s α -1 s α s β 1 1 s β -1 s α s β   , ∂ 3 =   1 -s β 1 -w 0 1 -s α   .
Proof. This only relies on Proposition 4.4.4 and the fact that ((e i j ) -1 ) i,j is an O-equivariant cell decomposition of S 3 , the group O acting by right multiplication on the sphere. Next, we have to determine the images of the points of O we used to construct F O,3 under the projection

π O : O O/Q 8 σ S 3 .
Recall that, denoting by s α and s β the simple reflections in the Weyl group W = S 3 , we have

S 3 = s α , s β | s 2 α = s 2 β = 1, s α s β s α = s β s α s β = {1
, s α , s β , s α s β , s β s α , s α s β s α } and we denote by w 0 := s α s β s α the longest element of S 3 . We compute

τ i -→ s β , τ j -→ w 0 , τ k -→ s α , ω i , ω j , ω k -→ s β s α , ω 0 -→ s α s β .
Thus, the resulting cellular homology chain complex can be computed from the one in Theorem 4.3.1, replacing each coefficient q ∈ O in ∂ i by π O (q -1 ) and transposing the matrices.

We can now deduce the action of S 3 on the cohomology of F(R). Since S 3 acts on the right of F(R) and since cohomology is a contravariant functor, S 3 acts on the left on

H * (F(R), Z).
First of all, define the integral representation

2 : S 3 → GL 2 (Z) by 2(s α ) = 0 1 1 0 , 2(s β ) = 1 0 -1 -1 .
Then, 2 is an integral form of the 2-dimensional irreducible complex representation of S 3 . Its reduction modulo 2 is the irreducible

F 2 [S 3 ]-module 2 ⊗ F 2 of dimension 2. Moreover, we let 2 be the representation Z[S 3 ] → End Z (F 2 
2 ). For convenience, we consider Z[S 3 ] as a graded algebra concentrated in degree zero.

Corollary 4.4.7. The cohomology

H * (F(R), Z) of F(R) is a graded commutative left Z[S 3 ]- module such that H i (F(R), Z) =    1 if i = 0, 3, 2 if i = 2, 0 otherwise.
Moreover, the action of S 3 on F(R) preserves the orientation. In particular, reducing modulo 2 gives

H i (F(R), F 2 ) =    1 if i = 0, 3, 2 ⊗ F 2 if i = 1, 2, 0 otherwise. Proof. Let σ := w∈S 3
w and recall the cellular homology complex K S 3 from the Theorem 4.4.6. We can directly compute

H 3 (F(R), Z) = ker ∂ 3 = Z σ Z.
We determine an orientation of F(R) by choosing as fundamental class [F(R)] := σ. Thus, for w ∈ S 3 one has [F(R)] • w = [F(R)] and so, the right action of S 3 on F(R) preserves the orientation. Denoting by

D i := ([F(R)] ∩ -) : H i (F(R), Z) ∼ → H 3-i (F(R), Z)
the associated Poincaré duality, the naturality theorem (see [START_REF] Munkres | Elements of algebraic topology[END_REF]Theorem 67.2]) yields

w * D i w * = D i .
For a right S 3 -set X, we naturally write X op for the left S 3 -set X endowed with the action w • x := xw -1 . Then, the last equation becomes a reformulation of the property

D i ∈ Hom Z[S 3 ] H i (F(R), Z), H 3-i (F(R), Z) op
and the left modules H i (F(R), Z) and H 3-i (F(R), Z) op are thus isomorphic.

