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CELLULARIZATION FOR EXCEPTIONAL SPHERICAL SPACE FORMS

AND APPLICATION TO FLAG MANIFOLDS

ROCCO CHIRIVÌ, ARTHUR GARNIER AND MAURO SPREAFICO

Abstract. Given a finite group acting freely and isometrically on a Euclidean sphere, it
is natural to look for an equivariant cellular decomposition of the sphere. In this way, one
obtains a cellular decomposition of the quotient manifold, called a spherical space form.

In this paper, we apply the method developed by the first and thirs authors, using
the so-called orbit polytope, to construct an explicit equivariant cellular decomposition
of the (4n − 1)-sphere with respect to the binary octahedral and the binary icosahedral
groups, and describe the associated cellular homology chain complex. As an application,
we find free resolutions of the constant module over these groups and deduce their integral
cohomology.

Moreover, we use the octahedral case to describe a cellular structure on the flag manifold
of R3 that is equivariant with respect to the Weyl group action.
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0. Introduction

If we have a finite group acting on a topological manifold, it is natural to look for an equi-
variant cellular decomposition. Finding such a cellular structure, one obtains an equivariant
chain complex. This can be expressed as a chain complex of free modules over the group
algebra of the considered group. Hence, this provides not only information about the space,
but also on the group itself. For instance, such a complex allows us to fully derive which
type of representation is carried by the homology of the space. Such an equivariant chain
complex allows to lift the action at the level of the derived category of integral modules over
the group. For instance, we may calculate derived functors.

However, not so many cases have been explicitly worked out. Finite groups acting freely
and isometrically on the 3-sphere provide an interesting class of examples. It turns out
that all such groups were entirely classified by Milnor in [Mil57] and there is five families of
them: the quaternionic groups, the metacyclic groups, the generalized tetrahedral groups,
the binary octahedral and icosahedral groups. So far, explicit equivariant cellular structures
were found for the quaternionic groups ([MNdMS13]), the metacyclic groups ([FGMNS13]
and [CS17]) and the generalized tetrahedral groups ([FGMNS16]). According to Milnor’s
classification, the only remaining cases are the binary octahedral group P48 and the binary
icosahedral group P120. These two cases are solved in the present paper.

Each one of these cases has its own interest. Recall that a flag in V := C3 is a pair (V1, V2)
of subspaces of C3, where V1 is a line and V2 is a plane containing V1. The set of such flags
is the flag manifold F of type A2. It is a closed algebraic subvariety of P(V ) × P(V ∗). Its
real points F(R) form the set of real flags in R3, and is a compact smooth manifold, called
the real flag manifold of type A2. It turns out that, if we denote by W the Weyl group of F
(see Remark 3.4.1), then W ' S3 acts freely on F(R) and we shall see (in the Proposition
3.4.4) that we have a diffeomorphism of quotient spaces

F(R)/W ' S3/P48.

This will provide an S3-equivariant cellular decomposition of F(R), once a P48-equivariant
cellular structure on S3 is known. This is actually the motivation of this paper. On the
other hand, the icosahedral case provides a P120-equivariant cellular decomposition of the
universal cover of the Poincaré homology sphere, see Theorem 4.3.2 and Remark 4.3.5.

Our strategy is based on the ideas of [CS17]. Given a finite group G acting freely on Sn,
one looks at the orbit polytope PG of the considered group, that is, the convex hull of an orbit
of points in Sn. Then, the group acts freely on the boundary ∂PG of PG (see Lemma 1.2.1)
and an equivariant cellular decomposition is found by determining a fundamental domain
DG for the action on ∂PG and by finding a cellular decomposition of DG (with smaller
open faces as cells). Then, the cellular decomposition of ∂PG is obtained by translating
the one of DG. Next, one has to notice that the natural projection ∂PG → Sn defined by
x 7→ x/|x| is a G-equivariant homeomorphism and then, one obtains a fundamental domain
for the action of G on Sn and an equivariant cellular decomposition. Furthermore, the fact
that the decomposition comes from a decomposition of some polytopal complex with open
faces as cells, implies that the resulting decomposition of Sn is regular (that is the closure
of a cell is homeomorphic to a closed ball) and the boundaries are then easily computed.
The main tool is the theorem 1.2.2, which essentially says that we can find representatives
for the action of G on the facets of PG such that their union is a fundamental domain. We
proceed by determining such representatives for both P48 and P120 (with the precious help
of GAP ([Gro19]) and the Maple package Convex ([Fra]) for computations).

The main results of this paper may be summed up in the following statements, which
combines Theorems 3.3.4 and 4.3.4.

Theorem. Every sphere S4n−1, endowed with the natural free and isometric action of P48

(resp. of P120), admits an explicit equivariant cell decomposition. As a consequence, the

2



CELLULARIZATION FOR EXCEPTIONAL SPHERICAL SPACE FORMS AND APPLICATION TO FLAG
MANIFOLDS

associated cellular homology chain complex is explicitly given in terms of matrices with
entries in the group algebras Z[P48] and Z[P120], respectively.

The crucial case is S3. Then one may prove the result inductively, using curved joins.
As a consequence, one obtains the following result, which combines Corollaries 3.3.5, 4.3.6,
3.3.7 and 4.3.7.

Corollary. One may give an explicit free 4-periodic resolution of the trivial module Z over
Z[P48] and over Z[P120]. In particular, one can compute the cohomology modules H∗(P48,Z)
and H∗(P120,Z).

It should be noted that such resolutions were already given in [TZ08]. Our approach
however has the advantage of being more conceptual and geometric. Moreover, using the
first result above we can derive the following consequence (see Theorems 3.4.6, 3.4.8 and
Corollary 3.4.7):

Theorem. The real flag manifold of type A2 admits an explicit equivariant cell decomposi-
tion, with respect to its Weyl group S3. In particular, its cellular homology chain complex
is explicitly given in terms of matrices with entries in Z[S3] and the isomorphism type of
the Z[S3]-module H∗(F(R),Z) is determined.

Let us outline the content of the article. In the Section 1, after a quick reminder on
polytopes, we introduce orbit polytopes and study some of their properties. Most impor-
tantly, we explain how to obtain a polytopal fundamental domain for the boundary of an
orbit polytope, and hence for the sphere, using the radial projection. Most of those results
appeared in [CS17], we recall them for the convenience of the reader.

In the Section 2, we review some basic facts about quaternions and we identify P48 and
P120 (which we prefer to denote by O and I, respectively) with explicit finite subgroups of
the sphere of unit quaternions. This has the advantage of describing simultaneously their
action on the sphere, since they act by left multiplication. These facts are contained in
[LT09]. Coxeter and Moser also described those groups by generators and relations. We
give an explicit isomorphism between the two descriptions. Finally, after some remarks on
their fixed-point free representations, we introduce the spherical space forms.

In Sections 3, 4 and in the Appendix A, we apply the orbit polytope techniques to the
cases where G is O, I or T acting on S3; the later having been treated previously in
[FGMNS16]. In particular, we explicitly describe a fundamental domain for the boundary
of the polytope, and we use it to determine a G-equivariant cellular decomposition of S3.
Moreover, we compute the resulting cellular homology chain complexes (which are bounded
complexes of free Z[G]-modules). Finally, we generalize this to S4n−1 and use the resulting
equivariant cellular decomposition to obtain an explicit 4-periodic free resolution of Z over
Z[G] and recover the integral cohomology of G. Moreover, in Section 3, the application to
the real flag manifold of type A2 is derived.

1. Orbit polytopes

The following section gives the main tools for determining fundamental domains for finite
groups acting isometrically on the sphere S3, by using their orbit polytopes. The presenta-
tion, the results and the proofs of this section are taken from [CS17], we reproduce it here to
set the notations and for the sake of self-containement. For general properties of polytopes,
the reader is refered to [Zie95].
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1.1. Some general facts on real polytopes.

First of all, we shall give the very basic vocabulary about polytopes. Recall that, for
x, y ∈ Rn, we denote by 〈x, y〉 their usual Euclidean scalar product, and by |x| :=

√
〈x, x〉

the norm of x. We also denote by Sn−1 := {x ∈ Rn ; |x| = 1} the (n−1)-dimensional sphere
and by Dn := {x ∈ Rn ; |x| ≤ 1} the n-dimensional disc.

To a set of points X in Rn, one can associate its convex hull defined by

conv(X) :=
⋂

X⊂C⊂Rn
C convex

C.

It is the smallest convex set containing X. It can also be seen as the set of convex combi-
nations of points of X, i.e.

conv(X) =

{∑
x∈X

λxx ;
∑
x∈X

λx = 1, λx ≥ 0, ∀x and λx = 0 for all but a finite number of x ∈ X

}
.

A polytope P in Rn is the convex hull of a finite set of points that is, there exist
x1, . . . , xn ∈ Rn such that P = conv({x1, . . . , xn}). The dimension dim(P) of P is the
dimension of the affine subspace generated by the xi’s. Notice that a polytope can also be
defined as a bounded set given by intersection of a finite number of closed half-spaces (see
[Zie95]).

A face of P is the intersection of P with an affine hyperplane H such that P is entirely
contained in one of the closed half-spaces defined by H. More precisely, given a linear form
f on Rn, we say that the inequality f(x) ≤ c (c ∈ R) is valid in P if it is satisfied for every
x in P. Then, a face of P is any set of the form

F := P ∩ f−1(c),

with f(x) ≤ c a valid inequality in P. In this case, we call f a defining functional for F ,
we say that f(x) ≤ c is a defining inequality for F and we call the hyperplane H := f−1(c)
a defining hyperplane for F . Note that, in general, a face can have infinitely many defining
inequalities and hyperplanes and that there is no natural choice among them.

A proper face of P is a face F such that F 6= P. The dimension of a face F is the
dimension of the affine space it generates. The faces of P of dimension 0, 1 or dim P − 1
are called vertices, edges and facets, respectively. The boundary ∂P of P is the union of
all the faces of P of dimension smaller than dim P. A point of P is said to be an interior
point if it doesn’t belong to ∂P. The set of d-faces of P (i.e. of d-dimensional faces of P)
is denoted by Pd. Usually, we denote also vert(P) := P0.

Any polytope P is the convex hull of its vertices. Moreover, if F is a face of P and if H
is a defining hyperplane for F , then one has F = H ∩P = conv(H ∩ vert(P)), so a face is
the convex hull of its vertices and is itself a polytope. When we want to stress the vertices
of F , we write F = [v1, . . . , vn] if {v1, . . . , vn} = vert(F ) = F ∩ vert(P). Note also that if
0 is an interior point of a polytope P, then any proper face of P has a defining inequality
of the form f(x) ≤ 1.

Despite the non-uniqueness of the defining inequalities and hyperplanes, it should be
noted that any facet of P has a unique defining hyperplane if P ⊂ Rn and dim P = n.
Furthermore, in this case and if 0 is an interior point of P, then any facet has a unique
defining inequality of the form f(x) ≤ 1.

We shall now state two easy lemmas that we will use in the following sections.

Lemma 1.1.1. ([CS17], Lemma 2.1)
Let V be a finite subset of the sphere Sn−1 ⊂ Rn. Then

vert(conv(V)) = V.
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Lemma 1.1.2. ([CS17, Lemma 2.2])
Let V be a finite set spanning Rn. Then, a convex combination

∑
v∈V λvv is an interior

point of conv(V) if and only if λv > 0 for all v ∈ V.

1.2. Finite group acting freely on Sn, orbit polytope and fundamental domains.

Let G be a finite group acting freely and isometrically on a sphere Sn−1 ⊂ Rn and let
P := conv(G · v0) be the orbit polytope associated to some point v0 ∈ Sn−1. In order
to construct an equivariant cellular decomposition of the sphere with respect to the group
action, it will prove to be useful to first determine a fundamental domain for the action of
G on ∂P.

Recall that, if a group G acts on a topological space X, then a fundamental domain for
the action of G on X is a subset D of X satisfying the following two properties:

(1) for g 6= h ∈ G, the set gD ∩ hD has empty interior,
(2) the translates of D cover X, i.e. X =

⋃
g∈G gD.

By Lemma 1.1.1, we have vert(P) = G · v0 and it is clear that P is G-invariant, the G-
action on P being given by linear extension to convex combinations of points in G · v0.

We now state a preliminary result to the main theorem 1.2.2:

Lemma 1.2.1. ([CS17, Lemma 6.1, Proposition 6.2 and Corollary 6.3])
If F and F ′ are distinct proper faces of P of the same dimension, then F ∩ gF ′ has empty
interior for every 1 6= g ∈ G.
Assume that the orbit G · v0 spans Rn, then the group G acts freely on the set Pd of d-
dimensional faces of P, for every 0 ≤ d < dim(P). Moreover, the origin 0 is an interior
point of P and we have a G-equivariant homeomorphism

∂P
∼→ Sn−1

x 7→ x/|x|

We can now state the main result of this section, which we shall intensively use in the
sequel.

Theorem 1.2.2. ([CS17, Theorem 6.4])
Let G be a finite group acting freely by isometries on a sphere Sn−1 ⊂ Rn, let v0 ∈ Sn−1 be
a point and PG := conv(G · v0) the associated orbit polytope. Assume that the orbit G · v0

spans Rn.
For any system of representatives F1, . . . , Fr for the (free) action of G on the set of facets

of PG, if the union
⋃
i Fi is connected, then it is a fundamental domain for the action of G

on ∂PG.
Furthermore, there exists such a system.

We finish this section by giving a simple but useful fact.

Proposition 1.2.3. Let G be a finite group acting freely by isometries on Sn−1, let v0 ∈ Sn−1

be a point and P := conv(G · v0) the associated orbit polytope.
Given distinct facets F1, . . . , Fr of P, form their union D :=

⋃r
i=1 Fi, consider the subset

V of G defined by vert(D) = V · v0 and assume that v0 ∈
⋂r
i=1 vert(Fi). If V ∩ V −1 = {1},

then the Fi’s belong to distinct G-orbits.
If moreover Rn = span(G · v0) and r|G| = |Pn−1|, then D is a fundamental domain for

the action of G on ∂P.
5
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Proof. Suppose that there are 1 ≤ i 6= j ≤ r and g ∈ G such that Fj = gFi. Since
v0 ∈ vert(Fi), we get gv0 ∈ g vert(Fi) = vert(gFi) = vert(Fj), so g ∈ V . On the other hand,
v0 ∈ vert(Fj) = g vert(Fi), hence g−1v0 ∈ vert(Fi), that is g−1 ∈ V . Therefore g ∈ V ∩V −1,
so g = 1 and thus Fi = Fj , a contradiction.

Now, the equation r|G| = |Pn−1| ensures that F1, . . . , Fr is a system of representatives
of facets and the condition v0 ∈

⋂
i vert(Fi) shows that D is connected, hence the second

statement follows from the theorem 1.2.2. �

1.3. The curved join.

Here, we shall define the notion of curved join, which allows one to describe the funda-
mental domain for ∂PG as a subset of the sphere. It will also be used to treat the higher
dimensional cases of S4n−1, once we know the case of S3. The treatment here is taken from
[FGMNS13, §2.4].

Let w ∈ S1. We can write w = (cos θ, sin θ) for some θ ∈ [0, 2π[. Given two points
w1 = (cos θ1, sin θ1) and w2 = (cos θ2, sin θ2), with (w1, w2) ∈ R2 × R2 = R4, the vectors
w̃1 = (cos θ1, sin θ1, 0, 0) and w̃2 = (0, 0, cos θ2, sin θ2) are orthogonal. We denote the shortest
(unitary) geodesic arc from w1 to w2 in S3 by

w1 ∗ w2 = [w1, w2].

This arc can be explicitly parametrized by

w1 ∗ w2 =
{

(cos t cos θ1, cos t sin θ1, sin t cos θ2, sin t sin θ2), 0 ≤ t ≤ π

2

}
.

Now, for any two subsets W1 and W2 with W1 ×W2 ⊂ S1 × S1 ⊂ C× C, we can form their
curved join by

W1 ∗W2 :=
⋃

wi∈Wi

w1 ∗ w2.

It is the projection, under the map x 7→ x
|x| , of conv(W1 ∪W2). In particular, this shows

that the curved join is associative. Furthermore, one can also define W1 ∗W2 for all subsets
Wi of S3, as soon as there is no x ∈W1 such that −x ∈W2.

For example, one has
S1 ∗ S1 = S3.

This generalizes as follows: identifying Cm with R2m and given the standard orthonormal
basis {e1, . . . , e2m} of R2m, for each 2 ≤ r ≤ 2m, denote by Πr the plane generated by
{er−1, er}. Suppose Πr1 ∩ Πr2 = 0 and let W1 and W2 be subsets of the unit circles of Πr1

and Πr2 , respectively. Then, one can define the curved join W1 ∗W2 as above. In particular,
we denote by Σk the unit circle lying in the kth copy of C in Cm and we have the following
equality

S2m−1 = Σ1 ∗ Σ2 ∗ · · · ∗ Σm.

We can represent the two half spheres S1∗S1
± (where S1

± denotes the north/south hemisphere
of S1) as in Figure 1, where the framing is given by the geodesic lines joining the endpoints
of the basis vectors ej .

One can also consider the open curved join, simply defined as

w1
◦∗ w2 =]w1, w2[:= [w1, w2] \ {w1, w2}

and
W1

◦∗ W2 :=
⋃

wi∈Wi

w1
◦∗ w2.

6
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Figure 1. Representing S3 as the curved join S1 ∗ S1

It is clear that the curved join is homeomorphic to the usual join

J(X,Y ) =
X × [0, 1]× Y

({x} × {0} × Y ) ∪ (X × {1} × {y})
.

However, the curved join X ∗ Y is not isometric to the usual join J(X,Y ). The metric on
the curved join is the one of Sn−1 and the segments are segments of geodesics. This is a
crucial fact when we describe the natural action appearing in the definition of the spherical
space forms. More precisely, let G be a finite group acting freely and isometrically on Sn−1

and let h ∈ N∗. Then, we can make G act diagonally on Shn−1. Under the identification
Shn−1 = S(h−1)n−1 ∗ Sn−1, this coincides with the action

g · (x ∗t y) = gx ∗t gy
where t ∈ [0, 1] parametrizes the shortest unitary geodesic from x et y.

To compute the boundaries, we shall need the following technical result:

Lemma 1.3.1. ([FGMNS13, Lemma 2.5]) We have the following Leibniz formula for the
oriented boundary of a curved join

∂(X ∗ Y ) = ∂X ∗ Y − (−1)dimXX ∗ ∂Y.

In fact, we will use the following general lemma, allowing to recursively determine a
fundamental domain and an equivariant cellular decomposition on Shn−1, once we know one
on Sn−1.

More precisely, let G be a finite group acting freely and isometrically on Sn−1. Assume

that D is a fundamental domain for the action on Sn−1 and that L̃ is a cellular decomposition

of D. We obtain an equivariant cell decomposition K̃ = G · L̃ of Sn−1 and L = K̃/G is a

cellular decomposition of Sn−1/G. Assume further that Z̃ is a subcomplex of L̃ that is a
minimal decomposition of D by lifts of the cells of L.

Let h ∈ N∗ and consider the diagonal action of G on Shn−1. Then, a fundamental domain
for this action on Shn−1 is given by

D′ := S(h−1)n−1 ∗ D.
Furthermore, one can construct an equivariant cellular decomposition K̃ ′ of Shn−1 and a

minimal cellular decomposition L̃′ of D′ as follows:

• The (h− 1)n− 1-skeleton of L̃′ is L̃′(h−1)n−1 = K̃,

7
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• The (h − 1)n-skeleton of L̃′ is obtained by attaching k0(h − 1)n-cells to K̃, where

k0 is the number of 0-cells ẽ0
l of Z̃ and the corresponding attaching map is given by

the parametrization of the curved join K̃ ∗ ẽ0
l ,

• The (h− 1)n+ 1-skeleton of L̃′ is obtained by attaching k1(h− 1)n+ 1-cells to the

(h− 1)n-skeleton of L̃′, where k1 is the number of 1-cells ẽ1
l of Z̃ and the attaching

map is given by the parametrization of L̃′(h−1)n ∗ ẽ1
l ,

• We carry on this procedure up to dimension hn− 1.

We can summarize this in the following result.

Lemma 1.3.2. ([FGMNS13, Lemma 4.1])
If G is a finite group acting freely and isometrically on Sn−1, if D is a fundamental domain

for this action and if L̃ is a cellular decomposition of D, with associated equivariant cellular

decomposition K̃ = G · L̃ of Sn−1, then for every h ∈ N∗, the subset

D′ := S(h−1)n−1 ∗ D
is a fundamental domain for the diagonal action of G on Shn−1 and the above construction

gives a cell decomposition L̃′ of D′, with associated equivariant cell decomposition K̃ ′ := G·L̃′
of Shn−1.

2. Binary polyhedral groups

2.1. Real quaternions.

Before introducing the binary polyhedral groups, let us recall some basic facts on the
quaternion algebra. The material presented here is very standard, see for example [LT09].

The algebra of quaternions was discovered by William Hamilton in 1843. It can be
defined as a two-dimensional module H over C with basis {1, j} and multiplication given
by the rules j2 = −1 and ji = −ij (1 is neutral of course). If we restrict the scalars to R,
then we obtain a four-dimensional algebra with basis elements 1, i, j, k = ij satisfying the
symmetrical relations

i2 = j2 = k2 = ijk = −1.

Given q = a + bi + cj + dk ∈ H, we can define its conjugate q := a − bi − cj − dk, its
norm N(q) := qq = qq = a2 + b2 + c2 + d2 and its trace Tr(q) := q + q = 2a. Note that, if
q 6= 0, then q ˙q/N(q) = q/N(q) ˙q = 1, so H is a division algebra and we immediately check
that Z(H) = R. Moreover, conjugation is an anti-involution of algebras and the trace is a
symmetrizing linear form on H.

We have the following result.

Proposition 2.1.1. ([LT09, Proposition 5.1])

(1) The algebra H is a C-vector space with basis {1, j}. Furthermore, if q = α+βj ∈ H,
with α, β ∈ C, then q = α− βj, N(q) = |α|2 + |β|2 and Tr(q) = α+ α.

(2) N(qr) = N(q)N(r) for any q, r ∈ H,
(3) q2 − Tr(q)q + N(q) = 0 for any q ∈ H.

For q ∈ H, denote by L(q) the R-linear endomorphism of H given by left multiplication
by q and by R(q) the R-linear endomorphism of H given by right multiplication by q.

8
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Lemma 2.1.2. ([LT09, Proposition 5.2])
For q ∈ H, we have det L(q) = det R(q) = N(q)2.

The subgroup {q ∈ H ; N(q) = 1} ≤ H∗ of unit quaternions is in fact the 3-sphere
S3 ⊂ R4. In particular, S3 is endowed with the structure of a compact Lie group, and the
map q 7→ R(q) gives an isomorphism S3 → SU2(C). Explicitly, if q = α + βj ∈ H, with

α, β ∈ C, then the matrix of R(q) in the basis {1, j} is given by

(
α β
−β α

)
∈ SU2(C).

Lemma 2.1.3. ([LT09, Proposition 5.3])
For non-zero elements of H, the following conditions are equivalent

(i) q and r have the same norm and trace,
(ii) there is some h ∈ S3 such that q = hrh−1.

The norm function is the square of the Euclidean norm on H, regarded as R4, and the
associated Euclidean inner product is given by

〈q, r〉 :=
1

2
Tr(qr) =

1

2
(N(q + r)−N(q)−N(r)) .

Denote by V the space of pure quaternions, spanned by i, j and k. By the Proposition
2.1.1, (2) and lemma 2.1.2, we have that, for q ∈ S3, the linear transformations R(q) and
L(q) belong to SO4(R). For q ∈ S3, define the transformation B(q) := (L(q)R(q))|V , i.e.

B(q) : V → V
v 7→ qvq−1

This is well-defined since, using Proposition 2.1.1 (3), a quaternion q is in V if and only
if q2 ∈ R−, so that B(q)(V ) ⊂ V . Then, B(q) ∈ SO3(R) and, more precisely, one has the
following short exact sequence

1 // {±1} // S3 B // SO3(R) // 1 .

This will be used to determine the finite subgroups of S3.

2.2. Classification of the finite subgroups of H∗.

In this section we construct all the possible finite subgroups of H∗, up to conjugation.
Here again, the main reference is [LT09]. The first trivial thing to note is that, if q ∈ H∗
has finite order (in particular, if it belongs to a finite subgroup), then N(q) ∈ R∗+ has finite
order, so it must be equal to 1 and so q ∈ S3. Furthermore, the images of finite subgroups
of S3 under B are finite subgroups of SO3(R). Those are the cyclic and dihedral groups, as
well as the rotation groups of the Platonic solids, namely A4, S4 and A5.

The binary dihedral groups.

For m ∈ N∗, define ζm := e
2iπ
m and let Cm := 〈ζm〉 be the cyclic group generated by

ζm and let BDm := 〈ζm, j〉 be the subgroup of H∗ generated by ζm and j. For α ∈ Cm,
one has jαj−1 = α = α−1 and so we have Cm E BDm. Furthermore, if m is odd then
BDm = BD2m and if m is even, the subgroup Cm of BDm has index 2. Therefore, BD2m

has order 4m and x2 = −1 for all x ∈ BD2m \ C2m. The quotient BD2m/{±1} ' Dm is the
dihedral group of order 2m and any group isomorphic to BD2m is called a binary dihedral
group. Sometimes, thay are also called dicyclic or metacyclic groups. When m is a power

9
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of 2, they can be called generalized quaternion groups and Q8 := BD4 = {±1,±i,±j,±k}
is usually known as the quaternion group. Note that we have the following (non-split) short
exact sequence

1 // {±1} // BD2m
B // Dm // 1 .

The binary polyhedral groups.

Since the groups A4, S4 and A5 have even orders, there are subgroups of S3 denoted
by T , O and I fitting in the following short exact sequences

1 // {±1} // T B // A4
// 1 ,

1 // {±1} // O B // S4
// 1 ,

1 // {±1} // I B // A5
// 1 .

These groups are named after the fact that A4 is the group of positive isometries of a regular
tetrahedron, S4 is the one of a regular cube (and its dual: the regular octahedron) and A5

is the one of a regular icosahedron (and its dual: the regular dodecahedron). We now want
to construct these groups.