We have show that H 1 (F(R), Z) op 2. Denote respectively by x and y the classes of

1+s β 0 0
∈ ker ∂ 1 and

sα+s β sα 0 0 ∈ ker ∂ 1 in H 1 (F(R), Z). Then we have H 1 (F(R), Z) = Z x, y (Z/2Z) 2 and since x + y + sαs β +w 0 0 0 = σ 0 0 = ∂ 2 1+2sα-s β sα+sαs β 1+sα+s β -1-s β -s β sα we get y • s β = sαs β +w 0 0 0 = -x -y.
Next, it is easy to compute that x • s α = y, x • s β = x and y • s α = x. These equations mean that, with respect to the basis {x, y} of the free F 2 -module H 1 (F(R), F 2 ) op , the matrices of the action of s α and s β are given by Mat {x,y} (s α ) = 0 1 1 0 , Mat {x,y} (s β ) = 1 0 1 1 and these are indeed the matrices defining 2 ⊗ F 2 .

Finally, using Figure 4, we can describe the 3-cells in a more combinatorial way. More precisely, one can describe all the curved tetrahedra having a given element w ∈ S 3 in its boundary. By right multiplication by w -1 , we may assume that w = 1. First consider the octahedron as in Figure 4, with vertices (and centers of faces) given by the images of the ones of 4 under the projection π O : O S 3 as in Figure 6. A curved tetrahedron containing 1 can be described in the following way:

(1) Choose a face F of the octahedron, (2) Choose an edge of F , (3) The curved tetrahedron has its vertices given by the center of F , the two vertices of the chosen edge of F and 1. 1 Remark 4.4.8. Note that in this representation, many different cells can have the same vertices. For instance, the 1-cell formed by the edge linking 1 to the w 0 on the right, and then from the other copy of w 0 on the left, back to one is not a trivial path in F(R). In fact, it corresponds to the element j of the group Q 8 π 1 (F(R), 1). 5. The icosahedral case 5.1. Fundamental domain.

s β s β w 0 w 0 s α s α s β s α s α s β s α s β s β s α s α s β s β s α s α s β s β s α
We shall use for the binary icosahedral group I of order 120 exactly the same method as for O. First, we are looking for a fundamental domain for I in S 3 . To do this, we consider the orbit polytope in R 4 P := conv(I).

This polytope has 120 vertices, 720 edges, 1200 faces and 600 facets and is known as the 600-cell (or the hexacosichoron, or even the tetraplex ). Since I acts freely on P 3 , there must be exactly five orbits in P 3 . Here again, we consider some elements of I, also expressed in terms of the Coxeter-Moser generators s and t and with ϕ := (1 + √ 5)/2:

   σ + i := ϕ+ϕ -1 i+j 2 = t, σ - i := ϕ+ϕ -1 i-j 2 = st -2 ,    σ + j := ϕ+ϕ -1 j-k 2 = ts -1 t, σ - j := ϕ-ϕ -1 j-k 2 = s -1 t,    σ + k := ϕ+i+ϕ -1 k 2 = st -1 , σ - k := ϕ+i-ϕ -1 k 2 = s -1 t 2 .
As for O, we may find explicit representatives for the I-orbits of P 3 :

Proposition 5.1.1. The following tetrahedra (in R 4 )

∆ 1 := [1, σ - k , σ + k , σ + i ], ∆ 2 := [1, σ - k , σ + i , σ + j ], ∆ 3 := [1, σ - k , σ + j , σ - j ], ∆ 4 := [1, σ - k , σ - j , σ - i ], ∆ 5 := [1, σ - k , σ - i , σ +
k ] form a system of representatives of I-orbits of facets of P. Furthermore, the subset of P defined by

D := 5 i=1 ∆ i
is a (connected) polytopal complex and is a fundamental domain for the action of I on ∂P.

Proof. We argue as in the proof of Proposition 4.1.1. Let ϕ := (1 + √ 5)/2. By invariance of P, to verify that the following 600 inequalities