From Lemma 2.1.3, we know that two elements of S3 are conjugate if and only if they
have the same trace. The knowledge of the trace of elements of small order can be useful.
We record this in the following table:

order 3 4 5 6 8 10

trace −1 0 −ϕ, ϕ−1 1 ±
√

2 ϕ, −ϕ−1

where ϕ := 1+
√

5
2 .

Then, we see that the element

$ :=
−1 + i+ j + k

2
has order 3 and direct calculations show that $ normalizes Q8. Hence, the group

T := 〈Q8, $〉
has order 24 and the 16 elements of T \ Q8 have the form 1

2(±1± i± j ± k). The group T
is the binary tetrahedral group and we have T = 〈i,$〉.

Next, the element

γ :=
1 + i√

2
has order 8 and normalizes both Q8 and T . Hence the group

O := 〈T , γ〉
is of order 48 (since γ2 = i) and is called the binary octahedral group and we have O = 〈$, γ〉.
The set O \ T consists of the 24 elements 1√

2
(±u± v) where u 6= v ∈ {1, i, j, k}.

Finally, the element

σ :=
ϕ−1 + i+ ϕj

2
is of order 5. The group

I := 〈T , σ〉
is the binary icosahedral group and we have I = 〈i, σ〉. Here, some work has to be done if
one wants to see that I is finite and to compute its order. In fact, we have

10
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Proposition 2.2.1. ([LT09, §4.2])
The binary polyhedral groups T , O and I have order

|T | = 24, |O| = 48, |I| = 120.

We can now state the following result:

Theorem 2.2.2. (Stringham, 1881, [LT09, Theorem 5.12])
Every finite subgroup of H∗ is conjugate in S3 to one of the following groups

∗ a cyclic group Cm of order m,
∗ a binary dihedral group BD2m of order 4m,
∗ the binary tetrahedral group T of order 24,
∗ the binary octahedral group O of order 48,
∗ the binary icosahedral group I of order 120.

Remark 2.2.3. (1) Using the homomorphisms B and R defined above and the previous
result, one can obtain (up to conjugation) the finite subgroups of SO3(R) and SU2(C)
and describe their generators, see [LT09, Theorem 5.13 and Theorem 5.14].

(2) One can prove that T ' SL2(F3), I ' SL2(F5) and that O ≤ SL2(F7). Moreover,
T is an index 2 subgroup of both GL2(F3) and O, but these two are non-isomorphic.
See [LT09, §5.1] for more details.

2.3. Presentations of the binary polyhedral groups and spherical space forms.

In [CM72, §6.4], Coxeter and Moser introduce the following presentations

〈`,m, n〉 :=
〈
r, s, t | r` = sm = tn = rst

〉
,

and they prove that this group is finite if and only if `mn
(

1
` + 1

m + 1
n − 1

)
> 0, that is, if

and only if
(`,m, n) ∈ {(1, k, k), (2, 2, k), (2, 3, 3), (2, 3, 4), (2, 3, 5)}.

These correspond to finite subgroups of H∗. Note that, in these presentations, one has of
course r = tn−1s−1. Let us give some explicit isomorphisms:

Lemma 2.3.1. For m ∈ N∗, one has the following isomorphisms

〈1,m,m〉 → C2m

s 7→ ζ2m

〈2, 2,m〉 → BD2m

s 7→ j
t 7→ ζ2m

〈2, 3, 3〉 → T
s 7→ 1

2(1 + i+ j + k)
t 7→ 1

2(1 + i+ j − k)

〈2, 3, 4〉 → O
s 7→ 1

2(1 + i+ j + k)
t 7→ 1√

2
(1 + i)

〈2, 3, 5〉 → I
s 7→ 1

2(1 + i+ j + k)
t 7→ 1

2(ϕ+ ϕ−1i+ j)

11
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Proof. In every case, the images given for s and t clearly satisfy the required relations,
giving a well defined morphism from 〈`,m, n〉, which is surjective using the descriptions of
the groups given above. So it suffices to determine the order of 〈`,m, n〉 and this can be done
by coset enumeration (see [Rot95, Chapter 11,§3]), applying the Todd-Coxeter algorithm to
the cyclic subgroup 〈t〉. We omit the details. �

Using the SU2(C)-matrix form of a quaternion, we introduce the following faithfull rep-
resentations (defined by the images of the generators s and t)

ρG : G → SU2(C), ∀G ∈ {T ,O, I}
defined by

ρT (s) := 1
2

(
1− i 1− i
−1− i 1 + i

)
,

ρT (t) := 1
2

(
1− i 1 + i
−1 + i 1 + i

)


ρO(s) := 1
2

(
1− i 1− i
−1− i 1 + i

)
,

ρO(t) := 1√
2

(
1− i 0

0 1 + i

)
and 

ρI(s) := 1
2

(
1− i 1− i
−1− i 1 + i

)
,

ρI(t) := 1
2

(
ϕ− ϕ−1i 1
−1 ϕ+ ϕ−1i

)
These correspond to the natural representations of T , O and I on C2 and are irreducible

fixed point-free representations of T , O and I, respectively. In fact, following [Ste14, Lem-
mae 2.15, 2.16 and 2.17] (or [Wol67, Lemmae 7.1.3, 7.1.5 and 7.1.7]), ρT (resp. ρO, ρI) is
the only irreducible complex representation of T without fixed points (resp. one of the only
two irreducible complex representations of O, I without fixed points, the other one beeing
also of degree 2, with a conjugate of im (ρO), im (ρI) as its image). This gives an explicit
way to make these group act freely on S3 ⊂ R4. Consider more generally, for G ∈ {T ,O, I},
the 2n-dimensional representation

ρnG :=

n⊕
i=1

ρG : G → SU2n(C).

This gives an action of G on S4n−1 ⊂ R4n = C2n. According to [Wol67, §7.4], this is (up to
equivariant isometry) the only way G may act isometrically and freely on S4n−1.

Definition 2.3.2. Let n ∈ N∗ and G ∈ {T ,O, I} be a binary polyhedral group. The quotient
space of the free action given by ρnG on S4n−1, defined by

P4n−1
G := S4n−1/im (ρnG)

is called a polyhedral spherical space form.

3. The octahedral case

In the following two sections, we let both O and I act (freely) by (quaternion) multipli-
cation on the left on S3.

12
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3.1. Fundamental domain.

We use Theorem 1.2.2 to find a fundamental domain for O on S3. To this end, we first
introduce the orbit polytope in R4

P := PO := conv(O).

Then, we know that O acts freely on the set P3 of facets of P and by Theorem 1.2.2, it
suffices to find a set of representatives in P3 such that their union is connected; this will
be a fundamental domain for the action on ∂P, which we can transport to the sphere S3

using the equivariant homeomorphism ∂P → S3, x 7→ x/|x|.
The 4-polytope P has 48 vertices, 336 edges, 576 faces and 288 facets and is known as the

disphenoidal 288-cell ; it is dual to the bitruncated cube. Since O acts freely on P3, there
must be exactly six orbits in P3. We introduce the following elements of O, also expressed
in terms of the generators s and t:

ω0 := 1+i+j+k
2 = s,

ωi := 1−i+j+k
2 = t−1st−1,

ωj := 1+i−j+k
2 = s−1t2,

ωk := 1+i+j−k
2 = t−1st.

and



τi := 1+i√
2

= t,

τj := 1+j√
2

= t−1s,

τk := 1+k√
2

= st−1.

Next, we may find explicit representatives for the O-orbits of P3.

Proposition 3.1.1. The following tetrahedra (in R4)
∆1 := [1, τi, τj , ω0],

∆2 := [1, τj , τk, ω0],

∆3 := [1, τk, τi, ω0],

and


∆4 := [1, τi, ωk, τj ],

∆5 := [1, τj , ωi, τk],

∆6 := [1, τi, ωj , τk]

form a system of representatives of O-orbits of facets of PO. Furthermore, the subset of
PO defined by

DO :=
6⋃
i=1

∆i

is a (connected) polytopal complex and is a fundamental domain for the action of O on
∂PO.

Proof. First, we have to find the facets of PO by giving the defining inequalities. To do
this, let the symmetric group S4 act naturally on R4, by permuting the coordinates and let
Z4

2 := (Z/2Z)4 act by changing signs. The group S4 acts by permutation on Z4
2 and the

resulting morphism S4 → Aut (Z4
2) defines a semidirect product Z4

2 oS4, which acts on R4.
We check that the following 288 inequalities

〈v, x〉 ≤ 1,

with

v ∈ (Z4
2 o A4) ·




3− 2
√

2√
2− 1√
2− 1
1

 ,


2−
√

2

2−
√

2

2
√

2− 2
0



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are valid for PO. Then, the facets are given by the equalities 〈v, x〉 = 1 and we find their
vertices by looking at vertices of PO that satisfy these equalities. We find

vert(DO) = {1, τi, τj , τk, ωi, ωj , ωk, ω0}.
Now, since R4 = span(O) and vert(DO)∩ vert(DO)−1 = {1}, Proposition 1.2.3 ensures that
DO is indeed a fundamental domain for ∂PO. �

Remark 3.1.2. The recipe used to find these tetrahedra is quite simple. First, choose ∆1 in
some O-orbit of ∂P3 and containing 1 as a vertex. Then, we arbitrarily choose another orbit
and look at the dimensions of the intersections of ∆1 with the facets of this second orbit. It
turns out that there is exactly one facet (namely ∆2) for which the intersection has dimension
2, so we take as second facet ∆2 and continue further until we obtain representatives for the
six orbits. Hence, we notice that a lot of different fundamental domains can be produced in
this way. The calculations were tremendeously simplified by the use of the Maple package
”Convex” (see [Fra]) and quaternionic multiplication, as implemented in GAP (see [Gro19]).

1

ωiωj

ωk

τi τj

τk

ω0

Figure 2. The six tetrahedra inside DO

3.2. Associated O-cellular decomposition of ∂PO.

We shall now examine the combinatorics of the polytopal complex D := DO constructed
in the previous subsection to obtain a cellular decomposition of it. Since D is a fundamental
domain for O on ∂PO, translating the cells will give an equivariant decomposition of ∂PO
and projecting to S3 will give the desired equivariant cellular structure on the sphere.

The facets of D are the ones of the six tetrahedra ∆i, except the ones that are contained
in some intersection ∆i ∩∆j . We obtain the following facets

D2 = {[1, τj , ωi], [1, ωi, τk], [1, τk, ωj ], [1, ωj , τi], [1, τi, ωk], [1, ωk, τj ], [τj , ωi, τk],
[τk, ωj , τi], [τi, ωk, τj ], [τi, τj , ω0], [τj , τk, ω0], [τk, τi, ω0]}.

We notice the following relations among facets of D{
τi · [1, τj , ωi] = [τi, ω0, τk],
τi · [1, ωi, τk] = [τi, τk, ωj ],

{
τj · [1, τi, ωj ] = [τj , ωk, τi],
τj · [1, ωj , τk] = [τj , τi, ω0],

{
τk · [1, τj , ωk] = [τk, ωi, τj ],
τk · [1, ωk, τi] = [τk, τj , ω0].

14
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These are the only relations linking facets, hence, we may gather facets two by two and
define the following 2-cells

e2
1 :=]τj , 1, ωi[ ∪ ]1, ωi[ ∪ ]1, ωi, τk[,

e2
2 :=]τi, 1, ωj [ ∪ ]1, ωj [ ∪ ]1, ωj , τk[,

e2
3 :=]τi, 1, ωk[ ∪ ]1, ωk[ ∪ ]1, ωk, τj [,

recalling that, for a polytope [v1, . . . , vn] := conv(v1, . . . , vn), we denote by ]v1, . . . , vn[ its
interior, namely its maximal face.

Now, define the following 1-cells 
e1

1 :=]1, τi[,

e1
2 :=]1, τj [,

e1
3 :=]1, τk[.

If we add vertices of D and its interior, which is formed by only one cell e3 by construction,
then we may cover all of D with these cells and some of their translates. Thus, we have
obtained the

Lemma 3.2.1. Consider the following sets of cells in DO

E0
D := {1, τi, τj , τk, ωi, ωj , ωk},

E1
D := {e1

1, τje
1
1, τke

1
1, ωie

1
1, e

1
2, τie

1
2, τke

1
2, ωje

1
2, e

1
3, τie

1
3, τje

1
3, ωke

1
3},

E2
D := {e2

1, τie
2
1, e

2
2, τje

2
2, e

2
3, τke

2
3},

E3
D := {e3}

Then, one has the following cellular decomposition of the fundamental domain

DO =
∐

0≤j≤3

e∈EjD

e.

1

ωiωj

ωk

τi τj

τk

ω0

ωje
1
2

τie
1
3

ωke
1
3 τje

1
1

ωie
1
1

τke
1
2

τke
1
1

τie
1
2 τje

1
3

e1
1 e1

2

e1
3

Figure 3. The 1-skeleton of DO
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Then, combining Proposition 3.1.1 and Lemma 3.2.1, yields the

Proposition 3.2.2. Letting E0 := {1}, E1 := {e1
i , i = 1, 2, 3}, E2 := {e2

i , i = 1, 2, 3}
and E3 := {e3} with the above notations, we have the following O-equivariant cellular
decomposition of ∂PO

∂PO =
∐

0≤j≤3
e∈Ej ,g∈O

ge.