v, x ≤ 1, with v ∈ ({±1} 4 A 4 ) • U and U := 4-2ϕ 4-2ϕ 0 0 , 2-ϕ 2-3 ϕ 1 0 , 2ϕ-3 3 ϕ -1 ϕ-1 0 , 2ϕ-3 2ϕ-3 2ϕ-3 1 , ϕ-1 ϕ-1 ϕ-1 2-3 ϕ , 2-ϕ 2-ϕ 2-ϕ 3 ϕ -1 , 2ϕ-3 2-ϕ ϕ-1 4-2ϕ
, are valid for P, it is enough to check those for v ∈ U and this is straightforward. Then, the facets are given by the equalities v, x = 1 and we find their vertices: vert(D) = {1, σ ± i , σ ± j , σ ± k } and since vert(D) ∩ vert(D) -1 = {1}, the Proposition 2.2.2 finishes the proof. Here also, we investigate the combinatorics of the polytopal fundamental domain D constructed above to obtain a cellular decomposition of it. This will give a cellular structure on ∂P and projecting to S 3 gives the desired cellular structure.

The facets of D are the ones of the five tetrahedra ∆ i , except the ones that are contained in some intersection ∆ i ∩ ∆ j . We obtain the following facets

D 2 = {[1, σ - i , σ + k ], [1, σ + k , σ + i ], [1, σ + i , σ + j ], [1, σ + j , σ - j ], [1, σ - j , σ - i ], [σ - k , σ - i , σ + k ], [σ - k , σ + k , σ + i ], [σ - k , σ + i , σ + j ], [σ - k , σ + j , σ - j ], [σ - k , σ - j , σ - i ]}.
We remark the following relations among them

σ + j •[1, σ - i , σ + k ] = [σ + j , σ - j , σ - k ], σ - j •[1, σ + k , σ + i ] = [σ - j , σ - i , σ - k ], σ - i •[1, σ + i , σ + j ] = [σ - i , σ + k , σ - k ], and σ + k • [1, σ + j , σ - j ] = [σ + k , σ + i , σ - k ], σ + i • [1, σ - j , σ - i ] = [σ + i , σ + j , σ - k ].
These are the only relations linking facets, hence we may define the following 2-cells

e 2 1 :=]1, σ - j , σ - i [, e 2 2 :=]1, σ - i , σ + k [, e 2 3 :=]1, σ + k , σ + i [, e 2 4 :=]1, σ + i , σ + j [, e 2 5 :=]1, σ + j , σ - j [. Now, define the following 1-cells e 1 1 :=]1, σ + k [, e 1 2 :=]1, σ + i [, e 1 3 :=]1, σ + j [, e 1 4 :=]1, σ - j [, e 1 5 :=]1, σ - i [.
If we add to this the vertices of D and its interior, which is formed by only one cell e 3 by construction, then we may cover all of D with these cells and some of their translates. Thus, we have obtained the following result: Proposition 5.2.1. Letting E 0 := {1}, E 1 := {e 1 i , 1 ≤ i ≤ 5}, E 2 := {e 2 i , 1 ≤ i ≤ 5} and E 3 := {e 3 } with the above notations, we have the following I-equivariant cellular decomposition of the sphere

S 3 = 0≤j≤3 e∈E j ,g∈I g • p(e),
where p : ∂P ∼ → S 3 is the I-homeomorphism given by projection.

The 1-skeleton of D is displayed in Figure 8. We now have to compute the boundaries of the cells and the resulting cellular homology chain complex. We choose to orient the 3-cell e 3 undirectly, and the 2-cells directly. Proposition 5.2.2. The cellular homology complex of ∂P associated to the cellular structure given in Proposition 5.2.1 is the chain complex of free left Z[I]-modules

σ - k 1 σ + j σ + i σ + k σ - j σ - i σ - j e 1 1 σ + i e 1
K I := Z[I] ∂ 3 / / Z[I] 5 ∂ 2 / / Z[I] 5 ∂ 1 / / Z[I] ,
where

∂ 1 =       σ + k -1 σ + i -1 σ + j -1 σ - j -1 σ - i -1       , ∂ 2 =       σ - j 0 0 1 -1 -1 σ - i 0 0 1 1 -1 σ + k 0 0 0 1 -1 σ + i 0 0 0 1 -1 σ + j       , ∂ 3 = σ + i -1 σ + j -1 σ - j -1 σ - i -1 σ + k -1 . 5.
3. The case of spheres and free resolution of the trivial I-module.