As a consequence, using the homeomorphism φ : ∂PO
∼→ S3 given by x 7→ x/|x|, we obtain

the following O-equivariant cellular decomposition of the sphere

S3 =
∐

0≤j≤3
e∈Ej ,g∈O

gφ(e).

i −i

j

−j

k

−k

1
∗ i −i

j

−j

k

−k

−1

Figure 4. The fundamental domain DO
Legend : The red points belong to Q8, the green ones belong to T \ Q8 and the blue ones

to O \ T .

We now have to compute the boundaries of the cells and the resulting cellular homology
chain complex. We choose to orient the 3-cell e3 directly, and the 2-cells undirectly:

1

ωiωj

ωk

τi τj

τk

e2
1

e2
3

e2
2

Figure 5. Orientation of the 2-cells
16



The induced orientations seen in DO can be visualized as follows

e2
1

e2
3

e2
2

1

ωiωj

ωk

τi τj

τk

ω0
τke

2
3

τje
2
2

τie
2
1

ωiωj

ωk

τi τj

τk

ω0

Figure 6. The fundamental domain with its 2-cells

These orientations allow us to easily compute the boundaries of the representing cells euv
and give the resulting chain complex of free left Z[O]-modules.

Proposition 3.2.3. The cellular homology complex of ∂PO associated to the cellular struc-
ture given in the Proposition 3.2.2 is a chain complex of free left Z[O]-modules isomorphic
to

KO :=

(
Z[O]

d3 // Z[O]3
d2 // Z[O]3

d1 // Z[O]

)
,

where the di’s are given, in the canonical bases, by right multiplication by the following
matrices

d1 =

τi − 1
τj − 1
τk − 1

 , d2 =

 ωi τk − 1 1
1 ωj τi − 1

τj − 1 1 ωk

 , d3 =
(
1− τi 1− τj 1− τk

)
.

To conclude this section, we can give an instructive picture (see Figure 7), in which all
the tetrahedra in (PO)3 containing 1 as a vertex are displayed. In this picture, we put the
points ω±h (with h = 0, i, j, k) at the centers of the facets of the octahedron1. The tetrahedra
in question are constructed in the following way: one chooses an edge of the octahedron and
the center of a face which is adjacent to this edge. The resulting four vertices (including 1)
are vertices of the corresponding tetrahedron.

This representation will be useful when we study the application to the flag manifold
A2(R). We may also display the domain DO inside an octahedron as in Figure 8.

1The points in gray are on the background of the figure



ROCCO CHIRIVÌ, ARTHUR GARNIER AND MAURO SPREAFICO

1

τi

τ−1
i

τjτ−1
j

τk

τ−1
k

ω0

ω−1
0

ωi

ω−1
i

ωj

ω−1
j

ωk

ω−1
k

Figure 7. One of the twenty-four facets of PO containing 1

1

τi

τj

τk

ω0

ωi

ωj

ωk

Figure 8. The fundamental domain for ∂PO inside an octahedron

3.3. The case of spheres and free resolution of the trivial O-module.

As said in the introduction of this paper, once we know a fundamental domain for the
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group on ∂PG (hence for S3), we can obtain one on higher dimensional spheres using the
curved join. In this section, we shall describe the fundamental domain obtained above in S3

in terms of curved join and give a fundamental domain on S4n−1. This will come with an
equivariant cellular structure on S4n−1 for which we can give the cellular homology complex.
This has a particular consequence : letting n→∞, one can obtain in this way a 4-periodic
free resolution of Z over Z[G].

We first have to describe the fundamental domain in S3, using the curved join. This is
done in the following result

Proposition 3.3.1. The following subset of S3 is a fundamental domain for the action of
O

FO,3 := (ωi ∗ 1 ∗ τj ∗ τk) ∪ (1 ∗ τj ∗ τk ∗ ω0) ∪ (ωj ∗ 1 ∗ τk ∗ τi)
∪(1 ∗ τk ∗ τi ∗ ω0) ∪ (ωk ∗ 1 ∗ τi ∗ τj) ∪ (1 ∗ τi ∗ τj ∗ ω0).

Proof. According to Lemma 1.2.1, it suffices to show that FO,3 = p(DO), where p : ∂PO
∼→

S3 is the equivariant projection x 7→ x/|x|. But this is a straightforward calculation which
we omit. �

This way of writing the fundamental domains allows one to describe the cells of the
resulting O-cellular decomposition of S3. This gives the following result, which is just a
reformulation of Proposition 3.2.2, in terms of curved join and cells in the sphere S3:

Theorem 3.3.2. The sphere S3 admits a O-equivariant cellular decomposition with the
following cells as orbit representatives

ẽ0 := 1 ∗ ∅ = {1},


ẽ1

1 := 1
◦∗ τi =]1, τi[,

ẽ1
2 := 1

◦∗ τj =]1, τj [,

ẽ1
3 := 1

◦∗ τk =]1, τk[


ẽ2

1 := (1
◦∗ ωi

◦∗ τj) ∪ (1
◦∗ ωi) ∪ (1

◦∗ ωi
◦∗ τk),

ẽ2
2 := (1

◦∗ ωj
◦∗ τk) ∪ (1

◦∗ ωj) ∪ (1
◦∗ ωj

◦∗ τi),

ẽ2
3 := (1

◦∗ ωk
◦∗ τi) ∪ (1

◦∗ ωk) ∪ (1
◦∗ ωk

◦∗ τj)

ẽ3 :=
◦

FO,3

Furthermore, the associated cellular homology complex is a chain complex of free left
Z[O]-modules isomorphic to

KO :=

(
Z[O]

d3 // Z[O]3
d2 // Z[O]3

d1 // Z[O]

)
,

where the di’s are given, in the canonical bases, by right multiplication by the following
matrices

d1 =

τi − 1
τj − 1
τk − 1

 , d2 =

 ωi τk − 1 1
1 ωj τi − 1

τj − 1 1 ωk

 , d3 =
(
1− τi 1− τj 1− τk

)
.

For the higher dimensional case, combining lemma 1.3.2 and Proposition 3.3.1 yields

Proposition 3.3.3. Letting O act on S4n−1 (n ≥ 1) via the representation ρnO, the following
subset of S4n−1 is a fundamental domain for the action

FO,4n−1 := Σ1 ∗ Σ2 ∗ · · · ∗ Σ2(n−1) ∗FO,3,

with FO,3 inside Σ2n−1 ∗ Σ2n.
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We can now describe the resulting equivariant cellular decomposition on S4n−1 using
lemma 1.3.2 and Theorem 3.3.2. It only remains to consider the boundary of the cells ẽ4q

for q > 0. But it follows from the fact that ẽ4q = S4q−1 ∗ ẽ4q−1, hence its boundary is given
by all the cells in S4q−1, that is, all the orbits under O. This gives the following result,
which we prefer to state using the vocabulary of universal covering spaces. We denote by

C(K̃,Z[G]) the chain complex of finitely generated free (left) Z[G]-modules given by the

cellular homology complex of the universal covering space K̃ of a finite CW-complex K
with the fundamental group G acting by covering transformations.

Theorem 3.3.4. The chain complex C(P4n−1
O ,Z[O]) of the universal covering space of the

octahedral space forms P4n−1
O with the fundamental group acting by covering transformations

is isomorphic to the following complex of left Z[O]-modules:

0 // Z[O]
d4n−1 // Z[O]3 // . . . // Z[O]3

d2 // Z[O]3
d1 // Z[O] // 0 ,

where the boundaries are given, in the canonical bases, by the following matrices (q ≥ 1)

d4q−3 =

τi − 1
τj − 1
τk − 1

 , d4q−2 =

 ωi τk − 1 1
1 ωj τi − 1

τj − 1 1 ωk

 ,

d4q−1 =
(
1− τi 1− τj 1− τk

)
, d4q =

(∑
g∈O g

)
.

In particular, the complex is exact in middle terms, i.e.

∀0 < i < 4n− 1, Hi(C(P4n−1
O ,Z[O])) = 0

and we have
H0(C(P4n−1

O ,Z[O])) = H4n−1(C(P4n−1
O ,Z[O])) = Z.

Proof. The computation of the complex follows from lemma 1.3.2 and the previous dis-
cussion. The claims on its homology follow, S4n−1 being the universal covering space of
P4n−1
O . �

Next, adding the augmentation morphism ε : Z[O] → Z defined by ε
(∑

g∈O agg
)

:=∑
g∈O ag and letting n→∞ yields the

Corollary 3.3.5. The following chain complex

. . . // Z[O]3
d4q−3 // Z[O]

d4q−4 // . . . // Z[O]3
d2 // Z[O]3

d1 // Z[O]
ε // Z // 0 ,

with boundaries di as in the Theorem 3.3.4, is a 4-periodic resolution of the constant module
Z over Z[O].

We are now able to compute the group cohomology of O using this result. But first, let
us recall a basic fact

Lemma 3.3.6. (1) If G is a finite group acting freely and cellularily on a CW-complex
X and K• is the cellular homology chain complex of X, as a complex of free (left)
Z[G]-modules, then the induced cellular homology complex of X/G is given by K⊗Z[G]

Z.
(2) If f : Z[G]m → Z[G]n is a homomorphism of left Z[G]-modules, identified with

its matrix in the canonical bases, then the matrix of the induced homomorphism
f ⊗Z[G] idZ : Zm → Zn is given by the matrix ε(f), computed term by term.
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Proof. The first statement is obvious, by definition of the cellular structure on X/G and the
second one is a direct calculation. �

Corollary 3.3.7. The group cohomology of O with integer coefficients is given as follows:

∀q ≥ 1,



Hq(O,Z) = Z if q = 0,

Hq(O,Z) = Z/48Z if q ≡ 0 (mod 4),

Hq(O,Z) = Z/2Z if q ≡ 2 (mod 4),

Hq(O,Z) = 0 otherwise

Proof. In view of Lemma 3.3.6, is suffices to compute C(P∞O ,Z[O])⊗Z[O]Z, with C(P∞O ,Z[O])
the complex given in Corollary 3.3.5. Computing the matrices ε(di) leads to the following
complex

. . . // Z3 0 // Z ×48 // Z // . . . // Z ×48 // Z 0 // Z3


1 0 1
1 1 0
0 1 1


// Z3 0 // Z // 0 .

Hence, determining the elementary divisors of the only non-trivial matrix occuring in it
gives the following homology

∀q ∈ N,



H0(O,Z) = Z,

H4q−4(O,Z) = 0 = H4q−2(O,Z), with q > 1 in the first equality,

H4q−3(O,Z) = Z/2Z,

H4q−1(O,Z) = Z/48Z
and the result then follows from the universal coefficients theorem. �

Remark 3.3.8. In [TZ08, Proposition 4.7], Tomoda and Zvengrowski give an explicit res-
olution of Z over Z[O]. They use the following presentation

O =
〈
T,U | TU2T = U2, TUT = UTU

〉
from [CM72]. As we would like to work with presentations, we use the following isomorphism〈

T,U

∣∣∣∣ TU2T = U2

TUT = UTU

〉
∼−→ O

T 7−→ (1 + i)/
√

2

U 7−→ (1 + j)/
√

2

Then, the Tomoda-Zvengrowski complex reads

KTZ
O =

(
Z[O]

δ3 // Z[O]2
δ2 // Z[O]2

δ1 // Z[O]

)
,

with

δ1 =

(
T − 1
U − 1

)
, δ2 =

(
1 + TU − U T − 1− UT

1 + TU2 T − U − 1 + TU

)
, δ3 =

(
1− TU U − 1

)
.
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On the other hand, the differentials di of the complex KO from Proposition 3.2.3 are given,
through the above presentation, by

d1 =

 T − 1
U − 1

TUT−1 − 1

 , d2 =

UT−1 TUT−1 − 1 1
1 U−1T T − 1

U − 1 1 UT

 , d3 =
(
1− T 1− U 1− TUT−1

)
.

We claim that the complexes KO and KTZ
O are homotopy equivalent. This observation relies

on elementary operations on matrix rows and columns. Write Z := U4 = T 4 for the only
non trivial element of Z(O). For short, define

P :=

 −Z 0 0
Z(1− T ) TUT −U2

−U−3T −TUT 0

 , Q :=

 0 −TUT 0
−TUT 0 0

U2 − TUT U2T 1

 ,

then P,Q ∈ GL3(Z[O]) and

P−1 =

 −Z 0 0
U−1 0 −(TUT )−1

U−2(T − 1) + U−1T −U−2 −U−2

 , Q−1 =

 0 −(TUT )−1 0
−(TUT )−1 0 0
UT−1 TUT−1 − 1 1

 .

Now, we have the following relations

−Q−1d1TUT =

T − 1
U − 1

0

 , P−1d2Q =

 0 0 −Z
1 + TU − U T − 1− UT 0

1 + TU2 T − U − 1 + TU 0

 ,

U−2d3P =
(
0 1− TU U − 1

)
.

Hence, we have an isomorphism

KO ' KTZ
O ⊕

(
0 // Z[O]

1 // Z[O] // 0

)
and then, KO is indeed homotopy equivalent to KTZ

O .