Here again, we shall describe the fundamental domain obtained above in S 3 in terms of curved join and give a fundamental domain on S 4n-1 and the equivariant cellular structure on that goes with it. We finish by giving a 4-periodic free resolution of Z over Z[I].

Theorem 5.3.1. The following subset of S 3 is a fundamental domain for the action of I

F 3 :=(1 * σ - k * σ + i * σ + j ) ∪ (1 * σ - k * σ + j * σ - j ) ∪ (1 * σ - k * σ - j * σ - i ) ∪ (1 * σ - k * σ - i * σ + k ) ∪ (1 * σ - k * σ + k * σ + i ).
Therefore, the sphere S 3 admits a I-equivariant cellular decomposition with the following cells as orbit representatives e

0 := 1 * ∅ = {1}, e 1 1 := relint(1 * σ + k ), e 1 2 := relint(1 * σ + i ), e 1 3 := relint(1 * σ + j ), e 1 4 := relint(1 * σ - j ), e 1 5 := relint(1 * σ - i ), e 2 1 := relint(1 * σ - j * σ - i ), e 2 2 := relint(1 * σ - i * σ + k ), e 2 3 := relint(1 * σ + k * σ + i ), e 2 4 := relint(1 * σ + i * σ + j ), e 2 5 := relint(1 * σ + j * σ - j ), e 3 := • F 3 .
Furthermore, the associated cellular homology complex is the chain complex K I from the Proposition 5.2.2. Remark 5.3.2. Using the augmentation map ε : Z[I] Z, we can compute the complex K I ⊗ Z[I] Z and since we have det(∂ 2 ⊗ Z) = det 1 0 0 1 -1 -1 1 0 0 1 1 -1 1 0 0 0 1 -1 1 0 0 0 1 -1 1 = 1, we find that S 3 /I is a homology sphere, but it is not a sphere. That is, one has H * (S 3 /I, Z) = H * (S 3 , Z), and however S 3 /I is not homeomorphic to S 3 , since π 1 (S 3 /I) = I = 1 = π 1 (S 3 ).

This space has a long story, it is called the Poincaré homology sphere. It can also be constructed as the link of the simple singularity of type E 8 of the complex affine variety {(x, y, z) ∈ C 3 ; x 2 + y 3 + z 5 = 0} near the origin, as the Seifert bundle or as the dodecahedral space. This last one corresponds to the original construction of Poincaré. For a detailed expository paper on the Poincaré homology sphere, we refer the reader to [START_REF] Kirby | Eight faces of the Poincaré homology 3-sphere[END_REF]. The facets of D are the following

D 2 = {[1, ω j , ω 0 ], [1, ω 0 , ω i ], [1, ω i , ω ij ], [1, ω ij , ω j ], [k, ω j , ω 0 ], [k, ω 0 , ω i ], [k, ω i , ω ij ], [k, ω ij , ω j ]}.
We remark the following relations among them We now have to compute the boundaries of the cells and the resulting cellular homology chain complex. We choose to orient the 3-cell e 3 directly, and the 2-cells undirectly. These orientations allow us to easily compute the boundaries of the representing cells e u v and give the resulting chain complex of free left Z[T ]-modules.

ω ij • [1, ω j , ω 0 ] = [ω ij , k, ω i ], ω j • [1, ω 0 , ω i ] = [ω j , k, ω ij ],
Proposition 6.2.2. The cellular homology complex of ∂P associated to the cellular structure given in Proposition 6.2.1 is the chain complex of free left Z[T ]-modules

K T := Z[T ] ∂ 3 / / Z[T ] 4 ∂ 2 / / Z[T ] 4 ∂ 1 / / Z[T ] ,
where

∂ 1 =     ω ij -1 ω j -1 ω 0 -1 ω i -1     , ∂ 2 =     ω 0 -1 1 0 0 ω i -1 1 1 0 ω ij -1 -1 1 0 ω j     , ∂ 3 = 1 -ω ij 1 -ω j 1 -ω 0 1 -ω i .
6.3. The case of spheres and free resolution of the trivial T -module.

Here again, we shall describe the fundamental domain obtained above in S 3 in terms of curved join and give a fundamental domain on S 4n-1 and the equivariant cellular structure on that goes with it. We finish by giving a 4-periodic free resolution of Z over Z[T ].

Corollary.

  One may give an explicit free 4-periodic resolution of the trivial module Z over Z[O], Z[I] and Z[T ]. In particular, one can compute the cohomology modules H * (O, M ), H * (I, M ) and H * (T , M ) for any Z[G]-module M .

  It has been observed by Coxeter and Moser in [CM72, §6.4] that finite subgroups of S 3 have nice presentation. Namely, denoting , m, n := r, s, t | r = s m = t n = rst ,

  2, 3} and E 3 := {e 3 } with the above notations, we have the following O-equivariant cellular decomposition of ∂P ∂P = 0≤j≤3 e∈E j ,g∈O g • e.

  These orientations allow us to easily compute the boundaries of the representing cells e u v and give the resulting chain complex of free left Z[O]-modules.Proposition 4.2.3. The cellular homology complex of ∂P associated to the cellular structure given in Proposition 4.2.2 is the chain complex of left Z[O]-modules

Figure 4 .

 4 Figure 4. One of the twenty-four facets of P containing 1.

F

  

  Theorem 4.3.3. The chain complex C( P 4n-1 O , Z[O]) of the universal covering space of the octahedral space forms P 4n-1 O with the fundamental group acting by covering transformations is the following complex of left Z[O]-modules:

  Remark 4.3.7. In [TZ08, Proposition 4.7], Tomoda and Zvengrowski give an explicit resolution of Z over Z[O]. They use the following presentation

Figure 5 .

 5 Figure 5. Equivariant cellular decomposition of SU(2)/T = S 2 .

  by multiplication on the right by a representative matrix, one obtains the following relation ∀(x, g) ∈ S 3 × O, φ(x) • σ(g) = φ(xg). Henceforth, using the Lemma 4.4.2, one obtains the following result: Proposition 4.4.4. The diffeomorphism φ from the Lemma 4.4.3 induces a diffeomorphism

  the Proposition 4.4.3 and e i j are the cells of the O-equivariant cellular decomposition from the Theorem 4.3.1.

Figure 6 .

 6 Figure6. A curved tetrahedron in F(R) containing 1 in its boundary.

Figure 7 .

 7 Figure 7. The five tetrahedra inside D. 5.2. Associated I-cellular decomposition of ∂P.

Figure 8 .

 8 Figure 8. The oriented 1-skeleton of D.

Figure 9 .

 9 Figure 9. The oriented 2-skeleton of D (back and front).
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 110 Figure 10. The tetrahedron D. 6.2. Associated T -cellular decomposition of ∂P.

and ω 0 •

 0 [1, ω i , ω ij ] = [ω 0 , k, ω j ], ω i • [1, ω ij , ω j ] = [ω i , k, ω 0 ].These are the only relations linking facets, hence we may define the following 2-cellse 2 1 :=]1, ω j , ω 0 [, e 2 2 :=]1, ω 0 , ω i [, e 2 3 :=]1, ω i , ω ij [, e 2 4 :=]1, ω ij , ω j [.Now, define the following 1-cellse 1 1 :=]1, ω ij [, e 1 2 :=]1, ω j [, e 1 3 :=]1, ω 0 [, e 1 4 :=]1, ω i [.If we add to this the vertices of D and its interior, which is formed by only one cell e 3 by construction, then we may cover all of D with these cells and some of their translates. The 1-skeleton of D is displayed in Figure11.Proposition 6.2.1. Letting E 0 := {1}, E 1 := {e 1 i , 1 ≤ i ≤ 4}, E 2 := {e 2 i , 1 ≤ i ≤ 4}and E 3 := {e 3 } with the above notations and denoting by p : ∂P ∼ → S 3 the T -homeomorphism, we obtain the following T -equivariant cellular decomposition of the sphere S 3 = 0≤j≤3 e∈E j ,g∈T g • p(e).