3.4. Application to the real flag manifold of type A2.

The O-equivariant cellular structure of S3 may be used to obtain a cellular decomposition
of the real points of the flag manifold SU3(C)/T of type A2. The elementary facts concerning
Lie groups we use here can be found in [Bum13] or [FH91].

Given a maximal torus T in a simply connected compact semisimple Lie group G, one can
consider the Weyl group W := NG(T )/T . It is a finite Coxeter group ([Bum13, Proposition
15.8 and Theorem 25.1]), which acts by right multiplication on the flag manifold G/T . For
instance, in type An−1, we have G = SUn(C) and we can take T to be the group of diagonal
matrices in SUn(C) (in fact, any other maximal torus is conjugate to this one, see [Bum13,
Theorem 16.5]). In this case, one has W ' Sn. This group has Coxeter presentation

W = Sn =
〈
s1, . . . , sn−1 | s2

i = 1, (sisi+1)3 = 1, (sisj)
2 = 1, ∀|i− j| > 1

〉
=
〈
s1, . . . , sn−1 | s2

i = 1, sisi+1si = si+1sisi+1, sisj = sjsi, ∀|i− j| > 1
〉

and a representative ṡi for the reflection si in NSUn(C)(T ) can be taken as a block matrix
(with (i− 1) ones before the matrix s):

ṡi := diag(1, . . . , 1, s, 1 . . . , 1), with s :=

(
0 −1
1 0

)
.

Now, one can observe that, if w = si1si2 · · · sik is a reduced word in W , then the element
ẇ := ˙si1 ˙si2 · · · ˙sik ∈ NG(T ) does not depend on the chosen word for w and for g ∈ G, the
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action of w on g is given by multiplication g · w := gẇ.
An another hand, the Iwasawa decomposition (see [Bum13, Theorem 26.4]) gives a dif-

feomorphism G/T ' GC/B, with GC a complexification of G (that is, a complex algebraic
group with Lie algebra Lie(G) ⊗R C) and B a Borel subgroup of GC containing T . This
provides G/T with a structure of complex algebraic variety. Hence, one may talk about
real points of G/T . We use the standard notation X(R) to denote the set of real points
of an algebraic variety X. In this context, one has the Bruhat decomposition of GC (see
[Bum13, Chapter 27]), which provides a cellular structure on G/T , with cells indexed by
W . However, this cellular structure is not W -equivariant. So, a natural question is to find
a W -equivariant cellular decomposition of G/T .

Remark 3.4.1. In type An−1, that is if G = SUn(C) and if T is the group diagonal matrices
in SUn(C), then one may take GC = SLn(C) and B the Borel subgroup of upper-triangular
matrices in SLn(C). We denote by Fn the set of flags in Cn, that is

Fn := {V• := (V1, . . . , Vn−1) ; Vi ≤ Cn, Vi ⊂ Vi+1, dimVi = i}.
Moreover, the group SLn(C) acts on Fn by simply letting g · V• := (g(V1), . . . , g(Vn−1)) for
g ∈ SLn(C) and V• ∈ Fn. Denote by V0 := (span(e1), span(e1, e2), . . . , span(e1, . . . , en−1)) ∈
Fn the canonical flag, where (e1, . . . , en) is the canonical basis of Cn, then one has a bijection

GC/B → Fn
gB 7→ g · V0

and this endows Fn with the structure of a complex algebraic variety.
Furthermore, it is easy to see that the real points Fn(R) of Fn is the set of real flags in

Rn and we have
Fn(R) ' SOn(R)/T (R)

and T (R) is isomorphic to (Z/2Z)n−1.

The case G = SU2(C) (i.e. in type A1) is fairly trivial, since SU2(C)/T ' S2 and W =
S2 = {1, s} acts as the antipode on S2, so the quotient (SU2(C)/T )/S2 is the projective
plane P2(R) and its simplest cellular structure lifts to a W -equivariant one on S2, see Figure
9.

e1
0 es0

e1
1

es1

e1
2

es2

Figure 9. Equivariant cellular decomposition of SU2(C)/T = S2

In this section, we treat the case of the real points of SU3(C)/T , using the octahedral
spherical space form.

First of all, we have to identify spaces and actions. We begin with a trivial lemma.
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Lemma 3.4.2. Let G be a finite group acting freely by diffeomorphisms on a manifold X
and N E G be a normal subgroup of G. Then, G/N acts freely on the quotient manifold
X/N and the projection X � X/G induces a natural diffeomorphism

(X/N)
/

(G/N)
∼−→ X/G.

We will apply this lemma to G = O, N = Q8 and X = S3. One has to be careful at this
point: we let O act on S3 on the left, whereas W = S3 acts on F(R) on the right. Since
there is no natural way to make W act on the left on F(R), we shall let O act on the right
on S3 by multiplication. It is clearly straightforward to adapt our results to this case. For

instance, we replace ∆i =: conv(q1, q2, q3, q4) by ∆̂i := conv(q−1
1 , q−1

2 , q−1
3 , q−1

4 ) and FO,3 by

F̂O,3 := pr(D̂O) where pr(x) = x
|x| is the usual projection and D̂O :=

⋃
i ∆̂i and we can do

the same for the cells in S3. Briefly, we just have to replace every quaternion appearing in
sections 3.1, 3.2 and 3.3 by its inverse and left multiplications by right multiplications.

Now, denote by F := SU3(C)/T the flag manifold. Remark that the set of real points of
SU3(C) is the manifold SO3(R) and that the real points of T are diagonal matrices of SU3

with real coefficients, hence

T (R) =


1 0 0

0 1 0
0 0 1

 ,

1 0 0
0 −1 0
0 0 −1

 ,

−1 0 0
0 −1 0
0 0 1

 ,

−1 0 0
0 1 0
0 0 −1

 ,

and T (R) is thus isomorphic to the Klein four-group. Therefore, one has a diffeomorphism

F(R) ' SO3(R)/T (R).

Recall the surjective homomorphism B : S3 � SO3(R) from section 2.1, with kernel {±1}.
We have a surjective homomorphism

φ̃ : S3 B
� SO3(R)� SO3(R)/T (R) ' F(R).

Now, it is clear that B−1(T (R)) = {±1,±i,±j,±k} = Q8. The lemma 3.4.2 applied to
G = Q8, N := {±1} = Z(Q8) and X = S3 yields the following Lemma.

Lemma 3.4.3. Denoting by F := SU3(C)/T the flag manifold of type A2, the above defined

map φ̃ induces a diffeomorphism

φ : S3/Q8
∼−→ F(R).

Now, one has W = S3 =
〈
sα, sβ | s2

α = s2
β = 1, sαsβsα = sβsαsβ

〉
(the notation sα, sβ

makes reference to the simple roots α and β of the root system of type A2). The reflections
sα ans sβ can be represented in SO3(R) by the following matrices

ṡα =

0 −1 0
1 0 0
0 0 1

 , ṡβ =

1 0 0
0 0 −1
0 1 0

 .

These matrices may be obtained from S3 using B:

ṡα = B

(
1 + k√

2

)
, ṡβ = B

(
1 + i√

2

)
,

and this induces a well-defined isomorphism

σ : O/Q8
∼−→ S3

(1 + i)/
√

2 7−→ sβ
(1 + k)/

√
2 7−→ sα
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Therefore, recalling that S3 = NSU3(C)(T )/T = (NSO3(R)(SO3(R) ∩ T ))/(SO3(R) ∩ T ) acts
on F(R) by multiplication on the right by a representative matrix, one obtains the following
relation

∀(x, g) ∈ S3 ×O, φ(x) · σ(g) = φ̃(xg).

Henceforth, using the lemma 3.4.2, one obtains the following result:

Proposition 3.4.4. The diffeomorphism ψ from the Lemma 3.4.3 induces a diffeomorphism

φ : S3/O ∼−→ F(R)/S3.

In particular, O-equivariant cellular structure on S3 defined in the Theorem 3.3.2 induces
an S3-equivariant cellular structure on the real flag manifold F(R).

Corollary 3.4.5. The fundamental groups of the real flag manifold F(R) and of its quotient
space by S3 are given by

π1(F(R), ∗) = Q8 and π1(F(R)/S3, ∗) = O.

We are now in a position to state and prove the principal result of this section:

Theorem 3.4.6. The real flag manifold F(R) = SO3(R)/T (R) admits an S3-equivariant
cellular decomposition with orbit representatives cells given by

eij := φ
(
πQ8

(
(eij)

−1
))
,

where πQ8 : S3 → S3/Q8 is the natural projection, φ : S3/Q8 → F(R) is the S3-equivariant
diffeomorphism from the Proposition 3.4.3 and eij are the cells of the O-equivariant cellular
decomposition from the Theorem 3.3.2.

Furthermore, the associated cellular homology complex is a chain complex of free right
Z[S3]-modules isomorphic to

KS3 :=

(
Z[S3]

d3 // Z[S3]3
d2 // Z[S3]3

d1 // Z[S3]

)
,

where the di’s are given, in the canonical bases, by left multiplication by the following ma-
trices

d1 =
(
1− sβ 1− w0 1− sα

)
, d2 =

 sαsβ 1 w0 − 1
sα − 1 sαsβ 1

1 sβ − 1 sαsβ

 , d3 =

1− sβ
1− w0

1− sα

 .

Proof. This only relies on Proposition 3.4.4 and the fact that ((eij)
−1)i,j is an O-equivariant

cell decomposition of S3, the group O acting by right multiplication on the sphere. Next,

we have to determine the images of the points of O we used to construct F̂O,3 under the
projection

πO : O � O/Q8 = S3.

Recall that, denoting by sα and sβ the simple reflections in the Weyl group W = S3, we
have

S3 =
〈
sα, sβ | s2

α = s2
β = 1, sαsβsα = sβsαsβ

〉
= {1, sα, sβ, sαsβ, sβsα, sαsβsα}

and we denote by w0 := sαsβsα the longest element of S3. We compute πO(τi) = sβ, π
O(τj) = w0, π

O(τk) = sα,

πO(ωi) = πO(ωj) = πO(ωk) = sβsα, π
O(ω0) = sαsβ.
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Thus, the resulting cellular homology chain complex can be computed from the one in
the Theorem 3.3.2, replacing each coefficient q ∈ O in di by πO(q−1) and transposing the
matrices. �

Corollary 3.4.7. The integral homologies of F(R) and of the quotient F(R)/S3 are re-
spectively given by

Hn(F(R),Z) =


Z if n = 0

(Z/2Z)2 if n = 1
0 if n = 2
Z if n = 3
0 if n ≥ 4

and Hn(F(R)/S3,Z) =


Z if n = 0

Z/2Z if n = 1
0 if n = 2
Z if n = 3
0 if n ≥ 4

We can now deduce the action of S3 on the cohomology of F(R). Since S3 acts on
the right of F(R) and since cohomology is a contravariant functor, S3 acts on the left on
H∗(F(R),Z).

First of all, define the integral representation

2 : S3 → GL2(Z)

by

2(sα) =

(
0 1
1 0

)
, 2(sβ) =

(
1 0
−1 −1

)
.

Then, 2 is an integral form of the 2-dimensional irreducible complex representation of S3.
Writing V := Z2, the representation 2 may be identified with a morphism of algebras

Z[S3] → End Z(V ) and it is straightforward to check that the reduction mod 2 homo-
morphism π : V → (Z/2Z)2 = V ⊗ F2 induces a well-defined homomorphism of algebras
π∗ : End Z(V ) → End Z(V ⊗ F2). Thus, we have an induced Z-representation 2 := π∗2 of
(Z/2Z)2 that fits into a commutative diagram

Z[S3]

2 %%

2 // End Z(V ⊗ F2)

End Z(V )

π∗

77

The same statement holds for the dual representation 2∗ and we have 2∗ ' 2. This is just
the irreducible F2-representation 2⊗ F2, but with coefficients lifted to Z via Z� F2.

For convenience, we consider Z[S3] as a graded algebra concentrated in degree zero.

Theorem 3.4.8. The cohomology ring H∗(F(R),Z) of F(R) is a graded commutative left
Z[S3]-algebra such that

∗ For i 6= 0, 2, 3, one has H i(F(R),Z) = 0,
∗ The modules H0(F(R),Z) and H3(F(R),Z) are trivial,
∗ The module H2(F(R),Z) is the representation 2.

Moreover, the action of S3 on F(R) preserves the orientation.

Proof. Let

σ :=
∑
w∈S3

w

and recall the cellular homology complex

KS3 =

(
Z[S3]

d3 // Z[S3]3
d2 // Z[S3]3

d1 // Z[S3]

)
,

26



CELLULARIZATION FOR EXCEPTIONAL SPHERICAL SPACE FORMS AND APPLICATION TO FLAG
MANIFOLDS

with

d1 =
(
1− sβ 1− w0 1− sα

)
, d2 =

 sαsβ 1 w0 − 1
sα − 1 sαsβ 1

1 sβ − 1 sαsβ

 , d3 =

1− sβ
1− w0

1− sα

 .

We can directly compute

H0(F(R),Z) = coker d1 = Z 〈1〉 ' Z
and

H3(F(R),Z) = ker d3 = Z 〈σ〉 ' Z.
We determine an orientation of F(R) by choosing as fundamental class

[F(R)] := σ.