Figure 11 .Figure 12 .

 1112 Figure 11. The oriented 1-skeleton of D.

Corollary 5.3.4. The following complex is a 4-periodic resolution of Z over Z[I]

We are now able to compute the group cohomology of I using this result.

Corollary 5.3.5. The group cohomology of I with integer coefficients is:

H 0 (I, Z) = Z and ∀q ≥ 1 H q (I, Z) = Z/120Z if q ≡ 0 (mod 4), H q (I, Z) = 0 otherwise.

Proof. In view of Lemma 4.3.5, it is suffices to compute C(P ∞ I , Z[I])⊗ Z[I] Z, with C(P ∞ I , Z[I]) the complex given in Theorem 5.3.3. Computing the matrices ε(∂ i ) leads to the following complex

where ∂ = ∂ 2 ⊗ Z is the matrix given in Remark 5.3.2.

Remark 5.3.6. The Corollary 5.3.5 agrees with the previously known result on the cohomology of I, see [TZ08, Theorem 4.16].

The tetrahedral case

Even if the case of T has already been treated in [START_REF] Fêmina | Fundamental domain and cellular decomposition of tetrahedral spherical space forms[END_REF], we can recover it by applying the above methods to this case. Note that all the groups in the tetrahedral family are studied in [START_REF] Chirivì | Space forms and group resolutions, the tetrahedral family[END_REF], but there T is excluded since, while it is the simplest one of the family, it is somehow different from all the other ones. Since it's always the same arguments and the case is solved, we omit the proofs.

Fundamental domain.

We consider the orbit polytope in R 4 P := conv(T ). This polytope has 24 vertices, 96 edges, 96 faces and 24 facets and is known as the 24-cells (or the icositetrachoron, or even the octaplex ). Since T acts freely on P 3 , there must be exactly one orbit in P 3 . We keep the notations of the Section 4 and define

Proposition 6.1.1. The subset of P defined by

is a (connected) polytopal complex and is a fundamental domain for the action of T on ∂P.

Theorem 6.3.1. The following subset of S 3 is a fundamental domain for the action of T

In particular, the sphere S 3 admits a T -equivariant cellular decomposition with the following cells as orbit representatives e 0 := 1 * ∅ = {1}, e 1 1 := relint(1 * ω ij ), e 1 2 := relint(1 * ω j ), e 1 3 := relint(1 * ω 0 ), e 1 4 := relint(1 * ω i ), e 2 1 := relint(1 * ω j * ω 0 ), e 2 2 := relint(1 * ω 0 * ω i ), e 2 3 := relint(1 * ω i * ω ij ), e 2 4 := relint(1 * ω ij * ω j ), e 3 := • F 3 . Furthermore, the associated cellular homology complex is the chain complex K T from the Proposition 6.2.2. Theorem 6.3.2. The chain complex C( P 4n-1 T , Z[T ]) of the universal covering space of the tetrahedral space forms P 4n-1 T with the fundamental group acting by covering transformations is the following complex of left Z[T ]-modules:

In particular, the complex is exact in middle terms, i.e.

and we have

where

The group cohomology of T with integer coefficients is:

6.4. Simplicial structure and minimal resolution.

Since we have chosen polytopal fundamental domains for T , O and I, it is clear that we can refine our cellular decompositions to equivariant simplicial decompositions of S 3 . We will just investigate the case of T , since the other ones can be treated in a similar way. The method is trivial: just take each one of the facets ∆ i of P as the 3-cells and their boundary (up to multiplication) as 2-cells.

For instance, here, take as 3-cells the following open curved joins: 

and we may keep the 1-cells as they are, i.e. c 1 i := e 1 i for 1 ≤ i ≤ 4. Then, the resulting simplicial homology complex is easily computed (for example, by orienting the 3-cells directly), just as we did above. One shall find of course a complex that is homotopy equivalent to the complex K T defined in Theorem 6.3.1. We omit the details.

We conclude by discussing the minimal resolution. Group resolution and group cohomology are purely algebraic invariants of the given group G. Under this point of view, Swan [START_REF] Swan | Minimal resolutions for finite groups[END_REF] proved the existence of a minimal periodic free resolution of Z over G, for a family of finite groups containing the spherical space form groups. This means a resolution with minimal Z[G] module's ranks. He also gave a bound for these ranks. This point has been discussed in [START_REF] Chirivì | Space forms and group resolutions, the tetrahedral family[END_REF] for the resolution over the groups P 8•3 s of the tetrahedral family. Here, we show how to "reduce" our resolution for T to the minimal one, that has ranks 1-2-2-1, compare [CS17, 10.6]. (We note that in [CS17, 10.5] there is a missprint: one should read f h (F • ) instead of µ h (G) in the statement of the proposition.) We first describe the underlying geometric idea, and next we give an explicit chain homotopy.

Geometrically, the construction is as follows: start with the cellular decomposition from Theorem 6.3.1. As seen in Figure 12, the four upper triangles are sent by different group elements to the four lower triangles. It is clear that there is no way of collecting two triangles in one single 2-cell but we may proceed as follows. Pick up one triangle, say e 2 1 , and one of its neighbours, say ω 0 e 2 3 and set a 1 to be the union of these two triangles, namely a 1 := e 2 1 + e 2 2 . Then, we have that ω ij a 1 = ω ij e 2 1 + ω ij e 2 2 and y := ω ij e 2 2 does not belong to the boundary of the fundamental domain F T ,3 . However, we may find an other pair of coherent triangles such that one of them is mapped to y by some group element, while the other one is mapped to some triangle in the boundary of F T ,3 . For example, take a 2 := ω 0 e 2 3 + ω j e 2 2 . Then, we have ω -1 0 a 2 = e 2 3 + y. As a consequence,

and this means that we can use the three 2-cells a 1 , a 2 and e 2 4 to cover all the boundary of F T ,3 . We would like to add one more triangle to the first two 2-cells in order to reduce the total number to two, but we easily see that the same procedure fails. However, we may proceed in the following "dual" way. Let x be a triangle such that ω -1 0 x = e 2 4 and ω ij x = ω i e 2 4 . We can take x :=]i, ω j , ω 0 [ and then we define b 1 := a 1 + x = e 2 1 + e 2 2 + x and b 2 := a 2 + x = ω 0 e 2 3 + ω j e 2 2 + x. Then, after a simple calculation, we find that

), that is, the whole boundary of F T ,3 is obtained using only the two 2-chains b 1 and b 2 .

We can then give the reduced complex. It is given by the following

2 ) = (ω i -1)f 0 , i.e. are given in the canonical bases by right multiplication by the following matrices

We finish by giving explicit homotopy equivalences ϕ : K T → K T and ϕ : K T → K T . We define ϕ(e i ) := f i and ϕ (f i ) := e i for i = 0, 3 as well as

and

We immediately check that ϕ•ϕ = id K T and we just have to show that the other composition is homotopic to id K T . If we define H :

ϕ • ϕ = id K T + ∂H + H∂ and ϕ is indeed a homotopy equivalence, with homotopy inverse ϕ . Thus, we have proved that the complex K T from the Theorem 6.3.1 is homotopy equivalent to the complex

Remark 6.4.1. Observe that this process works for the group T but fails for the other two groups, O and I. This is not unexpected, since the resolutions determined in the present work are characterised by their geometric feature, i.e. constructed through particular orthogonal representations of the groups, and it is not likely that this characterisation would produce a minimal resolution, that in general may not be induced by a representation. Indeed, it would be interesting to investigate the possible bounds for the ranks of a free periodic resolution induced by a linear representation.