Thus, for w ∈ S3 one has [F(R)] · w = [F(R)] and so, the right action of S3 on F(R)
preserves the orientation. Denoting by

Di := ([F(R)] ∩ −) : H i(F(R),Z)
∼→ H3−i(F(R),Z)

the associated Poincaré duality, the naturality theorem (see [Mun84, Theorem 67.2]) yields

w∗Diw∗ = Di.
For a right S3-set X, we naturally write Xop for the left S3-set X endowed with the action
w · x := xw−1. Then, the last equation becomes a reformulation of the property

Di ∈ Hom Z[S3]

(
H i(F(R),Z), H3−i(F(R),Z)op

)
and the left modules H i(F(R),Z) and H3−i(F(R),Z)op are thus isomorphic.

Now, we have to see why the right modules H0(F(R),Z) and H3(F(R),Z) are trivial. For
the first case, notice that

d1

−sαsβ1
0

 = 1− sαsβ and d1

sα − sαsβ1− sα
0

 = 1− sβsα,

hence, we have that 1 − w ∈ im (d1) for every w ∈ S3 and so, S3 acts trivially on
H0(F(R),Z). The same holds for H3(F(R),Z) = Z 〈σ〉.

It remains to show that H1(F(R),Z)op ' 2. Denote respectively by x and y the classes of1 + sβ
0
0

 ∈ ker d1 and

sα + sβsα
0
0

 ∈ ker d1 inH1(F(R),Z). Then we haveH1(F(R),Z) =

Z 〈x, y〉 ' (Z/2Z)2 and since

x+ y +

sαsβ + w0

0
0

 =

σ0
0

 = d2

1 + 2sα − sβsα + sαsβ
1 + sα + sβ
−1− sβ − sβsα


we get

y · sβ =

sαsβ + w0

0
0

 = −x− y.

Next, it is easy to compute that x · sα = y, x · sβ = x and y · sα = x. These equations mean
that, with respect to the generating set {x, y} of the torsion Z-module H1(F(R),Z)op, the
matrices of the action of sα and sβ are given by

Mat{x,y}(sα) =

(
0 1
1 0

)
, Mat{x,y}(sβ) =

(
1 0
−1 −1

)
and these are indeed the matrices defining 2. �
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ROCCO CHIRIVÌ, ARTHUR GARNIER AND MAURO SPREAFICO

From this and the universal coefficients theorem, the Brauer character table of S3 over
F2 being well-known (see [Ser98, Part III]), we deduce the following corollary:

Corollary 3.4.9. The mod 2 cohomology ring H∗(F(R),F2) is a graded commutative left
F2[S3]-algebra, semisimple as a module, satisfying

∗ For i ≥ 4, one has H i(F(R),F2) = 0,
∗ The modules H0(F(R),F2) and H3(F(R),F2) are trivial,
∗ The modules H1(F(R),F2) and H2(F(R),F2) are isomorphic to the unique two-

dimensional irreducible representation 2⊗ F2.

Finally, using Figure 7, we can describe the 3-cells in a more combinatorial way. More
precisely, one can describe all the curved tetrahedra having a given element w ∈ S3 in its
boundary. By right multiplication by w−1, we may assume that w = 1. First consider the
octahedron as in Figure 7, with vertices (and centers of faces) given by the images of the
ones of 7 under the projection πO : O � S3 as in the figure 10. A curved tetrahedron
containing 1 can be described in the following way:

(1) Choose a face F of the octahedron,
(2) Choose an edge of F ,
(3) The curved tetrahedron has its vertices given by the center of F , the two vertices of

the chosen edge of F and 1.

1

sβ

sβ

w0w0

sα

sα

sβsα

sαsβ

sαsβ

sβsα

sαsβ

sβsα

sαsβ

sβsα

Figure 10. A curved tetrahedron in F(R) containing 1 in its boundary

Remark 3.4.10. Note that in this representation, many different cells can have the same
vertices. For instance, the 1-cell formed by the edge linking 1 to the w0 on the right, and
then from the other copy of w0 on the left, back to one is not a trivial path in F(R). In fact,
it corresponds to the element j of the group Q8 ' π1(F(R), 1).
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4. The icosahedral case

4.1. Fundamental domain.

We shall use for the binary icosahedral group I of order 120 exactly the same method as
for O. First, we are looking for a fundamental domain for I in S3. To do this, we consider
the orbit polytope in R4

P := PI := conv(I).

This polytope has 120 vertices, 720 edges, 1200 faces and 600 facets and is known as the
600-cell (or the hexacosichoron, or even the tetraplex ). Since I acts freely on P3, there must
be exactly five orbits in P3. Here again, we consider some elements of I, also expressed in
terms of the Coxeter generators s and t and with ϕ := (1 +

√
5)/2:

σ+
i := ϕ+ϕ−1i+j

2 = t,

σ−i := ϕ+ϕ−1i−j
2 = st−2,


σ+
j := ϕ+ϕ−1j−k

2 = ts−1t,

σ−j := ϕ−ϕ−1j−k
2 = s−1t,


σ+
k := ϕ+i+ϕ−1k

2 = st−1,

σ−k := ϕ+i−ϕ−1k
2 = s−1t2.

As for O, we may find explicit representatives for the I-orbits of P3:

Proposition 4.1.1. The following tetrahedra (in R4)

∆1 := [1, σ−k , σ
+
k , σ

+
i ],

∆2 := [1, σ−k , σ
+
i , σ

+
j ],

∆3 := [1, σ−k , σ
+
j , σ

−
j ],

∆4 := [1, σ−k , σ
−
j , σ

−
i ],

∆5 := [1, σ−k , σ
−
i , σ

+
k ]

form a system of representatives of I-orbits of facets of PI . Furthermore, the subset of PI
defined by

DI :=
5⋃
i=1

∆i

is a (connected) polytopal complex and is a fundamental domain for the action of I on ∂PI .

Proof. First, we have to find the facets of PI by giving the defining inequalities. Here again,
the semidirect product Z4

2 oS4 acts on R4 in a natural way and we check that the following
600 inequalities

〈v, x〉 ≤ 1,

with

v ∈ (Z4
2oA4)·




4− 2ϕ
4− 2ϕ

0
0

 ,


2− ϕ
2− 3

ϕ

1
0

 ,


2ϕ− 3
3
ϕ − 1

ϕ− 1
0

 ,


2ϕ− 3
2ϕ− 3
2ϕ− 3

1

 ,


ϕ− 1
ϕ− 1
ϕ− 1
2− 3

ϕ

 ,


2− ϕ
2− ϕ
2− ϕ
3
ϕ − 1

 ,


2ϕ− 3
2− ϕ
ϕ− 1
4− 2ϕ


 ,

where ϕ = 1+
√

5
2 , are valid for PI . Then, the facets are given by the equalities 〈v, x〉 = 1

and we find their vertices by looking at vertices of PI that satisfy these equalities. We find

vert(DI) = {1, σ±i , σ
±
j , σ

±
k }
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and since vert(DI)∩vert(DI)
−1 = {1}, the Proposition 1.2.3 shows that DI is a fundamental

domain. �

σ−k

1
σ+
j

σ−j

σ−i

σ+
i

σ+
k

Figure 11. The five tetrahedra inside DI

4.2. Associated I-cellular decomposition of ∂PI.

Here also, we investigate the combinatorics of the polytopal fundamental domain D := DI
constructed above to obtain a cellular decomposition of it. This will give a cellular structure
on ∂PI and projecting to S3 gives the desired cellular structure.

The facets of D are the ones of the five tetrahedra ∆i, except the ones that are contained
in some intersection ∆i ∩∆j . We obtain the following facets

D2 = {[1, σ−i , σ
+
k ], [1, σ+

k , σ
+
i ], [1, σ+

i , σ
+
j ], [1, σ+

j , σ
−
j ], [1, σ−j , σ

−
i ],

[σ−k , σ
−
i , σ

+
k ], [σ−k , σ

+
k , σ

+
i ], [σ−k , σ

+
i , σ

+
j ], [σ−k , σ

+
j , σ

−
j ], [σ−k , σ

−
j , σ

−
i ]}.

We remark the following relations among them
σ+
j · [1, σ

−
i , σ

+
k ] = [σ+

j , σ
−
j , σ

−
k ],

σ−j · [1, σ
+
k , σ

+
i ] = [σ−j , σ

−
i , σ

−
k ],

σ−i · [1, σ
+
i , σ

+
j ] = [σ−i , σ

+
k , σ

−
k ],

and


σ+
k · [1, σ

+
j , σ

−
j ] = [σ+

k , σ
+
i , σ

−
k ],

σ+
i · [1, σ

−
j , σ

−
i ] = [σ+

i , σ
+
j , σ

−
k ]

These are the only relations linking facets, hence we may define the following 2-cells
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
e2

1 :=]1, σ−j , σ
−
i [,

e2
2 :=]1, σ−i , σ

+
k [,

and


e2

3 :=]1, σ+
k , σ

+
i [,

e2
4 :=]1, σ+

i , σ
+
j [,

e2
5 :=]1, σ+

j , σ
−
j [

Now, define the following 1-cells

e1
1 :=]1, σ+

k [, e1
2 :=]1, σ+

i [, e1
3 :=]1, σ+

j [, e1
4 :=]1, σ−j [, e1

5 :=]1, σ−i [.

If we add to this the vertices of D and its interior, which is formed by only one cell e3

by construction, then we may cover all of D with these cells and some of their translates.
Thus, we have obtained the

Lemma 4.2.1. Consider the following sets of cells in DI

E0
D := {1, σ±i , σ

±
j , σ

±
k },

E1
D := {e1

1, σ
−
j e

1
1, σ

+
j e

1
1, e

1
2, σ

−
i e

1
2, σ

−
j e

1
2, e

1
3, σ

−
i e

1
3, σ

+
k e

1
3, e

1
4, σ

+
i e

1
4, σ

+
k e

1
4, e

1
5, σ

+
i e

1
5, σ

+
j e

1
5},

E2
D := {e2

1, σ
+
i e

2
1, e

2
2, σ

+
j e

2
2, e

2
3, σ

−
j e

2
3, e

2
4, σ

−
i e

2
4, e

2
5, σ

+
k e

2
5},

E3
D := {e3}

Then, one has the following cellular decomposition of the fundamental domain

DI =
∐

0≤j≤3

e∈EjD

e.

The 1-skeleton of DI is displayed in figure 12.

Then, combining Proposition 4.1.1 and Lemma 4.2.1, yields the

Proposition 4.2.2. Letting E0 := {1}, E1 := {e1
i , 1 ≤ i ≤ 5}, E2 := {e2

i , 1 ≤ i ≤
5} and E3 := {e3} with the above notations, we have the following I-equivariant cellular
decomposition of ∂PI

∂PI =
∐

0≤j≤3
e∈Ei,g∈I

ge.

As a consequence, using the homeomorphism φ : ∂PI
∼→ S3 given by x 7→ x/|x|, we obtain

the following I-equivariant cellular decomposition of the sphere

S3 =
∐

0≤j≤3
e∈Ej ,g∈I

gφ(e).

We now have to compute the boundaries of the cells and the resulting cellular homology
chain complex. We choose to orient the 3-cell e3 undirectly, and the 2-cells directly:
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σ−k

1

σ+
j

σ+
i

σ+
k

σ−j

σ−i

σ−j e
1
1

σ+
i e

1
4

e1
2

σ+
i e

1
5

σ+
k e

1
3

σ+
j e

1
1

σ−j e
1
2

e1
3

σ+
j e

1
5

e1
4

e1
5

σ+
k e

1
4

e1
1

σ−i e
1
2

σ−i e
1
3

Figure 12. The oriented 1-skeleton of DI

e2
1

e2
5

e2
4

e2
3

e2
2

σ+
i

1 σ−j

σ+
j

σ+
k

σ−i

Figure 13. Orientation of the 2-cells

These orientations allow us to easily compute the boundaries of the representing cells euv
and give the resulting chain complex of free left Z[I]-modules

Proposition 4.2.3. The cellular homology complex of ∂PI associated to the cellular struc-
ture given in the Proposition 4.2.2 is a chain complex of free left Z[I]-modules isomorphic
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e2
1

e2
5

e2
4

e2
3

e2
2

σ−j e
2
3

σ+
j e

2
2

σ+
i e

2
1

σ+
k e

2
5

σ−i e
2
4

Figure 14. The oriented 2-skeleton of DI

to

KI :=

(
Z[I]

d3 // Z[I]5
d2 // Z[I]5

d1 // Z[I]

)
,

where the di’s are given, in the canonical bases, by right multiplication by the following
matrices

d1 =


σ+
k − 1
σ+
i − 1
σ+
j − 1

σ−j − 1

σ−i − 1

 , d2 =


σ−j 0 0 1 −1

−1 σ−i 0 0 1
1 −1 σ+

k 0 0
0 1 −1 σ+

i 0
0 0 1 −1 σ+

j

 ,

d3 =
(
σ+
i − 1 σ+

j − 1 σ−j − 1 σ−i − 1 σ+
k − 1

)
.

4.3. The case of spheres and free resolution of the trivial I-module.

Here again, we shall describe the fundamental domain obtained above in S3 in terms of
curved join and give a fundamental domain on S4n−1 and the equivariant cellular structure
on that goes with it. We finish by giving a 4-periodic free resolution of Z over Z[I].

We first have to describe the fundamental domain in S3, using the curved join.

Proposition 4.3.1. The following subset of S3 is a fundamental domain for the action of
I

FI,3 := (1 ∗ σ−k ∗ σ
+
i ∗ σ

+
j ) ∪ (1 ∗ σ−k ∗ σ

+
j ∗ σ

−
j ) ∪ (1 ∗ σ−k ∗ σ

−
j ∗ σ

−
i )

∪(1 ∗ σ−k ∗ σ
−
i ∗ σ

+
k ) ∪ (1 ∗ σ−k ∗ σ

+
k ∗ σ

+
i ).

Proof. According to Lemme 1.2.1, it suffices to show that FI,3 = p(DI), where p : ∂PI
∼→

S3 and this is a straightforward calculation which we omit again. �

Then, we give the reformulation of Proposition 4.2.2, in terms of curved join and cells in
the sphere S3.
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Theorem 4.3.2. The sphere S3 admits a I-equivariant cellular decomposition with the
following cells as orbit representatives

ẽ0 := 1 ∗ ∅ = {1},



ẽ1
1 := 1

◦∗ σ+
k =]1, σ+

k [,

ẽ1
2 := 1

◦∗ σ+
i =]1, σ+

i [,

ẽ1
3 := 1

◦∗ σ+
j =]1, σ+

j [,

ẽ1
4 := 1

◦∗ σ−j =]1, σ−j [,

ẽ1
5 := 1

◦∗ σ−i =]1, σ−i [



ẽ2
1 := 1

◦∗ σ−j
◦∗ σ−i ,

ẽ2
2 := 1

◦∗ σ−i
◦∗ σ+

k ,

ẽ2
3 := 1

◦∗ σ+
k
◦∗ σ+

i ,

ẽ2
4 := 1

◦∗ σ+
i
◦∗ σ+

j ,

ẽ2
5 := 1

◦∗ σ+
j
◦∗ σ−j

ẽ3 :=
◦

FI,3.

Furthermore, the associated cellular homology complex is a chain complex of free left
Z[I]-modules isomorphic to

KI :=

(
Z[I]

d3 // Z[I]5
d2 // Z[I]5

d1 // Z[I]

)
,

where the di’s are given, in the canonical bases, by right multiplication by the following
matrices

d1 =


σ+
k − 1
σ+
i − 1
σ+
j − 1

σ−j − 1

σ−i − 1

 , d2 =


σ−j 0 0 1 −1

−1 σ−i 0 0 1
1 −1 σ+

k 0 0
0 1 −1 σ+

i 0
0 0 1 −1 σ+

j

 ,

d3 =
(
σ+
i − 1 σ+

j − 1 σ−j − 1 σ−i − 1 σ+
k − 1

)
.

For the higher dimensional case, combining lemma 1.3.2 and Proposition 4.3.1 yields

Proposition 4.3.3. Letting I act on S4n−1 (n ≥ 1) via the representation ρnI , the following
subset of S4n−1 is a fundamental domain for the action

FI,4n−1 := Σ1 ∗ Σ2 ∗ · · · ∗ Σ2(n−1) ∗FI,3,

with FI,3 inside Σ2n−1 ∗ Σ2n.

We can now describe the resulting equivariant cellular decomposition on S4n−1 using
lemmae 1.2.1, 1.3.2 and Theorem 4.3.2. Here also, the boundary of the cells ẽ4q for q > 0 is
given by all the cells in S4q−1, that is, all the orbits under I. The following result can be
proved as the Theorem 3.3.4

Theorem 4.3.4. The chain complex C(P4n−1
I ,Z[I]) of the universal covering space of the

icosahedral space forms P4n−1
I with the fundamental group acting by covering transformations

is isomorphic to the following complex of left Z[I]-modules:

0 // Z[I]
d4n−1 // Z[I]5 // . . . // Z[I]5

d2 // Z[I]5
d1 // Z[I] // 0 ,

where the boundaries are given, in the canonical bases, by the following matrices (q ≥ 1)

34



CELLULARIZATION FOR EXCEPTIONAL SPHERICAL SPACE FORMS AND APPLICATION TO FLAG
MANIFOLDS

d4q−3 =


σ+
k − 1
σ+
i − 1
σ+
j − 1

σ−j − 1

σ−i − 1

 , d4q−2 =


σ−j 0 0 1 −1

−1 σ−i 0 0 1
1 −1 σ+

k 0 0
0 1 −1 σ+

i 0
0 0 1 −1 σ+

j

 ,

d4q−1 =
(
σ+
i − 1 σ+

j − 1 σ−j − 1 σ−i − 1 σ+
k − 1

)
, d4q =

(∑
g∈I g

)
.

In particular, the complex is exact in middle terms, i.e.

∀0 < i < 4n− 1, Hi(C(P4n−1
I ,Z[I])) = 0

and we have
H0(C(P4n−1

I ,Z[I])) = H4n−1(C(P4n−1
I ,Z[I])) = Z.

Remark 4.3.5. Using the augmentation map ε : Z[I] � Z, one can compute the complex
KI ⊗Z[I] Z and since we have

det(d2 ⊗ Z) = det


1 0 0 1 −1
−1 1 0 0 1
1 −1 1 0 0
0 1 −1 1 0
0 0 1 −1 1

 = 1,

we find that S3/I is a homology sphere, but it is not a sphere. That is, one has H∗(S3/I,Z) =
H∗(S3,Z), and however S3/I is not homeomorphic to S3, since π1(S3/I) = I 6= 1 = π1(S3).

This space has a long story, it is called the Poincaré homology sphere. It can also be
constructed as the link of the singularity of the complex affine variety {(x, y, z) ∈ C3 ; x2 +
y3 + z5 = 0} near the origin, as the Seifert bundle or as the dodecahedral space. This last
one corresponds to the original construction of Poincaré. For a detailed expository paper on
the Poincaré homology sphere, we refer the reader to [KS79].

Corollary 4.3.6. The following chain complex

. . . // Z[I]5
d4q−3 // Z[I]

d4q−4 // . . . // Z[I]5
d2 // Z[I]5

d1 // Z[I]
ε // Z // 0 ,

with boundaries di as in the Theorem 4.3.4, is a 4-periodic resolution of the constant module
Z over Z[I].

We are now able to compute the group cohomology of I using this result.

Corollary 4.3.7. The group cohomology of I with integer coefficients is given as follows:

∀q ∈ N,


H0(I,Z) = Z if q = 0,

Hq(I,Z) = Z/120Z if q ≡ 0 (mod 4)

Hq(I,Z) = 0 else

Proof. In view of Lemma 3.3.6, it is suffices to compute C(P∞I ,Z[I])⊗Z[I]Z, with C(P∞I ,Z[I])
the complex given in Corollary 4.3.6. Computing the matrices ε(di) leads to the following
complex

. . . // Z5 0 // Z ×120 // Z // . . . // Z ×120 // Z 0 // Z5 d // Z5 0 // Z // 0 ,
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where

d :=


1 0 0 1 −1
−1 1 0 0 1
1 −1 1 0 0
0 1 −1 1 0
0 0 1 −1 1

 .

Hence, determining the elementary divisors of d gives the following homology

∀q ≥ 1,


H0(I,Z) = Z,

H4q−4,q>1(I,Z) = H4q−2(I,Z) = H4q−3(I,Z) = 0,

H4q−1(I,Z) = Z/120Z
and the result then follows from the universal coefficients theorem. �

Remark 4.3.8. The Corollary 4.3.7 agrees with the previously known result on the coho-
mology of I, see [TZ08, Theorem 4.16].

Appendix A. The tetrahedral case

Even if the case of T has already been treated in [FGMNS16], we can recover it by
applying the above methods to this case. Note that all the groups in the tetrahedral family
are studied in [CS17], but there T is excluded since, while it is the simplest one of the family,
it is somehow different from all the other ones. Since it’s always the same arguments and
the case is solved, we omit the proofs.

A.1. Fundamental domain.

We consider the orbit polytope in R4

P := PT := conv(T ).

This polytope has 24 vertices, 96 edges, 96 faces and 24 facets and is known as the 24-cells
(or the icositetrachoron, or even the octaplex ). Since T acts freely on P3, there must be
exactly one orbit in P3. We keep the notations of the Section 3 and define

ω0 = 1+i+j+k
2 = s,

ωi = 1−i+j+k
2 = t−1s,

ωj = 1+i−j+k
2 = st−1,

ωk = 1+i+j−k
2 = t,

ωij := 1−i−j+k
2 = t−1.
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Proposition A.1.1. The subset of PT defined by

DT := [1, ω0, ωj , ωi, ωij , k]

is a (connected) polytopal complex and is a fundamental domain for the action of T on
∂PT .

ω0

ωij

ωj ωi

k

1

Figure 15. The tetrahedron DT

A.2. Associated T -cellular decomposition of ∂PT .

Let D := DT . The facets of D are the following

D2 = {[1, ωj , ω0], [1, ω0, ωi], [1, ωi, ωij ], [1, ωij , ωj ],

[k, ωj , ω0], [k, ω0, ωi], [k, ωi, ωij ], [k, ωij , ωj ]}.

We remark the following relations among them

ωij · [1, ωj , ω0] = [ωij , k, ωi],

ωj · [1, ω0, ωi] = [ωj , k, ωij ],

ω0 · [1, ωi, ωij ] = [ω0, k, ωj ],

ωi · [1, ωij , ωj ] = [ωi, k, ω0].

These are the only relations linking facets, hence we may define the following 2-cells
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e2
1 :=]1, ωj , ω0[,

e2
2 :=]1, ω0, ωi[,

e2
3 :=]1, ωi, ωij [,

e2
4 :=]1, ωij , ωj [.

Now, define the following 1-cells

e1
1 :=]1, ωij [, e1

2 :=]1, ωj [, e1
3 :=]1, ω0[, e1

4 :=]1, ωi[.

If we add to this the vertices of D and its interior, which is formed by only one cell e3

by construction, then we may cover all of D with these cells and some of their translates.
Thus, we have obtained the

Lemma A.2.1. Consider the following sets of cells in DT

E0
D := {1, ωi, ωj , ωij , ω0, k},

E1
D := {e1

1, ω0e
1
1, ωie

1
1, e

1
2, ωie

1
2, ωije

1
2, e

1
3, ωije

1
3, ωje

1
3, e

1
4, ωje

1
4, ω0e

1
4, },

E2
D := {e2

1, ωije
2
1, e

2
2, ωje

2
2, e

2
3, ω0e

2
3, e

2
4, ωie

2
4},

E3
D := {e3}

Then, one has the following cellular decomposition of the fundamental domain

DT =
∐

0≤j≤3

e∈EjD

e.

The 1-skeleton of DT is displayed in figure 16.

Then, combining Proposition A.1.1 and Lemma A.2.1, yields the following proposition.

Proposition A.2.2. Letting E0 := {1}, E1 := {e1
i , 1 ≤ i ≤ 4}, E2 := {e2

i , 1 ≤ i ≤
4} and E3 := {e3} with the above notations, we have the following T -equivariant cellular
decomposition of ∂PT

∂PI =
∐

0≤j≤3
e∈Ei,g∈T

ge.

As a consequence, using the homeomorphism φ : ∂PT
∼→ S3 given by x 7→ x/|x|, we obtain

the following T -equivariant cellular decomposition of the sphere

S3 =
∐

0≤j≤3
e∈Ej ,g∈T

gφ(e).

We now have to compute the boundaries of the cells and the resulting cellular homology
chain complex. We choose to orient the 3-cell e3 directly, and the 2-cells undirectly:
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ω0

ωij

ωj ωi

k

1

e1
2

e1
3

e1
1 e1

4

ωie
1
2

ωije
1
3

ωje
1
4

ω0e
1
1

ωije
1
2

ω0e
1
4

ωje
1
3 ωie

1
1

Figure 16. The oriented 1-skeleton of DT

e2
3

e2
2e2

1

e2
4

ω0

1 ωiωj

ωij

Figure 17. Orientation of the 2-cells

These orientations allow us to easily compute the boundaries of the representing cells euv
and give the resulting chain complex of free left Z[T ]-modules

Proposition A.2.3. The cellular homology complex of ∂PT associated to the cellular struc-
ture given in the Proposition A.2.2 is a chain complex of free left Z[T ]-modules isomorphic
to

KT :=

(
Z[T ]

d3 // Z[T ]4
d2 // Z[T ]4

d1 // Z[T ]

)
,
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ωije
2
1

e2
3

e2
4

ωje
2
2

ωie
2
4

e2
2

e2
1

ω0e
2
3

Figure 18. The oriented 2-skeleton of DT

i −i

j

−j

k

−k

1
∗ i −i

j

−j

k

−k

−1

Figure 19. The fundamental domain DT
Legend : The red points belong to Q8, while the green ones belong to T \ Q8.

where the di’s are given, in the canonical bases, by right multiplication by the following
matrices

d1 =


ωij − 1
ωj − 1
ω0 − 1
ωi − 1

 , d2 =


ω0 −1 1 0
0 ωi −1 1
1 0 ωij −1
−1 1 0 ωj

 ,

d3 =
(
1− ωij 1− ωj 1− ω0 1− ωi

)
.

A.3. The case of spheres and free resolution of the trivial T -module.

Here again, we shall describe the fundamental domain obtained above in S3 in terms of
curved join and give a fundamental domain on S4n−1 and the equivariant cellular structure
on that goes with it. We finish by giving a 4-periodic free resolution of Z over Z[T ].

We first have to describe the fundamental domain in S3, using the curved join. This is
done in the following result

40



CELLULARIZATION FOR EXCEPTIONAL SPHERICAL SPACE FORMS AND APPLICATION TO FLAG
MANIFOLDS

Proposition A.3.1. The following subset of S3 is a fundamental domain for the action of
T

FT ,3 := (1 ∗ ωij ∗ ωi ∗ ω0 ∗ ωj) ∪ (ωij ∗ ωi ∗ ω0 ∗ ωj ∗ k).

Then, we give the reformulation of Proposition A.2.2, in terms of curved join and cells in
the sphere S3:

Theorem A.3.2. The sphere S3 admits a T -equivariant cellular decomposition with the
following cells as orbit representatives

ẽ0 := 1 ∗ ∅ = {1},



ẽ1
1 := 1

◦∗ ωij ,

ẽ1
2 := 1

◦∗ ωj ,

ẽ1
3 := 1

◦∗ ω0,

ẽ1
4 := 1

◦∗ ωi



ẽ2
1 := 1

◦∗ ωj
◦∗ ω0,

ẽ2
2 := 1

◦∗ ω0
◦∗ ωi,

ẽ2
3 := 1

◦∗ ωi
◦∗ ωij ,

ẽ2
4 := 1

◦∗ ωij
◦∗ ωj

ẽ3 :=
◦

FT ,3.

Furthermore, the associated cellular homology complex is a chain complex of free left
Z[T ]-modules isomorphic to

KT :=

(
Z[T ]

d3 // Z[T ]4
d2 // Z[T ]4

d1 // Z[T ]

)
,

where the di’s are given, in the canonical bases, by right multiplication by the following
matrices

d1 =


ωij − 1
ωj − 1
ω0 − 1
ωi − 1

 , d2 =


ω0 −1 1 0
0 ωi −1 1
1 0 ωij −1
−1 1 0 ωj

 ,

d3 =
(
1− ωij 1− ωj 1− ω0 1− ωi

)
.

For the higher dimensional case, combining lemma 1.3.2 and Proposition A.3.1 yields

Proposition A.3.3. Letting T act on S4n−1 (n ≥ 1) via the representation ρnT , the following
subset of S4n−1 is a fundamental domain for the action

FT ,4n−1 := Σ1 ∗ Σ2 ∗ · · · ∗ Σ2(n−1) ∗FT ,3,

with FT ,3 inside Σ2n−1 ∗ Σ2n.

We can now describe the resulting equivariant cellular decomposition on S4n−1 using
lemmae 1.2.1, 1.3.2 and Theorem A.3.2.

Theorem A.3.4. The chain complex C(P4n−1
T ,Z[T ]) of the universal covering space of the

tetrahedral space forms P4n−1
T with the fundamental group acting by covering transformations

is isomorphic to the following complex of left Z[T ]-modules:

0 // Z[T ]
d4n−1 // Z[T ]4 // . . . // Z[T ]4

d2 // Z[T ]3
d1 // Z[T ] // 0 ,

where the boundaries are given, in the canonical bases, by the following matrices (q ≥ 1)
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d4q−3 =


ωij − 1
ωj − 1
ω0 − 1
ωi − 1

 , d4q−2 =


ω0 −1 1 0
0 ωi −1 1
1 0 ωij −1
−1 1 0 ωj

 ,

d4q−1 =
(
1− ωij 1− ωj 1− ω0 1− ωi

)
, d4q =

(∑
g∈T g

)
.

In particular, the complex is exact in middle terms, i.e.

∀0 < i < 4n− 1, Hi(C(P4n−1
T ,Z[T ])) = 0

and we have
H0(C(P4n−1

T ,Z[T ])) = H4n−1(C(P4n−1
T ,Z[T ])) = Z.

Next, letting n→∞ yields the

Corollary A.3.5. The following chain complex

. . . // Z[T ]4
d4q−3 // Z[T ]

d4q−4 // . . . // Z[T ]4
d2 // Z[T ]4

d1 // Z[T ]
ε // Z // 0 ,

with boundaries di as in the Theorem A.3.4, is a 4-periodic resolution of the constant module
Z over Z[T ].

We are now able to compute the group cohomology of T using this result.

Corollary A.3.6. The group cohomology of T with integer coefficients is given as follows:

∀q ≥ 1,



Hq(T ,Z) = Z if q = 0,

Hq(T ,Z) = Z/24Z if q ≡ 0 (mod 4),

Hq(T ,Z) = Z/3Z if q ≡ 2 (mod 4),

Hq(T ,Z) = 0 else

Proof. In view of Lemma 3.3.6, is suffices to compute C(P∞T ,Z[T ])⊗Z[T ]Z, with C(P∞T ,Z[T ])
the complex given in Corollary A.3.5. Computing the matrices ε(di) leads to the following
complex

. . . // Z4 0 // Z ×24 // Z // . . . // Z ×24 // Z 0 // Z4 d // Z4 0 // Z // 0 ,

where

d =


1 −1 1 0
0 1 −1 1
1 0 1 −1
−1 1 0 1

 .

Hence, determining the elementary divisors of the only non-trivial matrix occuring in it
gives the following homology

∀q ∈ N,



H0(T ,Z) = Z,

H4q−4,q>1(T ,Z) = H4q−2(T ,Z) = 0,

H4q−3(T ,Z) = Z/3Z,

H4q−1(T ,Z) = Z/24Z
and the result then follows from the universal coefficients theorem. �
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A.4. Simplicial structure and minimal resolution.

Since we have chosen polytopal fundamental domains for T , O and I, it is clear that we
can refine our cellular decompositions to equivariant simplicial decompositions of S3. We
will just investigate the case of T , since the other ones can be treated in a similar way. The
method is trivial: just take each one of the facets ∆i of P as the 3-cells and their boundary
(up to multiplication) as 2-cells.

For instance, here, take as 3-cells the following open curved joins:

c3
1 :=]ω0, 1, ωij , ωj [,

c3
2 :=]ω0, 1, ωi, ωij [,

c3
3 :=]ω0, ωij , k, ωj [,

c3
4 :=]k, ω0, ωi, ωij [.

and as 2-cells the following open triangles:

∀1 ≤ i ≤ 4, c2
i := e2

i and



c2
5 :=]ω0, 1, ωij [,

c2
6 :=]ωij , ωj , ω0[,

c2
7 :=]ω0, ωi, ωij [,

c2
8 :=]ω0, k, ωij [.

and we may keep the 1-cells as they are, i.e. c1
i := e1

i for 1 ≤ i ≤ 4. Then, the resulting sim-
plicial homology complex is easily computed (for example, by orienting the 3-cells directly),
just as we did above. One shall find of course a complex that is homotopy equivalent to the
complex KT defined in the Theorem A.3.2. We omit the details.

We conclude by discussing the minimal resolution. Group resolution and group cohomol-
ogy are purely algebraic invariants of the given group G. Under this point of view, Swan
[Swan] proved the existence of a minimal periodic free resolution of Z over G, for a family
of finite groups containing the spherical space forms group. This means a resolution with
minimal Z[G] module’s ranks. He also gave a bound for these ranks. This point has been
discussed in [CS17] for the resolution over the groups P ′8·3s of the tetrahedral family. Here,
we show how to “reduce” our resolution for T to the minimal one, that has ranks 1-2-2-
1, compare [CS17, 10.6]. (We note that in [CS17, 10.5] there is a missprint: one should
read fh(F •) instead of µh(G) in the statement of the proposition.) We first describe the
underlying geometric idea, and next we give an explicit chain homotopy.

Geometrically, the construction is as follows: start with the cellular decomposition from
Theorem A.3.2. As seen in Figure 18, the four upper triangles are sent by different group
elements to the four lower triangles. It is clear that there is no way of collecting two triangles
in one single 2-cell but we may proceed as follows. Pick up one triangle, say e2

1, and one of
its neighbours, say ω0e

2
3 and set a1 to be the union of these two triangles, namely

a1 := e2
1 + e2

2.

Then, we have that ωija1 = ωije
2
1 + ωije

2
2 and y := ωije

2
2 does not belong to the boundary

of the fundamental domain FT ,3. However, we may find an other pair of coherent triangles
such that one of them is mapped to y by some group element, while the other one is mapped
to some triangle in the boundary of FT ,3. For example, take

a2 := ω0e
2
3 + ωje

2
2.
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Then, we have ω−1
0 a2 = e2

3 + y. As a consequence,

ω−1
0 a2 − ωija1 = e2

3 − ωije2
1

and this means that we can use the three 2-cells a1, a2 and e2
4 to cover all the boundary

of FT ,3. We would like to add one more triangle to the first two 2-cells in order to reduce
the total number to two, but we easily see that the same procedure fails. However, we
may proceed in the following ”dual” way. Let x be a triangle such that ω−1

0 x = e2
4 and

ωijx = ωie
2
4. We can take x :=]i, ωj , ω0[ and then we define

b1 := a1 + x = e2
1 + e2

2 + x

and
b2 := a2 + x = ω0e

2
3 + ωje

2
2 + x.

Then, after a simple calculation, we find that

b1 − b2 + ω−1
0 b2 − ωijb1 = a1 − a2 + ω−1

0 a2 − ωija1 + ω−1
0 x− ωijx

= (1− ωij)e2
1 + (1− ωj)e2

2 + (1− ω0)e2
3 + (1− ωi)e2

4 = d3(e3),

that is, the whole boundary of FT ,3 is obtained using only the two 2-chains b1 and b2.
We can then give the reduced complex. It is given by the following

K′T :=

(
0 // K ′3

d′1 // K ′2
d′2 // K ′1

d′1 // K ′0
// 0

)
,

where K ′0 = Z[T ]
〈
f0
〉
, K ′3 = Z[T ]

〈
f3
〉
, K ′1 = Z[T ]

〈
f1

1 , f
1
2

〉
and K ′2 = Z[T ]

〈
f2

1 , f
2
2

〉
and

d′3(f3) = (1− ωij)f2
1 + (1− ω0)f2

2 ,
d′2(f2

1 ) = (ω0 + ωi − 1)f1
1 + (i+ 1)f1

2 ,
d′2(f2

2 ) = (1 + (−i))f1
1 + (ωj − 1 + ωij)f

1
2 ,

d′1(f1
1 ) = (ωj − 1)f0,

d′1(f1
2 ) = (ωi − 1)f0,

i.e. are given in the canonical bases by right multiplication by the following matrices

d′1 =

(
ωj − 1
ωi − 1

)
, d′2 =

(
ω0 + ωi − 1 1 + i

1 + (−i) ωj − 1 + ωij

)
, d′3 =

(
1− ωij 1− ω0

)
.

We finish by giving explicit homotopy equivalences ϕ : KT → K′T and ϕ′ : K′T → KT . We
define ϕ(ei) := f i and ϕ′(f i) := ei for i = 0, 3 as well as ϕ2(e2

1) := f2
1 ,

ϕ2(e2
2) = ϕ2(e2

4) := 0,
ϕ2(e2

3) := f2
2 ,

and

{
ϕ′2(f2

1 ) := e2
1 + e2

2 + ω0e
2
4,

ϕ′2(f2
2 ) := ωije

2
2 + e2

3 + e2
4

also 
ϕ1(e1

1) := f1
1 + ωjf

1
2 ,

ϕ1(e1
2) := f1

1 ,
ϕ1(e1

3) := f1
2 + ωif

1
1 ,

ϕ1(e1
4) := f1

2 ,

and

{
ϕ′1(f1

1 ) := e1
2,

ϕ′1(f1
2 ) := e1

4.

We immediately check that ϕ◦ϕ′ = idK′T and we just have to show that the other composition

is homotopic to idKT . If we define H : K∗ → K∗+1 by H0 = H2 = 0, H1(e1
2) = H1(e1

4) := 0
and H1(e1

1) := e2
4, H1(e1

3) := e2
2, then we have ϕ′1ϕ1 = id + d2H1 + H0d1 and ϕ′2ϕ2 =

id+ d3H2 +H1d2, i.e.
ϕ′ ◦ ϕ = idKT + dH +Hd

and ϕ is indeed a homotopy equivalence, with homotopy inverse ϕ′. Thus, we have proved
that the complex KT from the Theorem A.3.2 is homotopy equivalent to the complex

K′T =

(
0 // Z[T ]

d′3 // Z[T ]2
d′2 // Z[T ]2

d′1 // Z[T ] // 0

)
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defined above.

Remark 1.4.1. Observe that this process works for the group T but fails for the other two
groups, O and I. This is not unexpected, since the resolutions determined in the present work
are characterised by their geometric feature, i.e. constructed through particular orthogonal
representations of the groups, and it is not likely that this characterisation would produce a
minimal resolution, that in general may not be induced by a representation. Indeed, it would
be interesting to investigate the possible bounds for the ranks of a free periodic resolution
induced by a linear representation.
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